
V
T

T
 T

E
C

H
N

O
L

O
G

Y
  1

0
 

       T
h

e
 c

u
rre

n
t sta

te
 o

f F
P

G
A

 te
c
h

n
o

lo
g

y in
 th

e
 n

u
c

le
a

r d
o

m
a
in

 

 
ISBN 978-951-38-7622-7 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X  (URL: http://www.vtt.fi/publications/index.jsp)

The current state of 
FPGA technology in  
the nuclear domain

Jukka Ranta

•VISIO
N
S
•S

C
IE

N
C

E
•T

ECHNOLOGY
•R

E
S

E
A

R
C

H
H
IGHLIGHTS

10

The current state of FPGA technology in the nuclear 
domain 

Field programmable gate arrays are a form of programmable electronic device used in 
various applications including automation systems. In recent years, there has been a 
growing interest in the use of FPGA-based systems also for safety automation of nuclear 
power plants. The interest is driven by the need for reliable new alternatives to replace, on 
one hand, the aging technology currently in use and, on the other hand, microprocessor 
and software-based systems, which are seen as overly complex from the safety evaluation 
point of view.
    This report presents an overview of FPGA technology, including hardware aspects, the 
application development process, risks and advantages of the technology, and introduces 
some of the current systems.
    FPGAs contain an interesting combination of features from software-based and fully 
hardware-based systems. Application development has a great deal in common with 
software development, but the final product is a hardware component without the operating 
system and other platform functions on which software would execute.
    Currently the number of FPGA-based applications used for safety functions of nuclear 
power plants is rather limited, but it is growing. So far there is little experience or common 
solid understanding between different parties on how FPGAs should be evaluated and 
handled in the licensing process.



 

 

 



 

 

VTT TECHNOLOGY 10 

The current state of FPGA 
technology in the nuclear 
domain 
 

Jukka Ranta 
VTT 



 

 

ISBN 978-951-38-7622-7 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp) 

Copyright © VTT 2012 

 

JULKAISIJA – UTGIVARE – PUBLISHER 

VTT 
PL 1000 (Vuorimiehentie 5, Espoo) 
02044 VTT 
Puh. 020 722 111, faksi 020 722 4374 

VTT 
PB 1000 (Bergsmansvägen 5, Esbo) 
FI-2044 VTT 
Tfn +358 20 722 111, telefax +358 20 722 4374 

VTT Technical Research Centre of Finland 
P.O. Box 1000 (Vuorimiehentie 5, Espoo) 
FI-02044 VTT, Finland 
Tel. +358 20 722 111, fax + 358 20 722 4374 

 

 

 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

3 

The current state of FPGA technology in the nuclear domain 
 
Jukka Ranta. Espoo 2012. VTT Technology 10. 62 p.  

Abstract 
Field programmable gate arrays are a form of programmable electronic device 
used in various applications including automation systems. In recent years, there 
has been a growing interest in the use of FPGA-based systems also for safety 
automation of nuclear power plants. The interest is driven by the need for reliable 
new alternatives to replace, on one hand, the aging technology currently in use 
and, on the other hand, microprocessor and software-based systems, which are 
seen as overly complex from the safety evaluation point of view. 

This report presents an overview of FPGA technology, including hardware as-
pects, the application development process, risks and advantages of the technol-
ogy, and introduces some of the current systems. 

FPGAs contain an interesting combination of features from software-based and 
fully hardware-based systems. Application development has a great deal in com-
mon with software development, but the final product is a hardware component 
without the operating system and other platform functions on which software 
would execute. 

Currently the number of FPGA-based applications used for safety functions of 
nuclear power plants is rather limited, but it is growing. So far there is little experi-
ence or common solid understanding between different parties on how FPGAs 
should be evaluated and handled in the licensing process. 

Keywords nuclear power, instrumentation and control, I&C, FPGA 



 

4 

Preface 
This report has been prepared as a part of the Coverage and Rationality of the Soft-
ware I&C Safety Assurance (CORSICA) project. CORSICA is a part of the Finnish 
Research Programme on Nuclear Power Plant Safety 2011–2014 (SAFIR2014). 

The goal of the project was to survey field programmable gate array (FPGA) 
technology and the situation of its use in nuclear power generation. FPGA tech-
nology has become a topic of interest as a potential technology suitable for the 
safety-critical I&C systems of nuclear power plants. The primary task was to col-
lect an information package that can serve the interested parties, including utilities 
and regulators, when considering FPGA-based systems offered for use in Finnish 
nuclear power plants. In addition to the technology as such, the risks, advantages 
and special characteristics were also to be considered. 

 
 

Espoo, December 2011 

 



 

5 

Contents 
Abstract ........................................................................................................... 3 

Preface ............................................................................................................. 4 

List of symbols ................................................................................................ 7 

1. Introduction ............................................................................................... 9 

2. FPGA technology – hardware aspects ................................................... 11 
 CMOS .............................................................................................. 12 2.1
 Chip architecture .............................................................................. 13 2.2
 Antifuse, SRAM, and flash technologies ............................................ 14 2.3
 Circuit board and connections ........................................................... 15 2.4
 Electrical and mechanical properties and reliability ............................ 16 2.5

2.5.1 Faults ...................................................................................... 16 
2.5.2 Environmental tolerance ........................................................... 16 
2.5.3 Aging ....................................................................................... 17 
2.5.4 Whisker growth ........................................................................ 18 
2.5.5 Radiation dose and single event effects .................................... 18 
2.5.6 Current leakage ....................................................................... 19 
2.5.7 Latchup ................................................................................... 20 
2.5.8 Manufacturing technology size scale......................................... 20 

 Timing, clock skew, and race condition .............................................. 21 2.6
 Metastability ..................................................................................... 21 2.7
 Parallel computing ............................................................................ 22 2.8
 System on a chip – SOC ................................................................... 22 2.9
 FPAA – a glimpse of analog technology ............................................ 22 2.10

3. Application design and development ..................................................... 23 
 Design life cycle, stages, and work flow ............................................. 24 3.1
 Requirements specification ............................................................... 26 3.2

3.2.1 ESL – electronic system level ................................................... 26 
 V&V: requirements ........................................................................... 26 3.3
 Architectural design .......................................................................... 27 3.4
 Detailed design ................................................................................. 27 3.5
 V&V: architectural and detailed design .............................................. 28 3.6
 Behavioural description and design entry........................................... 28 3.7

3.7.1 Hardware description languages – HDL .................................... 28 
3.7.2 Higher-level entry methods ....................................................... 29 
3.7.3 Other entry methods ................................................................ 29 

 Intellectual property – IP cores .......................................................... 30 3.8
 V&V: design entry ............................................................................. 30 3.9
 Implementation: logic synthesis and place and route .......................... 31 3.10
 V&V: logic synthesis and place and route .......................................... 31 3.11



 

6 

 Implementation: configuring a chip and putting a programmed chip  3.12
onto a board ..................................................................................... 32 

 V&V: physical implementation ........................................................... 32 3.13
 Other verification and validation issues .............................................. 33 3.14
3.14.1 Importance of independent V&V .......................................... 33 
3.14.2 Formal methods ................................................................. 33 

 Tools ................................................................................................ 35 3.15
 Emulated processor .......................................................................... 36 3.16
 Timing analysis ................................................................................. 36 3.17
 Synchronous vs. asynchronous design .............................................. 37 3.18
 Hardware vs. software aspects of design ........................................... 37 3.19
 Standards......................................................................................... 38 3.20

4. Risks and advantages ............................................................................. 39 
 Faults, tolerance, and mitigation ........................................................ 40 4.1

4.1.1 Triple modular redundancy ....................................................... 40 
4.1.2 EDAC and hamming codes ...................................................... 41 
4.1.3 Diversity .................................................................................. 42 

 Advantages of FPGA technology ....................................................... 42 4.2
 Experience from other fields .............................................................. 44 4.3
 Security ............................................................................................ 44 4.4

4.4.1 Problem areas ......................................................................... 44 
4.4.2 Managing security problems ..................................................... 45 
4.4.3 Attack methods ........................................................................ 46 
4.4.4 Defences ................................................................................. 47 

5. Current systems ...................................................................................... 48 
 CANDU ............................................................................................ 49 5.1
 Lungmen .......................................................................................... 49 5.2
 Wolf Creek ....................................................................................... 49 5.3
 RPC Radiy ....................................................................................... 50 5.4

5.4.1 IERICS mission on FPGA-based digital I&C platform and  
systems ................................................................................... 51 

 Rolls-Royce and Electricité de France ............................................... 51 5.5
 Toshiba ............................................................................................ 52 5.6

6. Summary ................................................................................................. 53 

References ..................................................................................................... 55 

 

 



 

7 

List of symbols 

ASIC Application Specific Integrated Circuit 

BiS Built-in Software 

BIST Built-in Self-test 

CAB Configurable Analog Block 

CCF Common Cause Failure 

CEC Complex Electronic Component 

CLB Configurable Logic Block 

CMOS Complementary Metal Oxide Semiconductor 

CPLD Complex Programmable Logic Device 

CPU Central Processing Unit 

EDA Electronic Design Automation 

EDAC Error Detection And Correction 

EDIF Electronic Design Interchange Format 

EEEPROM Electrically Erasable Programmable Read-Only Memory 

EM Electromigration 

EMC Electromagnetic Compatibility 

EPLD Erasable Programmable Logic Device 

EPROM Erasable Programmable Read-Only Memory 

ESL Electronic System Level 

FPAA Field Programmable Analog Array 

FPGA Field Programmable Gate Array 

HCI Hot Carrier Injection 

HDL Hardware Description (Definition) Language 

HDVL Hardware Description and Verification Language 

HIT Heavy Ion Tolerant 

HMI Human Machine Interface 



1. Introduction 

8 

I&C Instrumentation and Control 

IAEA International Atomic Energy Agency 

IC Integrated Circuit 

IDE Integrated Development Environment 

IP (Core) Intellectual Property Core 

LAB Logic Array Block 

LUT Look-Up Table 

MOSFET Metal Oxide Semiconductor Field-Effect Transistor 

NBTI Negative Bias Temperature Instability 

NPP Nuclear Power Plant 

P/E Cycle Program/Erase Cycle 

PCEC Programmable Complex Electronic Component 

PDED Pre-Developed Electronic Design 

PDS Pre-Developed Software 

PLD Programmable Logic Device (see also EPLD, CPLD) 

RTL Register Transfer Level 

SEE Single Event Effect 

SEFI Single Event Functional Interrupt 

SEL Single Event Latch-up 

SER Soft Error Rate 

SET Single Event Transient 

SEU Single Event Upset 

SoC System on Chip 

SOI Silicon On Insulator 

SRAM Static Random Access Memory 

STA Static Timing Analysis 

TDDB Time Dependent Dielectric Breakdown 

TID Total Ionizing Dose 

TMR Triple Modular Redundancy 

V&V Verification and Validation 

VHDL Very high speed integrated circuit (VHSIC) HDL 

VHSIC Very High Speed Integrated Circuit, see VHDL 

VLSI Very Large Scale Integration 
 

 



1. Introduction
 

9 

1. Introduction 

Interest in the use of field programmable gate array (FPGA) technology in nuclear 
power plant (NPP) automation has increased in recent years. The technology is 
not new and is widely used in other areas. But it is new, in particular in safety-
related systems, in NPPs. Old analog and micro-controller systems are becoming 
obsolete and need to be replaced. At the same time, decisions on the technology 
to be used in new plants need to be made. The experience of software-based 
systems is that demonstrating their reliability and safety in the licensing process is 
difficult and laborious. FPGAs are seen as an option that provides flexibility and 
capability similar to software but with the lower complexity, simpler system struc-
ture, and improved performance characteristic of hardware. There are other ad-
vantages to using FPGAs, but there are also risks involved. The suitability, reliabil-
ity, and possible problems of licencing a novel technology in the nuclear power 
generation domain all have uncertainties. 

FPGAs are just one of the new trends in instrumentation and control technology 
(I&C). See, for example, the survey reports prepared for the United States Nuclear 
Regulatory Commission (U.S. NRC) [NRC, 2003], [NRC, 2006] and [NRC, 2009a]. 
The FPGA-specific reports by the Electric Power Research Institute [EPRI, 2009, 
2011] indicate a strong interest on behalf of the industry, while the review guide-
lines document [NRC, 2010b] indicates the interest of regulators to prepare for 
increased use of FPGAs and similar technologies. 

The FPGA device itself is a semiconductor silicon chip with a regular array of 
transistors. As such it has no functions. The device can be configured (pro-
grammed) for a task after manufacture by configuring the connections between 
the components on the chip. This allows standardised mass production of the 
devices independent of the applications for which they are intended. And this, in 
turn, provides advantages for the development process and manufacture. 

The development of an FPGA application has strong similarities with software 
development. Both use rather high abstraction level programming/description 
languages and the design process is heavily dependent on software tools. The 
design of complex systems is easy, but verification of the correct functioning of 
those systems is not. A significant difference is that an FPGA application does not 
need an operating system, hardware drivers, or other similar platform. However, 
such a computing environment can be configured onto a device with sufficient 



1. Introduction 
 

10 

capacity. In addition, FPGAs use parallel processing with dedicated hardware for 
each function instead of executing a program one instruction at a time. 

Reasons to use FPGAs include the hope for an easier licensing process com-
pared to microprocessor and software-based alternatives. On the other hand, the 
simpler analog systems are becoming obsolete. FPGAs can provide fast response 
times with dedicated hardware for each task and reduced concerns about tasks 
interfering with each other. Cyber security issues are also considered to be less 
with FPGAs than with software, because an FPGA can contain all of the memory 
and functions and it is difficult, or impossible for certain technologies, to alter it, 
that is, make the device run viruses. 

The risks associated with FPGAs and software-based systems have much in 
common. The correctness of the functioning may be difficult to prove due to com-
plexity of the system and the layers of design tools between the requirements 
specification and the final product. Because the technology is new in the nuclear 
power generation industry, there is little experience of what it is most suited for or 
how it should be implemented. 

Currently there are only a few licensed and operational FPGA-based systems 
performing safety-related functions at nuclear power plants. A rather large number 
of them are in Ukrainian and Bulgarian NPPs and were installed as parts of mod-
ernisation projects. Another major project is going on in France and also deals 
with modernisation. Mostly, the other developed applications are experimental and 
are intended for testing in a simulator and developing experience and expertise. 

A standardisation process is underway to develop the IEC 62566 standard for 
use of hardware description language programmable devices in nuclear power 
plants. It is expected to be published in spring 2012. Due to the nature of FPGAs 
having a mixture of features from hardware and software, both types of standards 
can be relevant for licensing. 

This report aims to give a basic overall working knowledge about FPGA tech-
nology. From this report, the reader should gain sufficient background information 
and readiness to access the more topically specialised literature. The main focus 
is on safety and reliability issues. In Chapter 2, physical technological aspects are 
considered. Chapter 3 presents the application design process and related issues. 
The reasons to use FPGA technology along with selected risks and security is-
sues are considered in Chapter 4. Some FPGA-based systems in development or 
already in use are presented in Chapter 5. A summary is given in Chapter 6. 



2. FPGA technology – hardware aspects
 

11 

2. FPGA technology – hardware aspects 

Field programmable gate arrays appeared on the market in the late 1980s. They 
are a step in the continuum of evolution of integrated circuits (IC). They are one of 
the programmable logic devices (PLD) and, due to their flexibility and capacity for 
various applications, are considered complex electronic components (CEC). Their 
strength is the idea of a functionally blank device with the potential to be config-
ured for various implementations, thus allowing mass production of devices inde-
pendent of the final application. An FPGA device can be programmed after manu-
facture to execute the desired logic or computations. The chip contains a large 
number of similar basic elements in a fixed structure. The programming is done by 
configuring these basic elements and the connections between them. The words 
programming and configuring are used interchangeably in the literature. 

Physically, an FPGA chip is CMOS (complementary metal oxide semiconduc-
tor) technology, which is the most common technology in modern ICs. The funda-
mental components of CMOS are paired P- and N-type semiconductor transistors, 
which implement the logical gates. Functions are designed by configuring the 
wiring between the gates. 

Technologically, the basics of FPGA have stayed the same and are the same 
as in most digital computing technology. The capacity, though, has increased 
tremendously. The amount of logical operations that a chip can contain, measured 
in the number of logical gates on the chip, has increased from a few thousand to 
millions. In addition, separate RAM memory and dedicated blocks for, for example, 
numerical computations or even microprocessors are available in the more ad-
vanced chips. This leads to the possibility of producing system on a chip (SOC) 
applications. SOC is something of a sliding concept but means that all functions 
(an entire computer) are on the same chip. 

