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1. Introduction 

1.1 Background 

This thesis is about high accuracy angle-resolved spectrophotometric measure-
ments. Spectrophotometry is the quantitative measurement of the interaction of ul-
traviolet, visible and infrared radiation with a material [1]. Spectrophotometric meas-
urements of spectral reflectance, transmittance, absorbance, luminescence emis-
sion, scattering and other parameters are used in various industrial fields and sci-
entific disciplines. The aim of this thesis is to reduce the uncertainties in angle-re-
solved spectrophotometric measurements and study the angular behaviour of re-
flectance and luminescence of materials. 

Angle-resolved measurements of reflectance are used in describing the visual 
appearance of surfaces [2] (especially of goniochromatic coatings [3]), describing 
surface structures [4], measuring the thickness of thin layers [5,6] etc. In addition, 
satellite based Earth observation using on-orbit radiometers in the visible and near 
infrared range is essentially spectrophotometric measurement of reflectance of the 
surface of the Earth. The light from Sun is transferred through the atmosphere of 
Earth, is scattered from the Earth’s surface and vegetation, and is transferred 
through the atmosphere again, before reaching the detector on the satellite. In order 
to interpret the measured values, the scattering in the atmosphere and in the vege-
tation needs to be taken into account by radiative transfer models such as the one 
[7] used for the moderate-resolution imaging spectroradiometer MODIS [8]. Conse-
quently, the quality of the measurement results relies heavily on the quality of these 
models. The quality of radiative transfer models is usually determined by compari-
sons against field data [9] or other models [10] or by checking models’ internal con-
sistencies analytically [11]. Another way to validate these models is using artificial 
targets that comprise many individual surfaces whose scattering properties can be 
measured [12]. Determining the scattering properties of these surfaces relies on 
accurate angle-resolved diffuse reflectance measurements and physics based mod-
els that parametrise the scattering properties. With the parameters and structure of 
the artificial target, its overall reflectance can be simulated by the radiative transfer 
models and compared against laboratory-measured values. 

Ever since the celestial blue glow of a quinine solution in the sunlight was re-
ported for the first time [13], luminescent molecules – luminophores – have been 
used in different fields of science and industry. In medicine and biology, fluorescent 
markers are used to detect reactions that would otherwise go unnoticed [14], and 
with fluorescence microscopy, objects in the sizes below the diffraction limit can be 
viewed [15]. In industry, luminophores are used to enhance the colours of materials 
e.g. in paper industry fluorophores emitting blue light are used to make paper ap-
pear whiter [16], and luminescent dyes used in textiles and safety signs make the 
colours more vibrant and noticeable [17]. With luminescent pigments widely used in 
all these industrial fields, accurate colorimetric measurements of appearance and 
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quantum efficiency of luminophores are needed to dose the luminophores effi-
ciently. Accurate measurements of quantum efficiency leading to accurate dosing 
of the luminophores may lead to significant savings in the multi-billion-euro pigment 
industry. The colorimetric measurements are usually performed at single geometry 
conditions in comparison to previously calibrated reference material [2], and lumi-
nescence emission is assumed Lambertian – having uniform radiance in all direc-
tions [18]. In contrary, it has been shown in [19,20] as well as in Publications III and 
IV, that luminescence emission from solid amorphous materials has non-Lamber-
tian characteristics. Thus, assumptions in the angular luminescence emission pro-
files can lead to measurement errors. One option to avoid such errors is to measure 
luminescence emission goniometrically. The other is to provide reference materials 
that have more Lambertian properties than the conventional reference materials.  

1.2 Thesis outline 

In this thesis, the abovementioned issues are addressed. Angle-resolved diffuse 
reflectance of surfaces is measured and modelled with the goal of establishing SI-
traceability of radiative transfer (RT) codes. The goniometrical measurement setup 
for luminescence emission [21] is improved to measure angle-resolved bispectral 
luminescent radiance factors at state of the art uncertainties. A reference material 
is proposed that exhibits more Lambertian emission of luminescence than conven-
tionally used reference samples. 

Chapter 2 covers validation of a Monte-Carlo (MC) ray tracing radiative transfer 
model through high accuracy measurements of angle-resolved diffuse reflectance. 
In addition, geometrical errors in the angle-resolved measurements are quantified. 
The susceptibility of angle-resolved reflectance measurements to geometrical er-
rors is usually emphasized in literature (e.g in [22–24]), but not discussed quantita-
tively. Furthermore, the polarisation of reflected light from highly diffuse samples is 
discussed and used to parametrise physics based scattering models.  

In chapter 3, a facility for goniometrical measurements of bispectral luminescent 
radiance factors is characterised and validated against interlaboratory measure-
ments of luminescence quantum efficiency. In addition, a reference material is pro-
posed that shows more Lambertian reflectance and luminescence emission than 
conventional polytetrafluoroethylene (PTFE) based materials. The thesis is summa-
rised in chapter 4. 

1.3 Scientific contribution 

This thesis contains the following novel scientific results. 
Publication I. The bidirectional reflectance distribution function (BRDF) of ano-

dised and non-anodised roughened aluminium surfaces are measured at numerous 
illumination and viewing geometries. The BRDF measurement results are used to 
solve inverse problems of two micro-facet models in order to evaluate the suitability 
of the models to represent the reflective properties of these surfaces. It is found that 
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both of the models fit better to the BRDF measurement results of the non-anodised 
aluminium surfaces.  

