Model checking methodology
for large systems, faults and

asynchronous behaviour

SARANA 2011 work report

Jussi Lahtinen | Tuomas Launiainen | Keijo Heljanko |
Jonatan Ropponen

VTT TECHNOLOGY 12

Model checking methodology
for large systems, faults and
asynchronous behaviour

SARANA 2011 work report

Jussi Lahtinen

VTT Technical Research Centre of Finland

Tuomas Launiainen, Keijo Heljanko, Jonatan Ropponen

Aalto University, Department of Information and Computer Science

ISBN 978-951-38-7625-8 (URL.: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2012

JULKAISIJA — UTGIVARE - PUBLISHER

VTT

PL 1000 (Vuorimiehentie 5, Espoo)
02044 VTT

Puh. 020 722 111, faksi 020 722 4374

VTT

PB 1000 (Bergsmansvéagen 5, Esbo)

FI-2044 VTT

Tfn +358 20 722 111, telefax +358 20 722 4374

VTT Technical Research Centre of Finland
P.O. Box 1000 (Vuorimiehentie 5, Espoo)
FI-02044 VTT, Finland

Tel. +358 20 722 111, fax + 358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Model checking methodology for large systems, faults and
asynchronous behaviour
SARANA 2011 work report

Jussi Lahtinen, Tuomas Launiainen, Keijo Heljanko & Jonatan Ropponen. Espoo
2012. VTT Technology 12. 84 p.

Abstract

Digital instrumentation and control (I1&C) systems are challenging to verify. They
enable complicated control functions, and the state spaces of the models easily
become too large for comprehensive verification through traditional methods.
Model checking is a formal method that can be used for system verification. A
number of efficient model checking systems are available that provide analysis
tools to determine automatically whether a given state machine model satisfies the
desired safety properties.

This report reviews the work performed in the Safety Evaluation and Reliability
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system,
and methodology to model function-block-based systems asynchronously. In order
to improve the usability of our model checking methods, we have developed an
algorithm for model checking large modular systems. The algorithm can be used
to verify properties of a model that could otherwise not be verified in a straightfor-
ward manner.

Keywords model checking, verification, 1&C, NuSMV, UPPAAL, SARANA, SAFIR

Preface

This report has been prepared as part of the research project Safety Evaluation
and Reliability Analysis of Nuclear Automation (SARANA), which is part of the
Finnish Research Programme on Nuclear Power Plant Safety 2011-2014
(SAFIR2014). This report describes the development of fault modelling methodol-
ogy, methodology for modelling asynchronous systems using timed automata and
a method for analysing large system designs.

We wish to express our gratitude to the representatives of the organizations
that provided us with the case examples and all those who have given their valua-
ble input in the meetings and discussions during the project.

Espoo, January 2012

The Authors

Contents

Y o153 1 - T SR URP R SPPRRP 3
PO ACE . i 4
IO 1014 o Yo U To3 4 o] o [P SO 8
2. MOl CRECKING. ...ttt et 10
2.1 Model checking large SYStEMSviiiiiiieiiiiie e 11
2.2 Fault models for model Checkingccccovieieiiiiiiiieiiec e 12
3. Model checking large SYStemMSc.ccciiiiiiiiie i 13
3.1 Abstracting the modelccoviiiiieiiiee e 13
3.2 Property verification using the abstractions............ccccccveeeiiiiiiiiiinninnns 15
3.3 Automatizing abstraction-level selectionccccvvveveeeiiiiciiiiine i, 16
3.4 Invariant model checkingcccccvviiiiiiiiiii e 20
3.5 Counterexample MinimMization............cccvveieeeiiiiiiiiiiiiiee e s 20
3.5.1 Random walk-based minimizationccccceviiiniieeiiiieennnnenn. 24
3.5.2 Minimization using delta debugging techniques..............cccuee..... 25
3.5.3 CTL query-based minimization technique...........cccccceeeeeiiinneenn. 25
3.5.4 Related WOTKcceiiiiiiiiiiiiiee et 28
3.5.4.1Program slicing and the cone of influence reduction.......... 28
3.5.4.2Brute FOrce Lifting.......cccoiviiiiieeiiiiiiiiiiiieeee e 29
3.5.4.3Simulation-based bug trace minimization..............cccccueeees 30
3.5.4.4Minimizing automata-based model checking
COUNErEXaMIPIES .. .uvviiiii it e 31
3.5.4.5Explaining counter-examples through forced and free
SEOMENES 1ottt
3.5.4.6 Symbolic Trajectory Evaluation...................
3.5.4.7 Localizing errors in counterexample traces
3.5.4.8Error cause extraction through variations of the error........ 33
3.5.4.9Delta debuggingccceeiiiiiiiieeiiiiiiee e

3.6 Checking the feasibility of the counterexample
3.7 Abstraction refinement
3.8 Preliminary reSUItS........ccoooiiiiii e

3.9 Shortcomings of the current approach and further development 39

Architecture-level model Checkingccceviiiiiiiiiiiii e 41
4.1 Model checking systems with detailed fault models...............cccccueee.. 41
4.2 AN eXample SYSIEM . ..ciciiiiiiii et 42
4.3 Modelling Mmethodologyc.cceiiiiiiiiiiiec e 46
4.3.1 Software Modellingcoooeiiiiiiiiieieeee e 47
4.3.2 Hardware modellingcoeeeoiiiiiiiiee e 48
4.3.3 Considerations on fault modellingcccceeeieveiiiiiiiiiiiece v, 49
4.3.3.1Component failures and common cause failures 49
4.3.3.2Failure time dependency

4.3.3.3Failure prioritization.....................

4.3.3.4Single-fault tolerance examination

4.3.3.5Consequential failures..............ccccvvvveenen.
4.4 Application of compositional verification
45 RESUIS ..ooiiiiiiiiii e
4.6 Remaining problems

Asynchronous techniques for modelling timed automata............ccc....... 58
5.1 INFOAUCTION ...ttt 58
5.1.1 WOrK deSCriPLION ...t 58
5.1.2 The UPPAAL model checkercccceviiiiiiiiiic e 58
5.2 Modelling TEChNIQUESeviiiiiiieeiiieeceee et 59
5.2.1 Standard asynchronous modelling techniquecccceanneee.. 59
5.2.2 Function-based asynchronous modelling technique 59

5.2.3 Function-based asynchronous modelling technique with input
FEAUCTIONS ...ttt 60
5.3 Modelled COMPONENTSoeviiiiiiiieiiiieeiiie et emee e 62
5.3.1 Standard asynchronous modelling techniqueccceanneee.. 62
5.3.2 Function-based asynchronous modelling technique 67

5.3.3 Function-based asynchronous modelling technique with input
FEAUCTIONS ...ttt 71
5.4 JAVA PrOGIaM ..ccciiiiiiiiiiiiiiiii bbb n e 72
5.4.1 Description of the program..........ccccceviiiieiiiiiie e 72
5.4.2 EXample redUCHIONccueeeiiiieiiiie et meeee s 72
5.5 Modelled SYSIEMS.....ccoeiiiiiieiiiiie et emee e 73
5.5.1 Case study: emergency tank SyStemcccccveernieeeeniiieeanenenn. 73
5.5.2 Case study: emergency diesel SyStem.........cccccveviieeeeiiiieeannnenn. 73
5.5.3 Case study: power reduction UNit...........ccceevieereeriieeeesiieemnneennn 73
5.5.4 Properties of the SYStemMS........ccevviiiiiiiiiee e 74
5.5.5 Verified ProPerti€Sccoouueieiiiieiiiiiee e 75
5.8 RESUIS ..ot en 75
5.6.1 Verification reSUItS..........ccceveiriieiiiiiee e 75
5.6.2 Achieved input reducCtionsS...........occvieeiiiiee i 77
B.7 SUMIMANY ..ottt e e e e eene e 78

5.7.1 Efficiency of the analysis..........cccoiiiiiiiiiiiiiie e
5.7.2 Simplicity of the modelling...........ooooiiiiiiiii e,
6. CONCIUSIONS .ooieiiiiiiiiie et s
RETEIENCES ...

1. Introduction

The verification of digital instrumentation and control (I&C) systems is challenging
because programmable logic controllers enable complicated control functions, and
the state spaces (number of distinct values of inputs, outputs and internal
memory) of the designs easily become too large for comprehensive manual in-
spection. Design verification is a key task in the design flow because it can elimi-
nate tricky design errors that are hard to detect later in the development process
and very expensive to repair, often leading to a major redesign and reimplementa-
tion cycle. Typically, verification and validation (V&V) activities rely heavily on
subjective evaluation, which only covers a limited part of the possible behaviours
of the system, and more rigorous formal methods are therefore required. Such
formal methods have been studied (see, for example, [Valkonen 2008] for an
overview) but they are not yet widely used.

Model checking [Clarke et al. 1999] is a formal method that can be used to veri-
fy the correctness of system designs. Internationally, it has been used in the verifi-
cation of, e.g., hardware and microprocessor designs, data communications pro-
tocols and operating system device drivers. Several model checking systems and
tools exist. In our work, we have focused on two model checking tools: NuSMV
and UPPAAL. The tools are able to determine automatically whether a given state
machine model satisfies given specifications. Model checking can also handle
delays and other time-related operations that are crucial in safety 1&C systems
and challenging to design and verify.

This report reviews the work performed in the Safety Evaluation and Reliability
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system
as well as methodology to model function-block-based systems asynchronously.
In order to improve the usability of our model checking methods, we have devel-
oped an algorithm for model checking large modular systems. The algorithm can
be used to verify properties of a model that could otherwise not be verified in a
straightforward manner.

The MODSAFE project previously experimented with a technique based on the
modular structure of the model, in which the model could be over-approximated by
leaving the behaviour of some of the modules out of consideration. Using such a

1. Introduction

technique, any composition of the modules can be formed and analysed with little
effort. In this work, these modular abstractions are used to create an algorithm that
is able to verify automatically a large modular system. This work is reported in
Section 3.

We have also developed methodology to model system faults so that the failure
behaviour of systems can easily be integrated into traditional models depicting the
software logic of a system. The work regarding fault modelling is represented in
Section 4.

Finally, we have created asynchronous techniques for modelling function-block-
based designs using timed automata. This work is covered in Section 5.

2. Model Checking

Model checking [Clarke et al. 1999], [Clarke & Emerson 1981], [Quielle & Sifakis
1981] is a computer-aided verification method developed to formally verify the
correct functioning of a system design model by examining all of its possible be-
haviours. The models used in model checking are quite similar to those used in
simulation as, basically, the model must describe the behaviour of the system
design for all sequences of inputs. However, unlike simulation, model checkers
examine the behaviour of the system design with all input sequences and com-
pare it with the system specification. In model checking, at least in principle, the
analysis can be fully automated with computer-aided tools. The specification is
expressed in a suitable language, temporal logics being a prime example, describ-
ing the permitted behaviours of a system. Given a model and a specification as
inputs, a model checking algorithm determines whether the system has violated its
specification. If none of the behaviours of the system violates the given specifica-
tion, the (model of the) system is correct. Otherwise, the model checker will auto-
matically give a counter-example execution of the system demonstrating how the
specification has been violated.

In the SARANA project we have used two model checkers: NuSMV [Cavada et
al. 2010], [NuSMV 2011], which was originally designed for hardware model
checking, and UPPAAL [Uppaal 2009], which supports model checking of timed
automata. NuSMV is a state-of-the-art symbolic model checker that supports syn-
chronous state machine models in which the real-time behaviour must be mod-
elled with discrete time steps using explicit counter variables that are incremented
at a common clock frequency. NuSMV supports model checking using both Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL) [Clarke et al. 1999],
making it quite flexible in expressing design specifications. Several model check-
ing algorithms are employed in this work. The standard algorithm is based on
symbolically representing and exploring the state space of the system using Bina-
ry Decision Diagrams (BDDs) [Bryant 1986] [McMillan 1993]. SAT-based (Proposi-
tional Satisfiability) bounded model checking [Biere et al. 1999] is also supported
by NuSMV [Biere et al. 2006] for finding bugs in larger designs. The sophisticated
model checking techniques used by NuSMV can handle non-determinism induced
by free input variables well, but modelling real-time aspects can be more challeng-

10

2. Model Checking

ing due to the inherently discrete time nature of the synchronous state machine
model employed by NuSMV.

UPPAAL is a model checking tool for timed systems based on modelling the
system as a network of timed automata that communicate through message
channels and shared variables. The timed automata have a finite control structure
and real-valued clocks [Alur & Dill 1994], making the modelling of timers fairly
straightforward. Networks of timed automata can express the real-time behaviour
of the system in continuous time and still be automatically analysed. This is feasi-
ble because all the possible behaviours of the system can be captured using a
finite graph on which different clock valuations with the same behaviour are intui-
tively grouped into a finite number of equivalence classes called regions [Alur &
Dill 1994]. The model checking algorithms use symbolic methods to represent
compactly the clock valuations associated with each state of the system quite
efficiently in terms of memory. The model checking algorithms employed inside
UPPAAL [Alur & Dill 1994], [Larsen et al. 1997] are able to check a subset of the
temporal logic TCTL (Timed Computation Tree Logic) [Alur et a. 1990] by explicit
state model checking that explicitly traverses the finite graph induced by the be-
haviour of the system. The main strength of UPPAAL is in analysing the complex
timing behaviour of a system. However, it is not well suited to systems with a very
high amount of non-determinism as induced by, e.g., reading a large number of
input variables (sensor readings) provided by the environment because each
combination of inputs is explicitly explored by the employed model checking algo-
rithms.

2.1 Model checking large systems

Model checking has been successfully used to analyse individual functions of
safety-critical automation systems. However, it is often necessary to examine
several functions simultaneously because the functions may influence the same
system parameters. A system may also have several redundant implementations
whose behaviour should also be covered. Applying the current model checking
methods in a straightforward manner is not always possible in these large and
complex systems because the behaviour of the models becomes too rich (i.e. the
state explosion problem).

A normal approach to avoid state explosion would be to create an abstraction
of the system manually. Based on the verified specification, some system func-
tionality can be irrelevant and left out of the model. Unfortunately, creating such an
abstracted model manually for each specification requires a great amount of work.
The motivation for our work is: 1) to reduce the amount of work by creating these
abstractions automatically, 2) to infer system correctness based on verifications
performed automatically on these abstractions, and 3) to reduce the computational
effort (avoiding the state explosion of the model).

11

2. Model Checking

2.2 Fault models for model checking

Single-fault tolerance has been analysed using model checking in the MODSAFE
project in the SAFIR2010 research programme. Our model checking methodology
has traditionally included quite non-detailed fault models. Typically, only the sta-
tus/fault bits of an automation system have been implemented in the model. Ex-
tended fault models that allow the model to include physical faults such as faults in
telecommunication links, microprocessor faults and electrical faults influencing all
equipment in a cabinet were created in SARANA in 2011.

12

3. Model checking large systems

This work focuses on the analysis of large function-block-based systems. These
systems can be modelled as a collection of interacting modules each of which
encompasses the functionality of a few function blocks. The methodology is also
applicable to other kinds of systems that can be modelled in a similar way.

The analysis of large systems is based on two separate aspects. The first is
that the system should be modelled in a way that allows different abstraction-level
versions of the model to be created in a practical way. The second part of the
verification approach is finding a suitable abstraction level using that framework.
The abstraction level should have enough detail to allow verification but not too
much, so that the system is still computationally verifiable. In what follows, we first
describe how abstractions are created from the models and then an algorithm that
can be used to verify large modular systems automatically. The algorithm is im-
plemented for use together with NuSMV model checking software.

3.1 Abstracting the model

Typically, only a small part of the model is needed to verify a specification. The
model must be able to be divided easily into such parts, and it should be possible
to easily leave some parts of the model outside examination. We have modelled
function-block-based systems as a collection of interacting modules (see Figure
1). This section presents the over-approximation already introduced in [Lahtinen et
al. 2010] that can be used to create abstractions of the model by replacing some
modules with interface modules.

We should be able to select a set of the modules whose functionality we want
to analyse. We do not want to set any limitations for the modules that are left out
of the analysis. The creation of an abstract model based on a selection of modules
should be done automatically and the resulting abstraction should be unambigu-
ous.

13

3. Model checking large systems

M15 M22 M16
AV
M18 M17
AV
M19 M9 M10
[¥
M20
v pa— o
M21 M8 M11 M12
Y
M3 4 A
& M13 M14
| 3
3 A N
M7 | M4 M5 M2
> _
- M1
«“
M6

Figure 1. The dependency graph of a system with 22 modules.

The abstraction is implemented so that an abstract version of every modulle is first
created. The abstract version, called the interface module, is such that it has no
inner functionality. Only the interfaces of the module are implemented. All outputs
of the module are changed into non-deterministic variables. The modules and their
interface versions are located in separate files. An abstraction of the system is
then created by selecting either a normal version or the interface version of each
module and creating a model file based on the selections (see Figure 2). The
selection of modules is also referred to as the configuration of the model.

In addition to the different modules, the model has the main module in which
the interconnections between the modules are defined. Our implementation of the
algorithm also uses a model data file in which all relevant information regarding
the model (including dependencies between modules) are listed and can be con-
veniently read by the algorithm.

