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Model checking methodology for large systems, faults and  
asynchronous behaviour 
SARANA 2011 work report 

Jussi Lahtinen, Tuomas Launiainen, Keijo Heljanko & Jonatan Ropponen.  Espoo 
2012. VTT Technology 12. 84 p. 

Abstract 

Digital instrumentation and control (I&C) systems are challenging to verify. They 
enable complicated control functions, and the state spaces of the models easily 
become too large for comprehensive verification through traditional methods. 
Model checking is a formal method that can be used for system verification. A 
number of efficient model checking systems are available that provide analysis 
tools to determine automatically whether a given state machine model satisfies the 
desired safety properties.  

This report reviews the work performed in the Safety Evaluation and Reliability 
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to 
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system, 
and methodology to model function-block-based systems asynchronously. In order 
to improve the usability of our model checking methods, we have developed an 
algorithm for model checking large modular systems. The algorithm can be used 
to verify properties of a model that could otherwise not be verified in a straightfor-
ward manner. 

Keywords model checking, verification, I&C, NuSMV, UPPAAL, SARANA, SAFIR 
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1. Introduction 

The verification of digital instrumentation and control (I&C) systems is challenging 
because programmable logic controllers enable complicated control functions, and 
the state spaces (number of distinct values of inputs, outputs and internal 
memory) of the designs easily become too large for comprehensive manual in-
spection. Design verification is a key task in the design flow because it can elimi-
nate tricky design errors that are hard to detect later in the development process 
and very expensive to repair, often leading to a major redesign and reimplementa-
tion cycle. Typically, verification and validation (V&V) activities rely heavily on 
subjective evaluation, which only covers a limited part of the possible behaviours 
of the system, and more rigorous formal methods are therefore required. Such 
formal methods have been studied (see, for example, [Valkonen 2008] for an 
overview) but they are not yet widely used. 

Model checking [Clarke et al. 1999] is a formal method that can be used to veri-
fy the correctness of system designs. Internationally, it has been used in the verifi-
cation of, e.g., hardware and microprocessor designs, data communications pro-
tocols and operating system device drivers. Several model checking systems and 
tools exist. In our work, we have focused on two model checking tools: NuSMV 
and UPPAAL. The tools are able to determine automatically whether a given state 
machine model satisfies given specifications. Model checking can also handle 
delays and other time-related operations that are crucial in safety I&C systems 
and challenging to design and verify. 

This report reviews the work performed in the Safety Evaluation and Reliability 
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to 
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system 
as well as methodology to model function-block-based systems asynchronously. 
In order to improve the usability of our model checking methods, we have devel-
oped an algorithm for model checking large modular systems. The algorithm can 
be used to verify properties of a model that could otherwise not be verified in a 
straightforward manner. 

The MODSAFE project previously experimented with a technique based on the 
modular structure of the model, in which the model could be over-approximated by 
leaving the behaviour of some of the modules out of consideration. Using such a 
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technique, any composition of the modules can be formed and analysed with little 
effort. In this work, these modular abstractions are used to create an algorithm that 
is able to verify automatically a large modular system. This work is reported in 
Section 3. 

We have also developed methodology to model system faults so that the failure 
behaviour of systems can easily be integrated into traditional models depicting the 
software logic of a system. The work regarding fault modelling is represented in 
Section 4. 

Finally, we have created asynchronous techniques for modelling function-block-
based designs using timed automata. This work is covered in Section 5. 
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2. Model Checking 

Model checking [Clarke et al. 1999], [Clarke & Emerson 1981], [Quielle & Sifakis 
1981] is a computer-aided verification method developed to formally verify the 
correct functioning of a system design model by examining all of its possible be-
haviours. The models used in model checking are quite similar to those used in 
simulation as, basically, the model must describe the behaviour of the system 
design for all sequences of inputs. However, unlike simulation, model checkers 
examine the behaviour of the system design with all input sequences and com-
pare it with the system specification. In model checking, at least in principle, the 
analysis can be fully automated with computer-aided tools. The specification is 
expressed in a suitable language, temporal logics being a prime example, describ-
ing the permitted behaviours of a system. Given a model and a specification as 
inputs, a model checking algorithm determines whether the system has violated its 
specification. If none of the behaviours of the system violates the given specifica-
tion, the (model of the) system is correct. Otherwise, the model checker will auto-
matically give a counter-example execution of the system demonstrating how the 
specification has been violated.  