Publication II. A step towards rigorous SI-traceability of radiative transfer models 
is taken. A 3-D Monte-Carlo ray-tracing radiative transfer model is tested for its abil-
ity to simulate the bidirectional reflectance factors of a non-anodised aluminium tar-
get. The radiative transfer model uses the optical properties and the topographic 
structure of the target, which have been previously determined via SI-traceable 
measurements of coordinates and reflectance. The simulated and measured bidi-
rectional reflectance factor (BRF) values agree within the corresponding expanded 
uncertainties for most of the measured geometries, but not all. For improved results, 
better measurements and modelling of the surface roughness and more consistent 
roughening process are needed. 

Publication III. Thorough characterisation of MIKES-Aalto goniofluorometer is 
presented. Consequently, the accuracy of measuring bispectral luminescent radi-
ance factors of solid flat materials is improved. The improved measurement capa-
bility is applied to confirm the non-Lambertian emission of luminescence from solid 
amorphous materials. In addition, a previously proposed method for goniometrical 
measurements of fluorescence quantum efficiency and quantum yield is experimen-
tally confirmed and validated through one of the first interlaboratory inter-instrumen-
tal measurements of this kind. 

Publication IV. A reference material is presented showing more Lambertian an-
gular luminescence emission and reflectance than conventional PTFE based mate-
rials. In addition, spectrally dependent angular reflectance profiles from commer-
cially available luminescent diffuse reflectance reference materials are reported. 
The spectrally varying angular reflectance profiles are explained qualitatively and 
quantitatively by models. It is concluded that the spectral variation of angular reflec-
tance profiles is caused by the absorbance of the luminophores and the volume 
scattering in the samples. The new reference material displays smaller spectral var-
iation in angular reflectance profiles than PTFE. 
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2. Angle-resolved diffuse reflectance 

Reflectance is defined as the ratio of reflected radiant flux to incident radiant flux 
[25]. In this thesis, reflectance is considered more specifically in terms of radiant 
flux of the light that is elastically scattered into the hemisphere that is limited by the 
surface of the sample and includes the direction of illumination. The angular distri-
bution of reflected radiant flux depends on the material. A perfect mirror reflects all 
the incident light in a single direction according to the law of reflection [26] as visu-
alised in Figure 1 on the left. A Lambertian diffuser is a surface that scatters all the 
incident light over the hemisphere with a uniform radiance in all directions as visu-
alised in Figure 1 in the middle. The reflectance of all real surfaces, however, is less 
than one, and the angular distribution of reflected radiance deviates from both of 
the extreme cases described above. An example of an arbitrary angular distribution 
of reflected light is visualised in Figure 1 on the right. 

 

Figure 1. Types of reflectance: specular reflectance of a perfect mirror, diffuse re-
flectance of a Lambertian diffuser, arbitrary angular reflectance distribution that 
could be observed on a real surface. 

2.1 Definitions of BRDF and BRF 

The angular distribution of reflected light from a surface is described by the bidirec-
tional reflectance distribution function (BRDF). BRDF for a uniformly irradiated sur-
face is the ratio of the scattered radiance L to the incident irradiance E [22] 

The angles θi and ϕi θv and ϕv) are the illumination (viewing) zenith and azimuth 
angles. Generally, a small illumination spot is used and the BRDF is practically cal-
culated as  

where Φi is the radiant flux incident on the sample and Φr is the radiant flux reflected 
from the sample into a solid angle of v , as seen in Figure 2. 
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Figure 2. Geometry of BRDF. The polarisation state of the measured radiant flux Φr 
is defined by the polarisation direction of the incident light – s when perpendicular 
and p when parallel to the plane of incidence (shaded yellow), defined by the illumi-
nation direction and the surface normal. 

Another widely used quantity in describing the angular distribution of reflected 
light is the bidirectional reflectance factor (BRF). BRF is defined as radiant flux re-
flected from a surface to a given solid angle divided by the reflected flux from a 
perfect reflecting diffuser (PRD), identically illuminated and viewed [27]. In the case 
of unidirectional irradiance, the BRF is  

When the solid angle of viewing approaches zero, the reflectance factor is equal to 
the reflected radiance factor βR. 

2.2 Measurements of BRF 

Recent decades have witnessed a rise in the demand for accurate BRF measure-
ments of surfaces, resulting in development of goniospectrophotometers in many 
National Metrology Institutes (NMIs). The developed instruments differ from each 
other, however they fall generally in two categories in how the viewing and illumina-
tion geometries are realised. Some setups make use of a robotic arm as a sample 
holder such as the one in [28]; the others make use of stacked linear and rotary 
stages such as the measurement setup used in this work [29].   

Many European research projects have been funded to improve the accuracy of 
BRF measurements to satisfy the needs of industry e.g. [30] and Earth observation 
community e.g. [31]. The current state of the art expanded uncertainties (k = 2) in 

.f  (3) 

i

v  

v  i  
v  

i  

r  



17 

measuring the BRF of white reference samples at single geometry conditions is well 
within 0.5% [32].  

In practice, measurements of BRF are conducted by measuring the ratio of re-
flected radiant flux to incident radiant flux at intended geometric conditions and 
thereafter the geometry factor is applied. The main sources of error in the measure-
ments are related to the stray light caused by the beam guiding optics [33], the 
degree of polarisation of the reflected light, and the illumination and viewing geom-
etries influenced by the alignment of the setup and the sample under measurement. 
The latter two can be many times larger than the other components if unaccounted. 