14

3. Model checking large systems

(Module 1 p Module 1 interfaces

j L] [I e

Module 2 (Module 2 interfaces h

] L] [R

(Module 3 p Module 3 interfaces

Figure 2. Creating an abstraction of the model by replacing some modules with
interface modules

3.2 Property verification using the abstractions

The abstractions discussed above are such that the abstract model always has
more behaviour than the non-abstracted model (the interface module is an over-
approximation). This is because the interface modules that are used in abstract
models are not restricted in any way. The interface modules can output any se-

15

3. Model checking large systems

quence of outputs (unlike the non-abstracted modules). This feature of the ab-
straction allows verification of safety properties.

A safety property asserts that nothing bad happens. A typical safety property
would assert that a defined error state is not reachable in the model. If a safety
property is true on some configuration of modules, of which some are interface
modules, the property is also true on the original non-abstracted configuration.
This is because the interface module abstraction adds behaviours to the model. If
a safety property is true in a configuration that has more behaviours than the non-
abstracted model, the property is also true in the non-abstracted model.

Our algorithm is designed to verify only safety properties. In particular, the algo-
rithm currently verifies only invariant properties. Invariant properties state that a
condition holds for all reachable states. Invariant properties are safety properties
but not all safety properties are invariants.

3.3 Automatizing abstraction-level selection

As it is possible to create abstractions of the model by selecting the modules
whose functionality we want to analyse, it is possible to find a suitable abstraction
level automatically. By suitable, we mean that the abstraction is sufficiently de-
tailed to verify the analysed property, and the abstraction level is coarse enough to
be model checked in reasonable time. The whole verification process should also
require less time than model checking the non-abstracted model as such.

The technique of finding a suitable abstraction level is largely based on the idea
of the Counterexample-Guided Abstraction Refinement technique (CEGAR) by
Clarke et al. [Clarke et al. 2004]. The general idea of the CEGAR technique is to
model check an abstraction of the system that preserves all behaviours of the
concrete system. If the property is true on the abstraction, it is also true in the
concrete system. However, a property may be false in the abstraction and still be
true in the concrete system (a spurious counterexample is found). In this case, the
abstraction is refined based on the counterexample. The refined abstraction is
such that it eliminates the spurious behaviour. The process is repeated until the
abstract system satisfies the property or a true counterexample is found.

Our algorithm follows the general CEGAR loop, but the adaptation of the pro-
cess to our modular framework is novel. In addition, we attempt to increase the
performance of the algorithm through counterexample minimization. The abstrac-
tion refinement step is also different from the ideas in [Clarke et al. 2004].

Our algorithm to model check large modular systems is as follows:

1. Choose the initial configuration of modules based on the invariant proper-
ty.

2. Model check the current configuration of the modules.

If the property is true, return ‘true’. Otherwise, a counterexample is given.

4. Minimize the counterexample.

w

16

3. Model checking large systems

5. Check the feasibility of the counterexample on the non-abstracted model.
If the scenario is feasible, a real error has been found. Return the coun-
terexample.

6. Refine the abstraction based on the counterexample.

7. Goto step 2.

The general intention of the algorithm is to begin with as much abstraction as
possible, and then iteratively add modules to the configuration until the abstraction
satisfies the property or a counterexample is found. As input the algorithm re-
ceives:

e Aninvariant property

e The main module describing the system as modules

e The modules that consist of a collection of function blocks

e A function block library

e Interface module descriptions for each module

e Dependency information regarding the model: inputs/outputs of each
module and the dependencies between modules. It is also possible to
extract this information automatically by parsing the main module.

In order to clarify the operation of the algorithm, we present an example run of the
algorithm. Suppose that we want to verify the system in Figure 1. The arrows
depict dependencies between the modules (outputs that are used as inputs to
another module). Each module in Figure 1 consists of a set of function blocks. We
want to check if the system satisfies the property that the outputs of modules 19
and 13 (M19 and M13) are never true at the same time (both have only one output
‘outl’). We write an invariant:

INVARSPEC I (M19.outl & M13.outl);

Next, we choose the initial configuration of modules based on the invariant proper-
ty (Step 1 of the algorithm). This is done simply by extracting the variables from
the invariant (M19.outl, M13.outl) and determining the modules that have these
variables as outputs (Modules M19 and M13). These modules are selected as the
initial configuration. Other modules of the system are replaced by their respected
interface modules. The initial configuration is illustrated in Figure 3.

17

3. Model checking large systems

M15 M22 M16

M18 M17 ‘
M19 M9 ‘ M10
‘ M20
v Ja— - T ; ,
‘ M21 /M8 M11 ‘ M12 ‘
M3 y Y
— M13 M14
I3 A A
M7 w4 ‘ M5 ‘ M2
TN = M1
M6

Figure 3. The initial configuration of the example run of the algorithm.

Next, based on the selection of modules, we generate the model file by appending
the main module with appropriate module files and apply model checking to this
file. We use the invariant checking algorithm of the NuSMV tool together with the
cone of influence reduction (described later).

In our running example, NuSMV outputs a counterexample in which the outputs
of M13 and M19 are both true at the same time. Next we attempt to minimize the
counterexample. Based on the dependency graph we can see that our current
abstraction (M13 and M19) is dependent on modules M11, M16, M17 and M18.
Since the modules are deterministic, we know that the outputs of M11, M16, M17
and M18 cause the error in the counterexample. In the counterexample minimiza-
tion step we check whether there is some subset of these outputs in the counter-
example that would be the cause of the error. Counterexample minimization is
discussed in the next section in more detail. In our example, let us assume that we

18

3. Model checking large systems

deduce that the outputs of module M18 are irrelevant with respect to the counter-
example. We remove the variable assignments referring to module M18 from the
counterexample.

The fifth step of the algorithm is to check whether the minimized counterexam-
ple is feasible in the non-abstracted model. We generate a configuration of the
model in which all modules are non-abstracted and add clauses that force the
model towards behaviour described by the counterexample. Then we check
whether the last state of the counterexample can be reached in the model. If it can
be reached, the counterexample is feasible in the non-abstracted model and de-
picts a true error in the system. If the last state cannot be reached, the counterex-
ample is spurious, and the abstraction level should be refined.

‘ M15 ‘ M22 M16

M17

M9 M10

‘ ‘ M12 ‘
M3 v AKX
" M13 ‘ M14
-
¥ Y ~a
M2
M7 | ma ‘ M5 ‘
=i o | —= =z __ M1
M6

Figure 4. The refined abstraction level after one iteration.

19

3. Model checking large systems

Suppose that in our running example, the counterexample is not feasible in the
non-abstracted model. We have to refine the abstraction in such a way that it
eliminates the spurious counterexample (but still adds as few modules as possi-
ble). The refinement step starts by looking at the dependency graph. Earlier we
concluded that the error is caused by modules M11, M16 and M17 (M18 was
deduced to be irrelevant). We first check whether adding these three modules
eliminates the counterexample. We generate the module configuration (M11, M13,
M16, M17, M19) and perform another feasibility check. In our example, the config-
uration is not feasible, which is exactly what we were looking for (the spurious
counterexample is eliminated). We can still try to improve the refinement by check-
ing if adding some subset of the new modules M11, M16 and M17 also eliminates
the counterexample. We find out that the smallest such subset is (M11, M17). The
resulting refined abstraction is then (M11, M13, M17, M19); see Figure 4. The
abstraction refinement is also discussed in more detail later.

Finally, the refined abstraction is model checked again. In our example, the re-
sult is true, which implies that the non-abstracted model satisfies the specification.
The algorithm finishes and returns the value ‘true’.

In what follows, some steps of the algorithm (invariant model checking, coun-
terexample minimization, feasibility checking of the counterexample, and abstrac-
tion refinement) are discussed in more detail.

3.4 Invariant model checking

The second step of the algorithm is model checking the current configuration of
modules. In this step, we use two model checking algorithms in parallel: BDD-
based invariant checking and bounded model checking (BMC) -based invariant
checking. The BDD-based model checking algorithm may require a large amount
of time when the size of the model increases. This is why the bounded model
checking is run in parallel. The BMC algorithm can find counterexamples faster (if
they exist). This can reduce the run-time of the algorithm because the BDD algo-
rithm can be interrupted when a BMC counterexample is found. On the other
hand, we need both algorithms because the used BMC algorithm may not be able
to prove a property within a reasonable bound.

3.5 Counterexample minimization

If model checking an abstract configuration leads to a counterexample, the feasi-
bility of the counterexample should be checked on the non-abstracted full model.
The counterexample is minimized before the feasibility check.

The abstract counterexample consists of a set of variable assignments on dif-
ferent time steps. The counterexample can be minimized so that only the relevant
variable assignments remain that actually cause the counterexample. The mini-
mized counterexample is such that the variable assignments in it always lead to

20

3. Model checking large systems

the original error despite the variable assignments that exist outside the minimized
counterexample.
Counterexample minimization is performed for two reasons:

e Free non-deterministic variables of the abstract model can be restricted
in the full non-abstracted model in a way that makes the counterexample
infeasible. However, these variables may not be causing the error de-
scribed by the counterexample (values are irrelevant). Leaving these var-
iables outside the counterexample reduces false negative feasibility an-
swers.

e The abstract model includes the behaviour of a set of modules A. These
modules are dependent on signals received from a set of modules B that
are not in the abstract model. In the abstraction refinement step of the al-
gorithm, the set A is increased by adding new modules from the set B
based on the dependency relation. If it can be demonstrated that a mod-
ule M in B is irrelevant with respect to the examined counterexample, that
module M can be left out in abstraction refinement, and thus the size of
the abstract model after refinement is decreased. The size of the model
has major influence on the performance of the algorithm. It may be pos-
sible to simplify the dependency relation of the modules based on coun-
terexample minimization (if all signals from one module M in B are mini-
mized).

In what follows, we describe techniques for counterexample minimization that can
be used together with the algorithm. The techniques based on random walk and
delta debugging are search methods that do not produce the smallest possible
counterexample. The CTL query-based technique does produce the smallest
possible counterexample but the technique requires more computation.

Some issues are related to the minimization regardless of the minimization
technique. The counterexample minimization techniques require:

e The model file

e The model checker (NuSMV)

e The abstraction level of the model (which modules are abstracted as in-
terface modules)

e Module dependency information (A list of modules, their inputs and the
modules from which these inputs are received)

e The counterexample file in XML format

e The examined invariant property (only invariant properties and their coun-
terexamples are supported).

The counterexample given as input can be simplified by itself. Typically, the model
checker can perform some form of trace simplification. NuSMV allows the use of
the cone-of-influence (COI) reduction, which can be used to reduce the number of
variables in the counterexample before further simplification is applied. The COI
technique is introduced later on.

21

3. Model checking large systems

The counterexample can also easily be simplified by only taking into account
the input variables of each module. The model behaviour is fully determined by
exactly these variables. In the modelling approach used, all the other variables
(output variables, memories of the function blocks) receive their values from the
input variable sequences in a deterministic way. Thus, the counterexample can
also be described in terms of the input variables only. A list of ‘free variables’ can
be extracted from the module dependencies and the abstraction levels of the
modules. Free variables determine the behaviour of the system in an unambigu-
ous way. All free variables of an abstracted model are either:

e Interface variables: input variables of the non-abstracted modules that
receive their value from an interface module, or

e Non-deterministic variables: input variables whose value is determined
non-deterministically in the model (they can have any value at all times).

Thus, an input variable whose value is received from a non-abstracted module M
(a module that is included in the abstraction) is not a free variable, since its value
is determined by the input variables of module M. This leads to two realizations:

e Only variable assignments for the free variables are preserved in the
counterexample. Other variable assignments are redundant and can be
left out.

e The non-deterministic variables of an abstract model are also non-
deterministic in the full non-abstracted model. The non-deterministic vari-
ables cannot cause false feasibility answers in the algorithm nor can their
removal lead to reductions in the abstraction refinement step. Therefore,
the non-deterministic variables should not be the target of minimization.
The non-deterministic variables are always included in the minimized
counterexample.

Thus, our counterexample minimization techniques focus on further minimizing the
variable assignments of the counterexample (already minimized using the cone-of-
influence reduction of NuSMV) that are the interface variables of the current ab-
straction.

The minimization techniques are based on the idea of creating modified copies
of the model in which some variables of the model are forced to follow the behav-
iour described by the counterexample.

The modified copy is created by adding a clock variable and clauses for the
forced variables. The clock variable clock is simply an integer variable that is add-
ed to the model. The clock variable has the values from 0 to the length of the
counterexample. The clock variable’s initial value is 0. After that, the value is in-
creased by one at each time step. When the length of the counterexample is
reached, the value of the clock is permanently set to the highest value. For exam-
ple, if the counterexample consists of two time points, the NuSMV code for the
clock variable would be:

22

3. Model checking large systems

init(clock):= 0;
next(clock) := case
clock < 2 : clock +1 ;
TRUE : 2 ;

esac;

For each forced variable, the init and next clauses of NuSMV are created so that
the variable follows the counterexample values until the end of the counterexam-
ple. For example, a variable that has the value FALSE at time point 0 and TRUE
at time points 1 and 2 in the counterexample would translate into the clauses:

init(variablel) :- FALSE;

next(variablel) := case
clock = 0 : TRUE ;
clock =1 : TRUE ;
TRUE : {TRUE, FALSE} ;

esac;

TRUE : {TRUE, FALSE} ;

esac;

Using the modified copies of the model, it can then be verified by model checking
whether the copies are such that the error always manifests itself. If it does, the
set of forced variables can be used to create a new minimized counterexample.
Other variables are irrelevant. In order to find the smallest possible counterexam-
ple, the naive approach would be to create a modified model for every subset of
variable assignments in the counterexample and check each one separately. The
smallest subset leading to a true minimized counterexample would then be the
smallest possible counterexample. However, checking all subsets of the variable
assignments is too laborious, and some heuristics are needed. We use, for exam-
ple, local search techniques, and apply the techniques on several granularity lev-
els.

Each minimization technique can be applied on at least three different granular-
ity levels:

e Module level minimization: Since one of the objectives of the minimi-
zation is to break dependencies between modules, it makes sense to
find out whether some module as a whole is irrelevant with respect to
the counterexample. On the module level, the variable assignments
are grouped according to the module that outputs them. The subsets
of these groups are then examined to find the smallest subset, such
that any execution still always leads to the error in the counterexam-
ple. The variable assignments related to irrelevant modules are then
removed from the counterexample. For example, if the module M; is
removed as a result, assignments of variables output by M; are re-
moved from the counterexample at all time points.

23

3. Model checking large systems

e Variable level minimization: At the variable level, we look for the
smallest subset of variables whose variable assignments in the coun-
terexample always lead to the error. For example, if variable varl is
removed by minimization, variable assignments of varl are removed
from the counterexample at all time points.

e Variable/time point level minimization: At this level, each (variable,
time-point) pair of the counterexample can be minimized. We look for
the smallest subset of assignments that always leads to the error. For
example, the variable assignments of varl could be removed at time
point O but assignments at other time points could still be relevant.

The granularity levels are independent of each other. It is possible to apply the
minimization only on some granularity level or first use the module level to quickly
reduce the size of the counterexample and then further refine the minimization
using minimization on the variable/time point level.

3.5.1 Random walk-based minimization

Random walk-based minimization can be applied on all granularity levels. Below,
we describe the functioning on the variable level only. Other granularity levels are
applied similarly.

The idea of random walk-based minimization is to start with a modified model in
which all variables that are targets of the minimization are forced to the values in
the counterexample. Then, we follow the algorithm:

1. All variables that are to be minimized are in the set Forced; the set Result
is empty.

2. If Forced=Result, return Result.

3. Select some random variable V from the set Forced such that it is not in
Result.

4. Remove V from Forced.

5. Create a new modified model M in which the variables in Forced are
forced to the values in the counterexample

6. Check whether M is such that the error described by the counterexample
exists no matter what the values of the variables not in Forced. This can
be done using the bounded model checking algorithm in NuSMV. If so,
go to step 2.

7. PutV back into the set Forced, add V to Result and go to step 2.

The algorithm returns a set of variables that always leads to the error, and the set
is a local minimum. In order to decrease the size of the resulting minimized coun-
terexample, the random walk can be run a few times, and the smallest counterex-
ample is then selected.

24

3. Model checking large systems

3.5.2 Minimization using delta debugging techniques

The minimization based on delta debugging techniques can be applied on all
granularity levels. Below, we describe the functioning on the variable level only.
Other granularity levels are applied similarly.

The reasoning in this approach is somewhat similar to the random walk-based
approach, but the heuristics of selecting candidates for a smaller counterexample
differ. In delta debugging, the minimal set of forced variables that always leads to
a counter-example is looked for by dividing the forced variables into subsets and
checking the subsets and their complements one by one. The search initially di-
vides the variables into two sets and then increases the granularity if none of the
subsets explains the counterexample. We follow the algorithm below:

1. Set granularity n=2. The set of variables that are to be minimized iis S.
2. Divide S into n subsets (Subsets).

3. Calculate the complements of the Subsets (Complements).

4. For x in Subsets:

4.1. Create a modified model M in which the variables in x are forced to
the values of the counterexample.

4.2. Check if M is such that the error described by the counterexample
exists no matter what the values of the variables not in x. This can
be done using the bounded model checking algorithm in NuSMV. If
s0, set n=2 and S=x, and go to step 2.