An FPGA application consists of the device (chip and packaging with contact 
pins), the circuit board, and the auxiliary hardware on the board. In addition, there 
are the cabinets to hold the boards and wiring for measurement signals, commu-
nication with other devices or instrumentation, and power. The board can also 
contain separate hardware for signal processing (e.g., conversion between analog 
and digital signals and filtering), input/output connectors, memory, and other pro-
cessing units. 



2. FPGA technology – hardware aspects 
 

12 

Architecturally, FPGAs consists of I/O blocks, logical gates which form configu-
rable logic blocks (CLB), and the wiring between them. The logic blocks can exe-
cute simple logic themselves, such as a 4-input lookup table, and typically have 
flip-flops for memory. The switches of the wiring allow the connection of I/O blocks 
and logic blocks to generate more complex logic. 

Three types of FPGA technology are available with regards to the programming 
technology. These are antifuse, SRAM, and flash. Each one stores the configura-
tion in a different way, which affects the way the chip can be used and also the 
physical properties, such as aging and radiation tolerance. Aside from the pro-
gramming technology, all three use CMOS technology to implement the actual 
logic operations. 

A distinct difference between an FPGA application and a microprocessor application 
running software is in parallel computing. An FPGA executes all of the logic on each 
clock cycle, whereas a microprocessor executes one program instruction per cycle. 

 CMOS 2.1

Complementary metal oxide semiconductor (CMOS) technology was developed in 
the 1960s. The basic components are MOSFETs (MOS field effect transistor). The 
term “complementary” in CMOS refers to the use of complementary pairs of N-
type and P-type MOSFETs to construct the logical gates (AND, OR, NOR, etc.), 
see Figure 1. An N-type transistor lets current pass between the source and drain 
when the voltage of the gate electrode is positive. A P-type transistor lets current 
pass when the gate voltage is negative. When one of the paired transistors is on, 
the other is off, and therefore there is an electric current and power consumption 
only during the short time the gates are changing state. This is the main ad-
vantage of CMOS over the other technologies for building integrated circuits from 
semiconductors. In other technologies, in one of the states there is a constant 
current through the transistor. 

 

Figure 1. P- and N-type transistors on a P-substrate. 

P-substrate

N N

N-well

P P

Gate
Source Drain

Gate
Source Drain

N-MOSFET P-MOSFET



2. FPGA technology – hardware aspects
 

13 

 Chip architecture 2.2

The basic parts of an FPGA chip are input/output connections located on the outer 
edges of the chip, logic blocks, and the connections (wiring routed by switchboxes) 
between them, as shown in Figure 2. In addition to these, more advanced chips 
can also have, for example, separate memory, dedicated computation and signal 
processing blocks, or even a microprocessor. For example, the chip used in [Lu et 
al., 2010] has a wide range of auxiliary functions. 

The main parts of configurable logic blocks (CLB), also known as logic array 
blocks (LAB), are typically lookup tables and flip-flops [NI, 2008]. These are built 
from the elementary gates and provide a higher abstraction level for programming 
the device. Different architectures can have a different number of lookup tables 
and flip-flops per CLB. Flip-flops, or shift registers, provide one bit of memory each 
and the lookup tables can describe combinatorial logic. Hence, together they ena-
ble the construction of sequential logic with memory. Currently, four or six input 
lookup tables are typically used. 

The wiring runs between the logic blocks and is controlled by switchboxes. The 
switchboxes connect the logic blocks to the wires and the wires to each other. 
There is a limited quantity of wiring resources and the design, placement, and 
distribution of the logic onto the logic blocks must take this into account. 

 

Figure 2. A regular grid FPGA layout. 

Input/Output 
Block

Logic Block

Wiring

Switchbox

µP
rocessor, R

A
M

, etc



2. FPGA technology – hardware aspects 
 

14 

 Antifuse, SRAM, and flash technologies 2.3

The implementation of FPGA technology comes in three “flavours”: antifuse, 
SRAM (static random access memory), and flash. From a user perspective, the 
major difference is in how the chip is programmed, that is, how the logic is stored 
on the chip and how the chip retains its programming. The name refers to the 
technology used for implementing the switches that control the configuration and 
connections of wires, and thereby the programming. In all cases, the logic gates 
themselves are implemented using the same CMOS technology. 

A SRAM chip holds the logic in memory only while the chip is powered, that is, 
it is volatile memory, and the chip must be programmed as a part of the start-up 
sequence. The technology is the same as for the working memory of computers. A 
chip based on flash technology is reprogrammable like SRAM but it retains the 
programming without power. Flash technology is essentially the same as in USB 
memory sticks. The third technology is antifuse, which is not reprogrammable and 
maintains its programming without power. 

SRAM technology holds the programming as the state of groups of cross-
coupled transistors. See Figure 3A. Each group forms a bit of memory and deter-
mines if a switch is open or closed. While the supply power is provided, the tran-
sistors reinforce each other to hold the system in a state of “1” or “0”. If the operat-
ing power is lost, the state of the transistor system is lost. SRAM consists only of 
CMOS technology and tends to be at the forefront of development and used in 
devices which have the highest performance capacity. 

The term antifuse comes from fuse, which is a device designed to cut power 
when the voltage or current through it increases too much. Antifuse functions in 
the opposite way. It starts out with high resistance and does not let current pass. 
After it is triggered by, for example, the application of high voltage and current 
through it, it changes so that its resistance drops and it lets current pass. See 
Figure 3C. The change is mechanical and irreversible, hence the non-
reprogrammability. An antifuse can be implemented by placing a thin layer of non-
conducting amorphous silicon between two metal conductors. With the application 
of sufficient voltage to drive a current through the insulation, the silicon turns into a 
conducting poly-crystalline silicon-metal alloy. 

Flash technology is a variant of EEPROM (electrically erasable programmable 
read-only memory). The term flash comes from the erasure process of large 
blocks of data. The method of storing data is based on transistors with a “floating 
gate”, which controls the behaviour of the transistor. See Figure 3B. The floating 
gate is fully insulated and therefore holds a charge without a power supply. Writing 
and erasing are performed using a high voltage, which causes the charge in the 
floating gate to change through hot-electron injection and quantum tunnelling. 
Flash memory withstands only a limited number of program/erase (P/E) cycles, 
ranging from a typical value of 100 000 up to a million. 

For the design of logical functions, the choice between these technologies has 
little effect. The differences come into play when physical characteristics, such as 



2. FPGA technology – hardware aspects
 

15 

tolerance to operating environment, or operational practices related to, for exam-
ple, maintenance and data security, are considered. The resources needed for the 
switches are shown in Figure 4. SRAM requires several transistors, flash requires 
only one transistor, and antifuse is the smallest and simplest. 

 

Figure 3. Different technologies for storing FPGA configuration data. 

 

Figure 4. Hardware and structure of switches connecting wiring using different 
technologies. 

 Circuit board and connections 2.4

The FPGA device is attached to a circuit board, which provides contacts for data 
signals and operating power. Connections include those to the process instrumen-

Before After

Operating Power Source

Ground

OutputOutput

P substrate
N N

Source Drain

Floating Gate

Control Gate

Contacts

A: SRAM

B: Flash

C: Antifuse

6
transistors

1
flash-

transistor

SRAM Flash Antifuse



2. FPGA technology – hardware aspects 
 

16 

tation, measurement data, set point values, and the internal state of the chip. 
Connections are also needed for programming the device and the other functions 
on the chip, such as signal processing. There is often separate hardware on the 
board for, for example, signal processing to perform analog to digital (and vice 
versa) conversion. 

A basic chip based on antifuse technology has no reprogrammable memory, 
and therefore a separate memory device is required for changing data such as set 
point values. On the other hand, SRAM devices require separate memory from 
which to load the configuration at start-up. 

 Electrical and mechanical properties and reliability 2.5

2.5.1 Faults 

The faults of an integrated circuit can be grouped into permanent faults and tran-
sient faults, which can cause incorrect operation, degradation in performance, or 
complete malfunction. Temporary transient errors are referred to as glitches. 
Gradual aging and degradation can cause the device to malfunction as a sudden 
event or can lead to a gradual change in performance, as in response time. Manu-
facturing faults can lead to devices with inferior performance or faster deteriora-
tion, or to an entirely non-functional device. Design faults are considered in Chap-
ter 3. Aging, manufacturing, and design faults are all permanent faults. Single 
event effects (SEE) can be caused by power fluctuation or radiation. A SEE can 
cause a permanent physical change in the chip, a change in the programming or 
memory that can be repaired by a restart or “scrubbing”, or an incorrect operating 
state which resolves in normal operation. In [Ziener, 2010], faults are listed and 
categorised with their error effects. In addition to the integrated circuit, the system 
includes the circuit board and other electronic components, which are susceptible 
to additional faults, such as whisker growth on soldered contacts. 

2.5.2 Environmental tolerance 

As in other electrical and electronic equipment, there are limits to the amount of 
physical abuse that FPGA-based systems can sustain and still function properly. 
The damage can be caused by several different kinds of phenomena in the oper-
ating environment. Sufficient stress will always cause the equipment to malfunc-
tion. Thus, the normal and extreme conditions of the intended operating environ-
ment must be taken into account. The section “3.3.1 Environmental Qualification 
of System” in the licence amendment of the Wolf Creek Generating Station [NRC, 
2009b] serves as an example. It covers the topics and how they were tested for 
that particular application. 

Humidity and temperature are tested together and extreme conditions as well 
as rapid changes in conditions are considered. Humidity refers to non-condensed 



2. FPGA technology – hardware aspects
 

17 

air humidity and affects exposed components. Temperature can change the elec-
tric properties of materials, alter dimensions of components, and cause damage 
through thermal shock from rapid temperature change. Seismic effects cover 
acceleration and vibrations from outside forces. Effects of radiation are consid-
ered in more detail later. 

Electromagnetic compatibility (EMC) is the equipment’s ability to operate in 
the intended electromagnetic environment without causing or suffering ill effects to 
or from other electrical equipment. EMC susceptibility considers the effects of 
external sources of electromagnetic fields, that is, other equipment, on the device 
in question. EMC emission considers the effect the device in question has on 
other equipment. Surge and electrostatic discharge are abnormally high voltag-
es affecting the equipment. They can enter through the power or signal lines or as 
discharges of static electricity on contact with the equipment. In NPPs, there is 
particular interest in the influence between equipment of different safety catego-
ries. There is special concern about the influence of lower safety category equip-
ment on higher safety category equipment. 

2.5.3 Aging 

There are four main aging processes that wear down IC devices. See, for exam-
ple, [Bernstein et al., 2006, Stott et al., 2010a and 2010b] and the references 
therein. In [Bernstein et al., 2006], some of the involved physics is explained. The 
effects can be a gradual deterioration of performance leading to, for example, 
timing faults, or a sudden event, such as a short circuit. 

Electromigration (EM)  is  a  diffusive  process  resulting  from  the  flow  of  elec-
trons in conductors during operation. The momentum of electrons is transferred to 
the atoms of the conductor and gradually moves them. Positively charged metal 
ions are pulled towards the cathode by the electrostatic force, while electrons 
scattering from the ions push them towards the anode. With high enough current 
density, the force caused by scattering becomes dominant. The larger the current 
densities are, the faster the atoms move. In time, this leads to a depletion of atoms 
on the cathode side and a build-up on the anode side. The conductivity will 
change and eventually the result is a short or open circuit. 

Hot carrier injection (HCI) causes charges to form in the insulating oxide layer 
of the gate. When a current flows in the channel between source and drain, carri-
ers (negative electrons or positive holes) can be injected and trapped in the oxide 
layer. The term “hot” refers to the energy of the carriers. The gradually accumulat-
ing electric field of the charge in the oxide combines with that of the gate and 
affects the threshold voltage of the transistor. This leads to slower switching 
speeds, which causes timing faults. 

Negative bias temperature instability (NBTI) is caused by trapped charges in 
the interface of silicon and oxide. This is similar to HCI, but the trapped charges are 
only positive holes in P-type transistors. The phenomenon is prevalent in high tem-
peratures. The result is a change in the threshold voltage and timing performance. 



2. FPGA technology – hardware aspects 
 

18 

Time-dependent dielectric breakdown (TDDB) results from the electric field 
applied across the insulating oxide layer (the dielectric). TDDB is also known as 
oxide breakdown. The process starts with charges being trapped in the oxide. The 
material gradually deteriorates, the potential barrier it creates decreases, and 
conductive paths begin to form. Higher temperatures and stronger electric fields 
accelerate the process. The result is first an increase in leakage current and even-
tually a short circuit. 

2.5.4 Whisker growth 

Whisker growth [NASA/Tin whiskers, Fang et al., 2006] is a phenomenon in which 
filaments of metal build up and protrude from the surface. It is a slow gradual 
process of crystal formation due to a number of possible causes. The whiskers are 
thin but can grow to several millimetres. This is not a chip-level issue but affects 
the board and soldered connections mostly. A major concern is the potential for 
short circuits that the whiskers can cause. The problem has become a more rele-
vant issue after certain materials (in particular lead) have been banned in electron-
ics for environmental reasons. Whisker growth is more common in pure tin solder 
than tin-lead alloy solder. 

2.5.5 Radiation dose and single event effects 

Radiation effects on ICs have been mostly studied in relation to aviation and 
space flight. The radiation at high altitudes and in space is much stronger than at 
sea level under the protection of the atmosphere. See, for example, [Quinn, Gra-
ham, 2005]. Radiation can cause both gradually developing effects and sudden 
changes. The gradual changes are due to the total ionizing dose accumulating 
over time and are rather similar to the aging processes. The sudden effects, or 
single event effects, are caused by a hit from a single energetic particle. 

The effect of the total ionizing dose (TID) is due to high energy radiation caus-
ing the formation of electron-hole pairs in the transistor’s dielectric. This causes a 
build-up of charge that interferes with the control voltage of the gate. The thresh-
old voltage changes, there will be an increase in leakage current, and the timing 
properties change. Eventually there will be a functional failure. Either the perfor-
mance deteriorates so much that correct functioning is no longer achieved, or a 
there is a sudden failure as a result of, for example, dielectric breakdown and a 
short circuit. 

Whereas TID takes time to develop, single event effects (SEE) caused by a 
single energetic particle are instant randomly occurring effects that include single 
event upset (SEU), single event transient (SET), single event latchup (SEL), single 
event gate rupture (SEGR), single event burn-out (SEB), and single event snap 
back (SES) [Wang, 2003, Sexton, 2003]. 

A single event upset is a soft error in the memory of the device. A soft error is 
one that does not cause permanent physical damage to the device. The energy 



2. FPGA technology – hardware aspects
 

19 

transferred by the radiation, an ionizing particle, can cause the state to change in 
a memory element. If sufficient charge is transferred to disturb the voltages of the 
transistors in a SRAM element, the state of memory may not recover to the correct 
value but may settle to the incorrect value. Alternatively, a voltage pulse caused 
by the particle can propagate through the circuit and alter the value of a memory 
element if the pulse arrives at a memory element at a suitable moment. The term 
single event functional interrupt (SEFI) is used if the upset affects the program 
memory and alters the functional configuration. 

A single event transient is a voltage pulse propagating through the circuit. It can 
cause timing errors by shifting or introducing additional clock edges when the 
pulse is on a clock line. Incorrect value and operation can result if the pulse is on a 
data line. If the outcome is not transient, that is, if the pulse causes a change in 
memory, the effect is considered to be a SEU. 

A single event latchup is a latchup with this specific initiating cause. Below is a 
more general discussion of a latchup. A single event snap back is similar to a 
latchup but the parasitic pnpn structure is not required. Both cause a high current 
that can destroy the transistor. 

A single event gate rupture occurs when an energetic particle (a heavy ion) 
creates plasma of electron-hole pairs while there is a voltage applied across the 
dielectric. Somewhat different models of the chain of events leading to failure of 
the gate oxide are given in [Schwank et al., 2008] and [Sexton, 2003]. 

Single event burnout [Sexton, 2003] is an event observed in power bipolar 
(both holes and electrons act as carriers) transistors and MOSFETs, which control 
high voltages. A heavy ion hit triggers a condition known as second breakdown (a 
combination of excess voltage and current), in which the increased current heats 
up and destroys the transistor. 