2.2.1 Sample alignment errors in BRF measurements 

Given the illumination and viewing geometries involved in goniometrical measure-
ments of BRFs, the importance of accurate alignment of the setup and the sample 
within the setup cannot be emphasized enough. The alignment of the goniometrical 
measurement setup is usually performed by narrow beam alignment lasers and with 
the help of specular reflection from front surface mirrors. However, with diffusely 
reflecting samples, the alignment methods making use of specular reflection require 
the use of an alignment mirror. The alignment mirror then needs to be either brought 
to contact with the front surface of the sample through a lens cleaning paper or the 
sample holder needs to be in contact with the front surface of the sample, so the 
change of samples would not cause a change in alignment. However, contact with 
the front surface of the sample may be undesirable due to the risk of sample con-
tamination and deformation. Other options include a telescopic camera system [34] 
or a stereo camera and a line projector. The latter two avoid contact with the front 
surface of the sample and are accurate, but can be difficult to adopt, especially to a 
commercial goniospectrophotometer. 

In the following paragraphs, three scenarios of misalignment are discussed. The 
effects of misalignment on the measured reflected radiant flux are quantified for the 
specific case of MIKES-Aalto gonioreflectometer [29] assuming a perfect reflecting 
diffuser as a sample and a small irradiated area. It can be seen by finding the partial 
derivative of Eq. (2) with respect to Φr that the relative error in the measured radiant 
flux is equal to the relative error in the BRDF and BRF. Similarly, these geometric 
considerations affect the measurements of luminescence emission discussed in 
section 3.  

The geometry of the MIKES-Aalto gonioreflectometer is shown in Figure 3. In a 
perfectly aligned measurement setup, the front surface of the sample is located on 
its axis of rotation (red dot in Figure 3). The rotation axis of the detector aperture A 
(black circle in Figure 3) coincides with the sample rotation axis. The illuminating 
beam of light (yellow arrow in Figure 3) crosses and is perpendicular to the above-
mentioned axes of rotation. 
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Figure 3. The geometry of a perfectly aligned MIKES-Aalto gonioreflectometer. The 
symbol α is the angle between the illuminating beam and the viewing direction of 
the detector and d is the distance from the illuminated spot on the sample to the 
detector aperture.  

The measured quantity in BRF measurements, the reflected radiant flux Φr, can 
be expressed from Eq. (2) as 

The solid angle v can be calculated as  

where r is the radius of the circular aperture of the detector and d is the distance 
from the sample to detector aperture. In MIKES-Aalto gonioreflectometer, 
d = 471.15 mm and r = 12.498 mm. 

Scenario 1. The simplest to evaluate, yet having the largest effect on the meas-
ured value is the error in the viewing zenith angle (VZA) Δθv. Differentiating Eq. (4) 
with respect to θv, gives a relative change in Φr as Δθv tanθv, [24].  

Scenario 2. The front surface of the sample is displaced by Δx from the rotation 
axes as shown in Figure 4. This error is introduced when the sample is replaced 
between alignment and measurement. For example, a mirror is used for alignment 
and then replaced with the sample under measurement, or an alignment mirror is 
used in contact with the sample as described above. 
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Figure 4. Geometries of misalignment. Scenario 2: the sample is displaced by Δx 
from the axes of rotation in x direction. Scenario 3: the illuminating beam is dis-
placed from the axes of rotation by Δy in y direction. 

The measured reflected radiant flux in this case is 

where 

The relative error in the measured reflected radiant flux is evaluated for several ge-
ometries and displacements in Figure 5. It can be seen that the relative error is 
negligible when Δx is small (0.1 mm), however, with positioning error of 1 mm, the 
error in the measured value can be more than 0.5%. 
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Figure 5. Relative error in the measured reflected radiant flux when the surface of 
the sample is displaced by Δx from its axis of rotation in an otherwise perfectly 
aligned setup. 

Scenario 3. The illuminating beam is displaced from the axes of rotation by Δy 
as shown in Figure 4. This is effectively the case, when the irradiance on the sample 
is not uniform. The resulting measured reflected radiant flux can be again calculated 
with Eq. (6), where  

The relative error in the measured reflected radiant flux is evaluated for several ge-
ometries and displacements in Figure 6. It can be seen that the relative error is 
negligible when Δy is small (0.1 mm), however, with positioning error of 1 mm, the 
error in the measured value can be more than 0.5%. 
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Figure 6. Relative error in the measured reflected radiant flux when the illuminating 
beam is displaced by Δy from the axis of rotation of the sample in an otherwise 
perfectly aligned setup. 

2.2.2 Polarisation resolved measurements of BRFs 

In Publication I, it was shown that BRDF of anodised and non-anodised roughened 
metal surfaces is highly dependent on the polarisation of the incident light. The 
BRFs of similar anodised and non-anodised surfaces with different illumination zen-
ith angles (IZA) are shown in Figure 7. It can be seen that for these metallic sur-
faces, the differences in the polarised BRF values are small when the IZA is 0°. 
However, as the IZA increases the differences in the measured polarised BRFs in-
crease, reaching up to a factor of 2 for non-anodised aluminium and a factor of 10 
for anodised aluminium at IZA of -60°. Such behaviour is expected since these sur-
faces are not perfect diffusers and exhibit a specular component. The specularly 
reflected light, that can be described by the Fresnel formulae [26], has been shown 
to be less polarised for aluminium [35] than for aluminium oxide [36]. 
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Figure 7. BRFs of anodised and non-anodised aluminium for different illumination 
zenith angles at the wavelength of 525 nm. 