5. For x in Complements:

5.1. Create a modified model M in which the variables in x are forced to
the values of the counterexample.

5.2. Check if M is such that the error described by the counterexample
exists no matter what the values of variables not in x. This can be
done using the bounded model checking algorithm in NuSMV. If so,
set n=2 and S=x, and go to step 2.

6. If granularity n < |S|, set n=min(|S|, 2*n) and go to step 2.
7. Else (Granularity is greater than or equal to |S|) return S.

3.5.3 CTL query-based minimization technique

The minimization based on CTL queries can be applied on all granularity levels.
Below, we describe the functioning on the variable level only. Other granularity
levels are applied similarly.

In the minimization by CTL queries, the idea is again to create modified copies
of the abstract model in which variables are forced to values in the counterexam-
ple. The difference from the previous minimization techniques is that the forced
variables are not selected one by one by the algorithm. Instead, a new Boolean
variable is introduced for each variable under minimization. The Boolean variable
called the lock variable determines whether the variable it locks follows the value

25

3. Model checking large systems

of the counterexample. The modified model is then model checked against a spe-
cial CTL specification in order to determine the minimum number of TRUE as-
signments in these lock variables that are required to force the system to violate
the original property. The ideas are explained in detail in what follows.

Variables under minimization are forced to the counterexample values through
lock variables and a clock variable keeping track of time. The clock variable clock
is simply an integer variable that is added to the model (similarly to that in random
walk minimization).

A new variable, lockX (that has values 0 and 1), is added for each interface var-
iable (variables that are the target of the minimization). A mapping is created in
which the correspondences between the lock variables and the interface variables
are determined. The lock variables are such that they non-deterministically choose
a value (0/1) at the initial time point and retain the value at all future time points.
This is done by omitting the NuSMV init statement and using next statements such
as:

next(lockX):= lockX;

The value 1 of a lock variable means that the variable related to it has the same
value as the counterexample at time points less than or equal to the length of the
minimized counterexample. If lockX has value 0, the value of the variable related
to that lock variable is not restricted in any way.

The behaviour of the lock variables is realized through init and next statements
written for all variables in the counterexample:

init(variablel) case
lockl = 1 : FALSE ;
TRUE : {TRUE, FALSE} ;

esac;
next(variablel) := case
clock = 0 : case
lockl =1 - TRUE ;
TRUE : {TRUE, FALSE} ;
esac;
TRUE : {TRUE, FALSE} ;
esac;

In the above example, according to the original counterexample, variablel takes
the value FALSE at time point 0 and the value TRUE at time point 1. If lockl has
the value TRUE, variablel takes the value FALSE at time point 1 and the value
TRUE at time point 2. At all other time points the value of variablel is non-
restricted. Enumerative variables are also supported. The variable domain is read
in the beginning of the counterexample minimization from the module dependency
information. The full domain range then replaces {TRUE, FALSE} in all instances.

26

3. Model checking large systems

The number of variables that is locked is controlled through another variable:

nro_of_locked variables := 1lockO + [lockl + ... lockN;

Finally, the examined property is a CTL property:
CTLSPEC ! (nrolockedvars = x & AF(clock = y & error));
where:

e X is avariable that determines the number of locked variables
e y+1is the length of the original counterexample
e error is the negation of the original invariant property.

The CTL formula states that no such initial state exists in which a certain number x
of the interface variables are locked to the values of the original counterexample
so that no matter what the values of the other non-locked interface variables are,
the system will eventually lead to the error state manifested in the original coun-
terexample. However, if the formula leads to a counterexample, it means that such
a choice of locked variables exists. The actual locked variables can be deduced
from the counterexample trace. If the formula is true, a higher value of x should be
tried out when looking for a minimal counterexample. (Note that the ‘function’ here
is monotonous. If the formula is true for x=5, then the formula is also true for x < 5.
If the formula is true for some value of x, then if a smaller value of x were to exist
that resulted in a counterexample of the formula, then the same counterexample
could be produced by choosing these variables and a number of other variables. If
the formula is false for x=10 then a counterexample also exists for all x > 10. If a
set of variables and time points exist that are sufficient to produce the counterex-
ample, then adding other variable assignments cannot change this.)

Now, the resulting modified model can be used to check if it is possible to lock
a certain number of interface variables in such a way that the original error mani-
fests itself no matter what the other non-locked variable assignments are. The
number of interface variables is known, and the minimum number of locks re-
quired can be found through binary search:

binarySearch(low, high):
x = (high + low) 7/ 2
model check modified model using specification:
“CTLSPEC ! (nrolockedvars = x & AF(clock =y & error));”
if (specification is false):

return min(minimization, binarySearch(low, Xx-

1))
else:
return binarySearch(x+1, high)

The counterexample minimization described here can also be used on the module
level and the variable/time point level. On the module level, a lock variable is cre-

27

3. Model checking large systems

ated for each module and these locks affect the interface variables related to that
module. On the variable/time point level, a separate lock variable is introduced for
each variable-time point pair, e.g. if the counterexample has five time points, five
lock variables are created for each interface variable. This way, the counterexam-
ple could be further minimized because in some cases only a value at some spe-
cific time point is relevant. The value of some variable at other time points does
not affect the realization of the error. In large models, however, this more detailed
minimization approach can be too complex. The approach can lead to too many
lock variables and a state explosion.

The CTL-based minimization approach cannot use the bounded model check-
ing algorithm available in NuSMV. Its result is optimal, but in practice the required
CTL checks are too complex. The minimization through delta debugging is faster
but may not return the minimal counterexample. In our algorithm, we prefer quick
minimization over optimal minimization.

3.5.4 Related work

Counterexample (or bug trace) minimization has been a research topic in both
hardware and software verification. Novel verification tools are effective, but a
large amount of manual effort is required to analyse the results of these tools. In
simulation and model checking (and other formal methods), the analysis of bug
traces or counter-examples is time-consuming and laborious. The counterexam-
ples of model checking, for example, can consist of hundreds of different variables
and multiple time points. However, only a fraction of the variable assignments are
usually important, and most variable values have no influence on the realization of
the counterexample.

Techniques have already been developed for counterexample minimization.
Some of these techniques have been implemented in the model checking tools
themselves. In what follows, some research on counterexample minimization is
reviewed.

3.5.4.1 Program slicing and the cone of influence reduction

Program slicing [Weiser 1981] is an abstraction of a program or a specification
with respect to a given condition called the slicing criterion. The slicing criterion is
such that it holds on the full program if and only if it holds on the reduced program.
The ideas of the program slicing techniques have been used in model checking
where a temporal logic formula is interpreted as the slicing criterion. In the pro-
gram analysis of model checking models the temporal logic formula must hold on
the reduced model if and only if it holds on the full model. The technique is also
known as the cone of influence reduction used in hardware verification.

Cone of influence (COI) [Clarke et al. 1999] is an abstraction technique that de-
creases the state space of the model by focusing only on the variables of the
model that are relevant to the examined specification. The reduction is obtained by

28

3. Model checking large systems

removing variables that cannot influence the variables of the specification. The
basic idea is to create a dependency graph of the variables in the model and then
traverse the graph starting from the variables of the specification. Since the cone
of influence reduction reduces the number of variables in a model, it also reduces
the number of variable assignments in the counterexample.

The cone of influence reduction can be improved by taking into account the dif-
ferent time points at which a variable can have influence on the specification. This
technique is referred to as Bounded Cone of Influence (BCOI) [Biere et al. 1999].

3.5.4.2 Brute Force Lifting

The technique called Brute Force Lifting (BFL) [Ravi & Somenzi 2004] was intro-
duced in the context of minimizing bounded model checking (BMC) counterexam-
ples. BMC counterexamples are satisfying assignments to a Boolean formula,
typically in conjunctive normal form (CNF). The idea is to derive a minimally satis-
fying counterexample that, together with the Boolean formula describing the mod-
el, implies a violation of the checked property.

The examined technique is performed on the level of Boolean formulas solved
by a SAT solver. On that level, the paper describes a process of simplification
called lifting. Lifting is the process of removing literals or variables from a satisfy-
ing assignment such that for each valuation of the lifted variables the formula is
still satisfiable. Some variables are clearly irrelevant with respect to the checked
property and can be lifted. The relevance of other variables has to be checked by
brute force. This means that for each checked literal, the negation of the property
is checked with a SAT solver. If the result is satisfiable, then the literal cannot be
lifted. The BFL technique described in the paper is performed on the inputs of a
system. Since a SAT solver run is needed for a single lifting, the technique can be
quite expensive computationally. However, the experimental results showed that
the average reduction in counterexample variables was 71%.

The BFL technique can be further improved by the elimination of sets of varia-
bles simultaneously [Shen et al. 2005]. The technique is based on refutation anal-
ysis and incremental SAT. The idea is that after checking the negation of the
property with a SAT solver and receiving an UNSAT result, the result is analysed
to find out if it implies that other free variables are also irrelevant. If the result of
the check is UNSAT, then there must be a conflict clause at decision level 0. The
conflict clause is then used to traverse the implication graph in the reverse direc-
tion to obtain the set of clauses that leads to that conflict. The irrelevant variables
are then the variables that are in that conflict-causing set and whose negation is
also in that set. These variables are the reason the problem is UNSAT. Thus, they
are the reason the counterexample must always happen. These are also the irrel-
evant free variables that can be lifted at the same time. The idea is equal to the
finding of an unsatisfiable core of the formula and the free variables and their
negations that are in the core.

29

3. Model checking large systems

The general idea of checking the satisfiability of the negation of the property is
also used in our work. In our work, the check is performed with the model checker,
while a set of variables is set free. The variables in our work are the variables of
the model, not the low abstraction level variables of the Boolean formula given to
the SAT solver. The general idea, however, is similar.

3.5.4.3 Simulation-based bug trace minimization

The minimization of simulation bug traces is examined in [Chang et al. 2007]. In
simulation, the system is run against a set of assertions. For example, random
simulation can be run on some design, while assertions are monitored. The appli-
cation of simulation late in the life cycle of the product results in detailed and long
traces. The technique and the tool examined in the paper analyse a simulation
bug trace and produce an equivalent trace of shorter length. The technique relies
on both simulation and formal methods.

The techniques described in [Chang et al. 2007] are two-fold. Some techniques
intend to remove redundant time steps from the bug trace. Another group of tech-
nigues intends to simplify the trace by identifying essential input values.

Proposed shortening techniques by the paper:

1. Single-cycle elimination: remove cycles completely and re-simulate to
see if the bug still exists.

2. Alternative path to bug: simulate with alternative transitions during the
trace and detect if a shorter path violating the assertion is found.

3. State-skip: identify non-unique states that represent loops. If the same
state is in the trace twice there is a loop.

4. BMC-based refinement: search locally for shorter paths between two
trace states.

Proposed simplification techniques:

1. Input event elimination: re-simulate with fewer input events. For example,
set ¢=0 instead of c=1. If the bug still manifests itself, the input event is
redundant.

2. Essential variable identification: use three-value simulation to identify
non-essential inputs.

In most cases, traces can be reduced to a fraction of their initial size. The average
reduction in a trace produced by random simulation was 99% in terms of cycles
and input events. For traces that were produced by a semi-formal method, the
techniques are also effective (reduced traces ~75-90%).

Our work focuses on simplifying but not shortening the counterexample in time.
We also use BMC to produce the shortest possible counterexample.

30

3. Model checking large systems

3.5.4.4 Minimizing automata-based model checking counterexamples

Gastin et al. [Gastin et al. 2004] minimize automata-based model checking coun-
terexamples. Their objective is to find minimal counterexamples in terms of time
steps in the counterexample. If the model is represented as a Kripke structure,
checking LTL properties is equivalent to testing whether the intersection of the
model and a Biichi automaton describing violating executions has no accepting
run. The traditional algorithms look for accepting runs with a depth-first algorithm
that returns the first accepting run found. The algorithm described in [Gastin et al.
2004] performs a depth-first search to find a minimal bug trace. The idea is that
the search does not necessarily stop when a state already visited is reached.
Reaching a state with a distance to the initial state smaller than for the previous
visit may lead to a shorter counterexample. Therefore, for each state, there is an
additional field, storing the smallest length on which that state occurred. The min-
imal counterexample found so far is also stored.

3.5.4.5 Explaining counter-examples through forced and free segments

The paper [Jin et al. 2002] distinguishes between ‘control’ and ‘data’ signals in the
counterexample. The paper discusses the explanation of counterexamples rather
than minimization. The explanation is performed through the annotation of the
error traces by alternation of fated (forced) and free segments. The fated seg-
ments show unavoidable progress towards the error while free segments repre-
sent avoidable choices that have led to the error. The annotation helps in the error
interpretation. The fated segments are control signal values that lead towards the
error. The free segments represent mistakes made in the choice of data values
that also lead towards the error.

The paper also interprets counterexample minimization as a two-player concur-
rent reachability game. The two players are the (hostile) environment and the
system. The environment chooses values for the controlling variables and the
system simultaneously chooses the values for the rest of the variables (data vari-
ables). The environment’s goal is to reach the error state of the counterexample. A
(memoryless) strategy for the environment is a function that maps each state to
one valuation of the control variables. Likewise, a strategy for the system is a
function that maps each state to one valuation of the data variables. A position is a
winning position for the environment if there is an environment strategy such that,
for all system strategies, the error state is eventually reached. A position is a win-
ning strategy for the system if the error state is never reached.

3.5.4.6 Symbolic Trajectory Evaluation
The ideas of counterexample minimization are also somewhat similar to the tech-

nigues used in the abstraction refinement of symbolic trajectory evaluation [Roor-
da & Claessen 2006].

31

3. Model checking large systems

Symbolic Trajectory Evaluation (STE) [Seger & Bryant 1995] is a formal verifi-
cation technique that combines three-valued simulation with symbolic simulation.
STE is used to verify assertions of the form A > C, where A is called the anteced-
ent and C is called the consequent. The expression A specifies the values used in
the simulation, while the expression C depicts the expected result. STE is often
used to verify digital circuits, e.g., the technique is extensively used at Intel.

In three-valued simulation, a third value is introduced to the (Boolean) simula-
tor. The third value X represents an unknown value. A state with some variables
set to X covers those states obtained by replacing the X values with all combina-
tions of 0 and 1. When three-valued simulation is used, the transition relation of
the model is extended to cover also the value X. With three-valued simulation it is
possible to verify the STE assertions using fewer simulation runs, since one simu-
lation run corresponds to several of the original Boolean simulations.

In symbolic simulation, Boolean expressions over symbolic variables are used
to verify system properties. A Boolean expression over symbolic variables can be
written for the model and the consequent of the STE assertion. The expressions
should then be compared for equality. One way of doing this is to use the BDD
data structure. A BDD is calculated for each input of the model, and for each gate
a BDD is calculated that represents the output of the gate. Finally, a BDD is calcu-
lated for the whole circuit. Since BDD is a canonical data structure, the compari-
son with the BDD of the consequent is simple. The disadvantage of symbolic
simulation is that the number of symbolic variables needed can be huge, which
leads to the BDD blow-up.

The two techniques work well together since three-valued simulation decreases
the number of symbolic variables that are needed.

The STE abstraction is typically initially not proven because the antecedent
yields X values for nodes that are required to have some particular Boolean value
by the consequent. When this happens the abstraction must be refined. The ab-
straction refinement issue is discussed in [Roorda & Claessen 2006]. Roorda et al.
have invented the concept of strengthening, which indicates the input of a circuit
that needs to be given a non-X value in order to take non-X values at the relevant
outputs. The writers have created a tool that can calculate strengthenings that
correspond to counter-examples of the assertion. In this sense, calculating the
weakest satisfying strengthening has similarities with counterexample minimiza-
tion. The weakest satisfying strengthening of a counterexample indicates the vari-
ables of the model that have to have some particular Boolean value so that the
counterexample manifests itself. The number of such variables is also minimal.

In [Roorda & Claessen 2006], SAT-formulas are generated whose solutions
represent the satisfying strengthenings of the assertion. An incremental SAT-
solver is used iteratively to find the weakest strengthening. This is done using
constraints to block the last found strengthening and allowing only strictly weaker
strengthenings.

There are many similarities to ideas used in our minimization method. We also
look for the minimal number of variable assignments that are needed to produce
the counterexample. Instead of using three-valued simulation, we modify the mod-

32

3. Model checking large systems

el and use a distinct specification that is checked by the model checker. We also
find the minimal number of variables iteratively. The difference between our tech-
nique and the one in [Roorda & Claessen 2006] is that their three-valued abstrac-
tion has some inherent information loss. This means that the technique based on
three-valued simulation may come up with a non-minimal result. In other words,
some variables of the counterexample may not be necessary to produce it, but the
three-valued abstraction requires that they are not removed. Information loss can
also occur due to the fact that the STE method performs only forward simulation. If
the antecedent of the assertion specifies some output value but not the inputs
relevant to it, the inputs are assigned value X, which can cause the assertion to
fail. However, the information loss caused by three-valued abstraction and for-
wards simulation can be avoided by adding extra symbolic variables.

3.5.4.7 Localizing errors in counterexample traces

The paper [Ball et al. 2003] discusses finding the cause of errors in a counterex-
ample trace by comparing the trace against correct traces. They also demonstrate
how multiple error traces with independent causes can be generated. The algo-
rithms are implemented in the context of the software model checking tool SLAM.