The different technologies, antifuse, flash, and SRAM, are compared in [Wang, 
2003] and [iROC, 2004]. Antifuse is the most resistant to effects of radiation, while 
SRAM is the most susceptible. All three have the same CMOS technology for the 
gates but SRAM also has CMOS for the switches controlling the wiring and con-
figuration. 

The devices can be designed to be more resistant to radiation, or radiation 
hardened, through manufacturing techniques. The use of different materials and 
manufacturing techniques is considered in [Schwank et al., 2008]. The hardening 
is a part device fabrication, and thus using a COTS (commercial off the shelf) 
device limits the available selection. A specially designed and manufactured hard-
ened version of a device would be significantly more expensive. 

2.5.6 Current leakage 

In theory, CMOS components use energy only when the states change. However, 
insulation is not perfect and while there is a voltage difference, there will be a 
small current. This unintentional current is referred to as leakage current. A small 
current passes through the transistors and also through the oxide of the gate. The 



2. FPGA technology – hardware aspects 
 

20 

smaller the components and the thinner the insulation, the greater the current 
leakage will be. This additional energy consumption leads to increased heating, 
which in turn leads to other effects. For example, aging effects and timing are 
affected by temperature. Since the leakage happens in every transistor, even if the 
transistor is not actually used for implementing the logic, FPGAs with large num-
bers of transistors need to take it into account. 

2.5.7 Latchup 

CMOS technology uses paired NMOS (npn structure of N- and P-type semicon-
ductors) and PMOS (pnp structure) transistors. Their proximity creates an uninten-
tional parasitic pnpn structure which can enter a low impedance and high current 
state known as latchup [Morris, 2003]. When in latchup, the pnpn structure is a 
short circuit and current continues to flow through both transistors as long as the 
operating voltage is available. The heat generated by the current can destroy the 
device. Smaller scale and smaller components increase latchup risk while de-
creasing operating voltage reduces it. 

Latchup requires an initiating event, which can be operating power fluctuation, 
radiation induced voltage pulse, or circuit switching noise. A trigger current in the 
transistors needs to be exceeded to initiate a latchup. To maintain it, the operating 
voltage must exceed holding voltage. If the holding voltage is not exceeded, a soft 
latchup can still occur. In a soft latchup, the initiating event triggers a latchup, 
which then recovers but the data or state of memory may be corrupted. 

In silicon on insulator (SOI) technology the transistors are built on an insulating 
layer. Because there is no conductive path between the transistors, a parasitic 
pnpn structure is not formed and latchup cannot occur. This technology is becom-
ing more common in space systems [Schwank et al., 2008]. 

2.5.8 Manufacturing technology size scale 

Earlier it was mentioned that the manufacturing techniques and choice of materi-
als can affect the radiation tolerance, or hardness, of the device. One issue to 
consider when choosing a device is the size scale of the technology. As the manu-
facturing technology of ICs has progressed, a major direction has been the de-
crease in size of the components and width of wiring on the chip. Currently tech-
nologies smaller than 100 nm are used. The “XX nm” technology is a naming 
convention, not an exact size of the components on the chip. Originally it referred 
to the size of the gate, that is, the distance between the source and drain. As the 
size decreases, the component’s robustness decreases. Radiation susceptibility 
increases, aging processes may hamper the operation sooner, and heating issues 
may become problems. Using an older more robust technology is therefore advis-
able if the capacity of the device is sufficient. 



2. FPGA technology – hardware aspects
 

21 

 Timing, clock skew, and race condition 2.6

The flip-flops of a circuit are clocked to change value at specific times according to 
a clock signal, that is, at the rising or falling edge of a square wave clock signal. 
For the component to function properly, the input signal should remain steady for 
set-up time before the clock edge and hold time after the clock edge. The compo-
nents do not react instantly but there is a small delay from the clock signal arriving 
to the output changing. If the input signal changes value, or is still in the process of 
changing too close to the clock edge, a timing error, such as an incorrect or meta-
stable state, may result. The shorter the clock period, that is, the higher the oper-
ating frequency, the faster the components need to be to operate correctly. 

Clock skew is the phenomenon of the clock signal arriving to components at dif-
ferent times. The cause is due to finite signal propagation speed and routing of the 
signals. The clock skew between components under ideal conditions can be de-
termined from the layout and properties of the components and the wiring between 
them. However, the amount of clock skew is affected by factors such as tempera-
ture and the effects of aging on the circuit. 

Timing margin is the increase in clock period from the minimum value neces-
sary for correct operation. Its purpose is to avoid timing faults due to the variation 
in component properties and clock skew. 

The term race condition refers to a situation in which the output of computation 
depends on the timing between signals, that is, the result is determined by the 
order in which the “racing” signals arrive. Poor timing can cause a gate to change 
state more than once during a cycle, which in turn can lead to, for example, meta-
stability or the incorrect state propagating further. 

 Metastability 2.7

Metastability is a state in which the logical state is not properly defined. The circuit 
does not settle to either “1” or “0” but remains in between or oscillates between the 
values. It is caused by a timing error and persists for an indefinite time [Altera, 
2009, Erickson, 2000]. 

Short-lived metastable states are more common than those of a long duration. 
The mean time between failures increases at an exponential rate to the recovery 
time. The recovery time should be taken into account when determining the clock 
frequency of the circuit. Even though the situation resolves itself, the error may 
have propagated and corrupted the state of the system. If the clock frequency is 
slower, there is more time for the metastability to resolve between clock cycles so 
that the value is correct by the time the next component reads it. 

To avoid metastability, the timing of the circuit should be carefully analysed for 
worst case performance. External input signals to the circuit and signals from 
components that change value slowly should be synchronised. Flip-flops in se-
quence form a synchroniser and each reduces the probability of a metastable 
state propagating further. 



2. FPGA technology – hardware aspects 
 

22 

The system may end up in an inconsistent state if two or more components use 
the metastable value and interpret it differently. This can lead to difficult to identify 
byzantine faults [Driscoll et al., 2003].  

 Parallel computing 2.8

One distinct difference between microprocessor-based systems running software 
and those using pure hardware such as ASIC or FPGA lies in parallel processing 
of the “program”. A microprocessor executes a single instruction of a single pro-
gram per clock cycle. Of course, more than one processor can execute multiple 
programs which interact, but this complicates matters even more. An FPGA appli-
cation executes all “instructions” on each clock cycle. Furthermore, there is sepa-
rate hardware for each “instruction” of every program. 

In parallel processing, different functions (for software this includes the operat-
ing system, driver software, and other functions of the platform) do not compete 
for the same processor time or memory resources. Timing, from the perspective of 
all instructions to be finished in time, is more reliable, but the order the instruction 
are executed is subject to the timing properties of the circuit. Different applications 
can be placed on different FPGA devices on different circuit boards to prevent 
harmful interaction and platform-related random-event common-cause failures. 

 System on a chip – SOC 2.9

The newer FPGA devices hold much more than just the configurable logic blocks. 
On the same chip, there can be a number of dedicated computational cores in-
cluding complete microprocessors. In addition to the memory provided by the 
registers (flip-flops) in the logic blocks, separate blocks of memory are available. 
Signal processing units for analog-to-digital and digital-to-analog conversion are 
available along with more advanced hardware for communications. Actel’s flash-
technology-based SmartFusion chip is an example of an advanced chip proposed 
for an NPP application [Lu et al., 2010]. 

As less and less hardware is needed on the circuit board in addition to the 
FPGA device itself, the designs are moving towards SOC solutions which are 
effectively complete computers on a single silicon chip. 

 FPAA – a glimpse of analog technology 2.10

Field Programmable Analog Array (FPAA) is in a way the counterpart of FPGA in 
analog technology. The philosophy is quite similar but instead of logic blocks, a 
FPAA chip contains configurable analog blocks (CAB). FPAA technology is 
younger than FPGA and is still in its infancy. See, for example, [Hall, 2004] 



3. Application design and development
 

23 

3. Application design and development 

Even though the final product is a hardware component, the design and imple-
mentation of an FPGA-based system has strong similarities with software-based 
systems. A number of hardware description languages (HDL) or higher-level lan-
guages rather similar to software programming languages are typically used. This, 
together with the automated design tools, makes it very easy to define very com-
plex functions. The steps of design use software tools to transform the design from 
one representation to another. The final output of the design process before con-
figuring an actual device is a binary configuration code. FPGA device vendors 
have their own IDE (integrated development environment) tools that typically sup-
port at least the different design steps and simulation testing. 

A characteristic of systems implementing complex functions or using a complex 
framework or platform, such as software and other programmable I&C, is the 
presence of errors of a deterministic nature (in addition to randomly occurring 
faults). The system does not fail randomly, but for a specific input the output is 
always incorrect. 

Despite the similarities with software design, aspects of hardware design must 
be understood by the designer. The levels of abstraction that a software-based 
system offers are not present in FPGA design. There is no system level or an 
operating system behind which the hardware issues are hidden. On the other 
hand, the complexity caused by the shared computing environment and interaction 
with other programs is absent. 

With both hardware and software aspects present, FPGA design and imple-
mentation can be characterised as “hardware implementation designed like soft-
ware.” It is quite commonly agreed in the literature that, for applications with strict 
reliability and safety requirements, a design life cycle similar to software should be 
used. 

In the following, we first describe a generic simplified design flow for an FPGA 
application. The each step and related issues are discussed in more detail. Finally, 
a number of design issues of particular interest are considered in more depth. The 
perspective of evaluating and reviewing an FPGA-based system, along with ex-
tensive lists of issues to consider, is given in [NRC, 2010b]. 

The following presentation focuses mainly on the design of the FPGA’s func-
tions and the logic it implements. The connection of the chip onto the circuit board 



3. Application design and development 
 

24 

along with the board’s properties and connections are mostly ignored. Whereas 
functions are designed for a particular application, the FPGA device, circuit board, 
and related equipment are likely to be generic hardware combinations or platforms 
with few ties to a particular application field or industry. 

A detailed beginner-level introduction to generic FPGA application development 
is given in [Smith, 2010]. More specific focus for nuclear power is provided in [Fink 
et al., 2010, Bobrek et al., 2009, Alvarado, Herrell, 2009]. 

 Design life cycle, stages, and work flow 3.1

The first step is requirements specification. The requirements cover both logical 
functions and the physical hardware-related properties. Typically the requirements 
are drawn from the purpose of the system and the environment in which it is to 
operate. The result of requirements specification is usually a textual document 
with a list of requirements. 

Based on the requirements, the chip type is selected, architectural design and 
detailed design of the application are performed. Architectural design considers 
the functions more as modules of abstract functions, while detailed design consid-
ers the specifics of implementation. 

Code generation, or another form of inputting the design, implements the func-
tions in a way similar to software code. The code must then be synthesised into a 
lower abstraction-level description of the functions and mapped onto the device 
hardware. 

Verification and validation (V&V) is performed alongside the design. This in-
cludes various reviews, simulations, and tests. Reviews are used mainly in the 
earlier stages of design flow, where a higher level of abstraction is used for the 
descriptions, and simulations are used in the later stages. Static analyses can also 
be performed to, for example, analyse the code structure and style, timing perfor-
mance, and correctness of the implemented logic. 

The design process is iterative as it is likely that, at some point, a previous step 
will need to be revised or redone. For example, verification of the design step may 
fail or it may be discovered that some additional functions are needed or require-
ments need to be satisfied for correct and safe operation. 

The naming of the design stages or phases is not universal and varies slightly 
in the literature. Some stages may be missing entirely or the definition may be 
different. See, for example, [Gaisler Research, 2002, NRC, 2010b]. The design 
stages and life cycle are depicted in Figures 5 and 6. 

 



3. Application design and development
 

25 

 

Figure 5. FPGA application design stages and related output (artefacts) and veri-
fication actions. 

 

Figure 6. V-model of design life cycle. 

Place and Route

Behavioural description
Design input

Requirements
specification

NetlistSynthesis

Configuration file

HDL code,
schematic diagram

Behavioural (functional)
Simulation

Functional simulation

Testing

Detailed design

Programmed device

Architectural design

Physical
implementation

Review

Timing analysis

Textual documents

ReviewTextual documents,
high abstraction level
descriptions, e.g.,
flow diagrams

Behavioural simulation

System integration Operational system Testing

Stage Artefacts V&V

Hardware in the loop
simulation

(Behavioural simulation)

Verification

Requirements
Specification

Verification

Design

Verification

Implementation

Verification

System
Integration

System
Validation



3. Application design and development 
 

26 

 Requirements specification 3.2

The purpose of requirements is to provide an objective and guidelines for the 
design process by specifying the properties of the final product. The requirements 
are based on the upper levels of system design and the role of the component or 
system to be designed. The core of the requirements is the specification of the 
functions of the device. The description includes the context and the environment 
in which the device operates. This means both the physical environment, for ex-
ample, the temperature and radiation conditions, and the technological and “logi-
cal” environment, being the other systems it interacts with. In addition to the nor-
mal operating conditions, various extraordinary conditions need to be taken into 
account, such as the response to incorrect inputs, internal faults and fault toler-
ance, and changes in physical conditions. 

The software aspects of the requirements mostly focus on the functional behav-
iour of the device, such as the purpose of operation and the reaction to certain 
inputs, but also things such as self monitoring, testability, and fault recovery. Re-
quirements on hardware aspects may specify such things as connections and 
board size, response time and clock cycle, and mechanical acceleration (vibration) 
tolerance. 

Requirements specification is one of the stages that often needs to be amend-
ed during later stages of design. Prior to knowing details of the design in question, 
and also the devices it interacts with, it is difficult to discern all the situations and 
conditions that may arise during operation and need to be prepared for. 

3.2.1 ESL – electronic system level 

An emerging trend is that an entire electronic system is described using a unified 
approach on a functional level, including all hardware, software, communications, 
and the functions they implement. This high-level description is usually created 
using a high abstraction level language, such as System C (essentially C++), 
System Verilog, or Matlab [Gassino, 2009]. Each part of the whole is represented 
by a component model that interacts with the other components. The behavioural 
models along with the communications form the overall system. This allows func-
tional simulation of the system before any of the components are designed. The 
designers can test different allocations of functions and resources to components 
to find the best configuration. This electronic system level (ESL) description can 
then be used to derive requirements for the components. It may even be possible 
to generate the HDL code directly from the ESL description. 

 V&V: requirements 3.3

The output of the requirements specification consists typically of text documents 
with only a loose structure that is not suitable for automatic structured analysis and 



3. Application design and development
 

27 

verification. On the other hand, specifications drawn from an ESL description may 
even enable some level of behavioural simulation. For the most part, the verifica-
tion is a series of inspections and reviews of the documents. The reviews should 
be performed by independent experts with no ties to the design team but sufficient 
skill and knowledge of the application area and design process. In particular, veri-
fying that all necessary requirements are present may be difficult and requires in-
depth understanding and expertise. Some structured review techniques are con-
sidered in [Lahtinen, 2012].  

Traceability of the requirements is an issue of particular concern that spans the 
entire life cycle. The fulfilment of the requirements should be traceable through 
design stages to the final product. Throughout the design process, it should be 
possible to trace choices and decisions back to the requirements. In addition to all 
the requirements to be fulfilled, there should not be any requirements added in 
later stages but not included in the actual requirements specification. Hence, work 
practices and tools should be chosen to support traceability. 

 Architectural design 3.4

In architectural design, also referred to as high-level design, the functions are 
divided into smaller modules (blocks) and their interactions are specified. Several 
reliability considerations are relevant during architectural design. The design af-
fects the possibilities to use, for example, redundancy and error correction, and 
also affects the overall robustness of the design. The use of TMR (triple modular 
redundancy) on the higher levels needs to be designed at this stage. Due to the 
limited number of input/output pins on the device, the internal state of the chip is 
not fully detectable during testing or operation and the choice of modularity affects 
the available data. In addition, the possibility to control the execution of specific 
functions depends on the division. 

While designing the modularity, the use of pre-developed components and re-
peating structures should be considered. Some of the functions can be imple-
mented using modules developed by third parties, or IP (intellectual property) 
cores. One approach that aims for designs of high reliability is to split the design 
into small simple functions that can be verified and use them as the basis for more 
complex functions [Kojima et al., 2010, Lach et al., 2005 and 2006]. 

 Detailed design 3.5

Detailed design specifies the particulars of implementing the functions of the mod-
ules. Decisions are made about, for example, the use of memory, state machines, 
and redundancies. This stage does not necessarily exist as a separate stage in 
the design process, but it can be included in the earlier design stage and the fol-
lowing behavioural description. 