Similar effects can be seen in the measured polarisation resolved BRF values of 
materials that are generally regarded as nearly PRDs as shown in Figure 8. These 
materials, such as sintered and pressed PTFE and porous quartz, are used as ref-
erence materials for diffuse reflectance measurements. The differences between 
the corresponding polarised BRF values are much smaller for these surfaces than 
for the metallic surfaces shown in Figure 7. 
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Figure 8. In-plane BRF measured with polarised incident light at the wavelength of 
525 nm. 

Many goniospectrophotometers illuminate the sample with monochromatic light. 
The monochromator and the beam guiding optics polarise the illuminating light. 
Thus, in order to obtain reliable measurements of the BRFs, it is important to intro-
duce a depolariser or control the polarisation of the illuminating beam of light. Po-
larisation resolved measurements of angle-resolved diffuse reflectance make the 
already time costly measurement procedure even more so. However, the polarisa-
tion resolved BRF data provide useful information for parametrisation of BRDF mod-
els, which is required for validation of radiative transfer models as described below. 

2.3 SI-traceable validation of radiative transfer models 

Satellite based measurements provide an important source of information to quan-
tify and monitor geophysical processes. The interpretation of the measured data 
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relies heavily on the quality of radiative transfer (RT) models that are used to simu-
late the radiation transfer in complex terrestrial environments e.g. atmosphere, soil 
and tree canopies. The validation of canopy RT models has so far relied on com-
parisons to in situ measurement data as was done in [9] and comparisons to other 
RT models as in [11]. The former suffers from the uncertainties of measuring the 
complexities of natural environments, the latter, while excellent in establishing the 
credibility of models, can never be an SI-traceable validation approach, due to the 
lack of comparable measurement results. 

In Publication II, another option for validating the performance of a Monte-Carlo 
ray tracing RT model [12] is shown. The method, first presented in [12] and ex-
plained by the diagram in Figure 9, relies on accurate laboratory measurements of 
the BRFs and an accurate structural model of an artificial target. In the validation 
scheme, two targets of similar material and surface roughness are used, with the 
exception that one has a structured surface and the other is flat. The BRF meas-
urement results of the flat target are used to parametrise a BRDF model as de-
scribed in more detail in section 2.3.1. The coordinate measurements of the grooved 
target are used to create a structural model of the target to be used in the RT model, 
as described in more detail in section 2.3.2. The parameters and the structural 
model of the target are used to simulate the BRFs of the grooved target with the RT 
model and compared against the SI-traceable laboratory measured BRF values. 
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Figure 9. Diagram for SI traceable validation of the RT model. 

The validation scheme, presented above, is not complete, because it provides 
information only for the tested conditions. In fact, a simulation tool can never be 
validated completely, because there will always be at least one more scenario, that 
was not tested [37]. However, with sufficient available data, models could be vali-
dated in most of the scenarios they are used in and thus the scheme described 
above is a useful step towards the SI-traceable validation of RT models.  

Validation of radiative transfer models requires an accurate virtual replica of the 
target, and a reference data set that is suitable to evaluate the quality of the RT 
model simulations. Next two sections cover the construction of the virtual replica of 
the grooved target.  

2.3.1 Micro-facet BRDF model and inverse problem solving 

The RT model, used in this thesis, relies on sub-models that describe the probability 
of the scattering directions of rays upon colliding with a surface. There are many 
available models that describe the scattering of light from surfaces, ranging from 
empirical models (e.g. [38]) to analytical wave-optics based (e.g. [39]) models to 
statistical geometric optics based models (e.g. [40]).  
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Figure 10. Anodised and non-anodised roughened aluminium surfaces. The dimen-
sions of the cubes are 12 mm x 12 mm x 12 mm. In order to avoid the edges from 
rounding, the roughening process was performed for multiple samples at once, with 
the sides of the cubes tightly adjacent to each other. 

In Publication I, a set of anodised and non-anodised aluminium surfaces, shown 
in Figure 10, were measured for their surface roughness. It was determined that the 
micro-facet models based on the Torrance-Sparrow formulation [41], describing the 
scattering of light from rough surfaces through geometrical optics, are suitable for 
this work. Thereafter, the BRFs of these surfaces were measured and used to find 
parameters for two micro-facet models: the Torrance-Sparrow formulation [41] and 
the energetically bound polarised micro-facet model adapted from [42] and [43]. It 
was determined, that 1) both models describe the BRFs of non-anodised surfaces 
better than the BRFs of anodised surfaces, 2) the polarised model and the availa-
bility of polarised measurements improve the parameter retrieval process, 3) neither 
of the models can describe the BRFs of the surfaces at all viewing and illumination 
geometries. 

As a result, in Publication II, a polarised BRDF model with a more sophisticated 
micro-facet orientation probability distribution (OPD) and a simpler diffuse compo-
nent was adapted. More specifically, the altered version of the Torrance-Sparrow 
micro-facet model describes the BRF of a surface as: 

where χ stands for the polarisation of the incident radiation (either s or p relative to 
the plane of incidence), D is a constant diffuse BRF component and R is the weight 
of the specular BRF component. The expression in the brackets describes the mi-
cro-facet (OPD), where T is a micro-facet OPD resulting from Gaussian surface 
height distribution (SHD) adapted from [44], r1 is the relative weight of the first OPD, 
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and σm1 and σm2 are the root-mean-squared slopes of the micro-facets. Parameter 
Mχ00 describes the Fresnel reflectance coefficients for χ-polarised incident radiation 
in the Mueller notation [45], As is the surface self-shadowing coefficient described 
in [46], and n and κ  are the real and imaginary parts of the refractive index, respec-
tively. 