The counterexample is seen as a symptom of the error. The cause of the error
is extracted by comparing these erroneous traces against correct traces and look-
ing for transitions of the error trace that are not in any correct trace of the program.
Program statements inducing these transitions are likely to contain the causes of
the error. Other possible causes of the same error can be looked for by replacing
the detected erroneous transitions with halt statements and re-running the model
checker until no more error traces can be found. Thus, a single error trace can be
outputted for each possible cause of the error. The approach is problematic in
detecting the cause of errors in some cases: all transitions of the counterexample
also exist in some correct trace, in which case the cause of the error is empty
(coincidental correctness). In general, the algorithm managed to identify the cause
of an error directly in 11 out of 15 error traces. In three cases, the cause could be
deduced by tweaking the algorithm. In one case, the abstraction level of the model
inhibited finding the cause of the error. In many cases, the error causes found
were only a small fraction of the error trace. (All were less than 16% of the transi-
tions in the error trace, typically about 1%.)

3.5.4.8 Error cause extraction through variations of the error

Other traces are also used in [Groce & Visser 2003] to extract the error cause.
The paper describes how an automated method can be used to find other versions
of the error and a set of correct traces and to analyse the executions to extract the
cause of the error.

The work focuses on finite executions demonstrating violation of safety proper-
ties in Java programs. The algorithms are implemented in the Java Pathfinder

33

3. Model checking large systems

model checker. The paper defines a set of executions called negatives as varia-
tions of the counterexample trace that produces the same error. A second set
called positives is defined as a set of traces that are variations of the original error
trace in which the error does not occur. Negatives are executions that reach the
error state from the same control location; not all possible ways to reach the error
state are accepted. Similarly, positives are executions that pass through that con-
trol location without proceeding to the error state. The method of generating the
negatives and positives uses a model checker to explore backwards from the
original counterexample.

The paper introduces three analysis methods that can be performed on the
negatives and the positives to extract the cause of the error:

1. Analysis of the transitions (similar to the method described in [Ball et al.
2003]): computes sets of projected transitions (pairs of control locations
and actions). After this, the transitions that appear in all positive/negative
traces are reported. The transitions that only appear in negative/positive
traces are also reported. It is also indicated whether these transitions are
such that they appear in all negative/positive traces (causal transitions
that denote precisely the common behaviour that differentiates the nega-
tive and positive sets).

2. Analysis of data invariants over the executions: the same control loca-
tions may be present in both negative and positive traces. It may be that
the control location does not induce the error, but the choice of data val-
ues does. In this analysis, data invariants are calculated over the nega-
tives and these invariants are compared with the invariants of the positive
traces. The invariants are calculated using Daikon [Ernst et al. 2007].

3. Analysing the minimal transformations between negatives and positives:
here the least number of changes required to make a positive into a neg-
ative if looked for.

In experimental tests, the algorithms found 131 variations on one found error. The
analysis implied a function call that was present in all negatives, but also in some
positives, and a few short transformations indicating that the function call has to be
made in certain conditions related to time.

3.5.4.9 Delta debugging

Counterexample minimization has similarities to the test case simplification of the
delta debugging method [Zeller 2002], [Zeller & Hildebrandt 2002]. In delta debug-
ging, a test case that produces a failure is simplified to a minimal test case that still
produces the failure. Every part of the resulting minimal test case is significant in
reproducing the failure. The delta debugging algorithm works by successively
running test cases that contain only a subset of inputs of the original test case. It
also runs test cases in which the complement of the set of inputs is always cho-
sen. If some of the input sets can produce the failure they are chosen as the new

34

3. Model checking large systems

failure inducing test case in the algorithm. If none of the subsets causes the fail-
ure, the granularity of the subsets is increased until a failure-inducing subset (or its
complement) is found. For example, the algorithm starts by dividing the test case
into two halves. If these input sets do not produce the failure, the test case is split
into three mutually exclusive subsets. The complements of these subsets are also
checked. The algorithm stops when removing any single input causes the failure
to disappear.

The delta debugging algorithm is also used in our work to generate sets of vari-
ables that are used to create models that are then model checked. In a way, we
have adapted the delta debugging method (originally used with test cases) to
model checking. We also use delta debugging style minimization in the abstraction
phase of our algorithm.

3.6 Checking the feasibility of the counterexample

The idea of feasibility checking is to find out whether it is possible to obtain the
same error that was discovered in the abstracted model using the non-abstracted
version of the model. If a trace of the full model can be produced that includes all
relevant free variable assignments (the minimized counterexample) then the coun-
terexample is a true counterexample and describes a true error in the mod-
el/system. If the trace is not feasible, this is because some modules’ functionalities
prohibit the variables from obtaining the values of the counterexample. Non-
feasibility means that the specification has to be checked on a more refined ab-
straction of the model.
In order to check counterexample feasibility the following inputs are required:

e The full non-abstracted model.

e A counterexample discovered in the abstract version of the model. The
counterexample should be minimized with respect to the number of free
variable assignments.

The feasibility of the counterexample is checked through the use of invariant
states. The full model is modified by adding a clock variable and invariant states
(NuSMV INVAR clauses) that restrict the behaviour of the model so that only be-
haviours that follow the values of the counterexample are allowed. The clock vari-
able is initialized at 0, and the value is incremented by 1 at each time step until the
length of the counterexample is exceeded. After this, the clock value remains at
the highest value (counterexample length +1). For example, for a counterexample
that consists of seven states the added clock statements would be:

init(clock):= 0;

next(clock) := case
clock < 7 - clock + 1 ;
TRUE : 7;

esac;

35

3. Model checking large systems

Now, in order to restrict the behaviour of the full model, invariant clauses are add-
ed for each variable of the counterexample. The invariant clauses are such that
the clock value implies the value of a certain variable at given times. For example,
if the counterexample states that variable1 has value TRUE at time points 1 and 6,
and FALSE at other time points (time points 0, 2, 3, 4, 5) then the following INVAR
statements would be added:

INVAR (clock = 0) -> (variablel = FALSE)

INVAR (clock = 1) -> (variablel = TRUE)
INVAR (clock = 2) -> (variablel = FALSE)
INVAR (clock = 3) -> (variablel = FALSE)
INVAR (clock = 4) -> (variablel = FALSE)
INVAR (clock = 5) -> (variablel = FALSE)
INVAR (clock = 6) -> (variablel = TRUE)

In order to see whether the counterexample is realizable, we can find out whether
the last state (in which clock is 6) is reachable from the initial state. In this running
example, this can be done by checking the invariant specification:

INVARSPEC (clock != 6);

If the specification is true, it means that the end of the counterexample cannot be
reached in the full model and thus the counter-example is not feasible in the full
model. If the specification is false, a new trace is given as output that describes
how the counterexample (the error) is realized in the full model.

Counterexample feasibility can also be checked using the model checker’s own
command line options. In NuSMV, it is possible to check feasibility of partial traces
by executing them in the full model. This can be done through the command line
option execute_partial_traces. This approach was not used here due to the proce-
dure sometimes terminating and making the result hard to read.

3.7 Abstraction refinement

The idea of abstraction refinement is to find a new abstraction (i.e. a configuration
of non-abstracted modules and interface modules) that is more detailed than the
current configuration of the model and makes the current counterexample infeasi-
ble. The purpose is to find an abstraction level that is between the full model and
the current configuration that could be model checked more efficiently but for
which the refined abstraction could not result in the same counter-example that
has already been extracted from the earlier abstract model. The refined abstrac-
tion can then be used to check the original invariant specification again.
As input, the abstraction refinement step requires:

36

3. Model checking large systems

e The current abstraction level (configuration of modules)
e Module/variable dependency information

e A counterexample trace

e The full non-abstracted model.

The set of modules before the abstraction refinement is denoted by Current. The
set of modules that is added to this set is denoted by Refinement. This set is ini-
tially empty. The general abstraction refinement process is as follows:

1. Find out the shortest prefix P of the minimized counterexample that is not
feasible in the full non-abstracted model.

2. Examine the last state of the prefix P. Extract variable assignments on
this state. Using the dependency graph, deduce the modules that output
these variables. Add these modules to the set Refinement.

3. Check the feasibility of the counterexample prefix P in the model in which
the modules in Current or Refinement are non-abstracted and other
modules are interface modules.

4. If the counterexample is not feasible, go to step 6.

5. Examine the dependency graph of the model. Extract modules that pre-
cede modules in Current or Refinement. Add these modules to the set
Refinement. Go to step 3.

6. Minimize the set Refinement using delta debugging.

In the first step, the shortest infeasible prefix of the counterexample is looked for.
All the feasibility checks used in abstraction refinement are performed as de-
scribed in Section 3.6. The last state of that trace includes some variable assign-
ments that make the trace infeasible in the full non-abstracted model (but are
possible in the current abstraction). Since we want a refined abstraction that
makes the counterexample infeasible, it seems logical to remove the abstractions
that cause the values of these variables. We attempt this by replacing interface
modules that directly influence the values of these critical variables with their non-
abstracted versions. If this does not make the counterexample infeasible, we ex-
pand the set of new non-abstracted modules based on the dependency graph until
the counterexample becomes infeasible. This will ultimately happen, since we
know that the counterexample is not feasible in the full model.

When a successful refinement is first found, it is not necessarily a minimum re-
finement. It is worthwhile to keep the size of the model as small as possible. Thus,
minimizing the refinement is necessary, especially since the feasibility checks
required in the minimization are quite fast to perform. The objective of the minimi-
zation is to find a subset of the modules in Refinement that is sufficient to make
the counterexample infeasible. For this minimization, we use delta debugging (the
algorithm already described in Section 3.5.2) to generate subsets of Refinement
that are checked for feasibility. The approach leads to a local minimum subset of
modules.

37

3. Model checking large systems

3.8 Preliminary results

A prototype implementation of the algorithm was created in the Python program-
ming language. In order to analyse the effectiveness of the algorithm, a model was
created based on the case study in [Lahtinen et al. 2010]. The system is a func-
tion-block-based control system. The detailed implementation is not presented due
to confidentiality issues. We only used a small, simplified portion of the full model
and divided that resulting model into 22 modules (see Figure 1). The tested model
was kept small so that the running times would also remain reasonable.

Testing the algorithm involves many aspects that should be taken into account.
The model checking times vary greatly based on the selected counterexample
minimization, technique and abstraction refinement technique. Other issues that
affect the verification time are the checked property and our implementation that
uses parallel execution. Due to the required diversity of the tests to analyse ade-
quately the algorithm, we only give some preliminary results. A more thorough
analysis is left to future research.

In the preliminary tests, we have used the delta debugging technique in coun-
ter-example minimization and in abstraction refinement. The counter-example
minimization was used on the module level. The running times of the algorithm
were compared with algorithms available in NuUSMV:

e the standard NuSMV invariant checking algorithm: NuSMV command
‘check_invar’ with the command line option ‘—coi’ (cone-of-influence
reduction)

e the NuSMV invariant-checking algorithm: NuSMV command
‘check_invar’ with the command line options ‘-coi’ (the cone-of-
influence reduction) and
‘-dynamic’ (dynamic variable ordering)

e the NuSMV bounded model checking algorithm for invariants: NuSMV
command ‘check_invar_bmc_inc'.

The model used was the same full non-abstracted model as that used in our algo-
rithm.

The verified properties 1, 2 and 3 are random invariants that are false in the
model. The properties 4, 5, 6 and 7 are derived from the requirement specification
of the original system. Properties 4, 5 and 7 are true in the model. Property 6 is
not true because some parts of the system have not been included in the model.

38

3. Model checking large systems

Table 1. Model checking times of the compared algorithms.

NuSMV invariant | NuSMV invariant checking | NuSMV BMC Our CEGAR loop-
checking with dynamic variable algorithm for in- based algorithm
ordering variants

Property 1 0.2s 0.7s 0.3s 09s
Property 2 5 min 50 s 8.6s 3.6s 49s
Property 3 0.3s 1.1s 04s 12s
Property 4 5 min 50 s 8.4s 3.3s 53s
Property 5 >1h 6.7s 50s 0.6s
Property 6 11min15s 8.3s 8.2s 14 s
Property 7 >1h 2minl4s 6.5s 2min25s

The performance of the BMC algorithm is very good in all cases. The BMC algo-
rithm also manages to prove the invariants that are true. Most BMC algorithms can
only find counter-examples but not prove properties. The BMC algorithm em-
ployed in Table 1 can also prove properties but the needed bounds can be too
high to do so in practice.

In the case of properties 1, 2 and 3, the algorithm discovers an abstract coun-
terexample that is minimized and checked for feasibility on the full model. A single
iteration of the algorithm is required. For property 2, our algorithm is faster that the
NuSMV invariant-checking algorithms.

In the case of property 5, our algorithm discovers that the initial abstract model
is true. The verification is faster than all the NuSMV algorithms.

While verifying property 4, our algorithm performs two iterations. It is still quite
fast: the verification is faster than the standard NuSMV invariant-checking algo-
rithm.

Property 7 is the most difficult to verify. Our algorithm uses three iterations to
solve it. Compared with the NuSMV invariant-checking algorithms, the verification
time is still quite competent.

3.9 Shortcomings of the current approach and further
development

The efficiency of the algorithm depends largely on the examined formal property.
In particular, if the property is such that it requires multiple iterations of the algo-
rithm it is probable that the algorithm will not outperform traditional model checking
methods. In some cases, all modules of the model may have to be analysed in
order to verify a particular property. In these cases the algorithm is of no use.

In cases where the verification leads to a counterexample, a simple BMC check
on the full non-abstracted model is likely to be faster than using the algorithm. This
is because BMC is usually quite fast even in large models. However, traditional
BMC cannot prove that a property is true. The algorithm becomes valuable when a
counterexample cannot be found by BMC in reasonable time and traditional BDD-

39

3. Model checking large systems

based model checking cannot prove the property with reasonable resources (time
or memory). In these cases, it is possible that the algorithm finds a sufficient sub-
set of the modules that is computationally feasible. The algorithm can sometimes
be used to prove properties of a system that cannot be otherwise proven.

Another shortcoming of the algorithm is that only safety properties can be veri-
fied. The implementation of the algorithm is currently for the invariant properties of
NuSMV. Verifying liveness properties, for example, is left to future research.

The algorithm spends significant effort minimizing the counterexample traces.
This is a trade-off situation. Minimization tends to support the counterexample
feasibility checks and keeping the size of the abstraction small. On the other hand,
if too much effort is put into minimization, the verification takes a long time (possi-
bly more than just applying traditional model checking methods). It may be rea-
sonable to perform minimization only on a broad level. Simple module-level mini-
mization may be enough.

Improving the counterexample minimization step is one potential future re-
search subject. Using a QBF (quantified Boolean formula) solver in counterexam-
ple minimization may make the minimization step faster. The counterexample
minimization problem can be solved by writing it as a quantified Boolean formula
(Boolean logic with quantifiers). The solutions to this formula describe a minimized
counterexample.

New approaches could also be found for the abstraction refinement step. Using
a MUS solver in abstraction refinement is a possible improvement. A MUS solver
finds a minimal unsatisfiable core of clauses in a set of clauses (a SAT problem).
Since the model checking problem can be described as a SAT problem, a MUS
solver could be used to find these clauses. The set of clauses would then be used
in abstraction refinement to select a minimal set of modules that makes the spuri-
ous counterexample infeasible.

Further improvements to the algorithm could be related to using assume-
guarantee reasoning. Assumptions related to different modules can be used to
facilitate the verification. The assumptions could then be verified separately. How-
ever, some more systematic methodology is needed.

Finally, we plan to extend the current methodology to more detailed models.
We envision that fault models (as described in Section 4) and asynchronous prop-
erties (as seen in the UPPAAL models in Section 5) could be integrated into our
methodology in a modular manner. This kind of modular extension of the model
together with the use of the algorithm could allow the verification of very large and
detailed models of a system.

40

4. Architecture-level model checking

This section discusses model checking of 1&C safety systems at architecture level.
‘Architecture level’ in our context means that in addition to modelling the intended
(software function of a) safety I&C system, we also take into account the hardware
architecture of the system. In particular, hardware is modelled as a set of individu-
al components and container elements through which the information flows.
Hardware failures (possibly including a defined set of common cause failures) are
included in the model to induce alterations to the information flow. The intention is
to examine the effects of a set of hardware failures on the overall operation of the
safety system.

The YVL guides state that a safety system (typically implemented in several
subsystems) shall accomplish the safety function in the case of a single failure and
simultaneous inoperability of any other component due to maintenance. Using the
methodology described in this section, the realization of the safety function imple-
mented in software can be verified using a model that also examines the behav-
iour of the system in all possible hardware failure cases. The methodology also
allows, e.g., the analysis of hypothetical common cause failures and their effect on
the safety function.

The term ‘architecture level’ in this section is only discussed in the context de-
fined above. For instance, issues related to control room architecture, software
architecture and system security are not addressed.

4.1 Model checking systems with detailed fault models

Our model checking methodology has focused primarily on the verification of logic
designs. We have also analysed single-fault tolerance of these designs, but the
fault models have been quite non-detailed. Typically, the exact functional behav-
iour of the system is abstracted to a bare minimum to focus on the fault tolerance
issues and thus only the status/fault bits of an automation system have been im-
plemented in the model. However, the behaviour of a system can be examined in
more detail by creating more detailed fault models. The fault models can include
physical faults such as faults in telecommunication links, microprocessor faults,

41

4. Architecture-level model checking

cable failures and electrical faults influencing all equipment in a cabinet. Common-
cause failures (CCFs) could also be postulated in such a fault model.