3. Application design and development 
 

28 

Whereas the architectural design is for the most part independent of the hard-
ware aspects, detailed design is more involved with the resources available on the 
device, timing properties, and the clock cycle to be used. 

 V&V: architectural and detailed design 3.6

Depending on the tools and format, different verification methods may be availa-
ble. While the functions are not specified in detail, inspection and review are still 
likely to be the main methods. 

 Behavioural description and design entry 3.7

The design is implemented as hardware description language (HDL) code, a 
schematic diagram, or another description of the functions. (The word implementa-
tion can refer to a number of different things and stages of the design process.) 
This stage corresponds to writing program code for a software-based application. 
The most common method today is the use of a HDL; in particular, VHDL or Veri-
log languages are used. 

The use of high-level languages can lead to complex and intractable descrip-
tions which in turn hinder V&V activities. Therefore, strict rules should be applied 
to the use of the languages. Only clear and easily understandable structures 
should be used and the allowed features of the language should be restricted to a 
suitable subset of the language. The approach is the same as using a subset of a 
programming language, such as MISRA C (Motor Industry Software Reliability 
Association), in software-based systems. The ESA (European Space Agency) has 
specified guidelines for the use of VHDL [ESA, 1994]. 

3.7.1 Hardware description languages – HDL 

Hardware description languages (HDL) are rather similar to software programming 
languages. They are used to describe the functions, not the physical components 
or connections. The abstraction level is on the RTL (register transfer level) and 
has little to do with the circuitry that eventually implements the functions. Like 
programming languages, HDLs use variables, parameters, and subroutines. How-
ever, the execution of the codes is different because software is executed one 
instruction at a time, possibly on two or more parallel threads, whereas the imple-
mentation of HDL code “executes” in a fully parallel environment with separate 
hardware for each “instruction”. Consequently there are differences in, for exam-
ple, the operators of the languages. Code examples of VHDL and Verilog, along 
with recommendations for good coding style and practices, can be found in [NRC, 
2010b]. 

The most important HDLs are VHDL [IEEE 1076-2008] and Verilog [IEEE 1364-
2005]. Both are standards but neither is a formal language that would allow strict 



3. Application design and development
 

29 

analysis and verification of the code and functions. VHDL (very high speed inte-
grated circuit HDL) is built on the ADA programming language and has much in 
common in structure and syntax. Verilog, on the other hand, was designed to have 
a syntax similar to C. 

In [Gassino, 2009], a relation is drawn between HDLs and software program-
ming languages. Despite the differences in parallel or sequential execution, the 
two implementations are more or less interchangeable. As a part of the develop-
ment process, the HDL descriptions are simulated on computers, thus showing 
that software can do the same task as hardware implementation. On the other 
hand, software runs on a microprocessor, which is hardware, and can be imple-
mented using a programmable device. 

3.7.2 Higher-level entry methods 

In addition to HDLs, more complex entry formats can be used in design. These 
include C, Matlab, and LabView. One approach available in the Xilinx Embedded 
Development Kit is to provide C code that is then executed on a soft processor 
core generated by the development kit. Other tools convert C or Matlab code into 
HDL code [Huffmire et al., 2008, MathWorks]. 

When the design is generated in a higher abstraction level language, creating 
and managing complex structures is simpler from the perspective of the designer. 
This speeds up the design process and should result in fewer errors in the design 
on the part of the designer. One disadvantage is the temptation to create more 
and unnecessarily complex designs. Another disadvantage is the need for one 
more tool and one more conversion between the designer’s original intent and the 
final product, as more of the details of the design are left for the tools to decide. 
Additionally, the generated HDL code can be very difficult to read. 

SystemVerilog aims for a higher level description of the system and hardware 
with verification in mind: “Hardware Description and Verification Language” (HDVL) 
[System Verilog]. Verilog and SystemVerilog have been merged in [IEC/IEEE 
62530-2011]. SystemC is based on C++ and provides a set of classes for descrip-
tion and simulation of hardware at the system level [OSCI, IEEE 1666-2005]. 

Esterel is a programming language that allows generation of VHDL and Verilog 
code for hardware, in addition to C code for software [Boussinot, de Simone, 
1991, Brandt, Schneider, 2008]. It is designed to support formal specification and 
verification. An IEEE standards development working group is developing Esterel 
v7 Language Reference (IEEE P1778). 

3.7.3 Other entry methods 

Hardware description languages are already rather high abstraction level descrip-
tions. Simple logic can be designed using gate-level descriptions. Graphic EDA 
(electronic design automation) tools are available for entering the design using 
schematic or block diagrams. Schematic diagrams are lower abstraction level 



3. Application design and development 
 

30 

descriptions of components, such as gates and lookup tables, while block dia-
grams use a higher level abstraction of functions. 

 Intellectual property – IP cores 3.8

The manufacturers of FPGA devices, as well as independent providers, offer pre-
developed modules to be used as part of a design. This is similar to pre-developed 
software or library routines in software-based systems. The IP cores can be small 
routines implementing simple logic or larger entities for both frequently used func-
tions and specialised tasks. 

Delivery format and design level of the IP cores can vary. They can come as 
high-level description HDL code, netlists that are not device specific, or device-
specific binary files. Factors affecting the format include issues such as IP securi-
ty, from the developer’s point of view, and the format is not always the best choice 
from the user’s perspective. IP cores distributed as RTL level descriptions, such 
as HDL code, or as netlists are referred to as soft cores. IP cores distributed as 
device-specific (partial) configuration files are referred to as hard cores. 

For safety-related applications with high reliability demands, the use of IP cores 
should be restricted to well-tested products from reliable sources. In [NRC, 
2010b], it is recommended that in safety-critical systems, IP cores are avoided or 
additional verification of the core is performed. In addition to safety and reliability, 
there are security considerations related to the use of IP cores. Aspects of IP core 
security issues are considered in [Ziener, 2010]. 

Applications are typically developed using system platforms that include, in ad-
dition to development tools and hardware infrastructure, a set of predeveloped 
functions that serve as building blocks. Unlike third party IP cores, these are likely 
to be developed under strict requirements, if they are a part of a platform intended for 
NPP applications. Plans to use third-party certified SIL3 block libraries are underway. 

 V&V: design entry 3.9

In addition to inspection and review of the design, or diagrams and code, the for-
mat of the design allows simulation. Behavioural simulation is an important verifi-
cation method at this stage. Details of the hardware are not available and there-
fore proper functional simulation is not yet possible. The test vectors, or the inputs 
and expected outputs, need to be designed carefully to cover the specifications 
and both normal and exceptional operating conditions. Additionally, faults and 
errors should be included in the tests, for example by use of fault injection meth-
ods. This allows wider test coverage than just the manipulation of input values. It 
also enables the testing of the effects of SEEs and other hardware failures and the 
correct behaviour of fault detection and recovery functions. 

Both intermediate results (internal states of the design and inputs/outputs of 
functional blocks) and final outputs should be verified. Separate simulations can 



3. Application design and development
 

31 

be performed for the functional blocks or modules (or cores) to first verify their 
correct behaviour before examining the whole. 

Only very simple designs can be tested with 100% coverage. As the size of the 
design increases, 100% testing of all possible behaviour quickly becomes too 
laborious and time consuming to be practical or even possible. Therefore, addi-
tional methods should be used to gain confidence in the correctness of the design. 
Such methods can be, for example, static analyses (dynamic analysis refers to 
simulation and static analysis to methods that do not activate or “run” the design 
with inputs), including formal methods (e.g. model checking), complexity metrics, 
and code reviews. 

 Implementation: logic synthesis and place and route 3.10

The description of the functions given as, for example, HDL code is first compiled 
into a netlist and then into a binary file with which the device can be configured. 

A netlist is a device-independent description of the connections and gate struc-
ture of the logic. The generation of a netlist is usually referred to as logic synthe-
sis. A typical format for netlists is electronic design interchange format (EDIF). 
Depending on the target technology, the netlist can also contain more complex 
functions, such as counters, in addition to the basic gates (AND, OR, etc.). Some 
tools generate both device-specific and device-independent descriptions. 

Place and route operation maps the design onto a specific device architecture, 
that is, it creates the physical layout and is typically the phase referred to as im-
plementation. This is usually done with the device manufacturer’s proprietary 
software tools. The logic gates are mapped onto the hardware on the chip and the 
signals are routed between them. The place and route process is not determinis-
tic, automatically providing the same best layout. Even the definition of “best” is 
ambiguous. The solution of the place and route problem is computationally hard 
and approximations and compromises are made. The higher the gate count, the 
harder the problem, and tools implementing non-deterministic methods, such as 
genetic algorithms can be used. The developer can also have a great influence on 
the outcome through configuration of the tool. Things such as signal speeds be-
tween areas of the chip, timing properties, availability of routing lines and gates, and 
power consumption all need to be considered. The output of place and route is the 
configuration file, which can be referred to as a place list, fuse map, or burn list. 

 V&V: logic synthesis and place and route  3.11

Verification is performed after both logic synthesis and place and route. As the 
design becomes closer to the final implementation, the details available in the 
simulations increase. After synthesis the properties of the technology can be in-
cluded, and after place and route the details of the device and also the layout and 
routing information are available. An important aspect of correct functioning for 
parallel computing structures are the timing properties of the design, that is, prop-



3. Application design and development 
 

32 

agation delays and the arrival sequence of signals, and their correctness must be 
verified. See Timing Analysis below. 

In addition to conformance to requirements, it should be carefully verified that 
the behaviour does not change as a result of transforming the design into new 
formats. Therefore, for simulation testing, the test vectors should be the same as 
in the previous steps. In addition to careless or non-systematic use of the tools, 
the tools themselves can be a source of changes and errors. Among other things, 
the configuration files of the tools must be documented and verified to be correct. 

 Implementation: configuring a chip and putting a 3.12
programmed chip onto a board 

The final step in the design process is the physical implementation. An FPGA 
device is configured using the configuration file produced by the place and route 
tool. The file is uploaded to the memory of the device (SRAM and flash) or a con-
figuration tool is used to activate the desired connections in the device (antifuse). 
The FPGA device is connected to the circuit board, which is placed in a rack or 
computer cabinet to which power and signal wiring are connected. A single appli-
cation can consist of multiple FPGA devices, possibly on multiple circuit boards. 

 V&V: physical implementation 3.13

Though the focus here is on the functions, the hardware itself must be verified. 
When the device is chosen, it is tested and verified to be suitable for the applica-
tion (physical properties, memory technology, capacity, etc.). This includes the 
circuit boards and cabinets. 

The configured device can be tested on its own to verify the functioning of the 
device. At this stage, the internal state of the device is unlikely to be fully observa-
ble (or there are delays in receiving the data through the output pins) and not all of 
the data of the test vectors of the previous stages can be verified. The inputs and 
outputs of the device should still be the same as in the earlier stages. 

The correct functioning is also verified for the system with the FPGA device(s) 
on the circuit board(s). This testing includes the functioning of the other hardware 
on the circuit board. 

The testing can be done using real hardware-generated input stimuli (intention-
ally generated or recorded from the actual operating environment), emulated 
hardware (which allows feedback structures), or input vectors from earlier stages. 
Real hardware-generated inputs are preferred to artificially generated inputs as 
the results then better correspond to the actual operating environment. 



3. Application design and development
 

33 

 Other verification and validation issues 3.14

In the literature, it is quite commonly agreed that FPGA design should use a life 
cycle similar to software, and different variations have been proposed to take into 
account the special features of FPGAs. See, for example, [IEC 62566]. This 
means that the V&V activities should be performed alongside the design. The V&V 
plans themselves should also go through a V&V process. The coverage of testing 
(physical and simulated), the quality and detail of reviews, and the use of other 
methods (static analyses, formal methods) should be evaluated to justify the ade-
quacy of the V&V plans. 

The non-random nature of errors originating in design calls for additional con-
siderations for “proven in use” arguments on reliability. If a particular operating 
situation has not been encountered in use, the fault has remained hidden. Thus, 
when using systems or components that have been proven in use in other applica-
tions, one should carefully consider the possible differences in operating condi-
tions. For example, a piece of software used successfully on the Ariane 4 rocket 
failed when used on Ariane 5. It was tested as part of the Ariane 5 equipment, but 
the simulated flight trajectory was that of Ariane 4 and the particular error-inducing 
input was never encountered. 

The definition of “100% testing” should refer to fully testing all input and internal 
state combinations. From a hardware perspective, “100%” could also mean exer-
cising every gate to verify its correct operation, but this does not correspond with 
correct behaviour and reliable execution of the intended control logic. 

3.14.1 Importance of independent V&V 

The competence of the personnel performing the V&V is an issue to consider. In 
addition to technical expertise, their involvement with the design work needs to be 
considered. The first verification of the design can be made by the designers 
themselves but the final verification before acceptance should be performed by an 
independent party not directly involved with the design process. The designers 
can easily become blind to their own mistakes and no longer be able to question 
the assumptions made during the design process. In [Gaisler Research, 2002], a 
case is mentioned where there were internal verification teams independent of the 
designers, but where it still took outside experts to point out the errors (the com-
ment “Oh my god!” by one of the outside experts gives an idea of the character of 
the errors discovered). 

3.14.2 Formal methods 

Formal verification can target the translation of the design between formats 
(equivalence checking) or the behaviour and functionality. While simulation tools 
check the equivalence or behaviour for the defined input test vectors, formal 



3. Application design and development 
 

34 

methods verify them for all possible inputs. The methods apply a mathematical 
approach to generate a formal proof. The terminology used includes proof and 
assertion of properties. See, for example, the descriptions of a number of formal 
methods in C.2.4 of IEC 61508 [IEC 61508] part 7 and the references therein. 
Equivalence checking is quite commonly provided by the development tools along 
with the simulation tools. See, for example, [Xilinx/FAQ]. Formal verification of 
correct behaviour is the far more difficult task. 

A large portion of the products of the design process are in text format in a nat-
ural language (English). This includes the requirements and descriptions of the 
higher-level systems and the context the system operates in. Formal methods that 
provide a mathematical proof of the correct behaviour cannot handle such materi-
al. A formal proof requires that the properties to be verified are also defined for-
mally. At a later stage in the design process, the HDLs are standardised lan-
guages but not formal languages, and as such not entirely suitable for formal 
verification. There are tools for verification of HDL code, such as [IBM/RuleBase], 
but the properties to be asserted are still written separately using a different lan-
guage instead of being an integral part of the system specification. Then there is 
the huge number of possible inputs and internal states that may present a problem 
through required computational resources and time. Note, too, that this analysis 
focuses on the correctness of the logic itself and excludes consideration of, for 
example, layout and timing. 

Design tools and development environments are progressing towards providing 
more effective integrated verification methods, such as the Esterel language 
[Hammarberg, Nadjm-Tehrani, 2005]. Approaches that take into account the phys-
ical functionality and timing properties have also been developed. For example, 
the Property Specification Language, PSL [IEEE 1850-2010], can be used with 
multiple HDLs and it allows both simulation and formal verification of the design’s 
properties. Design work may be progressing towards a situation where the syn-
thesis is based on property and assertion statements instead of HDL code. Speci-
fications of the properties to verify or assertion statements can be a source of 
errors themselves as they are typically written manually, as in the 20 000 lines of 
PSL code of [Druilhe et al., 2010]. 

An approach following the strategy of divide and conquer is proposed in [Lach 
et al., 2005 and 2006]. The approach involves verifying (100% testing or some 
other method) small units and using them as building blocks. Using reliable blocks 
gives confidence in the whole of the design but it can also be used to model the 
system based on the interaction of well-defined elements, which then would ena-
ble formal analysis. Practically all system platforms follow the strategy of develop-
ing a set of blocks or functions that are then used as building blocks for the appli-
cations, whether or not formal analysis is used for V&V. 

A formal analysis does not have to go all the way and cover the entire system 
or be complete in all aspects. Verifying important parts of a design (repeating 
structures, critical functions) can increase confidence in the design and provide 
evidence to support a safety case. On the other hand, the use of formal methods 
provides a diverse approach to V&V. Even if the analysis is incomplete, not finding 



3. Application design and development
 

35 

errors can also be considered as evidence. On the other hand, finding errors al-
lows them to be corrected. For the purposes of analysis, the design can be ap-
proximated with a simpler design that over-estimates the possible functionality. 
Then the absence of certain behaviour of the simplified design implies absence of 
that behaviour in the actual design. This approach, however, requires expert 
judgement and is somewhat lacking in transparency. 