Finding the parameters for Eq. (7) requires solving an inverse problem, by finding 
the “best fit” of Eq. (7) to the measured BRF data. Inverse problems are difficult to 
solve for at least two reasons. First, many sets of model parameters may be con-
sistent with the data. Secondly, to find the parameters, a large parameter space with 
dimensionality of the amount of parameters may need to be explored. The latter is 
simplified due to the model in Eq. (7) being physics based. Thus, the reasonable 
range for the complex refractive index can be estimated based on measured values 
of similar materials e.g. aluminium in [35]. Furthermore, the range for the root-mean-
squared slope of the micro-facets can be estimated from the measured values of 
similarly processed materials from Publication I.  

Initially the parameters D, R, σm1, σm2, r, n and κ were retrieved by fitting Eq. (7) 
to the measured BRF values of the targets. The fit was evaluated by the weighted 
sum of the squared residuals. The parameter search was performed using a genetic 
search algorithm ga in MATLAB to find the global optimum and thereafter the local 
optimum was found using a constrained nonlinear solver fmincon [47]. This way, 
however, the results of the fitting were highly dependent on the weights used. The 
reason can be seen in Figure 11. Even with the polarised measurements available, 
the model is over-defined by the parameters. In Figure 11, each column shows how 
the respective parameter influences the value of the function. The range, that the 
parameter is varied over, is specified with the colour bar on the top of the column. 
It can be seen that the parameters R, σm1, n and κ have a similar effects on the 
value of the function.  
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Figure 11. The BRF values ρs and ρp, calculated by Eq. (7), with r1 = 1. The param-
eters σm1, n, κ, R and D are varied in columns 1-5, respectively. The function is 
evaluated for the illumination zenith angle θi= 45° and relative azimuth angle of 180°. 
All the subfigures have the function value (BRF) on the vertical axis and the VZA θv 
on the horizontal axis 

Figure 12 shows that the ratio of s- and p-polarised BRF components is sensitive 
to n and κ, but less so for other parameters. Thus, in order to improve the parameter 
retrieval process, the ratio of polarised BRFs needs to be taken into account. Re-
sulting cost function for the parameter retrieval takes into account the sum of the 
squared residuals between the measured and the modelled BRF values, the ratio 
of polarised BRF components, and the slope of the regression line for the scatterplot 
of measured and modelled BRFs. The resulting parameter values are presented in 
Publication II. 
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Figure 12. Polarisation of the modelled BRFs expressed by ρs/ρp-1, calculated by 
Eq. (7), with r1 = 1. The parameters σm1, n, κ, R and D are varied in columns 1-5, 
respectively. The function is evaluated for the illumination zenith angle θi= 45° and 
relative azimuth angle of 180°. All the subfigures have the function value (BRF) on 
the vertical axis and the VZA θv on the horizontal axis. 

2.3.2 Structural model of the target 

As was emphasized in section 2.2.1, the geometric errors in the setup can lead to 
large uncertainties in the measured BRF values. Thus, in order to compare the 
measured and modelled BRF of the grooved target, high accuracy structural model 
is needed for the modelling. 

 

Figure 13. Photo of the grooved target. The edges of the cubes have become 
rounded in the roughening process. 

The grooved target (shown in Figure 13) was measured for its coordinates with 
the coordinate measurement machine in MIKES [48]. In addition, the roundness of 
the edges of some of the individual cubes seen in Figure 13 was measured. The 
measured sets of coordinates were used to create a continuous structural model of 
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the target shown in Figure 14. The coordinate measurements, the process of creat-
ing the structural model, and the uncertainties of the structural model are presented 
in detail in publication II. 

 

Figure 14. Structural model of the grooved target. 

2.3.3 Comparison of measured and modelled BRF values 

Two sets of parameters are found by solving the inverse problem of Eq. (7) with the 
measured BRF values of the flat target. One with r1 set to 1, assuming a Gaussian 
SHD, the other describes the micro-facet OPD by two Gaussian SHDs. The result-
ing parameter values are presented in Table 1.  

Table 1. Estimated parameter values for equation Eq. (7) retrieved from the BRF 
measurement results of the flat target (from Publication II). The values in parenthe-
ses indicate the standard uncertainty of the parameters. 

Parameter 
 Value 

 RT1 RT2 

n  1.0(1) 1.1(1) 

 2.9(2) 3.0(2) 

σm1  0.16(1) 0.16(1) 

σm2  - 0.37(3) 

R  2.5(2) 2.5(2) 

D  0.14(3) 0.12(1) 

r1  1 0.6(1) 

 
Next, the estimated parameter values and the structural model of the grooved 

target are used to simulate the BRFs of the grooved target with the RT model. A set 
of modelled and measured BRFs and the respective expanded uncertainties (k = 2) 



31 

are shown in Figure 15. The modelling uncertainty includes the uncertainty of the 
estimated parameters, the uncertainty associated with the geometry of the structural 
model of the grooved target as well as the uncertainty of positioning the actual 
grooved target within the measurement setup. The uncertainty of the estimated pa-
rameters is dominated by the expected differences in the scattering properties of 
the grooved and flat targets. 

 

Figure 15. Measured and simulated BRF values. RT1 and RT2 are the modelling 
results for Gaussian and non-Gaussian SHDs, respectively. The uncertainty bars 
represent the expanded uncertainty (k = 2) of the measurement results. The dashed 
lines represent the expanded uncertainty (k = 2) of the modelling. 