In the SARANA project we have used two model checkers: NuSMV [Cavada et 
al. 2010], [NuSMV 2011], which was originally designed for hardware model 
checking, and UPPAAL [Uppaal 2009], which supports model checking of timed 
automata. NuSMV is a state-of-the-art symbolic model checker that supports syn-
chronous state machine models in which the real-time behaviour must be mod-
elled with discrete time steps using explicit counter variables that are incremented 
at a common clock frequency. NuSMV supports model checking using both Linear 
Temporal Logic (LTL) and Computation Tree Logic (CTL) [Clarke et al. 1999], 
making it quite flexible in expressing design specifications. Several model check-
ing algorithms are employed in this work. The standard algorithm is based on 
symbolically representing and exploring the state space of the system using Bina-
ry Decision Diagrams (BDDs) [Bryant 1986] [McMillan 1993]. SAT-based (Proposi-
tional Satisfiability) bounded model checking [Biere et al. 1999] is also supported 
by NuSMV [Biere et al. 2006] for finding bugs in larger designs. The sophisticated 
model checking techniques used by NuSMV can handle non-determinism induced 
by free input variables well, but modelling real-time aspects can be more challeng-
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ing due to the inherently discrete time nature of the synchronous state machine 
model employed by NuSMV. 

UPPAAL is a model checking tool for timed systems based on modelling the 
system as a network of timed automata that communicate through message 
channels and shared variables. The timed automata have a finite control structure 
and real-valued clocks [Alur & Dill 1994], making the modelling of timers fairly 
straightforward. Networks of timed automata can express the real-time behaviour 
of the system in continuous time and still be automatically analysed. This is feasi-
ble because all the possible behaviours of the system can be captured using a 
finite graph on which different clock valuations with the same behaviour are intui-
tively grouped into a finite number of equivalence classes called regions [Alur & 
Dill 1994]. The model checking algorithms use symbolic methods to represent 
compactly the clock valuations associated with each state of the system quite 
efficiently in terms of memory. The model checking algorithms employed inside 
UPPAAL [Alur & Dill 1994], [Larsen et al. 1997] are able to check a subset of the 
temporal logic TCTL (Timed Computation Tree Logic) [Alur et a. 1990] by explicit 
state model checking that explicitly traverses the finite graph induced by the be-
haviour of the system. The main strength of UPPAAL is in analysing the complex 
timing behaviour of a system. However, it is not well suited to systems with a very 
high amount of non-determinism as induced by, e.g., reading a large number of 
input variables (sensor readings) provided by the environment because each 
combination of inputs is explicitly explored by the employed model checking algo-
rithms. 

2.1 Model checking large systems 

Model checking has been successfully used to analyse individual functions of 
safety-critical automation systems. However, it is often necessary to examine 
several functions simultaneously because the functions may influence the same 
system parameters. A system may also have several redundant implementations 
whose behaviour should also be covered. Applying the current model checking 
methods in a straightforward manner is not always possible in these large and 
complex systems because the behaviour of the models becomes too rich (i.e. the 
state explosion problem). 