 Tools 3.15

The design process is heavily dependent on software tools starting from the man-
agement of requirements to the testing of the device. The selection of these tools 
can have a significant impact on the success and outcome of the design process. 

At the requirements specification stage, tools can be used to manage the re-
quirements and to establish traceability from higher system-level requirements 
down to design decisions and the final design. Tools can also generate require-
ments from ESL descriptions. For V&V, tools supporting reviews can and should 
be used. 

In the design stages, the main tools are HDL (or another description method) 
editors and translators to generate the netlist and place and route design. Tools to 
manage the schematic and flow diagrams of the first design stages can also be 
used. The simulation tools used for testing and verification of the designs also 
have a significant role. Simulation tools need to support the generation and man-
agement of test vectors, and enable their systematic execution and data collec-
tion, and the analysis of the results. In addition to simulation testing, static anal-
yses can be performed, for example the evaluation of coverage metrics of simula-
tion test vectors and HDL code style analysis. The timing properties need to be 
analysed by tools for all but the simplest designs. 

Often the tools provided by the device vendors and third parties are not intend-
ed for the design of applications with strict safety requirements. Their focus is 
more on a fast, cost-efficient development process. With new device generations 
come new tools. Even though the tools are widely used by developers of various 
application fields, the tools are not rigorously tested and their development pro-
cess is rarely suitable for high-reliability software products. 

The tools do not simply translate the design into another format, that is, HDL is 
first synthesised to netlist and then placed and routed to a configuration file. The 
translation is not unique and the tools can perform optimisation of the design using 
various rules and algorithms according to some criteria. Even if the behaviour is 
superficially the same, there can be differences, in particular, under abnormal 
circumstances. For example, the optimisation of the layout done by the place and 
route tools can lead to some logic being duplicated due to routing resources and 
signal speeds while some logic can be entirely removed as redundant. It may be 
efficient to re-compute the same logic multiple times in different parts of the chip 
instead of establishing long wire connections, but in the case of a random error, 
the result may be different for different parts and the whole system may end up in 



3. Application design and development 
 

36 

an internally inconsistent state. Similarly, removing redundant structures can be 
disastrous for the intentional redundancy (e.g. TMR) used for reliability reasons, 
such as the mitigation of effects of SEUs [Gaisler Research, 2002]. 

 Emulated processor 3.16

One proposed approach to using FPGAs is to replace obsolete microprocessor 
based systems by emulating the processor with an FPGA. The original system 
concept and design are retained and the actual logic is not redesigned. This 
should ease the V&V effort. While the old microprocessors are no longer available, 
their functionality and software execution can nowadays be implemented in an 
FPGA. In France, an extensive modernisation project is underway using an emu-
lated Motorola 6800 microprocessor [Bach, Tavolara, 2010]. This approach has 
the advantage of addressing more than one system because the same emulator 
can be applied to other systems using the same processor. The processor emula-
tor is implemented as an IP core, which should allow it to be transferred to other 
FPGA devices. This type of replacement also needs to consider hardware aspects. 
The new technology does not necessarily have the same physical characteristics of, 
for example, radiation tolerance, aging, and electromagnetic compatibility. 

 Timing analysis 3.17

The elements of a circuit are clocked to operate at specific times, that is, they 
react to their input signals and change value. The timing is controlled using a clock 
signal “ticking” at a specified frequency. See “Timing, Clock Skew, and Race Con-
dition” in the previous chapter. After place and route has specified the physical 
layout, timing analysis can be performed. The components and wiring produce 
delays to the signal propagation and the analysis is based on the physical proper-
ties of the device derived from the laws of physics and measured by testing. Given 
the layout and details of the design and properties of the device, the purpose is to 
verify that the logic functions correctly with respect to timing properties. The prop-
agation and arrival of clock signals at different gates must be checked. All flip-flops 
on the chip must have sufficient set-up and hold times for changing data signals. 
Thus, in addition to clock and data signals, the relative arrival of the clock signal 
and data signals must also be considered. This also calls for checking the worst-
case scenarios of uncertainty and performance degradation. However, timing 
analysis considers only signal propagation, not the values of the signals. 

The timing properties can also be analysed without the details provided by 
place and route but instead based on the netlist. Delays of the components are 
taken into account, but as the layout information, being the location and wiring 
between the components, is lacking, the accuracy of the analysis is inferior. 

Static timing analysis (STA) is an analytical analysis (not a simulation test lim-
ited to specific input cases). The tools for STA are very efficient for synchronous 
designs (see below) and the sufficiency of the timing margins of the entire design 



3. Application design and development
 

37 

can be verified. The results cover all possible signal paths and are independent of 
the signal values. 

Timing analysis is also performed as part of the simulation of the circuit (dynamic 
analysis). In the simulation of the physical functioning of the device, the signal values 
are also considered and only cases included in the test vectors are covered. 

 Synchronous vs. asynchronous design 3.18

The timing of the flip-flops on the circuit is controlled with a square wave clock 
signal. It is possible to use multiple clock signals and either the rising or falling 
clock signal edge within an FPGA chip so that the flip-flops react at different times. 
It is even possible to use the output signal of another element as the clock signal. 
In a synchronous design, all components are clocked by the same edge of the 
same clock signal. Otherwise, the circuit is asynchronous. 

Synchronous design is the simpler, more straightforward approach. On the oth-
er hand, asynchronous design has its advantages in some situations. It can facili-
tate better speed and lower power consumption or enable the solution of special 
problems [Erickson, 2000]. 

Existing design tools can easily verify worst-case timing properties (set up and 
hold time satisfaction) and performance requirements of synchronous designs. 
Complex asynchronous designs are an entirely different matter. Their analysis of 
worst-case conditions can be very difficult or even impossible in practice. Tools 
are mostly intended for synchronous designs, thus leaving the designer to manual-
ly verify asynchronous designs. Asynchronous designs are also more sensitive to 
changes in timing performance of components due to, for example, temperature 
and aging. 

It is possible to have separate, non-interacting circuits with different clocks (in 
different clock domains) on the same chip. This is effectively a synchronous de-
sign but it would be simpler if the circuits were on different chips altogether. 

 Hardware vs. software aspects of design 3.19

It should be noted that the hardware aspects are strongly involved in the design 
process. Compared to software-based system design, timing with component 
response times and signal propagation delay is an additional concern. Similarly, 
the physical layout of the logic on the chip and parallel processing with dedicated 
hardware for each function are missing in software design. With FPGAs, the de-
signer comes face to face with clock skew, SEE, and other hardware issues. 

In comparison with conventional hardware design, the complexity of the func-
tionality is likely to be significantly greater. The approach of using an HDL or de-
sign methods and tools with a higher level of abstraction also shifts the focus of 
the work. In the nuclear domain, this calls for new types of training and skills from 
the designers. 



3. Application design and development 
 

38 

 Standards 3.20

In the literature, the most often mentioned standards relevant to FPGA-based 
system development include: 

 general safety standard IEC 61508 

 upcoming IEC 62566 

 IAEA standards 

 the IEEE (7-4.3.2, 1012) software standards along with IEC 60880 

 on the hardware side, the DO-254 standard for airborne electric hardware, 
which is mentioned along with the IEC hardware standards for NPPs. 

IEC 62566 [IEC 62566] is expected to be published in 2012. Originally, it was to 
address the use of complex electronic components more widely, but it was then 
focused to “Development of HDL-programmed integrated circuits for systems 
performing category A functions.” The standard and its development have been 
presented in meetings related to FPGA use in NPPs and the standard is likely to 
become a relevant one. 

The HDL standards are not usually mentioned in the literature. The focus of in-
terest in a high-reliability context is more on limiting the features of the language 
that are used, as with ESA VHDL guidelines [ESA, 1994]. 



4. Risks and advantages
 

39 

4. Risks and advantages 

Most of the topics relevant to the risks related to the use of FPGAs are covered 
elsewhere in this report. For example, many of the risks related to design pro-
cesses are covered in the chapter on design. Here, only some of the issues are 
reconsidered along with some risk mitigation approaches. This also applies to 
some extent to the advantages of using FPGAs, which are summarised here. 
Security issues, as in prevention of intentional malicious acts, and related risks are 
considered in this chapter and only briefly mentioned elsewhere. 

Currently, there is not much experience of the use of FPGAs in NPP automa-
tion systems. This includes utilities, vendors, and authorities. For now, a project 
implementing FPGA technology therefore faces risks related to all phases of the 
project. The applicability and suitability for the intended purpose are not guaran-
teed, delays in the project are likely, and the approval of the authorities may be 
difficult to obtain. 

One comparison between the risks of software and FPGA implementations can 
be found in [Kharchenko, Sklyar, 2008, pp. 64–69], in which the risks of FPGAs 
are considered lesser or at most equal. 

The security issues related to preventing malicious changes to system behaviour 
are also a safety feature against unintentional changes. The integrity of the system 
needs to be considered in relation to, for example, maintenance and testing. In 
addition to technical approaches, administrative approaches should also be used. 

In many sources, it is considered that the best choice for safety-critical systems 
such as those in nuclear power plants is antifuse technology. The non-volatility 
and non-reprogrammability prevent accidental and malicious changes to functions 
and antifuse has the best resistance to radiation. Flash technology has much the 
same properties when using a chip with security features and destroying the 
password after configuring the chip. When selecting the device, the complexity 
and range of additional features of the device should also be considered, as they 
may complicate the V&V through, for example, functions that need to be verified to 
be inactivated. 

Some examples of the use of risk mitigation techniques, such as diversity, can 
be found in the descriptions of the current systems in Chapter 5. 

 



4. Risks and advantages 
 

40 

 Faults, tolerance, and mitigation 4.1

Four methods of protection against errors and faults include prevention, tolerance, 
removal, and forecasting. Fault prevention is focused on the development pro-
cess, including hardware selection, equipment placement, and configuration of the 
system. A fault tolerant system is able to continue operation after a fault has oc-
curred. Typical methods to achieve this are fault detection and restoring the sys-
tem to a correct or safe state. Fault removal is part of the development process 
(V&V and corrective actions) and system maintenance during operation. Fault 
prediction considers the potential faults and their consequences and tries to find 
ways to avoid them or alleviate their effects. See, for example, [Ziener, 2010] 
section 1.2.4 and the references therein. 

Methods for fault detection and repair are presented and discussed in [Ziener, 
2010] section 2.3 and [Stott et al., 2010a] and their references provide an exten-
sive list of literature on fault tolerance in relation to FPGA technology. 

4.1.1 Triple modular redundancy 

A commonly used approach to mitigate the effects of single event upsets (SEU) is 
to triplicate the computation and then use a majority vote among the outputs for 
the final result. Even if one of the computing units is affected by an SEU and pro-
duces an incorrect output, the final result is correct and it is much less likely that 
two units would be affected at the same time. This approach is known as triple 
modular redundancy (TMR) and is an example of voting among redundant inputs 
(the number of inputs and rules for voting can vary). 

The technique can be used on a very small scale to triplicate individual flip-flops 
or gates, on a larger scale to triplicate the logic on a device or devices, or on plant-
wide level to build entire redundant systems. From the perspective of FPGA-based 
system development, the redundancy of modules (of different sizes) and multiple 
devices on a circuit board are of most interest. For redundant devices, the term 
triple device redundancy is used. 

In [Wang et al., 2010], it is argued that partitioning the design into smaller mod-
ules improves reliability. Having the whole design triplicated with a voter only at 
the end before output provides inferior reliability performance than partitioning the 
design into smaller modules, triplicating each of them, and voting for the interme-
diate results. This can be taken down to the level of individual gates and flip-flops. 

The option of using TMR only on some of the gates is considered in [Xiaoxuan, 
Samudrala, 2009]. The gates are selected on the basis of how likely they are to 
produce an incorrect output as a result of an SEU. The probability depends on the 
type of the gate and the probability distributions of the inputs (the probability of the 
signal being “1” or “0”). With fewer redundant gates, the size of the design can be 
reduced compared to full TMR. 



4. Risks and advantages
 

41 

Some design tools allow automatic use of TMR. The designer can choose 
which parts are triplicated. Individual gates or flip-flops can be triplicated or larger 
entities can be selected. 

One difference between combinatorial logic and sequential logic is the persis-
tence of faults. If the memory is corrupted, the incorrect state will result in incorrect 
output for all future outputs. Resetting or synchronising the logic by feedback from 
the voted result can be used. If the modules are large, the errors may take a while 
to reach the output, which may allow other errors to appear and corrupt the other 
partitions. 

The fault may affect the voting mechanism and thereby ruin the whole TMR 
scheme. However, SEU-resistant voters can be built using “tristate buffers”. Voter 
reliability is considered in [Carmichael, 2006]. Voters can also be triplicated. Figure 7 
depicts different TMR schemes. 

 

Figure 7. Triple modular redundancy schemes. 

4.1.2 EDAC and hamming codes 

Various error detection and correction (EDAC) schemes use additional redundan-
cy information in the data to detect errors and correct them. In communication, the 
signal can be split into blocks, to which parity bits are added. The values of the 
parity bits are determined by the actual signal and an error occurring during 
transmission can be detected by the discrepancy it causes. Different schemes and 
numbers of parity bits offer different error detection and correction capacities, that 
is, the number of incorrect bits that can be detected or corrected. 

In FPGAs, the EDAC schemes are used mostly for verification of the content of 
SRAM memory, which is the sensitive part of the device. For SRAM devices, this 
includes the configuration memory. 

VM

M

M

M

M

V

V

V

M

Module (1)

Module (2)

Module (3)

VoterInput Output

Input OutputV

M

M

M

M

M

M

V

Input Output

A: Vote for the final output

B: Use smaller modules and
vote between them

C: Use small modules and
triplicated voting



4. Risks and advantages 
 

42 

4.1.3 Diversity 

The approach of using diverse implementations can be used against random 
faults in a way similar to TMR. However, its use is generally directed more as a 
measure against design and other systematic or common cause errors. Although 
making multiple independent versions based on the same specifications does not 
guarantee the independence of errors [Knight, Levenson, 1986], it may still help to 
reduce the risk of undetected errors. Using FPGA and software-based solutions 
may improve diversity due to the differences in design process and implementa-
tion, for example, description languages and cyclic versus parallel processing. 

The diversity can be in the form of an independent development process, and 
even some of the lower-level requirements derived from higher-level system speci-
fications could be different. More typical approaches include the use of diverse: 

 personnel (design teams, organisations, managers, testers, etc.) 

 HDLs (or other behavioural descriptions) 

 tools (editors, synthesisers/compilers, simulation, analysis) and settings or 
configurations for tools 

 function libraries and IP cores 

 hardware (devices, device models, circuit boards, device manufacturers). 

The number of FPGA device manufacturers is small (Altera and Xilinx are the 
largest; Actel seems to have an interest in the NPP applications), and therefore 
device diversity may be limited to different models, which may be developed by 
the same design teams and share parts of the design. 

Different diversity approaches are discussed in, for example, Chapter 6 of 
[NRC, 2010a]. On a higher level, additional diversity can be achieved using differ-
ent technologies, such as FPGA, microprocessor/software, and analog. Beyond 
the level of implementing control logic, diversity can include separate process 
instrumentation (measurement and actuators), but that is beyond the topics of this 
report. 

 Advantages of FPGA technology 4.2

One driver behind the interest in FPGAs is the replacement of old systems based 
on analog technology that are becoming obsolete. They are difficult to maintain 
and the situation is becoming worse with regard to component availability. The 
flexibility of the technology in different applications is limited. In addition, analog 
components suffer from drift of characteristics that affect functions. 

The FPGA design tools provide extensive functionality to support the design 
process. High abstraction level languages and block libraries and cores provide a 
good foundation on which to build individual applications. The testing tools help 
with verification at every step of the design. 



4. Risks and advantages
 

43 

The primary advantages of FPGA technology when compared to microproces-
sor-based solutions in NPP applications are considered to be the reduction of 
complexity and the fewer risks of the technology becoming obsolescent [Fink et 
al., 2010]. Performance characteristics related to processing speed and response 
times are seen as an advantage [Bach, Tavolara, 2010]. In addition, the flexibility 
of FPGAs makes them applicable for various purposes. 