A detailed analysis of the results is presented in publication II. In summary, most of 
the measured and modelled values agreed within the corresponding expanded un-
certainties. Out of the BRF values measured at 336 different geometries, the mod-
elled BRF values agreed for 48% and 60% for parameter sets RT1 and RT2, re-
spectively. However, since the uncertainties are expressed in a 95% confidence 
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level, the number of values in agreement is expected to be higher. The causes for 
the remaining observed BRF differences were identified as incomplete information 
about grooved target's surface roughness, and the inability of the Torrance-Sparrow 
formulation to describe the scattering properties of the flat target's surface under all 
illumination and viewing conditions. 

The work done is a step towards SI-traceability of RT models. However, the full 
SI-traceability of MC RT models will have to be achieved through improved meas-
urement facilities providing the data from which the structural and optical properties 
of real targets can be obtained. In order to improve the validation process, the cubes 
on the grooved target could be manufactured separately and roughened under bet-
ter-controlled conditions with sides tightly adjacent to each other, as was done in 
Publication I. In addition, improved surface roughness measurements could be con-
ducted from which the micro-facet orientation probability distribution can be deter-
mined without any assumptions, as discussed in Publication II. 
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3. Photoluminescence 

Photoluminescence is a term used to describe a phenomenon in which light is ab-
sorbed by a molecule and subsequently re-emitted at longer wavelengths [49]. The 
energy of the absorbed photons excites the electrons in the luminescent molecule 
–the luminophore – into higher energy states. As the electrons relax back to the 
lower energy states, energy is released and photons are emitted as light [50]. The 
spectral range at which the photon energy is absorbed is referred to as the excitation 
range; and the spectral range at which the photons are emitted is referred to as the 
emission range.  

Photoluminescence is a common name for two phenomena: fluorescence and 
phosphorescence. The difference between these two phenomena is the transition 
time: fluorescence occurs within 10 ns of excitation, phosphorescence lifetimes are 
generally between 1 ms and 1 s but in certain cases even more than that [50]. Flu-
orescence happens by electron relaxation from a singlet state to the ground state, 
phosphorescence happens by relaxation of electron from a triplet state to the ground 
state [50].  

Photoluminescent molecules or luminophores are commonly used in different in-
dustries to enhance the colours of materials [17]. In paper industry, dyes that absorb 
radiation in the ultra-violet (UV) range of electromagnetic radiation and re-emit at 
blue wavelength range are used to make paper appear whiter [16]. In textile indus-
try, fluorophores with various emission ranges are used to make the colours of fab-
rics appear more vibrant.  

In this thesis, we concentrate on the steady state measurements of appearance 
of photoluminescent materials, as is the practice in the industries mentioned above. 
From this perspective, the distinction between fluorescence and phosphorescence 
is not essential; instead, both of the terms will be referred to as luminescence. 

In Figure 16, a set of PTFE based luminescent diffuse reflectance reference ma-
terials is shown [51]. These materials are commonly used in industry as reference 
samples for colorimetry. The samples are excited with 380 nm light and emit at 
different ranges of visible light. As can be seen, the colour of each of the samples 
is different, and thus the colorimetric appearance of these samples depends on both 
the spectral reflectance and the spectral emittance of luminescence.  

 

Figure 16. A set of PTFE based photoluminescent materials illuminated at the wave-
length of 380 nm in the MIKES-Aalto goniofluorometer.  
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In the industry, the colorimetric measurements are usually performed at single 
geometry conditions in comparison to previously calibrated reference materials [2], 
and luminescence emission is assumed to be Lambertian. However, as it has been 
shown in [19,20]  as well as in Publications III and IV, luminescence emission from 
commercially available luminescent diffuse reflectance reference materials deviates 
from Lambertian. Thus, assumptions in the angular luminescence emission profiles 
can lead to measurement errors. Options to avoid such errors are measuring lumi-
nescence emission goniometrically, or providing reference materials that have more 
Lambertian characteristics than the conventional reference materials. Both of these 
options are discussed below. 

3.1 Background and methods 

The methods for measuring diffuse reflectance of non-luminescent surfaces are 
inadequate for luminescent surfaces, since the amount of luminescence in the radi-
ance spectrum of the surface depends on the spectral composition of incident light.  

The methods for measuring the appearance of luminescent materials are gener-
ally divided into two categories based on the number of monochromators used: one 
or two. The methods based on one monochromator rely on adjusting the spectral 
irradiance on the luminescent sample by filters or other means and separating the 
luminescent and reflected components by computation (e.g. [52]). The two-mono-
chromator method, considered as the reference method for determining the appear-
ance of luminescent materials, is the most accurate and employs one monochrom-
ator –the excitation monochromator - for irradiation and another monochromator –
the emission monochromator – for viewing. The wavelength settings of the excita-
tion monochromator and the emission monochromator are usually noted by varia-
bles μ and λ, respectively.  

In order to describe the appearance of luminescent materials, two concepts are 
needed. The reflected radiance factor βR, is the ratio of the radiance of the sample 
to the radiance of the PRD, illuminated and viewed at identical geometries and with 
λ equal to μ. Reflected radiance factor is equal to BRF, defined in Eq. (3), if the 
viewing solid angle approaches zero [22]. The bispectral luminescent radiance fac-
tor βLλ is radiance per unit bandwidth of emission at wavelength λ when irradiated 
at wavelength μ divided by the radiance of a PRD, illuminated and viewed at iden-
tical geometries. The material’s appearance is then presented as the Donaldson 
matrix [53], where βR and βLλ values are tabulated as a function of excitation wave-
lengths μ (usually vertical) and emission wavelengths λ (usually horizontal) [53]. 
The βR are the diagonal elements and the βLλ are the off-diagonal elements.  