Using detailed fault models, model checking could be used to analyse the fault
tolerance of hardware architecture designs. If it were possible to analyse the logi-
cal design together with a fault model based on the hardware architecture, the
overall system behaviour could be analysed under various assumptions. However,
in this work the logical design is abstracted to a bare minimum to focus on the
faults themselves. In addition to single-fault tolerance, all kinds of failure assump-
tions can be made on the model.

This paper presents how an 1&C system can be modelled so that various hard-
ware failures are taken into account. The model checking tool used in this work is
NuSMV. The technique is intended to be an extension of our current techniques of
modelling logic designs, so that these two aspects of the system could be exam-
ined in the future using a single combined model. Modelling logic designs requires
as input only low-level design diagrams such as function block diagrams and a set
of requirements. In addition to this, detailed fault models require a hardware archi-
tecture description of the system and a document covering the postulated failing
components and their failure modes. For example, a failure mode and effects
analysis (FMEA) report typically provides this information.

4.2 An example system

The fault model methodology was developed using a simple imaginary system.
The example is essentially realistic though it does not encompass all the relevant
details of a real I&C system. Most importantly, the example does not have any
redundancy that would allow more sensible analysis of the system under various
failure assumptions. The purpose of the example is to demonstrate the fault mod-
elling methodology.

42

4. Architecture-level model checking

Room 1

Cabinet 1 Measurement 1 Measurement 2 Measurement 3

Y

Cable 1 — Cable 2 % Cable 3
Room 2 ‘
Communication
. Processor
Cabinet 2
Processor
v v
Cable 4 : : Cable 5
Room 3
v v
Actuator 1 Actuator 2

Figure 5. Hardware architecture of the example system.

The hardware configuration of the imaginary system is described in Figure 5. The
system produces actuator signals based on three measurements located in Cabi-
net 1. Measurement 1 is of analogue type and has values in the range of 0 to 20.
Measurements 2 and 3 have binary values. Each measurement is delivered
through a cable to a processing unit that decides when the actuator signals are
set. The processing unit located in Cabinet 2 has two parts: a communication
processor that collects the input signals and a processor that does the calcula-
tions. The output signals of the processor are sent to the two actuators via two
cables. Finally, all the hardware components are located inside buildings: the
measurement devices inside Cabinet 1 are located in Room 1, the processing unit
inside Cabinet 2 is located in Room 2, and the actuators are located in Room 3.
Cables 1, 2 and 3 are located in Rooms 1 and 2. Cables 4 and 5 are located in
Rooms 2 and 3.

The logical function realized by the processor of the example system is illus-
trated in Figure 6. The logic consists of a comparator function block, an AND func-
tion block, a set-reset flip-flop and a TON timer. The flip-flop is set whenever Input
1 has a high value (over 10) and Input 2 is true. If Inputs 1 and 2 have low values,

43

4. Architecture-level model checking

the flip-flop can be reset by Input 3. Output 1 is set whenever the flip-flop is set.
Output 2 is set whenever the flip-flop has been set for 3 seconds.

Input 2

(Boolean) Input 3 (Boolean)

Input 1 (0..20)

‘ Timer ON (3s) ‘

Output 1 ’ Output 2 ‘

Figure 6. The logical function of the example system.

In the example system we want to be able to model both the logical function of the
system and a set of failures related to the hardware structure. In the example, we
assume the following failing components and failure modes (the failures can occur

at any time point):

44

4. Architecture-level model checking

e Component 1: Analogue measurement device
e Failure mode 1: Value stuck at minimum value
e Failure mode 2: Value stuck at maximum value
e Failure mode 3: Non-deterministic value (changes at every
time point)
e Components 2—3: Digital measurement devices
e Failure mode 1: Value stuck at ‘0’
e Failure mode 2: Value stuck at ‘1’
e Failure mode 3: Random value
e Components 4-8: Cables
e Failure mode 1: Cable broken
e Failure mode 2: Disturbance causing overcurrent
e Component 9: Communication processor
e Failure mode 1: Loss of operation
e Failure mode 2: The two Boolean signals are erroneously
swapped
e Component 10: Processor
e Failure mode 1: Loss of operation
e Components 11-12: Actuators
e Failure mode 1: Loss of operation
e Failure mode 2: Spurious actuation.

We also assume a set of common cause failures that lead to the failure of several
components simultaneously:

e CCF 1: Cabinet 1 electrical failure leading to loss of functions in Cabi-
net 1. This is represented by values of the measurement devices being
stuck at the minimum value.

e CCF 2: Cabinet 2 electrical failure leading to loss of functions in Cabi-
net 2. This is represented by the loss of function in the processors.

e CCF 3: Fire in Room 1 damages Cables 1, 2 and 3 and causes the
measurement devices to fail.

e CCF 4: Fire in Room 2 causes loss of function in the processors and
damages all cables.

e CCF 5: Fire in Room 3 destroys Actuators and Cables 4 and 5.

e CCF 6: Due to electromagnetic disturbance all cables experience dis-
turbance.

In addition to the failure mode effects in the components, the consequential effects
of the failures have to be identified. Special attention is needed in cases in which
the failure causes the output of the component to become outside range, such as
overcurrent/overvoltage/loss of signal. In our example, the following are taken into
consideration:

e Adisturbance in the cable is transferred to the communication proces-
sor or actuator. The communication processor identifies the failure (if it
operates), and changes the status bit of the signal to TRUE. If the ac-

45

4. Architecture-level model checking

tuator receives this signal disturbance, and the actuator is operable, it
produces a spurious actuation.

e The processor can only perform calculations using proper signals. If
the received input signal has disturbances this is detected and the in-
put used for software calculations is set to a minimum value.

4.3 Modelling methodology

The general idea is to have a model that consists of separate modules for depict-
ing hardware and the effects of failures, and modules for realizing the software
functionality. In our example system, the corresponding model has two hardware
modules and one software module. The first hardware module represents the
hardware, failures and information flows before the software is executed. The
software module implements the logical function of the system. The second hard-
ware module represents hardware, failures and information flow after software
execution. The module composition is illustrated in Figure 7.

46

4. Architecture-level model checking

HW Module 1

Room 1

Measurement 1 Measurement 2 Measurement 3

Cable 1 — Cable 2 — Cable 3

Room 2

Communication

Processor

Processor

SW Module

HW Module 2

Processor

Cable 4 Cable 5

Room 3

A A

Actuator 1 Actuator 2

Figure 7. Module composition of the model.
4.3.1 Software modelling

The software was modelled using the traditional methods of 1&C systemn model
checking. The model is based on a small function block library that is used to
implement the software function in Figure 6.

47

4. Architecture-level model checking

4.3.2 Hardware modelling

The hardware modules describe the behaviour of a group of hardware compo-
nents and the information flows that exist between the components. In the exam-
ple, there are two hardware modules (see Figure 7. HW module 1 has as input an
analogue variable and two Boolean variables. The module takes into account the
failures of the components it encapsulates and gives as output the values wit-
nessed by the logic program (software module). HW module 2 transmits the out-
puts of the software to the appropriate actuators (again taking into account possi-
ble failure effects). The resulting actuator behaviour produced by the system is
given as output of HW module 2.

Each of the hardware components (e.g. cable, processor) inside a hardware
module is modelled as a sub-module. A sub-module has as input:

e The value of the signal transferred via the component (e.g. ‘0'/'1")

e A fault status signal (inherent actual status bit used by the software)

e The specified range of the signal including minimum and maximum value

e Signal disturbance information (if, for example, an overvoltage signal is
carried instead of a signal value in the proper range)

e Avariable indicating the components that will fail at a given time point (an
array)

e A variable indicating the failure modes of these components at a given
time point (an array)

e An identification tag of the particular hardware component.

Based on the failure information given as input, the sub-module determines the
value of the signal, the fault status of the signal and whether any disturbances
have arisen. These three values are then given as output and further as inputs to
the next hardware component sub-module.

In our example, the cabinets and rooms were not modelled as sub-modules of
the hardware module, since it was interpreted that these aspects are not actual
components that directly influence the information flow. Failures of cabinets and
rooms were modelled as common cause failures that cause a defined set of fail-
ures in the actual components.

The software is executed by the processor, and the processor’s fault behaviour
can thus be modelled in both of the hardware modules. This is done by creating a
processor sub-module in both hardware modules. The first part can be used to
describe failures that can be seen to occur before the calculations are performed,
for example, in input reception. The second part can be used to describe failures
that envelop the software outputs. (For example, it does not matter what the out-
come of the software is if the processor has no power. These kinds of failures
override the results of the software calculations.) In our example model, a proces-
sor sub-module was created in both hardware modules but all failures of the pro-
cessor were modelled in the second part (in HW module 2).

48

4. Architecture-level model checking

4.3.3 Considerations on fault modelling

Our modelling methodology allows multiple simultaneous failures. Fault modelling
and the issues that arise due to the multiple failure assumption are discussed in
this section.

4.3.3.1 Component failures and common cause failures

Every single component can choose to fail in a way that is manifested by one of
the possible failure modes related to that component. A component cannot be in
two failure modes at the same time. This achieved by:

e A Boolean array component_failure [1..12]: For each individual compo-
nent there is a Boolean variable that states whether that component will
fail. The array is such that the initial Boolean values are chosen non-
deterministically, and the value will not change after that.

e An array of type [1..3] component_failuretype [1..12]: For each individual
component, the failure mode (1, 2 or 3) is selected. The initial value is se-
lected according to the component, i.e. a cable cannot have failure mode
number 3, since only two failure modes are specified. Other than that, the
value is chosen non-deterministically at the initial time step, and the value
will not change after that.

In addition to failures of single components, common cause failures can also be
modelled. A common cause failure will affect a number of the individual compo-
nents, causing them to reach one of the failure modes of that component. This is
achieved by:

e A Boolean array ccf_failure [1..6]: A Boolean variable exists for each
possible CCF scenario. The values are chosen non-deterministically and
do not change after the initial time step.

4.3.3.2 Failure time dependency

The software behaviour is dependent on the time instance at which the failures
manifest themselves. In order to cover all possible scenarios, our model should at
least allow components to fail after a non-specified time. This is achieved by:

e A Boolean array component_failure_realizes [1..12]: a Boolean variable
for each individual component indicating whether the failure is experi-
enced by the system. The values of the variables are such that at each
time point the Boolean value can choose to have value 1, and if 1 is
chosen the value will not change anymore.

e A Boolean array ccf_realizes [1..6]: a Boolean variable for each CCF
scenario indicating whether the CCF failure is experienced by the sys-
tem. The values of the variables are such that at each time point the

49

4. Architecture-level model checking

Boolean value can choose to have value 1, and if 1 is chosen the value
will not change anymore.

In this example, we have chosen to model failures that are permanent after the
first failing time step. Any other desired temporal behaviour of failures can be
created by modifying these two model variables.

4.3.3.3 Failure prioritization

We assume multiple failures. This is why there must be some prioritization of the
CCEF failures and failures of individual components, i.e. if an individual component
fails and there is a simultaneous CCF affecting that component, how will the com-
ponent behave? Which failure is dominating? The end results (which failure
modes actually take place in the components) when all CCFs are taken into ac-
count are represented by another set of variables:

e A Boolean array failure_manifestation [1..12]: a Boolean variable for
each individual component indicating whether the component failures
and CCFs lead to an end effect that is experienced as a failure at a giv-
en time point.

e An array of type (1/2/3) failure_type [1..12]: for each individual compo-
nent, the value indicates the failure mode at a given time point that is
experienced when component failures and CCFs are taken into account.

Below is some actual model code of Component 1 (the analogue measurement
device). The component is affected by CCFs: Cabinet 1 failure and Room 1 fire.
The CCFs are presented before the component failure variable in the case struc-
ture, so that in case of a CCF occurring simultaneously with a failure in the ana-
logue measurement device, the loss of failure caused by the CCF overrides any
other component failure. The time points at which the failures occur are also taken
into account (variables ccf_realizes, component_failure_realizes).

init(failure_manifestation[1l]) := case
ccf_failure[1l] & ccf_realizes[1l] : TRUE;
ccft_failure[3] & ccf_realizes[3] : TRUE;
TRUE : component_failure[1l] & compo-
nent_failure_realizes[1];

esac;
next(failure_manifestation[1l]) := case
next(ccf_failure[l]) & next(ccf_realizes[1])
TRUE;
next(ccf_failure[3]) & next(ccf_realizes[3])
TRUE;

TRUE : next(component_failure[l1l])&
next(component_failure_realizes[1]);
esac;
init(failure_type[1l]) := case
ccft_failure[1l] & ccf_realizes[1] : 1;
ccf_failure[3] & ccf_realizes[3] : 1;

50

4. Architecture-level model checking

TRUE : component_failuretype[1];
esac;
next(failure_type[l]) := case
next(ccf_failure[1]) & next(ccf_realizes[1]) :

1;

next(ccf_failure[3]) & next(ccf_realizes[3]) :
1;

TRUE : next(component_failuretype[1]);
esac;

The prioritization of the component failures and CCFs can be difficult because the
issue is not typically addressed in an FMEA that primarily focuses only on a single
failure occurring at a given time.

4.3.3.4 Single-fault tolerance examination

Limiting the model so that only a single failure is examined makes the verification
task simpler. This could be done, e.g., by using a variable that non-
deterministically chooses one of the failure cases (instead of the arrays that are
used in the example). Examining only single failures also simplifies the issue of
failure prioritization.

Our modelling methodology, however, also allows the analysis of single failure
tolerance. The code below restricts the model to behaviour in which a single com-
ponent failure or a CCF is occurring. The code creates a variable nro_of_faults
that calculates the number of occurring component failures and CCFs (non-
deterministic variables). The last line is an invariant clause that states that
nro_of_faults should not be greater than 1. The invariant could easily be changed
to any number of failures.

DEFINE

nro_of_faults := toint(component_failure[l]) +
toint(component_failure[2]) +
toint(component_failure[3])
toint(component_failure[4])
toint(component_failure[5])
toint(component_failure[6])
toint(component_failure[7])
toint(component_failure[8])
toint(component_Tfailure[9])
toint(component_failure[10])+
toint(component_Tfailure[11]) +
toint(component_failure[12])+
toint(ccf_failure[l1])+
toint(ccf_failure[2])+
toint(ccf_failure[3])+
toint(ccf_failure[4])+
toint(ccf_failure[5])+
toint(ccft_failure[6]);

+ 4+t ++ o+

ASSIGN
INVAR nro_of faults <= 1;

51

4. Architecture-level model checking

4.3.3.5 Consequential failures

The modelling methodology created here allows for the examination of some con-
sequential failures. By this we mean that, for example, a voltage spike in a cable
could cause a consequential failure also in the device receiving the signal. Such
cases are modelled using a parameter that carries information about the signal
quality. Based on the case, this could include at least overvoltage/overcurrent, low
voltage/current, loss of signal or a drift in the signal. The behaviour of the compo-
nent receiving the bad signal should then be modelled in that component’s sub-
module. This may require prioritization: which failure dominates if there is disturb-
ance in the input and a simultaneous component failure? If the component cannot
detect the input disturbance and retransmits the value as such, this signal quality
information can also be given as output of the sub-module.

Below, the definitions for two component sub-modules are given as an example
of how consequential failure effects can be analysed. In hardware module 2, ca-
bles transmit the signal to the actuators. If the cable is broken (failure mode 1), the
transmitted signal (output) takes a logical ‘0’ (min) value. In addition, the signal
quality output (output_errortype) also takes the value ‘0’ indicating that the signal
is lost, and it is not an actual logical ‘0’ that is transmitted. In the case of the dis-
turbance (failure mode 2) in the cable, the logical output is set to ‘1’ (max), and a
‘2’ is given as signal quality output indicating an overcurrent. In the actuator sub-
module, the signal quality is received as an input (signalerror) and the value ‘2’
(overcurrent) causes the actuator to reach the spurious failure mode. As a conse-
guence, the logical output of the actuator is set to ‘1’ (max). The final result is a
spurious actuation caused by an overcurrent in the cable.

MODULE cable(var, var_FAULT, min, max, range, signalerror,
failure, failuretype, id)
DEFINE
broken := failure[id] & (Ffailuretype[id]=1);
disturbance := failure[id] & (failure-
type[id]=2) ;
output := case
broken : min;
disturbance : max;
TRUE : var;
esac;
output_FAULT := var_FAULT;
output_errortype := case
disturbance : 2; --# overcur-
rent to the next hw component
broken : 0;
TRUE : signalerror; --# the possible
existing disturbance in the signal

transfers through the cable

esac,;
ASSIGN

52

4. Architecture-level model checking

MODULE actuator(var, var_FAULT, min, max, range, signal-
error, failure, failuretype, 1id)

DEFINE
lossofoperation := failure[id] & (failure-
type[id]=1) ;
spurious := case
failure[id] & (failuretype[id]=2) :
TRUE;
signalerror = 2 : TRUE;
TRUE : FALSE;
esac;
output := case
lossofoperation : min;
spurious : max;
TRUE : var;
esac;
output_FAULT := var_FAULT;
output_errortype := 1;
ASSIGN

4.4 Application of compositional verification

The software and hardware in the example are separated. This suggests that
some verification tasks could be divided into smaller subtasks that together imply
correct behaviour. In fact, assume-guarantee reasoning can be applied to the
verification of our example system.