 A normal approach to avoid state explosion would be to create an abstraction 
of the system manually. Based on the verified specification, some system func-
tionality can be irrelevant and left out of the model. Unfortunately, creating such an 
abstracted model manually for each specification requires a great amount of work. 
The motivation for our work is: 1) to reduce the amount of work by creating these 
abstractions automatically, 2) to infer system correctness based on verifications 
performed automatically on these abstractions, and 3) to reduce the computational 
effort (avoiding the state explosion of the model). 
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2.2 Fault models for model checking 

Single-fault tolerance has been analysed using model checking in the MODSAFE 
project in the SAFIR2010 research programme. Our model checking methodology 
has traditionally included quite non-detailed fault models. Typically, only the sta-
tus/fault bits of an automation system have been implemented in the model. Ex-
tended fault models that allow the model to include physical faults such as faults in 
telecommunication links, microprocessor faults and electrical faults influencing all 
equipment in a cabinet were created in SARANA in 2011.  
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3. Model checking large systems 

This work focuses on the analysis of large function-block-based systems. These 
systems can be modelled as a collection of interacting modules each of which 
encompasses the functionality of a few function blocks. The methodology is also 
applicable to other kinds of systems that can be modelled in a similar way. 

The analysis of large systems is based on two separate aspects. The first is 
that the system should be modelled in a way that allows different abstraction-level 
versions of the model to be created in a practical way. The second part of the 
verification approach is finding a suitable abstraction level using that framework. 
The abstraction level should have enough detail to allow verification but not too 
much, so that the system is still computationally verifiable. In what follows, we first 
describe how abstractions are created from the models and then an algorithm that 
can be used to verify large modular systems automatically. The algorithm is im-
plemented for use together with NuSMV model checking software. 

3.1 Abstracting the model 

Typically, only a small part of the model is needed to verify a specification. The 
model must be able to be divided easily into such parts, and it should be possible 
to easily leave some parts of the model outside examination. We have modelled 
function-block-based systems as a collection of interacting modules (see Figure 
1). This section presents the over-approximation already introduced in [Lahtinen et 
al. 2010] that can be used to create abstractions of the model by replacing some 
modules with interface modules.  

We should be able to select a set of the modules whose functionality we want 
to analyse. We do not want to set any limitations for the modules that are left out 
of the analysis. The creation of an abstract model based on a selection of modules 
should be done automatically and the resulting abstraction should be unambigu-
ous.  
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Figure 2. Creating an abstraction of the model by replacing some modules with 
interface modules  

3.2 Property verification using the abstractions 

The abstractions discussed above are such that the abstract model always has 
more behaviour than the non-abstracted model (the interface module is an over-
approximation). This is because the interface modules that are used in abstract 
models are not restricted in any way. The interface modules can output any se-
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quence of outputs (unlike the non-abstracted modules). This feature of the ab-
straction allows verification of safety properties. 

A safety property asserts that nothing bad happens. A typical safety property 
would assert that a defined error state is not reachable in the model. If a safety 
property is true on some configuration of modules, of which some are interface 
modules, the property is also true on the original non-abstracted configuration. 
This is because the interface module abstraction adds behaviours to the model. If 
a safety property is true in a configuration that has more behaviours than the non-
abstracted model, the property is also true in the non-abstracted model. 

Our algorithm is designed to verify only safety properties. In particular, the algo-
rithm currently verifies only invariant properties. Invariant properties state that a 
condition holds for all reachable states. Invariant properties are safety properties 
but not all safety properties are invariants. 

3.3 Automatizing abstraction-level selection 

As it is possible to create abstractions of the model by selecting the modules 
whose functionality we want to analyse, it is possible to find a suitable abstraction 
level automatically. By suitable, we mean that the abstraction is sufficiently de-
tailed to verify the analysed property, and the abstraction level is coarse enough to 
be model checked in reasonable time. The whole verification process should also 
require less time than model checking the non-abstracted model as such. 

The technique of finding a suitable abstraction level is largely based on the idea 
of the Counterexample-Guided Abstraction Refinement technique (CEGAR) by 
Clarke et al. [Clarke et al. 2004]. The general idea of the CEGAR technique is to 
model check an abstraction of the system that preserves all behaviours of the 
concrete system. If the property is true on the abstraction, it is also true in the 
concrete system. However, a property may be false in the abstraction and still be 
true in the concrete system (a spurious counterexample is found). In this case, the 
abstraction is refined based on the counterexample. The refined abstraction is 
such that it eliminates the spurious behaviour. The process is repeated until the 
abstract system satisfies the property or a true counterexample is found. 