Application-specific integrated circuits (ASIC) are similar to FPGAs in the sense 
that the function is pure hardware without additional layers of platform software 
(operating system, drivers, etc.). Unlike FPGAs, the functions of ASICs are fixed 
and determined at production. Only the necessary circuitry is placed on the chip. 
Because the manufacturing process cannot be used to mass produce “blank” 
devices that are then configured for the applications, the non-recurring engineering 
costs (in particular, setting up the manufacturing process) are huge compared to 
FPGAs. Typically, ASIC is a good choice if the production quantities are in the mil-
lions of devices, which clearly is not the case in the nuclear industry. On the other 
hand, ASICs provide better processing speed and power consumption properties. 

Dedicated separate hardware for all functions provides the advantages of com-
putational efficiency, but from the reliability point of view, a more important aspect 
is the separation of functions. There is no need for resource allocation such as 
memory, processor time, or data transfer on a bus. This reduces the risk of functions 
interfering with each other or with the operating system or other platform functions. 

A rather strong opinion presented in [Salaün et al., 2009] is that standardised 
configurable hardware components provide the advantages but not the problems 
of both conventional hardware and microprocessor technology. 

The complexity of systems implemented using conventional hardware, a con-
ventional microprocessor, and different approaches to using FPGA are compared 
in [Fink et al., 2010]. Complexity in this case is defined as the “presence of soft-
ware and hardware components that are not directly responsible for performing 
the primary I&C functions but cannot be shown to be independent from the prima-
ry functions, and thus complicate the design and its assessment for reliability and 
safety justification.” Conventional hardware is considered the least complex as 
there are only the necessary components and functions. Conventional micropro-
cessor implementation is the most complex. FPGA falls in between those two: 
architecture using only simple hardware logic is close to conventional hardware, 
an embedded microprocessor without an operating system in between, and an 
embedded microprocessor running an operating system close to conventional 
microprocessor. The capabilities of the technologies correspond to the complexity, 
with increased complexity offering increased capability to implement more varied 
functions and alternative solutions. 

Security issues are also seen to be less with FPGAs than with microprocessor-
based systems. Having access or the possibility to alter the functions is more 
difficult. With antifuse, the functions cannot be changed at all without physically 
replacing the device. Hence, it is very difficult to force FPGAs to execute malicious 
software (viruses, worms) alongside the intended functions. 



4. Risks and advantages 
 

44 

Though not an advantage of the technology as such, simply by being different 
from microprocessors, FPGAs provide an opportunity for a diverse implementation. 

 Experience from other fields 4.3

The aerospace industry is an area where FPGAs have been used in high-reliability 
applications. Of particular concern for both high altitude and space applications 
are the effects of radiation, as without the shielding effect of the atmosphere the 
radiation environment is harsh. In addition, the hardware reliability of space appli-
cations has a special consideration for maintenance. It may be impossible to re-
place a malfunctioning component even if you know exactly where it is. In [Gaisler 
Research, 2002], twelve problems are presented as case examples, and ways to 
avoid them are suggested. The focus is on the most common problems that can 
be avoided with careful design. Gaisler Research [Gaisler] has produced other 
studies dealing with FPGA use in space applications. In addition, [klabs.org] con-
tains a large collection of material related to FPGAs and ASICs in space applica-
tions. 

Views presented by Actel in an e-magazine article [Mason, O’Neill, 2005] and a 
white paper [Actel, 2003] consider reliability issues in automotive and space appli-
cations. The focus is mostly on hardware as Actel is an FPGA manufacturer. 

 Security 4.4

Security issues can be broadly divided into two categories: information going out 
and information coming in. Outbound information in the form of intellectual proper-
ty (IP theft) is mostly the concern of the vendor and designer. On the other hand, 
knowledge of the details of the system can also pose a threat as they may facili-
tate an attack on the system. Security issues related to inbound information can 
be, for example, in the form of inserted harmful functions in the system. Counter-
measures include technical and administrative approaches. For example, the data 
can be encrypted and verified when the chip is configured and only certain per-
sons can have access to the device or data. 

4.4.1 Problem areas 

According to [Huffmire et al., 2008], the main security problems of reconfigurable 
hardware are: design tool subversion, composition, trusted foundries, and bit-
stream protection. 

The design tools can insert malicious features into the design. Several differ-
ent tools could be used at various stages of the design flow. The inserted func-
tions can give unauthorised access to the device, cause incorrect behaviour, or 
even destroy the device by creating a short circuit. 



4. Risks and advantages
 

45 

The composition problem results from the final design being a collection of in-
teracting cores. There are a number of different functions that can influence each 
other on the device. The IP cores also need to be accounted for, as they may con-
tain intentional or unintentional harmful features. One core could monitor or alter 
another and be in contact, possibly over a network, with an entirely different system. 

The trusted foundry problem is a lesser problem for FPGAs than for ASICs. 
When the device is not configured by the device manufacturer at the foundry, IP 
theft can be avoided at that stage. However, the design could be read and stolen 
from the device. On the other hand, malicious features can be inserted onto the 
device during manufacture or transport to the customer. 

Bitstream protection is of concern in both IP security and having the device 
configured with the correct bitstream. In particular, this is a problem of SRAM 
technology because the configuration is loaded from a separate memory device or 
possibly over a network. Therefore, the bitstream is easier to access and change.  

4.4.2 Managing security problems 

As a solution to the above security problems, life-cycle management and secure 
architecture are suggested. 

From a tool perspective, life-cycle management means verifying the trustwor-
thiness of all tools. FPGA technology progresses quite fast and new tools appear 
frequently. The extent to which the tools are tested and the amount of accumulat-
ed proven-in-use experience should be taken into account when selecting tools. 
Each version of the tools should be evaluated, because new versions may intro-
duce new flaws. Hardware life-cycle considerations include production and deliv-
ery of the device. The device could be tampered with already at the foundry or 
during transportation. These are in addition to installation, configuration, operation, 
and maintenance. 

Secure architecture includes features such as memory protection, spatial iso-
lation tags, and secure communication. Memory protection enforces proper shar-
ing of memory resources between cores, so that they do not interact unintentional-
ly. Spatial isolation physically separates the cores onto different areas of the chip. 
This way, it is easier to verify that they do not interfere with each other’s operation. 
Tags can be used as metadata attached to pieces of information to track them. 
Secure communication via memory can be covered by memory protection. Direct 
communication between cores should be analysed and checked to verify that only 
specific connections are possible. Communication over a shared bus has greater 
security issues. 

Encrypting the bitstream or using a fingerprint or watermark helps to pro-
tect against IP theft and also prevents the device from being configured with an 
incorrect bitstream. The device can also have built-in self-test (BIST) features to 
check the correctness of the configuration and the integrity of the data. 

Antifuse devices can have a security fuse/antifuse, which is activated after con-
figuration is complete and prevents further modification of the configuration. Verifi-



4. Risks and advantages 
 

46 

cation of the configuration (in any technology) can be implemented so that a con-
figuration is input and the device simply responds whether the configuration 
matches that on the device. In this way, the configuration cannot be read from the 
device (readback) but can be verified. 

Administrative measures can be used to prevent unauthorised personnel from 
having access to the device. Access to and possession of the tools needed to 
configure the device can also be controlled [NRC, 2009b, Bach, Tavolara, 2010].  

4.4.3 Attack methods 

In [Drimer, 2008] Chapter 3, a number of different methods of attacking an FPGA 
device and its design are covered. The focus is on IP security. The following is an 
abstract of the topics covered. 

Bitstream reverse engineering attempts to reconstruct the higher-level descrip-
tion (a functionally equivalent description) of the design based on the configuration 
bitstream. It is, in a way, a reversal of the place and route and netlist synthesis. 

Counterfeits and clones are easy to produce if the configuration bitstream for 
a particular device is available. Overbuilding refers to a contracted manufacturer 
producing more devices than ordered and then selling them on their own and thus 
avoiding development costs. 

Readback retrieves the state and configuration of an FPGA device in operation. 
The entire state might not be accessible, but it is still very useful for verification 
and debugging. An attacker can use readback to copy the device, alter it, or re-
verse engineer it.  

Side-channel attacks try to gather information from the measurable external 
phenomena and deduce something about the inner workings of the device. Power 
consumption analysis tracks the electric power usage of the device. Electromag-
netic emanation analysis measures the changes in electromagnetic fields cause 
by current changes inside the device. Timing analysis measures changes in exe-
cution times. For example, discovering a password that is input one character at a 
time is possible when the measurement results differ between inputting a correct 
character and an incorrect character. 

Invasive attacks physically alter the device. The packaging is removed and the 
exposed chip is analysed. For example, an aging mechanism also leaves imprints 
on volatile memory, providing clues to what the configuration was. 

Brute force tries to overcome encryption by trying all key values. It can also try 
to force a system into an error state through unexpected input values. 

Crippling attacks reconfigure the device with malicious programming. Even in 
the presence of encryption, it may be possible to at least cause the device to stop 
functioning. Fault injection uses methods such as input clock frequency and 
voltage variations and electromagnetic fields to alter the state of the system or 
configuration. Ionising radiation can be used in a similar way. 

Relay attacks use communication between the target of the attack and an au-
thorised party by establishing a connection between them. For example, commu-



4. Risks and advantages
 

47 

nication between a magnetic key card and a lock could be relayed over a distance. 
Replay attacks record communication with the device and attempt to overcome 
security by sending the same, or possibly modified, transmission or parts of it again. 

Social engineering targets personnel to overcome security measures. Phone 
calls and emails that trick the receiver into giving away sensitive information, as 
well as bribery and stealing laptops and mobile phones, fall into this category. 

4.4.4 Defences 

Security measures fall into three categories: social, active, and reactive [Drimer, 
2008]. Social methods are laws and agreements and associated penalties. Active 
methods prevent attacks using, for example, encryption and locked doors. Reactive 
methods expose theft, or security breach using, for example, watermarked files. 

Encryption of the bitstream is more efficient if the decryption is done inside the 
FPGA chip. This, however, requires a slightly more advanced and complex device. 
The safety of the key is then another matter, but if there is no intent to reconfigure 
the device the key can be destroyed. 

Design theft deterrent methods check that the FPGA device is installed onto 
an authentic circuit board. 

Watermarking and fingerprinting the configuration bitstream allow identifica-
tion of the source of the file. Additional information is added to the configuration 
file so that the functions are not altered, but it is very unlikely that another inde-
pendent design process would come up with the exact same file. 

Physically unclonable functions are based on uncontrollable but measurable 
variation in, for example, the manufacturing process. A device can be identified by, 
for example, the details of the timing of signal lines that are, by design, supposed 
to be identical, or by the initial state to which RAM memory settles on power up. 
The identification is “physically imprinted” onto the device. 



5. Current systems 
 

48 

5. Current systems 

The following is based on publicly available literature, mostly conference papers. 
The goal has been to gather information about both currently available systems 
and those that are still under development. Some of the systems are developed 
only for research purposes to evaluate suitability and build expertise. 

In Figure 8, some components of the Radiy platform are presented to give an 
idea of the physical structure of the system: the cabinet houses the chassis into 
which the circuit board containing the FPGA device is inserted. 

 

Figure 8. Hardware of the Radiy platform. Image source: Sklyar, V., Case of Ap-
plication: Implementation of a Reactor Trip Function, 4th Workshop on the Appli-
cations of FPGA in NPPs, France, 2011. 



5. Current systems
 

49 

 CANDU 5.1

An experimental system has been developed and tested using a hardware-in-the-
loop simulation [She, Jiang, 2009]. The system implements the logic for shutdown 
system no. 1 (SDS1) for the CANadian Deuterium Uranium (CANDU) reactor. The 
system is an example of replacing existing technology with FPGAs. The purpose 
of this study was to show the feasibility of FPGA technology and the study was 
performed by academic researchers. 

In another project [Xing et al., 2010], AECL (Atomic Energy of Canada Ltd.) and 
RPC (Research and Production Company) Radiy are working to define an applica-
tion development process based on Radiy’s FPGA-based platform. A pilot project 
implementing CANDU shutdown system logic is being carried out. The aim is to 
have an FPGA development process that meets regulatory requirements and IEC 
standards for safety-critical system development. 

 Lungmen 5.2

This, still in design, FPGA-based reactor protection system (RPS) is described in 
detail in [Lu et al., 2010]. The system is designed for the Lungmen NPP, which is 
still under construction. The system is to be tested using a full-scope engineering 
simulator with detailed models of the plant systems and reactor core. 

The RPS is a part of the safety system logic and control (SSLC) which has four 
separate divisions. RPS has a role in both safety and power generation. The tasks 
for safety features include automatic scram under specified conditions and ena-
bling manual scram. For power generation, the tasks include tripping certain reac-
tor internal pumps under specific conditions and providing signals for alert and 
indication purposes. 

A flash-based Actel SmartFusion chip is used. It is an advanced chip with an in-
ternal memory, embedded microcontroller unit, configurable signal processing 
UARTs (universal asynchronous receiver/transmitter), analog-to-digital and digital-
to-analog converters, and internal monitoring. 

The RPS has four circuit boards, one in each of the four divisions. On each 
board, there are two sets of hardware logic for all safety functions. Diversity of the 
logic is achieved by using two different logic input formats: VHDL, Verilog, or 
schematic capture. 

 Wolf Creek 5.3

In 2009, the U.S. NRC granted a licence for an FPGA-based system at the Wolf 
Creek Generating Station [Dittman, 2010, NRC, 2009b]. The newly licensed sys-
tem replaces the existing MSFIS (main steam and feedwater isolation system). 
The system is based on CS Innovations’ ALS (advanced logic system) and flash 
technology based FPGAs. 



5. Current systems 
 

50 

The primary tasks of the MSFIS are to receive signals from the SSPS (solid 
state protection system) or manual signals, and in response to send signals to 
individual valves. It does not receive measurement signals from sensors or deter-
mine actions. The simplicity of the system played a significant role in gaining the 
licence. The fact that the system replaces an existing system also contributed to 
licensing. 

Each circuit board has an FPGA chip with two diverse logic cores [NRC, 2009b, 
p. 16] that work in parallel and were synthesised using different directives for the 
synthesiser. This allows for error detection and self check. If the results differ, the 
board sets output to failsafe values and halts operation. 

Because flash technology is reprogrammable, precautions needed to be taken 
to prevent inadvertent or malicious changes in the functions. The maintenance 
computer and the platform are both designed to prevent field programming of the 
system. Plant personnel are prohibited from on-site possession of the equipment 
necessary for reprogramming, and only the vendor has the authority to alter the 
operational behaviour of the system. The FPGA firmware also verifies that the 
configuration is valid and generates an alarm if it is not. 

 RPC Radiy 5.4

The Ukrainian Research and Production Company (RPC) Radiy has developed an 
FPGA-based platform for implementing safety-critical I&C applications [Kharchen-
ko, Sklyar, 2008, Bakhmach et al., 2010a, 2010b, Yastrebenetsky et al., 2009, 
Bakhmach et al., 2009]. It can be scaled and tailored to fit different needs. Sys-
tems have been installed in several Ukrainian and Bulgarian NPPs. More than 50 
safety systems have been installed since 2003. 

The system consists of higher and lower levels. The higher level consists of 
computer cabinets, workstations and their software. The lower level consists of 
standardised cabinets and modules along with the electronic designs for the 
FPGAs. Essentially, the division is into the high-level man-machine interface and 
diagnostics and low-level signal processing and control algorithms. 

Based on the platform, the following types of systems have been implemented: 
reactor trip system (RTS), reactor power control and limitation system (RPCLS), 
engineering safety feature actuation system (ESFAS), power equipment for rods 
control system (PERCS), regulation, and monitoring, control, and protection sys-
tem for research reactors (RMCPS). Time schedules for design, implementation, 
and commissioning of an FPGA-based ESFAS are presented in [Bakhmach et al., 
2010a]. 

The qualification approach divides the FPGA component into two entities. 
Physically, the chip is electronic hardware and should be qualified accordingly. 
The electronic design, such as HDL code, should be qualified against functional 
requirements. The design process follows a V-shape life cycle adapted from soft-
ware by including FPGA-specific stages as described in the upcoming standard 
IEC 62556. 



5. Current systems
 

51 

RPC Radiy is co-operating with AECL in a pilot project to develop an FPGA de-
velopment process (see CANDU above). 

5.4.1 IERICS mission on FPGA-based digital I&C platform and systems 

An independent engineering review of instrumentation and control systems 
(IERICS) [IAEA, 2011] mission was carried out concerning the FPGA-based sys-
tems produced by RPC Radiy [IAEA, 2010]. The purpose of IERICS missions is to 
peer review I&C systems (from those still in development to deployed systems in 
operation). The review teams consist of invited technical experts with different 
backgrounds. This was the second IERICS mission. The review was conducted 
during a week-long visit to Ukraine in December 2010. In addition, there was a 
preparatory meeting and a final follow-up/closing meeting. 