In assume-guarantee reasoning, the system M is verified against a specification
P by dividing the system into two parts, M1 and M2, that are verified in isolation.
The system is typically expected to satisfy its requirements only in a specific con-
text. For example, it can be assumed that M1 satisfies another specification A.
Now, we can verify P on M compositionally:

1. First we verify that M1 satisfies A.

2. Next we verify that if A is assumed then M2 satisfies P. In other words
the specification A>P is checked on M2.

3. These two independent verifications imply that the whole system M
satisfies P.

In systems such as our example, given a specification P, it can be possible to
separately verify the software functionality and after that verify the functionality of
the hardware system (in specified failure conditions) assuming that the software
functions as specified. In other words, the model M is divided into software (M1)
and hardware (M2). The assumption A that software works as specified is first
derived from P and verified on M1. Then it is verified that the hardware part (M2)
satisfies the specification P if A is assumed. In the analysis of the hardware, the
software module can be replaced with an interface module that has no internal
functionality. The checked specification is changed into the form: ‘if the software

53

4. Architecture-level model checking

inputs and outputs behave as specified, then the overall system behaves as speci-
fied'.

45 Results

The resulting model describing the behaviour of the running example is quite large
(~1000 lines of code). A major part of the model consists of the init and next
clauses of the variables determining the failing components and failure modes at a
given time point. This is because case structures have to be written separately for
each component, each CCF and each failure mode variable.

Even though the example is quite simple, the resulting model becomes com-
plex. This is mainly because our methodology allows multiple failures that compli-
cate the model. The model would be more efficient without the assumption of
multiple simultaneous failures. To see how the assumption of the number of simul-
taneous errors affects the running time of the model, two temporal logic specifica-
tions were checked on three versions of the model. The first version has an addi-
tional invariant that states that no failures are allowed. The second model allows
one failure. The third model makes no limitations on the number of possible fail-
ures. The examined temporal specifications were:

e Specification 1: A value 20 of the analogue measurement 1 and a
true value of the digital measurement 2; always cause the first actuator
to actuate. In LTL this can be written as:

G ((measurementl = 20 & measurement2 = TRUE) ->
actuatorl_operates)

e Specification 2: A value 20 of the analogue measurement 1 and a
true value of the digital measurement 2; will eventually lead to the ac-
tuation of the second actuator. In LTL this is written as:

(G (measurementl = 20 & measurement2 = TRUE)) ->
F actuator2_operates

If no failures are allowed, both specifications are true. In case of failures, both
specifications are false. For example, if a single failure is assumed, the first speci-
fication results in a counterexample that describes the behaviour in which meas-
urement device 2 experiences a random failure that masks the true value. The
model checking times for all model versions are shown in Table 2. We can see
that when the number of assumed simultaneous failures increases, the model
checking times also increase. For such a small system, the model checking time
of the multiple failure model is quite long.

54

4. Architecture-level model checking

Table 2. Model checking times of two specifications.

No failures Single failures Multiple

failures
Specification 1 5s 10s 163s
Specification 2 4s 9s 199s

If the compositional assume-guarantee approach described in Section 4.4 is used,
two additional specifications are first written:

e Specification la: A software inputl value 20 of the analogue input
and a true value of software input2; always cause software outputl to
be set. In LTL this can be written as:

G ((inputl = 20 & input2 = TRUE) >

outputl)

e Specification 2a: A software inputl value 20 of the analogue input
and a true value of software input2; will eventually lead to software
output? set. In LTL this is written as:

((G (inputl = 20 & input2 = TRUE)) > F output2)

Specifications 1la and 2a are separately checked on models that consist only of
the software module. Both specifications are true. The model checking time is <<
1s in both cases. After this, the software module in the model of the overall system
is replaced with an interface module in which the internal behaviour is removed,
and the two software outputs are changed into non-deterministic Boolean varia-
bles. This modified model is then checked against specifications:

e Assume-guarantee specification 1: Whenever specification 1a is
true, specification 1 is also true. In LTL this can be written as:

G ((inputl = 20 & input2 = TRUE) - outputl)

>

G ((measurementl

= 20 & measurement2 = TRUE) =
actuatorl_operates)

e Assume-guarantee specification 2: Whenever specification 2a is
true, specification 2 is also true. In LTL this can be written as:

((G (inputl = 20 & input2 = TRUE)) > F output2)

>

((G (measurementl

= 20 & measurement2 = TRUE)) ->
F actuator2_operates))

55

4. Architecture-level model checking

Table 3. Model checking times using the assume-guarantee approach.

No failures Single failures Multiple
failures
Assume- 3s 5s 7s
guarantee 1
Assume- 3s 5s 9s
guarantee 2

The model checking times using the assume-guarantee approach are shown in
Table 3. We can see that the assume-guarantee-based verification approach is
much more effective.

4.6 Remaining problems

The most important problem in our example seems to be that even a model of a
simple system quickly becomes quite complex. The application of assume-
guarantee reasoning has a significant effect on the verification time of the system.
Limiting the scope of the analysis by, e.g. focusing only on single failures, simpli-
fies the verification.

The single-failure analysis of safety systems could be made more efficient by
integrating the approach to the algorithm used for model checking large systems
described in Section 3. The integration would require the system (software, hard-
ware and fault modelling) to be modelled in a compatible manner. Using separate
modules for software and hardware is a good starting point. In the running exam-
ple discussed in this report, the software module is already compatible with the
algorithm for large systems, as it can be replaced with an interface module. Similar
modelling techniques for abstracting the hardware modules are probably needed.
Furthermore, a major part of the failure model is currently part of the main module
of the model. This behaviour needs to be encapsulated in a separate module or
integrated with the hardware modules. The role of assume-guarantee reasoning
together with the algorithm is also an open matter. Creating more systematic
methodology for large systems and detailed fault models is left to future research.

Another practical problem is the modelling of communication architectures. In
our example, all connections were point-to-point, which made modelling the infor-
mation flow easy. Safety systems may, however, implement all kinds of network
topologies (e.g. serial bus) to transmit signals. The modelling of these issues is left
to future research.

Failures in hardware components are frequently discussed in the context of
probabilistic reliability analysis. The methodology developed here should be made
consistent with these already existing concepts and methods. Differences between
the two approaches have not yet been identified. Merging this method with the
reliability analysis environment is left to future research.

56

4. Architecture-level model checking

Finally, our fault models could possibly be used in the identification of new
common-cause failures. For example, if a new consequential failure effect in the
system is identified or postulated, it may not be clear how it affects the overall
system. The methodology used here could be used to analyse the overall effects
of hypothetical consequential failures in the system.

57

5. Asynchronous techniques for modelling
timed automata

5.1 Introduction

5.1.1 Work description

In this work, we look into techniques for modelling safety-critical systems repre-
sented using function block diagrams. Three alternative techniques are presented
for modelling, each with a different approach to the problem. The techniques are
based on the methodologies designed in the MODSAFE project, as described in
[Ropponen 2010]. Furthermore, the techniques are evaluated based on the sim-
plicity of the modelling and the efficiency of the analysis according to UPPAAL.

We form a component library for UPPAAL to construct systems consisting of
the components. The component library should be as modular as possible to offer
flexibility when similar function blocks are found in other systems. This enables
easy modelling by combining individual components into the entire system by
parameterization. However, some of the techniques sacrifice modularity for verifi-
cation speed, having the modeller make changes to the components themselves
depending on the system. In this case, some components of the function block
chart are only represented by functions of the templates of the UPPAAL model.

Three case studies are used to evaluate the techniques: two have been com-
pleted and one is currently being worked on. The case studies are models of elec-
trical circuits from safety-critical automation components. The automation: circuits
use fault signalling in addition to normal signals: if a fault is detected in the inputs
to the circuit, the fault signal is propagated to areas that are affected by those
inputs. Models without fault signal processing were also made for comparing the
impact to performance.

5.1.2 The UPPAAL model checker

UPPAAL is a real-time model checker, which can model, validate and verify real-
time systems. The systems are modelled with networks of timed automata. The
state of the system in UPPAAL includes the locations of the automata as well as

58

5. Asynchronous techniques for modelling timed automata

the values of the clocks and integer variables. UPPAAL is available at
http://www.uppaal.com. [Behrmann et al. 2004]

When the time scales of the delays of the system vary greatly, it is difficult to
verify properties of the system with conventional testing. In these cases, UPPAAL
is at its most useful as a model checking tool. On the other hand, having a large
number of input signals makes UPPAAL models particularly slow to verify.

5.2 Modelling Techniques

In the following section, we present three techniques for asynchronous modelling
of function block diagrams. The first technique uses standard methods for model-
ling with UPPAAL, with a UPPAAL component for each component in the system.
The second technique replaces certain components with functions and the third
technique expands the second using an external program to determine possible
output combinations of the initial time-independent section of the system.

5.2.1 Standard asynchronous modelling technique

This technique is the asynchronous modelling methodology described in the
MODSAFE project, as seen in [Ropponen 2010]. Each input and component in the
system has its own component in the UPPAAL model as well as its own synchro-
nization channels for input and output. Since the technique uses asynchronous
modelling, the system does not have system-wide clock cycles for synchronizing
the components. Instead, the model does not make any assumptions concerning
the order in which the components are updated, thus making it possible to exam-
ine all possible orders of events.

This approach makes modelling relatively straightforward to implement with
UPPAAL. When modelling the system, it suffices to add new components to the
system declarations page and new variables to the declarations page of the pro-
ject. However, every component of the system with its own component in UPPAAL
increases the size of the model and slows down the verification compared with a
model in which some components are replaced with functions. The time-
independent components can be modelled with small automata consisting of only
a few locations. On the other hand, the time-dependent function blocks have larg-
er automata and require the use of clocks.

5.2.2 Function-based asynchronous modelling technique

With the function-based modelling technique, the time-independent components of
the system are not always represented by their own components in the UPPAAL
model. Instead, the output of a time-independent section of the system may be
calculated in the preceding input component or time-dependent component with
the help of functions. Before an edge that produces a synchronization signal is

59

http://w
http://www.uppaal.co

5. Asynchronous techniques for modelling timed automata

taken, the output of the following group of time-independent components iis calcu-
lated. The result is relayed as input to the next time-dependent component. For
example, the calculation of the output of all time-independent components before
the first time-dependent components is included in the input components. Fur-
thermore, now all the input signals originate from a single component, which
changes the value of one input at a time.

Time-independent components in later parts of the system can also be re-
placed with functions. The technique is similar to the one used for the input com-
ponents, but synchronization channels are added from the time-dependent com-
ponents with the input values. It should be noted that every synchronization chan-
nel for an input needs its own edge, making modelling more complicated than for
input components.

This approach decreases the space required by the UPPAAL model because
the model has fewer time-independent components and input components. This
may increase verification speed since calculating only with functions is significantly
faster than taking transitions in separate components. As a result, the function-
based technique can be especially helpful when the system has many inputs and
time-independent components. With this technique, UPPAAL can focus on its
strength in modelling time-dependent components with real-time clock variables,
while time-independent functions are easier to model with functions.

However, the input component calculates all the outputs of the time-
independent section regardless of the change in input value. This is not always the
case with the standard modelling technique, since calculation may stop quickly if
the change in input does not change the output of the following components.

Furthermore, the techniqgue makes modelling more complicated. With the
standard technique, it suffices to add components to the system declarations page
and variables to the declarations page. With the function-based technique, the
user also has to make changes to the functions and parameters of the compo-
nents, although the modifications of the components resemble the contents of the
system declarations page to some extent. This decreases the modularity of the
components, thus making the components system-dependent.

5.2.3 Function-based asynchronous modelling technique with input

reductions

This technique is based on the previous one, with the addition that an external
program is used to determine the possible combinations of outputs of the initial
time-independent section of the system. The input component of the UPPAAL
model is then modified so that it only produces possible combinations of these
output values. Many of these outputs are given as inputs to the first time-
dependent components of the system. However, there are also outputs of the
initial time-independent section that are outputs of the entire system and do not
affect the time-dependent components. If the modelling of these outputs is consid-

60

5. Asynchronous techniques for modelling timed automata

ered unnecessary, they may be removed from the model to increase verification
speed and decrease the effort of modelling.

This technique decreases the verification time by reducing the number of pos-
sible input combinations and removing the need to calculate these values sepa-
rately. The technique tends to be useful for systems with a large time-independent
section preceding the first time-dependent components and many input signals
compared with the number of outputs of the time-independent section. More pre-
cisely, the more combinations of outputs that can be reduced by the program, the
better this technique is for the system in question. On the other hand, for some
systems the technique does not provide any impossible output combinations.
Even then, removing the initial time-independent section of the system increases
verification speed.

However, it is not always best to explicitly list all possible combinations if the list
is overly long. It is most beneficial to list values for the inputs whose combinations
decrease most, while inputs that are relatively independent from others may be
modelled with functions, similarly to the previous technique. The user of this tech-
nigue has to analyse the data given by the external program carefully to determine
the best course of action.

This technique makes modelling significantly more complicated, as you must
first construct the time-independent section of the system with the external pro-
gram, have it calculate outputs and then modify the input component of the
UPPAAL model. However, for simple systems, the possible output combinations
can be deduced without the help of the program. It is particularly easy to deter-
mine the possible combinations of fault inputs because the value 1 of a fault varia-
ble generally spreads to all following components.

If there are large clusters of time-independent components between time-
dependent components, it may be worthwhile to use this technique even when the
first time-dependent components are early in the system. Namely, it is possible to
examine the outputs of the time-dependent components and then use the program
to determine which combinations of inputs for the next time-dependent compo-
nents are possible.

The external program used was written in Java with the help of the JavaBDD
library. The program takes as input the BDDs, binary decision trees, describing the
time-independent section of the system. For each output of the time-independent
section, a BDD is given as input. The program then constructs a BDD that de-
scribes whether there is a combination of inputs that results in a specific combina-
tion of outputs of the time-independent section. Finally, the program prints the
truth values satisfying the BDD, in other words the possible combinations of output
values for the time-independent section.

The following pictures demonstrate the functionality of this technique. The first
picture describes modelling with regular inputs, while the second picture describes
modelling with input reductions.

61

5. Asynchronous techniques for modelling timed automata

Inputs Inputs to the

time-dependent

section Outputs

> Time- Time-

— = | independent :D> dependent
—= section section

— =

Inputs to the

time-dependent

section Outputs

section

Input Time-
generator ‘:C> dependent

5.3 Modelled Components

5.3.1 Standard asynchronous modelling technique

The components of the system and their corresponding UPPAAL templates are as
follows: IN1, AND, OR, NEG and FF_STAT_R are time-independent components,
while ONDELAY, OFFDELAY, PULSE and LIMIT are time-dependent.

The basic function of fault variables is similar in all components. If at least one
of the input signals has 1 as the value of its fault variable, the output signals of the
component also have 1 as the value of their fault variables. If the fault variable
becomes active, the internal memory of FF_STAT_R and the time-dependent
components is not changed until the fault variable has receded. In most cases, the
value of the output will not change until the value of the fault variable of the input
has returned to 0.

62

5. Asynchronous techniques for modelling timed automata

ENABLE_FAULTS

update(i1) update(I1_F)

O

Figure 10. An input automaton.

Component IN1 models a non-deterministic input signal. The produced signal is
binary, as required by UPPAAL, so 0 and 1 are the only possible input values.
Each transition in the IN1 component is equivalent to the value of the input signal
changing. When the value of the input signal changes, a synchronization signal is
sent to the affected components. There are separate transitions for changes in the
fault variables, which can be deactivated with the ENABLE_FAULTS guards.

BI2_C?
and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)

BI1_C?
and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)

(BO1 !=BO1_old) | (BO1_F I= BO1_F_old)

BO1_C!
BO1_old = BO1,
BO1 F_old=BO1 F

(BO1 == BO1_old) & (BO1_F == BO1_F_old)

Figure 11. An automaton for the AND function.

63

5. Asynchronous techniques for modelling timed automata

Components AND, OR and NEG function like their counterparts in Boolean logic.
AND gives 1 as its output signal only if both input signals are 1, OR gives 1 if at
least one of the input signals is 1 and NEG inverts the input signal. These compo-
nents are particularly simple and only require a few locations and transitions. AND,
OR and NEG are similar in structure, the main difference being the change in
functions. Thus, only the figure of AND is displayed.

FF_STAT_R is a static RS flip-flop, with the preferred state on the reset side
(the R side) and priority on the set side (the S side). The UPPAAL model of
FF_STAT_R is similar to AND and OR in structure but with a different function
handling the change in output. The behaviour of FF_STAT_R is best described by
its truth table. The symbol X describes a situation in which the value of the input
variable is irrelevant. After each cycle, the value of Output 1 is stored in the inter-
nal memory of the component.

Table 4. Truth table for a static RS flip-flop.

Input 1 (S) Input 2 (R) Output 1, Output 1 (S) Output 2
previous cycle (R)
0 X 0 0 1
0 0 1 1 1
0 1 1 0 1
1 X X 1 0

It can be seen that output 2 is the complement of output 1. Furthermore, if input 1
has the value 1, output 1 will be 1 regardless of the other input signals. This is
called the set command of the flip-flop. If input 1 is 0 and input 2 is 1, output 1 will
be 0. This is called the reset command. If the fault variable becomes active, the
internal memory will not be changed until the fault variable has receded. In addi-
tion, the output signals will retain the value of the last faultless cycle.