Our algorithm follows the general CEGAR loop, but the adaptation of the pro-
cess to our modular framework is novel. In addition, we attempt to increase the 
performance of the algorithm through counterexample minimization. The abstrac-
tion refinement step is also different from the ideas in [Clarke et al. 2004].  

Our algorithm to model check large modular systems is as follows: 

1. Choose the initial configuration of modules based on the invariant proper-
ty. 

2. Model check the current configuration of the modules. 
3. If the property is true, return ‘true’. Otherwise, a counterexample is given. 
4. Minimize the counterexample. 
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5. Check the feasibility of the counterexample on the non-abstracted model. 
If the scenario is feasible, a real error has been found. Return the coun-
terexample.  

6. Refine the abstraction based on the counterexample. 
7. Go to step 2. 

The general intention of the algorithm is to begin with as much abstraction as 
possible, and then iteratively add modules to the configuration until the abstraction 
satisfies the property or a counterexample is found. As input the algorithm re-
ceives: 

 An invariant property 
 The main module describing the system as modules 
 The modules that consist of a collection of function blocks  
 A function block library 
 Interface module descriptions for each module  
 Dependency information regarding the model: inputs/outputs of each 

module and the dependencies between modules. It is also possible to 
extract this information automatically by parsing the main module. 

In order to clarify the operation of the algorithm, we present an example run of the 
algorithm. Suppose that we want to verify the system in Figure 1. The arrows 
depict dependencies between the modules (outputs that are used as inputs to 
another module). Each module in Figure 1 consists of a set of function blocks. We 
want to check if the system satisfies the property that the outputs of modules 19 
and 13 (M19 and M13) are never true at the same time (both have only one output 
‘out1’). We write an invariant: 

 INVARSPEC ! (M19.out1 & M13.out1); 

Next, we choose the initial configuration of modules based on the invariant proper-
ty (Step 1 of the algorithm). This is done simply by extracting the variables from 
the invariant (M19.out1, M13.out1) and determining the modules that have these 
variables as outputs (Modules M19 and M13). These modules are selected as the 
initial configuration. Other modules of the system are replaced by their respected 
interface modules. The initial configuration is illustrated in Figure 3.  
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Figure 3. The initial configuration of the example run of the algorithm. 

Next, based on the selection of modules, we generate the model file by appending 
the main module with appropriate module files and apply model checking to this 
file. We use the invariant checking algorithm of the NuSMV tool together with the 
cone of influence reduction (described later). 

In our running example, NuSMV outputs a counterexample in which the outputs 
of M13 and M19 are both true at the same time. Next we attempt to minimize the 
counterexample. Based on the dependency graph we can see that our current 
abstraction (M13 and M19) is dependent on modules M11, M16, M17 and M18. 
Since the modules are deterministic, we know that the outputs of M11, M16, M17 
and M18 cause the error in the counterexample. In the counterexample minimiza-
tion step we check whether there is some subset of these outputs in the counter-
example that would be the cause of the error. Counterexample minimization is 
discussed in the next section in more detail. In our example, let us assume that we 
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deduce that the outputs of module M18 are irrelevant with respect to the counter-
example. We remove the variable assignments referring to module M18 from the 
counterexample.  

The fifth step of the algorithm is to check whether the minimized counterexam-
ple is feasible in the non-abstracted model. We generate a configuration of the 
model in which all modules are non-abstracted and add clauses that force the 
model towards behaviour described by the counterexample. Then we check 
whether the last state of the counterexample can be reached in the model. If it can 
be reached, the counterexample is feasible in the non-abstracted model and de-
picts a true error in the system. If the last state cannot be reached, the counterex-
ample is spurious, and the abstraction level should be refined. 