 Rolls-Royce and Electricité de France 5.5

Rolls-Royce has been contracted by Electricité de France (EDF) to carry out an 
extensive modernisation project of the 900 MWe units. The rod control systems 
(RCS) and reactor in-core measurement systems (RIC) of all 34 of the 900 MWe 
units owned and operated by EDF are to be replaced. The project has reached the 
deployment phase [Bach, Tavolara, 2010]. 

The current systems are from the 1970s and are considered difficult to maintain 
and to cause unnecessary loss of production due to faults. The replacement of the 
obsolete technology with FPGA technology is being carried out by the instrumen-
tation and control department of Rolls-Royce. The new systems are to be placed 
in the same cabinets that the old systems occupied. The replacement takes place 
during the outages during the ten-yearly inspections of the plants. These outages 
are longer than normal and offer a suitable window of opportunity for larger 
maintenance and modernisation operations. The project started in 2005 with re-
quirements specifications. In 2010, the refurbishment of the first unit was finished 
and the schedule is to have all done by 2020. 

The main tasks of the RCS are to generate control signals to move the control 
rods, verify that the actual rod position corresponds to the controls, interface with 
the human system interface to allow manual control of rods, and interface with the 
PLC-based control and diagnostic unit. 

The chosen technology is flash based. Thus, the devices are reprogrammable 
but changes require special tools and are possible only at Rolls Royce premises. 
The main reasons for selecting FPGA technology were the fast response time and 
the perceived avoidance of future problems with obsolescence. 



5. Current systems 
 

52 

 Toshiba 5.6

Toshiba has developed a number of FPGA based systems intended for safety-
related functions in the boiling water reactor (BWR) and advanced boiling water 
reactor (ABWR) designs [Kojima et al., 2010, Miyazaki et al., 2009]. The systems 
include monitoring (e.g. power range neutron monitor) and actuation signal gener-
ation (reactor trip and isolation system). 

The technology used is antifuse from Actel Corporation, and the decision on its 
use was based on non-rewritability and reliability considerations. The design life 
cycle, V&V, and qualification are based on IEEE software standards. VHDL was 
used. 

The developed systems are: power range neutron monitor (PRM) for BWR and 
power range neutron monitor (PRNM), startup range neutron monitor (SRNM), 
and reactor trip and isolation system (RTIS) for ABWR. The design process was 
developed and tested with the PRM and then used for the PRNM, SRNM, and 
RTIS. 

The design method is based on a library of functional elements (FE) that per-
form simple functions (e.g. addition, comparison, and data communication) and 
that can be verified using full pattern testing. The FPGA is programmed using 
these as building blocks. The V&V process then considers the connections be-
tween the FEs. Evaluation is based on the toggle coverage ratio, which is a metric 
that measures the possible different input/output combinations (ones and zeroes) 
of the FEs that are activated in the testing relative to all possible combinations. 

 
 

 



6. Summary
 

53 

6. Summary 

This report has tried to give the reader a basic understanding of FPGA technology 
in the context of nuclear power plant I&C systems with safety requirements. The 
introduction started by describing the hardware, then the application design work-
flow and related safety issues were considered, and finally examples of the cur-
rently existing systems were given. 

FPGAs are programmable electronic devices with capacity for very complex 
computations. The devices can be mass produced as blank devices without fixed 
functions and then programmed (configured) to execute desired functions. FPGAs 
are used widely in various application areas including safety and reliability-critical 
areas such as the aviation and automotive industries. 

The work on bringing FPGAs into wider use in nuclear power plants is ongoing. 
New systems and platforms are under development while the first applications are 
already in use. This trend is driven by the perceived advantages of FPGAs over 
software and microprocessor-based systems and the need to replaces obsolete 
systems based on analog technology. FPGAs are seen to have superior perfor-
mance characteristics while being simpler and easier to license than software-
based systems. 

FPGAs are integrated circuits based on semiconductor technology and have 
much the same reliability issues as other similar hardware. These include aging 
and performance deterioration of the device, random errors due to, for example, 
radiation and power fluctuations, and heating due to current leakage. Care needs 
to be taken to choose a suitable device with sufficient reliability characteristics. 
Typically, simpler devices of smaller capacity can achieve greater reliability due to 
more robust technology, while also helping to maintain lower application complexi-
ty through lack of excess built-in functions. Special devices, such as those using 
silicon on insulator technology, should also be considered. 

Application development based on FPGAs has much in common with software 
development. It is highly dependent on software tools, which can be sources of 
errors themselves but also create an illusion of simplicity by allowing easy con-
struction of complex behaviour. The initial stages of development are also rather 
similar in requirements specification, architectural design, and use of hardware 
description languages similar to programming languages. The final product, how-
ever, is a hardware device without an operating system that would execute a pro-



6. Summary 

54 

gram one step at a time. Instead, all operations run in parallel with dedicated 
hardware for each function. Thus, the last stages of application design have a 
much more hardware-oriented character. The designer needs to take into account 
things such as the layout of transistors on the silicon chip, signal propagation and 
timing properties, and power consumption. 

There are two important forums of discussion and dissemination of experience 
on FPGAs in the nuclear domain. The Workshop on the Use of Field Programma-
ble Gate Arrays in Nuclear Power Plants is an annual, somewhat informal work-
shop held since 2008. It has been organised twice in France (2008, 2011) and 
once each in Ukraine (2009) and Canada (2010). In 2012, the workshop is 
planned to be held in China. It has been organised in cooperation between IAEA 
and the industry, including utilities and system providers. In 2011, there were more 
than 80 participants representing the industry, authorities, and research organisa-
tions. The International Conference on Nuclear Plant Instrumentation, Control, and 
Human-Machine Interface Technologies (NPIC & HMIT) is an event organised 
somewhat irregularly with the 6th and 7th conferences in 2009 and 2010 and the 8th 
scheduled for July 2012. This is a large event, with FPGAs representing only a 
small fraction of the topics. Still, in 2010, there were two sessions devoted to 
FPGAs and two sessions are planned for 2012. 

 



 

55 

References 
Actel 2003. Reliability Considerations for Automotive FPGAs. White Paper. Avail-

able at: http://www.actel.com/documents/AutoWP.pdf (accessed: 5 De-
cember, 2011). 

Altera 2009. Understanding Metastability in FPGAs. Available at: 
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf 
(accessed: 14 September, 2011). 

Alvarado, R., Herrell, D. 2009. Approach to designing FPGA-based digital I&C 
systems for nuclear applications. NPIC&HMIT 2009, 5–9 April, Knoxville, 
Tennessee. 

Bach, J., Tavolara, I. 2010. Use of FPGA Technology in Implementation of the 
Logic of the Modernized Rod Control System (RCS) of the 900 MW EDF 
Fleet. In: NPIC&HMIT 2010, Las Vegas, Nevada, pp. 1326–1336. 

Bakhmach, I., Kharchenko, V., Siora, A., Sklyar, V., Andrashov, A. 2010a. Experi-
ence of I&C Systems Modernization Using FPGA Technology. 
NPIC&HMIT 2010, 7–11 November, Las Vegas, Nevada, pp. 1345–
1352. 

Bakhmach, I., Kharchenko, V., Siora, A., Sklyar, V., Tokarev, V. 2010b. Design 
and qualification of I&C Systems on the Basis of FPGA Technologies. 
NPIC&HMIT 2010, 7–11 November, Las Vegas, Nevada, pp. 916–924. 

Bakhmach, I., Siora, A., Tokarev, V., Reshetitsky, S., Bezsalyi, V. 2009. Imple-
mentation principles of FPGA-based ESFAS for Kozloduy NPP. In: 
NPIC&HMIT 2009, 5–9 April, Knoxville, Tennessee. 

Bernstein, J.B., Gurfinkel, M., Li, X., Walters, J., Shapira, Y., Talmor, M. 2006. 
Electronic circuit reliability modeling. Microelectronics and Reliability, Vol. 
46, No. 12, pp. 1957–1979. 

Bobrek, M., Wood, R.T., Bouldin, D., Waterman, M.E. 2009. FPGA design practices 
for I&C in nuclear power plants. In: NPIC&HMIT 2009, 5–9 April, Knoxville, 
Tennessee. 

Boussinot, F., de Simone, R. 1991. The Esterel Language. Proceedings of the 
IEEE, Vol. 79, Issue 9, pp. 1293–1304. 

Brandt, J., Schneider, K. 2008. How different are Esterel and SystemC. In: Villar, E., 
(ed.). Embedded Systems Specification and Design Languages, Selected 
contributions from FDL’07, Lecture Notes in Electrical Engineering, Vol. 
10, DOI: 10.1007/978-1-4020-8297-9, pp. 3–3, 2008. Available at: 
http://www.springerlink.com/content/978-1-4020-8297-9 or  

http://www.actel.com/documents/AutoWP.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.springerlink.com/content/978-1-4020-8297-9


 

56 

http://rsg.informatik.uni-kl.de/publications/datarsg/BrSc07b.pdf (ac-
cessed: 20 September, 2011). 

Carmichael, C. 2006. Triple module redundancy design techniques for Virtex 
FPGAs. Available at: http://www.xilinx.com/support/documentation/appli 
cation_notes/xapp197.pdf (accessed: 1 December, 2011). 

Dittman, B.F. 2010. Licensing field-programmable gate arrays in safety systems. 
In: NPIC&HMIT 2010, 7–11 November, Las Vegas, Nevada, pp. 966–
976. 

Drimer, S. 2008. Volatile FPGA design security – a survey. Computer Laboratory, 
University of Cambridge, 2008. Available at: http://www.cl.cam.ac.uk/~ 
sd410/papers/fpga_security.pdf (accessed: 5 December, 2011). 

Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P. 2003. Byzantine fault tolerance, 
from theory to reality. In: 22nd International Conference on Computer Safety, 
Reliability, and Security, SAFECOMP 2003, Edinburgh, UK. Published in 
Vol. 2788 of Lecture Notes in Computer Science, Springer, pp. 235–248. 

Druilhe, A., Daumas, F., Nguyen, T. 2010. Formal verification of an FPGA emula-
tion of the Motorola 6800 microprocessor. In: NPIC&HMIT 2010, 5–9 
April, Las Vegas, Nevada, pp. 1316–1325. 

EPRI 2009. Guidelines on the use of field programmable gate arrays in nuclear 
power plant I&C systems. Electric Power Research Institute. Product ID: 
1019181, December, 2009. Available at: http://my.epri.com/portal/ 
server.pt?Abstract_id=000000000001019181 (accessed: 7 December, 
2011). 

EPRI 2011. Recommended approaches and design criteria for application of field 
programmable gate arrays in nuclear power plant instrumentation and 
control systems. Electric Power Research Institute. Product ID: 1022983, 
June 2011. Available at: 
http://my.epri.com/portal/server.pt?Abstract_id=000000000001022983 
(accessed: 7 December, 2011). 

Erickson, K. 2000. Asynchronous FPGA risks. In: Proceedings of the 4th Military and 
Aerospace Applications of Programmable Devices and Technologies In-
ternational Conference (MAPLD '00), Laurel, Md, USA, 2000. Available at: 
http://klabs.org/richcontent/MAPLDCon00/Papers/Session_A/A5_Erickson_P.pdf 
(accessed: 14 September, 2011). 

ESA 1994. VHDL Modelling Guidelines. ASIC/001, Issue 1, Prepared by Sinander, P. 
and approved by Creasey, R. and Coirault, R. European Space Agency. 
Available at: http://www.eda.org/rassp/vhdl/guidelines/ModelGuide.pdf (ac-
cessed: 16 March, 2012). 

http://rsg.informatik.uni-kl.de/publications/datarsg/BrSc07b.pdf
http://www.xilinx.com/support/documentation/appli
http://www.cl.cam.ac.uk/~
http://my.epri.com/portal/
http://my.epri.com/portal/server.pt?Abstract_id=000000000001022983
http://klabs.org/richcontent/MAPLDCon00/Papers/Session_A/A5_Erickson_P.pdf
http://www.eda.org/rassp/vhdl/guidelines/ModelGuide.pdf


 

57 

Fang, T., Osterman, M., Pecht, M. 2006. Statistical analysis of tin whisker growth. 
Microelectronics and Reliability, Volume 46, Issues 5–6, pp. 846–849, 
Available at: http://www.sciencedirect.com/science/article/pii/S00262714 
05001319 (accessed: 14 September, 2011). 

Fink, R.T., Killian, C.D., Nguyen, T., Druilhe, A., Daumas, F., Naser, J.A. 2010. 
Guidelines and a primer on application of field-programmable gate arrays 
in nuclear plant I&C systems. In: NPIC&HMIT 2010, 7–11 November, 
Las Vegas, Nevada, pp. 1305–1315. 

Gaisler. http://www.gaisler.com (accessed: 20 March 2012). 

Gaisler Research 2002. Lessons learned from FPGA developments. Technical 
report, FPGA-001-01, Version 0.2. 2002. Available at: 
http://microelectronics.esa.int/asic/fpga_001_01-0-2.pdf (accessed: 14 
September, 2011). 

Gassino, J. 2009. Introduction of Programmable Electronic Devices in nuclear 
safety systems: a new challenge in assessment. In: EUROSAFE 2009: 
Safety Implications of an Increased Demand for Nuclear Energy, Brus-
sels, 2–3 November. 

Hall, T.S. 2004. Field-programmable analog arrays: A floating-gate approach. 
Ph.D. dissertation, Georgia Institute of Technology, 2004. Available at: 
http://smartech.gatech.edu/xmlui/handle/1853/5071 (accessed: 14 Sep-
tember, 2011). 

Hammarberg, J., Nadjm-Tehrani, S. 2005. Formal verification of fault tolerance in safety-
critical reconfigurable modules. International Journal on Software Tools for 
Technology Transfer (STTT), Vol. 7, No. 3, pp. 268–279, 2005. Available at: 
http://www.springerlink.com/content/eep7dmtmec38v02g/ (accessed: 16 
September, 2011). 

Huffmire, T., Brotherton, B., Sherwood, T., Kastner, R., Levin, T., Nguyen, T.D., 
Irvine, C. 2008. Managing security in FPGA-based embedded systems. 
Design & Test of Computers, IEEE, Vol. 25, No. 6, pp. 590–598. 

IAEA 2010. IERICS Review Team visits the Ukraine. 
http://www.iaea.org/OurWork/ST/NE/20101217.html (accessed: 20 
March, 2012). 

IAEA 2011. Preparing and Conducting Review Missions of Instrumentation and 
Control Systems in Nuclear Power Plants, IAEA-TECDOC-1662, 2011. 
Available at: http://www-pub.iaea.org/MTCD/Publications/PDF/te_1662_ 
web.pdf (accessed: 5 December, 2011). 

http://www.sciencedirect.com/science/article/pii/S00262714
http://www.gaisler.com
http://microelectronics.esa.int/asic/fpga_001_01-0-2.pdf
http://smartech.gatech.edu/xmlui/handle/1853/5071
http://www.springerlink.com/content/eep7dmtmec38v02g/
http://www.iaea.org/OurWork/ST/NE/20101217.html
http://www-pub.iaea.org/MTCD/Publications/PDF/te_1662_


 

58 

IBM RuleBase homepage, 
http://www.research.ibm.com/haifa/projects/verification/RB_Homepage 
(accessed: 3 October, 2011). 

IEC 61508. Functional safety of electrical/electronic/programmable electronic safety-
related systems. Available at: http://www.iec.ch/functionalsafety (accessed: 
16 September, 2011). 

IEC 62566. Nuclear power plants – Instrumentation and control important to safety 
– Development of HDL-programmed integrated circuits for systems per-
forming category A functions. Available at: 
http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/46039 (ac-
cessed: 20 March, 2012). 

IEC/IEEE 62530-2011. IEEE SystemVerilog – Unified hardware design, specification, 
and verification language. Available at: http://standards.ieee.org/findstds/ 
standard/62530-2011.html (accessed: 16 September, 2011). 

IEEE 1076-2008. IEEE Standard VHDL Language Reference Manual. Available at: 
http://standards.ieee.org/findstds/standard/1076-2008.html (accessed: 14 
September, 2011). 

IEEE 1364-2005. IEEE Standard Verilog Hardware Description Language. Available 
at: http://standards.ieee.org/findstds/standard/1364-2005.html (accessed: 
14 September, 2011). 