64

5. Asynchronous techniques for modelling timed automata

delay <= duration

()
BO1=1 \/\
|
BO1_C! BILF
Bl1_C?
BO1 F=1
©
BI1 & !BI1_F
BI1_C?
BO1_F =0,
IBI1 & BI1_F delay =0
BI1_C?
Outl_Faultl BO1 =0 Out0_Faultl
/ IBI1
?
BI1 & BI1_F IBI1 & 'BI1_F BI1_C*
BI1_C? BI1_C?
BO1_F=0 BOL C! BO1=0,BO1_F=0 IBI1& 1BI1_F
BI1_C?
@) BIL F BO1 F=0
BI1_C?
BIL F BO1 F=1
BI1_C?
BO1 F=1
N
outl Faulto ~ 1BI1 © BO1_C! Q Out0_Faulto
- BI1_C?
BO1=0 IBI1 BI1
BO1_C! Bl1_C?
BI1_C? -’
- delay =0 BI1_F
\ BI1_C?
N BO1 F=1
A4 delay == duration N\
BO1=1 delay <= duration

Figure 12. An automaton for the ONDELAY function block.

ONDELAY and OFFDELAY have a predetermined delay before the value of the
output is changed according to the input. In ONDELAY, when the input signal
changes its value from 0 to 1, a timer is set. After a sufficient amount of time has
passed, if the input is still 1, the output of the component is also set to 1. However,
if the input changes to 0, the output is immediately set to 0. OFFDELAY behaves
similarly: if the input changes from 1 to 0 and remains at O after the specified time,
the output is set to 0. If the input changes to 1, the output is immediately set to 1.
In both ONDELAY and OFFDELAY, time counting is stopped when the fault varia-
ble has the value 1. The UPPAAL template of OFFDELAY is also similar to the
model of ONDELAY, so only the figure of ONDELAY is shown.

65

5. Asynchronous techniques for modelling timed automata

IBI1_F & ('BI1 | BI1_old)
BI1_C?

BO1 F=0 = Out0_Faultl
N4
BO1_C!
IBI1_F & BI1 & !BI1_old
BI1_C?
@) BO1=1,BO1_F=0,
delay =0
BI1_F
BI1_C?
BOl1 F=1,
Bl1_old = BI1
- Outl_FaultO outl Faultl
Faul lay <= i |
Out0_Fau tOC\ /C\ /\de ay duration ® /)
=/ BI1 && 1BI1L_F &/ BO1 C! BI1_F &7 BO1 Cl S
BI1_C? BI1_C?
BO1=1, BO1 F=1 IBI1_F
BO1 C!| delay=0 BI1_C?
BO1_F=0,
delay == duration BI1_F delay =0
() BO1=0 BI1_C?
© BOl F=1 CC)
BO1_C!
BO1=0 \Ddelay <=duration

Figure 13. An automaton for the PULSE function block.

PULSE produces a pulse of the output signal for a specified time. When the input
signal changes from 0 to 1, the output is set to 1 and time begins to elapse. The
output remains at 1 until the time has passed, at which point it changes back to 0.
When the fault variable is 1, time counting is stopped and the output remains at
the value of the last faultless cycle.

66

5. Asynchronous techniques for modelling timed automata

delay <= duration

C\
01=0 /\
01 C!
I1F
11_c?
OLF=1
© -
11& 11 F
11_c?
Ol F=0,
I1&I1F delay =0
outo_Faultl 1_c? Outl_Faultl
- (M) O1=1 C\ -
Y 11
?
&1L F I1&1LF o1c! e
I1_C? I1_c?
OLF=0 O0l1=1,01 F=0
o1.¢! < &L F
I1_Cc?
© 1F OLF=0
11_c?
I1F OLF=1
11_c?
OLF=1 outl_Faulto
@ \C/ r\delay <=duration
|
OutO_Fault0 :% co oLc
01=1,delay=0
n
|
oL.c! delay == duration && !l11_F 11_C?
01=0 01=0

©

LIMIT produces an output signal of 1 for an input of value 1 until the input changes
to 0 or a specified amount of time has passed. Otherwise, the output of LIMIT is 0.
If the fault variable is 1, time counting in LIMIT is assumed to stop, similarly to
ONDELAY and OFFDELAY.

5.3.2 Function-based asynchronous modelling technique

Most of the components are essentially unchanged compared with the standard
asynchronous modelling technique, with the exception of the input signalls. How-
ever, certain conditions regarding the fault variable have been added to the guards
in case several of the input signals can change simultaneously. This has also
resulted in an additional edge in the components ONDELAY, OFFDELAY and
LIMIT from the location OutO_Fault0. These additions improve compatibility with
input components that allow several input values to change simultaneously.

67

5. Asynchronous techniques for modelling timed automata

delay <= duration

(M)
NLF \\
o1=1
o1 ¢C!
H1&I11_F I1_F
11 C? I1_C?
01=0,01 F=1 @) 0L F=1
I1&11 F
I1_C?
01 F=0,
N1 &I1F delay =0
I1_C?
Outl_FauItlm 01-0 Out0_Faultl
L) / HL& L F
?
11811 F &L F o1 c 117
11_C? I1_C?
OLF=0 o1 _c! Q1=0,01F=0 C N1 &11_F
11_C?
@) 0 0L F=0
11_C?
11&I1F 0L F=1
11_C?
0L F=1
) G ©
Y 1&gl F & o1 Out0_Fault0
Outl FaultO
— 11_C?
01=0 I1&11 F
01 C! :'11 g'lf I1_C?
- delay =0 11_F
\ 11_C?
1F=1
<) oL
&/ delay == duration && !11_F N\

Oo1=1

delay <= duration

Figure 15. Function-based ONDELAY automaton.

68

5. Asynchronous techniques for modelling timed automata

1_F & (1] 11_old)
11_C?

Outl_Faultl

01 F=0,
11_old=11
_ mOutofFauItl
O
11 F&I1&!1 old
11_C?
01=1,01_F=0,
O1.Cl 11_old = 11, delay = 0
©
11 F
11_C?
01 F=1,
11 old=11
Outl_FaultO
OutOﬁFauItOC\ KC\ /\delay <=duration /(.:\
= 111_old & I1 & o1 ¢l I1F &/ 01 cl
&1 _F 11_C?
11_C? 01 F=1
01 _C! 0O1=1,11_old =11,
delay =0
delay == duration 11_F
) 01=0.11 old=11 11_C?
& Ol F=1

01=0,11_old=11

©

1_F
11_C?
O1_F=0,
delay =0

o1_c!

Figure 16. Function-based PULSE automaton.

69

\Ddelay <=duration

5. Asynchronous techniques for modelling timed automata

delay <= duration
M_F
01 =0 @\
o1_cl
M &H_F 1_F
11_C? HC?
O1=1,01_F=1 @ O1LF=1
1 &IM_F
1_c?
01 F=0,
H&NH_F =
H_C?
Outd_Faultl — o1 =1 N Out1_Fault1
@ g& H&M_F
11 & I11_F 1 &I1_F o1_cl =
1n_c? H_C?
O1_F=0 O1=1,01_F=0
OLE 1M &N1_F
11_C?
© H_F 01 F=0
1_C?
& 1_F O1_F=1
1_c?
Ol Fe=1 Out1_Faulto
Outo_Faultd delay <= duration
M&U_F o1.cl
1. C?
O1 =1, delay=0
1 &N1_F
delay == duration && I11_F 1_C?
oLa 01=0 o1=0

Figure 17. Function-based LIMIT automaton.

Instead of each input signal having its own component, all the values of the inputs
are now generated in a single component, IN_ALL. It also contains the time-
independent section of the system before the first time-dependent components.

70

5. Asynchronous techniques for modelling timed automata

8.

ENABL{‘ k-\ULTv

rand = Ra
Olm:utsm H_F, 12,2 F,I3I13 F,I4 14_F, O_Cl
etfauhomursg!i 1_F, ¢ l ,I,I 3_F, 14, W_F,
101F0202F03.03F, 4, 04_F) 101':05 For) FrO4 —F)

o

Figure 18. IN_ALL automaton.

IN_ALL changes the value of one input signal, determined by the value of the
integer Rand. The affected input signals are listed on the declarations page of
IN_ALL, one input for each value of Rand. Values of the fault signals can only be
changed if the fault signals are enabled. IN_ALL also computes the outputs of the
initial time-independent section and gives them as inputs to the time-dependent
components.

The declarations and the maximum value of Rand depend on the system in
guestion. The picture above is from one of the case studies.

5.3.3 Function-based asynchronous modelling technique with input
reductions

Compared with the previous technique, the only UPPAAL component changed is
IN_ALL. Instead of changing the value of one input signal, it now chooses one
combination of inputs out of the possible combinations determined by the external
program. Similarly to the previous technique, the input combinations are listed on
the declarations page of IN_ALL, one for each value of the integer Rand. As be-
fore, IN_ALL uses these inputs to compute the outputs of the initial time-

independent section.
O

ENABLE_FAULTS

rand = Rand, rand = Rand
%egt_gustpgt%alvoalﬁfv 02,02_F, O-C' | get_fault_outputs(01, O1_F, 02, 02_F,

03,03_F, 04, 04_F)

71

5. Asynchronous techniques for modelling timed automata

5.4 Java program

5.4.1 Description of the program

The function-based asynchronous technique with input reductions uses an exter-
nal program to determine which combinations of outputs of the initial time-
independent section are possible. The program was written in Java with the help
of the JavaBDD library, which the program uses to construct and modify BDDs,
binary decision diagrams.

In the context of the function-based asynchronous technique with input reduc-
tions, the BDDs describe the time-independent section of the system. The pro-
gram constructs a BDD that describes whether there is a combination of inputs
that results in a specific combination of outputs of the time-independent section.
Then, the program prints the truth values satisfying the BDD, in other words the
possible combinations of output values of the time-independent section. The pro-
gram can either construct the BDDs directly with the JavaBDD library or read input
BDDs from files.

The outputs are often given as inputs to the first time-dependent components of
the system but there are also outputs of the time-independent section that are
outputs of the entire system and do not affect time-dependent components. If it is
not necessary to model these outputs, they may be removed from the model to
increase verification speed and decrease the effort of modelling. For each output
dropped, the corresponding BDD will be left out of the execution of the Java pro-
gram.

5.4.2 Example reduction

We now examine a small, hypothetical example of a time-independent section of a
system and describe the resulting input reductions when the Java program is run
for it. The time-independent section consists of two inputs and two outputs, with
output 1 being a conjunction of the inputs and output 2 being a disjunction of the
inputs. The following chart demonstrates the possible output combinations.

Table 5. Possible output combinations in the example.

Input1 | Input?2 Output 1 (AND) | Output 2 (OR)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

It can be seen that there are only three possible combinations of outputs: (0, 0),
(0, 1) and (1, 1). The combination (1, 1) is impossible and thus, it does not have to

72

5. Asynchronous techniques for modelling timed automata

be modelled. Naturally, the presented example is so simple that the possible out-
put combinations can be determined without using the Java program.

5.5 Modelled Systems

5.5.1 Case study: emergency tank system

In the case study, we model a part of an emergency tank system. First, we exam-
ine the function of the modelled system and the individual components in it. Then
we model the problem with different modelling methodologies, evaluate them and
compare them with each other.

Other parts of the system of the power plant have been abstracted away, as
well as the behaviour of the environment of the system. As a result, we make no
assumptions on the behaviour of the environment or the parts of the system left
outside the system we are examining. The necessary inputs from other parts of
the system are modelled non-deterministically.

The emergency tank system consists of four identical subsystems, each corre-
sponding to an emergency tank. The purpose of the system is to monitor the sur-
face levels of the tanks, with each subsystem sending information on its tank to
two of the other subsystems. Every subsystem monitors three surface levels and if
at least two of them are too low, a signal is sent to the other components of the
subsystem.

In addition to testing the system as a whole, we examine a smaller version of it
by removing several inputs, outputs and time-independent components. This ap-
proach may reveal how the techniques scale for systems of different sizes.

5.5.2 Case study: emergency diesel system

We also look into systems modified from the emergency diesel system examined
in the MODSAFE project, as described in [Ropponen 2010]. The system iin ques-
tion manages the function of a diesel generator of a power plant in case of emer-
gency. The techniques evaluated in this work partially differ from those used in
MODSAFE, so certain changes have been made to the systems. In particular,
some sections of the systems have been cut to make modelling easier and some
time-dependent components have been removed to better test the function-based
techniques.

5.5.3 Case study: power reduction unit

Another case study that is being worked on is the modelling of a power reduction
unit. This case is done to further the task 3.2 in the SARANA project, the objective
of which is to develop modelling methods for asynchronous and semi-synchronous

73

5. Asynchronous techniques for modelling timed automata

systems. Current modelling methods either assume that the system is fully syn-
chronous or that there are no constraints on the timings of signal changes.

In reality, there are systems for which neither assumption holds: either there
are multiple subsystems with different clock signals, resulting in a semi-
synchronous system, or there is no explicit clock synchronisation, but some delay
elements are present. In the latter case, it is reasonable to assume that the timing
of fast components (e.g. logic gates) can happen in any order, but the delay ele-
ments function much more slowly. It is therefore not reasonable to assume that
the output signal of a delay element changes before the logic gates have had time
to update theirs. Accurately modelling and verifying such systems is a problem for
which no definitive solution exists.

The power reduction unit monitors the output rate of a process and an array of
pumps that produce a critical resource for the process. If one or more of the
pumps stop working, the output rate of the process must be decreased and the
reduction unit output a signal that tells the process to slow down.

The reduction unit is implemented as redundant asynchronous circuits that in-
clude timing components. The circuits can monitor the output rate via two meas-
urements: one that is accurate and one that updates quickly. To use both of these
measurements, a correction parameter is applied to the quick but less accurate
measurement. When the corrected value appears to differ from the accurate one,
the correction is adjusted until it matches the accurate value again.

Modelling and verifying this design has unique challenges related to the timing
and synchronisation issues, and solving them will hopefully lead to advances in
the modelling and verification techniques. The models are built and verified both in
the NuSMV and UPPAAL model checking tools, as both have strengths and
weaknesses with systems like these: NuSMV can handle very large state spaces
with a lot of non-deterministic inputs, but UPPAAL can model timing more accu-
rately. Ultimately the strengths of both the tools need to be combined to verify
complicated asynchronous and semi-synchronous systems. This work started in
late 2011 and will continue in 2012.

5.5.4 Properties of the systems

The number of input signals and the number of time-dependent and time-
independent components greatly influence the time spent on verifying the proper-
ties, so they are considered critical variables for the testing process. The number
of inputs given to the time-dependent components and the number of outputs of
the initial time-independent section are also important because of the way the
function-based modelling techniques operate.

e System 1: Emergency Tank System, small version

e System 2: Emergency Tank System, full version

e System 3: Emergency Diesel System, Subsystem 1, small version
e System 4: Emergency Diesel System, Subsystem 1, full version

74

5. Asynchronous techniques for modelling timed automata

Table 6. Properties of the modelled systems 1.

System Inputs Inputs for the | Outputs of the | Outputs
time- initial time-
dependent independent
components section
1 4 4 4 8
2 8 4 8 12
3 8 1 2 3
4 13 1 2 3

Table 7. Properties of the modelled systems 2.

System Time-dependent com- Time-independent
ponents components (with the
standard technique
excluding inputs)

14

22

11

Alw|N]|R
NN

18

5.5.5 Verified properties

The modelled systems differed in structure, so comparing them by verifying sys-
tem-specific properties would have yielded inconsistent results. Therefore, the
same property was verified for all systems: whether the system had a path that led
to a deadlock. Assuming the systems work properly, this property should be satis-
fied for all of them.

5.6 Results

5.6.1 Verification results

The number of input signals and the number of time-dependent and time-
independent components, as well as the number of input signals given to the time-
dependent components and the number of output signals of the initial time-
independent section, are important variables for the testing process. After all,
these variables greatly influence the time spent on verifying the properties. See
5.5.4 for the values of these variables for the examined systems. Howeuver, the
structure of the system is also important, including where the time-dependent and
time-independent components are located in the system.

75

5. Asynchronous techniques for modelling timed automata

The model checking was performed on a standard PC with 8 GB of RAM and
an Intel Core i5-2500 processor running at 3.30 GHz.
The following results were obtained with UPPAAL version 4.0.11 using default

settings.

Table 8. Verification times for the deadlock property without fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 0 min 2.821 s 0 min 0.349 s 0 min 0.057 s
2 1 min 34.153 s 0 min 0.563 s 0 min 0.083 s
3 O0min 0.441 s 0 min 0.753 s 0 min 0.063 s
4 1min 1.262 s 2 min 9.264 s 0O min 0.418 s

Table 9. Verification times for the deadlock property with fault signals.

System

Standard

Function-based

Function-based
with input reduc-
tions

1 > 27 min 10.779 s | 0 min 5.498 s 0min0.442 s
*

2 >41min 35992s | 0min7.316 s 0 min 0.708 s
*

3 1 min 19.402 s 14 min 36.620 s 0 min 0.357 s

4 > 15 min 15.274 s | > 19 min 59.385 s | 0 min 17.224 s

*

*

* Qut of memory

The following results were obtained with UPPAAL version 4.1.4 using default

settings.