Generally, the emission of luminescence is assumed to be Lambertian, and the 
Donaldson matrix is quantified through measurements at fixed geometry conditions 
at one of the CIE (Commission Internationale de l'Eclairage) recommended geom-
etries for colorimetry [2] e.g. 0°:45° or 45°:0°. In the following chapters and publica-
tions III and IV, goniometrical measurements of luminescence are discussed, which 
provide more information about appearance of the materials under study. 
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3.2 Characterisation of the goniofluorometer 

The MIKES-Aalto goniofluorometer, originally described in [21], is designed for an-
gularly resolved measurements of βR and βLλ by employing the two-monochromator 
method [17]. Within the scope of this thesis, the setup has been improved by chang-
ing the beam guiding optics, resulting in increased irradiance on the sample. In ad-
dition, the setup has undergone extensive characterisation, resulting in reduced un-
certainties in measuring βLλ as compared to [19]. The characterisation and the new 
uncertainty budget are described in detail in Publication III. The following sections 
explain the largest reductions in the uncertainties resulting from stray-light correc-
tion and characterisation of the spectral dispersion of the diffraction grating in the 
emission monochromator.  

3.2.1 Stray-light correction 

Stray light is generally an unwanted phenomenon in spectrophotometric measure-
ments. Stray light can arise from the imperfections of the gratings used in mono-
chromators, that cause the monochromator to transmit some light outside the de-
sired spectral band as described in [54]. In addition, the stray light from beam guid-
ing optics can create additional scatter around the main illuminating beam as de-
scribed in [33]. Furthermore, the reflected light from the sample can be scattered 
within the emission monochromator as discussed below. 

The measured signal on the array detector from a luminescent sample irradiated 
with monochromatic light, has a reflected component at wavelength μ and a lumi-
nescent component. The peak value of reflected component is generally a few or-
ders of magnitude larger than the peak value of the luminescent component. The 
reflected component can be scattered within the emission monochromator and 
causes secondary peaks to appear in the emission spectrum as a function of emis-
sion and excitation wavelengths as shown in Figure 17.  

 

Figure 17. Uncorrected signal on the array detector of the goniofluorometer. The 
colour indicates the natural logarithm of the measured signal on the detector. The 
separation of gridlines is 5 nm. 
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The scattered peaks can be in the order of magnitude of the luminescence signal 
on the detector. In order to correct for these effects, the emission spectrum of a non-
fluorescent sample – the stray-light spectrum - as a function of emission and exci-
tation wavelengths has been measured as seen in Figure 18. 

 

Figure 18. Correction spectrum measured from a non-luminescent sample. The col-
our indicates the natural logarithm of the measured signal on the detector. The sep-
aration of gridlines is 5 nm. 

The stray-light spectrum is scaled so that the height of the reflected peak of the 
stray-light spectrum matches the height of the reflected peak in the measured spec-
trum of the luminescent sample. Thereafter the scaled stray-light spectrum is sub-
tracted from the luminescence spectrum. The corrected spectrum is shown in Figure 
19. In addition, the dark signal on the array detector is measured after every signal 
measurement and subtracted before writing the raw data to file.  

 

Figure 19. Corrected signal on the array detector of the goniofluorometer. The col-
our indicates the natural logarithm of the measured signal on the detector. The sep-
aration of gridlines is 5 nm. 
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The correction procedure removes the anomalous features seen in Figures 17 and 
18. The remaining uncertainty component after the correction caused by the stray 
light and the dark signal is estimated from the standard deviation of the repeat 
measurements of the stray-light spectrum and is 0.20%. 

3.2.2 Spectral dispersion of the detection system 

The array detector of the emission monochromator of the goniofluorometer is used 
to measure a spectrum of 50 nm in a single image. In order to record the lumines-
cence spectrum in the visible wavelength range, several measurements are needed 
with central wavelength settings 50 nm apart. Thereafter the individual 50 nm spec-
tra are combined. Accurate processing of the spectra requires knowledge of the 
position of the central wavelength in the numerical index of the array detector and 
knowledge of the spectrally dependent dispersion of the grating in order to find the 
overlapping area of two consecutive spectra. 

 

Figure 20. Observed locations of a 5 nm bandwidth spectral line at wavelength μ as 
the emission wavelength is set to λ = μ + Δλ. The shifts in the array detector index 
are used to calculate the spectral dispersion of the grating. 

In order to characterise the spectral dispersion of the grating, the excitation mon-
ochromator is set to wavelength μ and the emission monochromator is set to wave-
length λ = μ + Δλ, where Δλ is from -25 nm to 25 nm with 5 nm steps. The resulting 
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spectra are recorded and visualised in Figure 20. It can be seen, that shifts seen in 
the array detector index as the wavelength λ is changed, are larger for excitation 
wavelength setting of μ = 700 nm than for μ = 400 nm. These shifts for the peak 
location in the array detector index are used to calculate the spectral dispersion of 
the grating. The uncertainty is evaluated by the standard deviation of several calcu-
lated spectral dispersion values and it is on the average 0.62%. 

3.2.3 Validation through measurements of quantum efficiency 

Quantum efficiency of the luminescence process is defined as the ratio of number 
of photons emitted to number of photons incident [17]. Quantum efficiency can be 
calculated from the goniometrically measured βLλ(μ,θv), as is shown in Publication 
III, by integrating over the VZAs θv and emission wavelengths λ as 

This equation assumes that luminescence emission is independent of the viewing 
azimuth angle. 