IEEE 1666-2005. IEEE Standard SystemC(R) Language Reference Manual. Available 
at: http://standards.ieee.org/findstds/standard/1666-2005.html (accessed: 19 
September, 2011). 

IEEE 1850-2010. IEEE Standard for Property Specification Language (PSL). 
Available at: http://standards.ieee.org/findstds/standard/1850-2010.html 
(accessed: 16 September, 2011). 

iRoC Technologies 2004. Radiation Results of the SER Test of Actel, Xilinx and 
Altera FPGA instances. 2004. Available at: http://www.actel.com/ 
documents/RadResultsIROCreport.pdf (accessed: 14 September, 2011). 

Kharchenko, V., Sklyar, V. (Eds). 2008. FPGA-based NPP Instrumentation and 
Control Systems: Development and Safety Assessment, RPC Radiy, Na-
tional Aerospace University “KhAI”, State STC on Nuclear and Radiation 
Safety, Kharkiv, Ukraine. 

klabs.org. FPGAs and ASICs. NASA Office of Logic Design. A scientific study of 
the problems of digital engineering for space flight systems, with a view 
to their practical solution. Available at: http://klabs.org/fpgas.htm (ac-
cessed: 16 March, 2012). 

http://www.research.ibm.com/haifa/projects/verification/RB_Homepage
http://www.iec.ch/functionalsafety
http://webstore.iec.ch/webstore/webstore.nsf/Artnum_PK/46039
http://standards.ieee.org/findstds/
http://standards.ieee.org/findstds/standard/1076-2008.html
http://standards.ieee.org/findstds/standard/1364-2005.html
http://standards.ieee.org/findstds/standard/1666-2005.html
http://standards.ieee.org/findstds/standard/1850-2010.html
http://www.actel.com/
http://klabs.org/fpgas.htm


 

59 

Knight, J.C., Leveson, N. G. 1986. Experimental evaluation of the assumption of 
independence in multiversion software. IEEE Trans Software Engineer-
ing, Vol. 12, No. 1, pp. 96–109. Available at: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.363 (ac-
cessed: 1 December, 2011). 

Kojima, A., Kato, M., Tahira, M., Tadashi, M., Oda, N., Goto, Y., Hayashi, T., Sato, T., 
Igawa, S. 2010. Qualification of Toshiba’s FPGA-based safety-related 
systems. In: NPIC&HMIT 2010, Las Vegas, Nevada, 7–11 November, 
pp. 935–943. 

Lach, J., Bingham, S., Elks, C., Lenhart, T., Nguyen, T., Salaun P. 2006. Accessi-
ble formal verification for safety-critical hardware design. Annual Reliabil-
ity and Maintainability Symposium, RAMS '06, 23–26 June. 

Lach, J., Bingham, S., Elks, C., Lenhart, T., Nguyen, T., Salaun P. 2005. Accessible 
formal verification for safety-critical hardware design. MAPLD International 
Conference, 2005. Presentation slides available at: http://klabs.org/ 
mapld05/presento/241_lach_p.ppt (accessed: 14 September, 2011). 

Lahtinen, J. 2012. Application of the perspective-based reading technique in the 
nuclear I&C context. CORSICA work report 2011. VTT Technology 9. 
VTT Technical Research Centre of Finland, Espoo. Available at: 
http://www.vtt.fi/inf/pdf/technology/2012/T9.pdf (to be published). 

Lu, J.-J., Chou, H.-P., Wong, K.-W. 2010. Conceptual design of FPGA-based RPS 
for the Lungmen Nuclear Power Plant. In: NPIC&HMIT 2010, 7–11 No-
vember, Las Vegas, Nevada, pp. 944–953. 

Mason, M., O’Neill, K. 2005. FPGA reliability in space-flight and automotive appli-
cations. FPGA Journal, 2005. Available at: http://www.eejournal.com/ 
archives/articles/20050906_actel (accessed: 5 December, 2011). 

MathWorks. HDL Code Generation and Verification. Available at: http://www. 
mathworks.se/hdl-code-generation-verification/index.html (15 Septem-
ber, 2011). 

Miyazaki, T., Oda, N., Goto, Y., Hayashi, T., Sato, T., Igawa, S. 2009. Qualification 
of FPGA-based safety-related PRM system. In: NPIC&HMIT 2009, 5–9 
April, Knoxville, Tennessee. 

Morris, W. 2003. Latchup in CMOS, IEEE. In: Proceedings of the 41st Annual 
International Reliability Physics Symposium, Dallas, Texas, pp. 76–84.  

NASA. Tin Whisker (and other Metal Whisker) Homepage. Available at: https:// 
nepp.nasa.gov/WHISKER (accessed: 14 September, 2011). 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.363
http://klabs.org/
http://www.vtt.fi/inf/pdf/technology/2012/T9.pdf
http://www.eejournal.com/
http://www
https://nepp.nasa.gov/WHISKER
https://nepp.nasa.gov/WHISKER


 

60 

NI (National Instruments) 2008. FPGAs Under the Hood. 2008. Available at: 
http://zone.ni.com/devzone/cda/tut/p/id/6983 (accessed: 14 September, 
2011). 

NRC 2003. Emerging Technologies in Instrumentation and Controls, NUREG/CR-
6812, 2003. Available at: 
http://pbadupws.nrc.gov/docs/ML0319/ML031920412.pdf (accessed: 7 
January, 2011). 

NRC 2006. Emerging Technologies in Instrumentation and Controls: An Update, 
NUREG/CR-6888, 2006. Available at: 
http://pbadupws.nrc.gov/docs/ML0608/ML060870216.pdf (accessed: 7 
October, 2011). 

NRC 2009a. Instrumentation and Controls in Nuclear Power Plants: An Emerging 
Technologies Update, NUREG/CR-6992, October 2009. Available at: 
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6992/cr 
6992.pdf (accessed: 1 December, 2011). 

NRC 2009b. Wolf Creek Generating Station – Issuance of Amendment re: Modifi-
cation of the Main Steam and Feedwater Isolation System Controls  
(TAC NO. MD4839). 2009. Available at: http://www.cs-innovation.com 
/docs/WCNOC_MSFIS_SER.pdf (accessed: 14 September, 2011). 

NRC 2010a. Diversity Strategies for Nuclear Power Plant Instrumentation and 
Control Systems, NUREG/CR-7007, (ORNUTM-2009/302), February 
2010. Available at: http://pbadupws.nrc. 
gov/docs/ML1008/ML100880143.pdf (accessed: 5 December, 2011). 

NRC 2010b. Review Guidelines for Field-Programmable Gate Arrays in Nuclear Power 
Plant Safety Systems. U.S. NRC, NUREG/CR-7006, (ORNL/TM-2009/20), 
2010. Available at: http://www. 
nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7006 (accessed: 14 
September, 2011). 

OSCI, Open SystemC Initiative. Available at: www.systemc.org (accessed: 19 
September, 2011). 

Quinn, H., Graham, P. 2005. Terrestrial-based radiation upsets: A cautionary tale. 
In: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’05), April 18–20, 
2005, Napa, California, USA, pp. 193–202. 

Salaün, P., Daumas, F., Nguyen, T., Esmenjaud, C. 2009. FPGA/ASIC: A promising 
technology for future of I&C systems in power industry. In: NPIC&HMIT 
2009, 5–9 April, Knoxville, Tennessee. 

http://zone.ni.com/devzone/cda/tut/p/id/6983
http://pbadupws.nrc.gov/docs/ML0319/ML031920412.pdf
http://pbadupws.nrc.gov/docs/ML0608/ML060870216.pdf
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6992/cr
http://www.cs-innovation.com
http://pbadupws.nrc
http://www
http://www.systemc.org


 

61 

Schwank, J.R., Shaneyfelt, M.R., Fleetwood, D.M., Felix, J.A., Dodd, P.E., Paillet, P., 
Ferlet-Cavrois, V. 2008. Radiation effects in MOS Oxides. IEEE Transac-
tions on Nuclear Science, Vol. 55, No. 4, pp. 1833–1853. 

Sexton, F.W. 2003. Destructive single-event effects in semiconductor devices and 
ICs. IEEE Transactions on Nuclear Science, Vol. 50, No. 3, pp. 603–621. 

She, J., Jiang, J. 2009. application of FPGA to shutdown system No. 1 in CANDU. 
In: NPIC&HMIT 2009, 5–9 April, Knoxville, Tennessee. 

Smith, G. 2010. FPGAs 101; Everything You Need to Get Started. Elsevier, 245 p. 
2010. Available at: http://www.sciencedirect.com/science/book/9781856 
177061 (accessed: 14 September, 2011). 

Stott, E., Sedcole, P., Cheung, P. 2010a. Fault tolerance and reliability in field-
programmable gate arrays. Computers & Digital Techniques, IET, Vol. 4, 
No. 3, pp. 196–210. 

Stott, E.A., Wong, J.S.J., Sedcole, P., Cheung, P.Y.K. 2010b. Degradation in 
FPGAs: measurement and modelling. FPGA '10: Proceedings of the 18th 
annual ACM/SIGDA international symposium on Field programmable 
gate arrays, ACM, USA, 2010. Available at: http://doi.acm.org/10.1145/ 
1723112.1723152 (accessed: 14 September, 2011). 

System Verilog. See: http://www.systemverilog.org (accessed: 19 September, 
2011). 

Wang, J. 2003. Radiation effects in FPGAs. Proc. 9th Workshop on Electronics for 
LHC Experiments, 2003. Available at: http://cdsweb.cern.ch/record/ 
712037 (accessed: 14 September, 2011). 

Wang, X., Holbert, K.E. Clark, L.T. 2010. Using TMR to mitigate SEUs for digital 
instrumentation and control in nuclear power plants. In: NPIC&HMIT 
2010, 7–11 November, Las Vegas, Nevada, pp. 925–934. 

Xiaoxuan, S., Samudrala, P.K. 2009. Selective triple modular redundancy for 
single event upset (SEU) mitigation. In: NASA/ESA Conference on Adap-
tive Hardware and Systems, AHS 2009. Pp. 344–350. 

Xilinx/FAQs. Formal Verification – Frequently Asked Questions (FAQs). Available 
at: http://www.xilinx.com/support/answers/25007.htm (accessed: 15 Sep-
tember, 2011). 

Xing,  A.,  de  Grosbois,  J.,  Archer,  P.,  Awwal,  A.,  Sklyar,  V.  2010.  FPGA-Based  
Controller in CANDU® Nuclear Safety-Reactor Applications. In: 
NPIC&HMIT 2010, 7–11 November, Las Vegas, Nevada, pp. 1337–
1344. 

http://www.sciencedirect.com/science/book/9781856
http://doi.acm.org/10.1145/
http://www.systemverilog.org
http://cdsweb.cern.ch/record/
http://www.xilinx.com/support/answers/25007.htm


 

62 

Yastrebenetsky, M., Sklyar, V., Rozen, Y., Vinogradskaya, S. 2009. Safety as-
sessment of FPGA-based ESFAS for Kozloduy NPP. In: NPIC&HMIT 
2009, 5–9 April, Knoxville, Tennessee. 

Ziener, D.M. 2010. Techniques for increasing security and reliability of IP cores 
embedded in FPGA and ASIC designs. Dissertation, University of Erlan-
gen-Nuremberg, Verlag Dr. Hut, Munich, Germany, July, 2010. Available 
at: http://www.dr.hut-verlag.de/978-3-86853-657-7.html or 
http://www12.informatik.uni-erlangen.de/people/zie 
ner/pub/DanielZienerDissertation.pdf (accessed: 14 September, 2011). 

http://www.dr.hut-verlag.de/978-3-86853-657-7.html
http://www12.informatik.uni-erlangen.de/people/zie


 

63 

 

 Series title and number 
VTT Technology 10 

Title The current state of FPGA technology in 
the nuclear domain 

Author(s) Jukka Ranta 

Abstract Field programmable gate arrays are a form of programmable electronic device 
used in various applications including automation systems. In recent years, there 
has been a growing interest in the use of FPGA-based systems also for safety 
automation of nuclear power plants. The interest is driven by the need for relia-
ble new alternatives to replace, on one hand, the aging technology currently in 
use and, on the other hand, microprocessor and software-based systems, which 
are seen as overly complex from the safety evaluation point of view. 

This report presents an overview of FPGA technology, including hardware 
aspects, the application development process, risks and advantages of the 
technology, and introduces some of the current systems. 

FPGAs contain an interesting combination of features from software-based 
and fully hardware-based systems. Application development has a great deal in 
common with software development, but the final product is a hardware compo-
nent without the operating system and other platform functions on which soft-
ware would execute. 

Currently the number of FPGA-based applications used for safety functions of 
nuclear power plants is rather limited, but it is growing. So far there is little expe-
rience or common solid understanding between different parties on how FPGAs 
should be evaluated and handled in the licensing process. 

ISBN, ISSN ISBN 978-951-38-7622-7 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp) 

Date March 2012 

Language English 

Pages 62 p. 

Name of the project CORSICA 

Commissioned by  

Keywords Nuclear power, instrumentation and control, I&C, FPGA 

Publisher VTT Technical Research Centre of Finland 
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111 

 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

 

 



V
T

T
 T

E
C

H
N

O
L

O
G

Y
  1

0
 

       T
h

e
 c

u
rre

n
t sta

te
 o

f F
P

G
A

 te
c
h

n
o

lo
g

y in
 th

e
 n

u
c

le
a

r d
o

m
a
in

 

 
ISBN 978-951-38-7622-7 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X  (URL: http://www.vtt.fi/publications/index.jsp)

The current state of 
FPGA technology in  
the nuclear domain

Jukka Ranta

•VISIO
N
S
•S

C
IE

N
C

E
•T

ECHNOLOGY
•R

E
S

E
A

R
C

H
H
IGHLIGHTS

10

The current state of FPGA technology in the nuclear 
domain 

Field programmable gate arrays are a form of programmable electronic device used in 
various applications including automation systems. In recent years, there has been a 
growing interest in the use of FPGA-based systems also for safety automation of nuclear 
power plants. The interest is driven by the need for reliable new alternatives to replace, on 
one hand, the aging technology currently in use and, on the other hand, microprocessor 
and software-based systems, which are seen as overly complex from the safety evaluation 
point of view.
    This report presents an overview of FPGA technology, including hardware aspects, the 
application development process, risks and advantages of the technology, and introduces 
some of the current systems.
    FPGAs contain an interesting combination of features from software-based and fully 
hardware-based systems. Application development has a great deal in common with 
software development, but the final product is a hardware component without the operating 
system and other platform functions on which software would execute.
    Currently the number of FPGA-based applications used for safety functions of nuclear 
power plants is rather limited, but it is growing. So far there is little experience or common 
solid understanding between different parties on how FPGAs should be evaluated and 
handled in the licensing process.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	List of symbols
	1. Introduction
	2. FPGA technology – hardware aspects
	2.1 CMOS
	2.2 Chip architecture
	2.3 Antifuse, SRAM, and flash technologies
	2.4 Circuit board and connections
	2.5 Electrical and mechanical properties and reliability
	2.6 Timing, clock skew, and race condition
	2.7 Metastability
	2.8 Parallel computing
	2.9 System on a chip – SOC
	2.10 FPAA – a glimpse of analog technology

	3. Application design and development
	3.1 Design life cycle, stages, and work flow
	3.2 Requirements specification
	3.3 V&V: requirements
	3.4 Architectural design
	3.5 Detailed design
	3.6 V&V: architectural and detailed design
	3.7 Behavioural description and design entry
	3.8 Intellectual property – IP cores
	3.9 V&V: design entry
	3.10 Implementation: logic synthesis and place and route
	3.11 V&V: logic synthesis and place and route
	3.12 Implementation: configuring a chip and putting aprogrammed chip onto a board
	3.13 V&V: physical implementation
	3.14 Other verification and validation issues
	3.15 Tools
	3.16 Emulated processor
	3.17 Timing analysis
	3.18 Synchronous vs. asynchronous design
	3.19 Hardware vs. software aspects of design
	3.20 Standards

	4. Risks and advantages
	4.1 Faults, tolerance, and mitigation
	4.2 Advantages of FPGA technology
	4.3 Experience from other fields
	4.4 Security

	5. Current systems
	5.1 CANDU
	5.2 Lungmen
	5.3 Wolf Creek
	5.4 RPC Radiy
	5.5 Rolls-Royce and Electricité de France
	5.6 Toshiba

	6. Summary
	References