Table 10. Verification times for the deadlock property without fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 0 min 2.070 s 0 min 0.522 s 0 min 0.048 s
2 1 min 12.756 s 0 min 0.266 s 0 min 0.063 s
3 0 min 0.333 s 0min 0.525 s 0 min 0.036 s
4 0Omin 51.111s 1min 29.701 s 0 min 0.218 s

76

5. Asynchronous techniques for modelling timed automata

Table 11. Verification times for the deadlock property with fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 30 min 43.590 s 0 min 3.539 s 0min 0.344 s
2 > 32 min 54.421 s | 0 min 4.686 s 0 min 0.513 s
*
3 1min 8.028 s 10 min 1.501 s 0 min 0.308 s
4 12 min 30.890 s > 14 min 40.493 s | 0 min 14.298 s
*

* Qut of memory

It would appear that version 4.1.4 of UPPAAL provides faster verification times
than version 4.0.11. Version 4.1.4 even finished certain verification tasks for which
version 4.0.11 ran out of memory. This behaviour may be caused by the 64-bit
version of UPPAAL 4.1.4 using more memory than UPPAAL 4.0.11 and being able
to use all of the 8 GB of RAM available.

5.6.2 Achieved input reductions

We now summarize by how much the number of input combinations for the first
time-dependent components was reduced with the Java program for each system.

System 1: The number of combinations of regular inputs was reduced from 16
to 8, while the number of combinations of fault inputs was reduced from 16 to 6. In
total, the number of input combinations was reduced from 256 to 48.

System 2: The number of combinations of regular inputs was reduced from 256
to 41, while the number of combinations of fault inputs was reduced from 256 to
13. In total, the number of input combinations was reduced from 65536 to 533.

Systems 3 and 4: All combinations of inputs are possible, for both regular and
fault inputs.

Input reductions were clearly much more effective for systems 1 and 2 than
systems 3 and 4 because of structural differences between these systems. In fact,
determining input reductions did not yield any impossible input combinations.

However, there are only 2 inputs for the first time-dependent components in
system 3 and 4 such inputs in system 4, while the entire system 3 has 8 inputs
and the entire system 4 has 13 inputs. Therefore, in practice the number of inputs
for systems 3 and 4 is still reduced with the technique and a large part of the sys-
tem is cut in the process, so the technique results in faster verification times. Even
s0, this could have been achieved without actually determining input reductions by
removing the initial time-independent section.

System 1 is a smaller version of system 2, and system 3 is a smaller version of
system 4. However, the basic structure of the time-independent section is relative-

77

5. Asynchronous techniques for modelling timed automata

ly similar in these systems of different scales. The proportional decrease in the
number of input combinations is significantly greater for system 2 than system 1.

5.7 Summary

5.7.1 Efficiency of the analysis

According to the results, verification with UPPAAL is fastest with the examined
systems using the function-based asynchronous modelling technique with input
reductions. This approach reduces the number of possible output combinations of
the initial time-independent section and as a result, UPPAAL has fewer combina-
tions to go through. This technique also removes the time-independent section,
reducing the model size. The function-based technique with input reductions is at
its best when the initial time-independent section of the system is large or a large
portion of the combinations of outputs can be reduced by the program as infeasi-
ble.

Depending on the system, verification may be faster with the function-based
asynchronous modelling technique than the standard asynchronous modelling
technique or vice versa. If changes in the values of the inputs affect the outputs of
the initial time-independent section most of the time, the function-based technique
is more efficient since calculating with functions is faster than with separate com-
ponents. This is the result of the model size being smaller with the function-based
technique than with the standard technique. Nevertheless, the standard technique
is faster if a sufficient number of the possible changes in inputs do not influence
the outputs of the initial time-independent section, resulting in unnecessary calcu-
lations.

UPPAAL is not an efficient tool for modelling large systems, particularly with a
large number of input signals. Therefore, having fault signals also makes model-
ling much more demanding. However, with the function-based modelling tech-
nigues, it is more plausible to verify properties of large systems, even if fault varia-
bles are used. Using input reductions can be very beneficial namely because the
efficiency of verifying UPPAAL models is highly dependent on the number of in-
puts.

It should also be noted that this study only examined verification speed with a
limited number of systems. In the future, examining a wider array of systems can
reveal more information about which modelling technique is most suitable for each
system.

5.7.2 Simplicity of the modelling

Modelling with the function-based asynchronous modelling technique is more
difficult than with the standard asynchronous technique. With the standard tech-
nigue, the user only needs to add UPPAAL components to the system declara-

78

5. Asynchronous techniques for modelling timed automata

tions page and variables to the declarations page. However, with the function-
based technique, changes are also required in the functions and parameters of the
components themselves, particularly the input component. Even if the modifica-
tions of the components mostly contain the same logical functions as the modifica-
tions of the system declarations page, it still makes the modelling process more
difficult. This approach decreases the modularity of the components and makes
them system-dependent.

It is also possible to replace time-independent components in later parts of the
system with functions. This can be achieved similarly to that of input components,
with the addition of synchronization channels from the time-dependent compo-
nents that give the input values. However, each synchronization channel for an
input requires its own edge in the UPPAAL model, which may make modelling
tedious.

Modelling with the function-based asynchronous technique with input reduc-
tions is even more demanding. The user must first construct the time-independent
section of the system with the external Java program, have it calculate possible
combinations of outputs and then modify the input component of the UPPAAL
model. In particular, changes in the Java code of the program require the con-
struction of the BDDs describing the time-independent section.

79

6. Conclusions

This report presents the model checking results of the SARANA project in 2011.
The report covers an algorithm for the model checking of large systems, method-
ology for fault models and methods for model checking function-block-based de-
signs in UPPAAL.

A model checking algorithm for large models was introduced. The algorithm
can be used with modular models in which an abstraction of the model can be
created by replacing some of the modules with interface modules. So far, the
algorithm has been developed and tested using a model of a function-block-based
design. The algorithm is largely based on counterexample-guided abstraction
refinement, in which an abstraction of the system is examined and the abstraction
iteratively refined based on the responses of the model checking tool. The algo-
rithm puts significant effort into counterexample minimization. We present three
counterexample minimization techniques that can be used on several granularity
levels. The algorithm has not yet been extensively compared with any standard
model checking methods. In 2011, the performance of the algorithm was tested on
a model based on work in [Lahtinen et al. 2010]. These preliminary results suggest
that in some cases the algorithm can be more effective than using traditional mod-
el checking methods. A more thorough analysis of the performance of the algo-
rithm is left to future research. We plan to analyse the effectiveness of the algo-
rithm using various models and many temporal properties. Some improvements
and extensions of the methodology are also planned (see Section 3.9).

In Section 4 we presented new methodology to model faults in a system. The
fault models take into account the hardware configuration of a system and the
various failure modes of the different hardware components. In addition, common-
cause failure modes can be included in the fault models. We created a way to
integrate fault models into models depicting the software logic of a system. How-
ever, when a detailed fault model is used together with the model of the logic of a
system, the model checking task becomes quite complex. This suggests that it
could be possible to use fault models modularly together with our traditional meth-
ods, so that hardware faults of a complex system could also be analysed using the
algorithm for large systems. This work is left to future research. To test the fault

80

6. Conclusions

modelling methodology, an imaginary system was modelled as a case study. We
also managed to apply assume-guarantee reasoning to decrease the verification
time in that model.

Section 5 describes methodology for modelling function-block-based designs
asynchronously using timed automata of the UPPAAL model checking tool. Three
modelling techniques are presented. In the standard technique, a timed automaton
is created for each function block and input of the system. The function-based
technique uses functions to replace the time-independent parts of the model. In
the third technique, the possible inputs of the time-independent part of the model
are calculated separately using a Java program. The inputs are then used to cre-
ate more efficient functions in the UPPAAL model. The modelling methods have
been tested using three separate case studies. While the work is still partly un-
derway, the results thus far show that the function-based modelling technique and,
especially, the input reductions can make the model checking of function-block-
based systems more feasible. UPPAAL is known to behave badly when there are
a large number of inputs in the system because UPPAAL explicitly checks each
input combination. The input reductions counter this weakness of the UPPAAL tool
and the use of input reductions can lead to major improvements in verification
time. However, using the input reductions is not straightforward and requires more
modeller expertise.

81

References

Alur, R. & Dill, D. L. 1994. ‘A theory of timed automata’. Theoretical Computer
Science, 126(2), 1994, pp. 183-235.

Alur, R., Courcoubetis, C. & Dill, D. 1990. ‘Model-checking for real-time systems’.
In: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer
Science, 1990, pp. 414-425.

Ball, T., Mayur, N. & Rajamani, S.K. 2003. ‘From Symptom to Cause: Localizing
Errors in Counterexample Traces’, POPL'03, January 15-17, 2003, New
Orleans, Louisiana, USA.

Behrmann, G., David, A. & Larsen, K. G. 2004. A Tutorial on Uppaal. Formal
Methods for the Design of Real-Time Systems. Springer Berlin / Heidel-
berg, 2004.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. 1999. ‘Symbolic model checking
without BDDs'. In: Proc. of the Fifth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS'99).

Biere, A., Heljanko, K., Junttila, T., Latvala, T. & Schuppan, V. 2006. ‘Linear En-
codings of Bounded LTL Model Checking’. Logical Methods in Computer
Science 2(5:5), pp. 1-64.

Bryant, R. E. 1986. ‘Graph-Based Algorithms for Boolean Function Manipulation’.
IEEE Trans. Computers 35(8), pp. 677—691.

Cavada, R., Cimatti, A., Jochim, C. A, Keighren, G., Olivetti, E., Pistore, M., Rov-
eri, M. & Tchaltsev, A. 2010. ‘NuSMV 2.5 User Manual’. FBK-irst.

Chang, K-H., Bertacco, V. & Markov, I. L. 2007. ‘Simulation-Based Bug Trace
Minimization with BMC-Based Refinement’. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No.
1, 2007.

Clarke, E. M., Grumberg, O. & Peled, D. A. 1999. Model checking. Cambridge MA:
MIT Press, 1999. 314. ISBN 0-262-03270-8.

Clarke, E. M. & Emerson, E. A. 1981. ‘Design and synthesis of synchronization of
skeletons using branching time temporal logic’. In: Proceedings of the

82

IBM Workshop on Logics of Programs, Vol. 131 of LNCS, Springer, pp.
52-71.

Clarke, E. M., Gupta, A. & Strichman, O. 2004. ‘SAT-Based Counterexample-
Guided Abstraction Refinement’. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 23, No. 7, July
2004.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M.
S. & Xiao, C. 2007. The Daikon system for dynamic detection of likely in-
variants Science of Computer Programming 2007, Vol. 69, No. 1-3, pp.
35-45. ISSN 01676423. Doi: 10.1016/j.scico.2007.01.015

Gastin, P., Moro, P. & Zeitoun, M. 2004. ‘Minimization of counterexamples in
SPIN'. In: SPIN Workshop on Model Checking of Software, pp. 92-108,
2004.

Groce, A. & Visser, W. 2003. ‘What went wrong: Explaining Counterexamples’. In:
SPIN Workshop on Model Checking of Software, pp. 121-135, 2003.

Jin, H., Ravi, K. & Somenzi, F. 2002. ‘Fate and Free Will in Error Traces’, Katoen
J. P. & Stevens, P. (Eds.): TACAS 2002, LNCS 2280, pp. 445-459,
2002.

Lahtinen, J., Bjorkman, K., Valkonen, J., Frits, J. & Niemel4, |. 2010. ‘Analysis of
an emergency diesel generator control system by compositional model
checking’. MODSAFE 2010 work report. VTT Working Papers 156. 2010.
http://www.vtt.fi/inf/pdf/workingpapers/2010/W156.pdf

Larsen, K. G., Pettersson, P. & Yi, W. 1997. ‘UPPAAL in a nutshell’. International
Journal on Software Tools for Technology Transfer, 1(1-2), 1997, pp.
134-152.

McMillan, K. L. 1993. ‘Symbolic Model Checking’, Kluwer Academic Publ.
NuSMV 2011. NuSMV Model Checker v.2.5.2, 2011. http://nusmv.irst.itc.it/

Quielle, J. & Sifakis, J. 1981. ‘Specification and verification of concurrent systems
in CESAR'. In: Proceedings of the 5th International Symposium on Pro-
gramming, pp. 337-350.

Ravi, K. & Somenzi, F. 2004. ‘Minimal Assignments for Bounded Model Checking’,
Jensen, K. & Podelski, A. (Eds.): TACAS 2004, LNCS 2988, pp. 31-45,
2004.

83

http://www.vtt.fi/inf/pdf/workingpapers/2010/W156.pdf
http://nusmv.irst.itc.it/

Roorda, J-W. & Claessen, K. 2006. ‘SAT-Based Assistance in Abstraction Re-
finement for Symbolic Trajectory Evaluation’, Ball, T. & Jones, R. B.
(Eds.): CAV 2006, LNCS 4144, pp. 175-189, 2006.

Ropponen, J. 2010. Modular modelling with timed automata. Aalto University.

Shen, S., Qin, Y. & Li, S. 2005. ‘A Fast Counterexample Minimization Approach
with Refutation Analysis and Incremental SAT'. In: Proc. ASP-DAC 2005,
pp. 451-454.

Seger, C. H. & Bryant, R. E. 1995. Formal Verification by Symbolic Evaluation of
Partially-Ordered Trajectories, Formal Methods in System Design 1995,
Vol. 6, pp. 147-190.

Uppaal. 2009. UPPAAL integrated tool environment v. 4.0.6, 2009.
http://www.uppaal.com/

Valkonen, J., Karanta, |., Koskimies, M., Heljanko, K., Niemel4, I., Sheridan, D. &
Bloomfield, R. E. 2008. ‘NPP Safety Automation Systems Analysis —
State of the Art’. VTT Working Papers 94, VTT, Espoo. 62 p.
http://mwww.vtt.fi/inf/pdf/workingpapers/2008/W94. pdf

Weiser, M. 1981. Program slicing. ICSE '81 Proceedings of the 5th International
Conference on Software Engineering. NJ, USA: IEEE Press Piscataway,
1981, pp. 439-449. ISBN 0-89791-146-6.

Zeller, A. 2002. ‘Isolating Cause-Effect Chains from Computer Programs’. In:
SIGSOFT 2002/FSE-10, November 18-22, 2002, Charleston, SC, USA.

Zeller, A. & Hildebrandt, R. 2002. ‘Simplifying and Isolating Failure-Inducing Input'.
In: IEEE Transactions on Software Engineering, Vol. 28, No. 2, February
2002.

84

http://www.uppaal.com/
http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf

Series title and number

VTT Technology 12

Title

Model checking methodology for large systems,
faults and asyn-chronous behaviour
SARANA 2011 work report

Author(s)

Jussi Lahtinen, Tuomas Launiainen, Keijo Heljanko & Jonatan Ropponen

Abstract

. Digital instrumentation and control (I&C) systems are challenging to veri-
i fy. They enable complicated control functions, and the state spaces of the
i models easily become too large for comprehensive verification through
¢ traditional methods. Model checking is a formal method that can be used
i for system verification. A number of efficient model checking systems are
i available that provide analysis tools to determine automatically whether a
i given state machine model satisfies the desired safety properties.

This report reviews the work performed in the Safety Evaluation and

i Reliability Analysis of Nuclear Automation (SARANA) project in 2011
i regarding model checking. We have developed new, more exact model-
i ling methods that are able to capture the behaviour of a system more
realistically. In particular, we have developed more detailed fault models
i depicting the hardware configuration of a system, and methodology to
i model function-block-based systems asynchronously. In order to improve
i the usability of our model checking methods, we have developed an algo-
¢ rithm for model checking large modular systems. The algorithm can be
i used to verify properties of a model that could otherwise not be verified in
i a straightforward manner.

ISBN, ISSN

ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Date

March 2012

Language

English

Pages

84 p.

Name of the project

Safety Evaluation and Reliability Analysis of Nuclear Automation

Commissioned by

Keywords

Model checking, verification, 1&C, NuSMV, UPPAAL, SARANA, SAFIR

Publisher

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

<
o)
Q
o
0
=2
(1)
0
2.
=]
Q
3
(0}
—
=2
o)
Q
o
O
(o]
<
—h
()
=
)
=
(o]
0}
0
<
0
—~
()
3
&)
—h
Q
=
=
”n
)
=]
=

ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

vr

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	1. Introduction
	2. Model Checking
	2.1 Model checking large systems
	2.2 Fault models for model checking

	3. Model checking large systems
	3.1 Abstracting the model
	3.2 Property verification using the abstractions
	3.3 Automatizing abstraction-level selection
	3.4 Invariant model checking
	3.5 Counterexample minimization
	3.6 Checking the feasibility of the counterexample
	3.7 Abstraction refinement
	3.8 Preliminary results
	3.9 Shortcomings of the current approach and furtherdevelopment

	4. Architecture-level model checking
	4.1 Model checking systems with detailed fault models
	4.2 An example system
	4.3 Modelling methodology
	4.4 Application of compositional verification
	4.5 Results
	4.6 Remaining problems

	5. Asynchronous techniques for modelling timed automata
	5.1 Introduction
	5.2 Modelling Techniques
	5.3 Modelled Components
	5.4 Java program
	5.5 Modelled Systems
	5.6 Results
	5.7 Summary

	6. Conclusions
	References