The setup and the method of goniometrical measurements of quantum efficiency 
have been validated against a PTFE based luminescent diffuse reflectance refer-
ence material, previously calibrated with the spectrofluorimeter at NRC [55]. The 
NRC provided values are calculated at fixed geometry conditions with the sample 
illuminated at 45° and viewed at 0°. The quantum efficiencies at MIKES are meas-
ured with 0° illumination and 15° to 85° viewing angles. The comparison results 
together with other values can be seen in Figure 21. It can be seen that the values 
measured at NRC and MIKES agree within the corresponding expanded uncertain-
ties.  

2

1

.),()2sin(1)(
2

0
dd vvLvL  (8) 
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Figure 21. Spectral quantum efficiency of a PTFE based luminescent material. 

3.3 Lambertian emission and reflectance of luminophores in 
a thin layer 

The angular emission of luminescence from solid amorphous materials deviates 
from Lambertian as was shown in [19,20]  and further confirmed in Publications II 
and III. The reason for the non-Lambertian emission is dependent on the material 
that the luminophores are bound in, rather than the phenomenon of luminescence 
itself.  

Sintered and pressed PTFE based materials with luminophores included in the 
bulk are commonly used as reference samples in industries using luminescent dyes. 
PTFE is a translucent material or a volume reflector, which means that the incident 
light enters the material and is scattered many times before exiting. These volume 
scattering effects cause the angular distribution of reflected light to deviate from 
Lambertian as was shown for the PTFE based material in Figure 8. Moreover, it was 
shown in Publication IV that the angular distribution of reflected light from lumines-
cent PTFE based samples depends on the absorbance of the sample. This was 
confirmed by modelling in the appendix of Publication IV and explained by the ef-
fective depth of the absorption process in the sample – higher absorbance values 
are connected to shallower absorption, which in turn are connected to more Lam-
bertian reflectance. Similar conclusions were made in [56] by modelling and then 
proved by measurements of angular reflectance of paper based samples in [57]. 

Similar volume scattering effects happen with luminescence, with the exception 
that the photons emitted by the luminescence process have an isotropic angular 
distribution to begin with, as visualised in Figure 22 on the left. In addition, the emit-
ted light from a luminescent sample is absorbed less by the sample, and thus has 
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an angular distribution that is different from that of reflectance as can be seen by 
comparing the top and bottom parts of Figure 23. 

 

Figure 22. Volume luminescence (left) and surface luminescence (right). 

One solution in achieving improved Lambertian emission and reflectance from a 
surface is confining the luminophores in a thin layer on a highly reflecting surface 
as is visualised in Figure 22 on the right. This kind of sample has been manufactured 
by coating a diffusely reflecting ceramic panel with a thin layer containing lumino-
phores, binding material and a protective layer. This way, the emission takes place 
in a thin layer on top of the ceramic panel. The photons that are emitted towards the 
lower hemisphere get scattered by the ceramic surface and then by the luminescent 
layer and exit the material. The resulting angular emission and reflectance profiles 
of this ceramic sample compared to a conventional PTFE based sample can be 
seen in Figure 23. It can be seen that the new ceramic panel shows more Lamber-
tian behaviour for both reflectance and luminescence than the PTFE based sample. 
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Figure 23. Normalised bispectral luminescent radiance factors (top) and reflected 
radiance factors (bottom) for a typical PTFE based sample and the new ceramic 
panel. The measurements are conducted with illumination zenith angle of 0°. 
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4. Conclusions 

This thesis covers high accuracy angle-resolved measurements of diffuse reflec-
tance and luminescence. The angle-resolved measurements of diffuse reflectance 
are used to provide SI-traceability to radiative transfer models used in Earth obser-
vation. The angle-resolved measurements of luminescence are used to improve the 
Lambertian reflectance and luminescence properties of reference materials used in 
appearance measurements of luminescent materials. 

In publications I and II, progress was made towards SI-traceability of radiative 
transfer models by using artificial targets. In the first stage of this work the MIKES-
Aalto gonioreflectometer was used to measure the BRDF of roughened surfaces of 
cubes made of anodised and non-anodised aluminium. The geometric errors in the 
BRDF measurements related to errors in sample positioning, which are usually not 
analysed in literature, were estimated. The measurement results were used to test 
two micro-facet scattering models and to develop a parameter retrieval algorithm 
making use of the measured polarised BRDF values. In addition, the suitability to 
use these surfaces in an artificial target was evaluated. In a later stage, a structured 
target consisting of a matrix of small cubes was made out of non-anodised alumin-
ium and characterised for geometry and optical properties at micro scale. The meas-
ured geometry and the optical properties were used to simulate the macro scale 
reflectance of the target with a radiative transfer model. The modelled results were 
compared to macro-scale laboratory measured results and found to agree within 
corresponding expanded uncertainties for most of the measured geometries, but 
not all. It was concluded that better comparison results could be achieved by im-
proving the processes of producing the targets, and by improved measurements of 
surface roughness. 

In publications III and IV, progress was made in the accuracy of appearance 
measurements of luminescent surfaces. The earlier developed MIKES-Aalto gonio-
fluorometer was extensively characterised to improve the accuracy of bispectral lu-
minescent radiance factor measurements. In addition, a method for goniometrical 
measurements of quantum efficiency and quantum yield was validated against in-
terlaboratory measurements. The improved measurement capability was used to 
describe absorbance dependent reflectance angular profiles in solid amorphous lu-
minescent materials. In addition, most importantly, a reference material for lumines-
cence measurements was proposed and characterised. The new material showed 
more Lambertian angular luminescence emission and reflectance profiles than the 
conventionally used PTFE based materials.  
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