 
 

 

Figure 4. The refined abstraction level after one iteration. 
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Suppose that in our running example, the counterexample is not feasible in the 
non-abstracted model. We have to refine the abstraction in such a way that it 
eliminates the spurious counterexample (but still adds as few modules as possi-
ble). The refinement step starts by looking at the dependency graph. Earlier we 
concluded that the error is caused by modules M11, M16 and M17 (M18 was 
deduced to be irrelevant). We first check whether adding these three modules 
eliminates the counterexample. We generate the module configuration (M11, M13, 
M16, M17, M19) and perform another feasibility check. In our example, the config-
uration is not feasible, which is exactly what we were looking for (the spurious 
counterexample is eliminated). We can still try to improve the refinement by check-
ing if adding some subset of the new modules M11, M16 and M17 also eliminates 
the counterexample. We find out that the smallest such subset is (M11, M17). The 
resulting refined abstraction is then (M11, M13, M17, M19); see Figure 4. The 
abstraction refinement is also discussed in more detail later. 

Finally, the refined abstraction is model checked again. In our example, the re-
sult is true, which implies that the non-abstracted model satisfies the specification. 
The algorithm finishes and returns the value ‘true’. 

In what follows, some steps of the algorithm (invariant model checking, coun-
terexample minimization, feasibility checking of the counterexample, and abstrac-
tion refinement) are discussed in more detail.  

3.4 Invariant model checking 

The second step of the algorithm is model checking the current configuration of 
modules. In this step, we use two model checking algorithms in parallel: BDD-
based invariant checking and bounded model checking (BMC) -based invariant 
checking. The BDD-based model checking algorithm may require a large amount 
of time when the size of the model increases. This is why the bounded model 
checking is run in parallel. The BMC algorithm can find counterexamples faster (if 
they exist). This can reduce the run-time of the algorithm because the BDD algo-
rithm can be interrupted when a BMC counterexample is found. On the other 
hand, we need both algorithms because the used BMC algorithm may not be able 
to prove a property within a reasonable bound. 

3.5 Counterexample minimization 

If model checking an abstract configuration leads to a counterexample, the feasi-
bility of the counterexample should be checked on the non-abstracted full model. 
The counterexample is minimized before the feasibility check.  

The abstract counterexample consists of a set of variable assignments on dif-
ferent time steps. The counterexample can be minimized so that only the relevant 
variable assignments remain that actually cause the counterexample. The mini-
mized counterexample is such that the variable assignments in it always lead to 
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the original error despite the variable assignments that exist outside the minimized 
counterexample.  

Counterexample minimization is performed for two reasons: 

 Free non-deterministic variables of the abstract model can be restricted 
in the full non-abstracted model in a way that makes the counterexample 
infeasible. However, these variables may not be causing the error de-
scribed by the counterexample (values are irrelevant). Leaving these var-
iables outside the counterexample reduces false negative feasibility an-
swers. 

 The abstract model includes the behaviour of a set of modules A. These 
modules are dependent on signals received from a set of modules B that 
are not in the abstract model. In the abstraction refinement step of the al-
gorithm, the set A is increased by adding new modules from the set B 
based on the dependency relation. If it can be demonstrated that a mod-
ule M in B is irrelevant with respect to the examined counterexample, that 
module M can be left out in abstraction refinement, and thus the size of 
the abstract model after refinement is decreased. The size of the model 
has major influence on the performance of the algorithm. It may be pos-
sible to simplify the dependency relation of the modules based on coun-
terexample minimization (if all signals from one module M in B are mini-
mized). 

In what follows, we describe techniques for counterexample minimization that can 
be used together with the algorithm. The techniques based on random walk and 
delta debugging are search methods that do not produce the smallest possible 
counterexample. The CTL query-based technique does produce the smallest 
possible counterexample but the technique requires more computation. 

Some issues are related to the minimization regardless of the minimization 
technique. The counterexample minimization techniques require: 

 The model file 
 The model checker (NuSMV) 
 The abstraction level of the model (which modules are abstracted as in-

terface modules) 
 Module dependency information (A list of modules, their inputs and the 

modules from which these inputs are received) 
 The counterexample file in XML format 
 The examined invariant property (only invariant properties and their coun-

terexamples are supported). 

The counterexample given as input can be simplified by itself. Typically, the model 
checker can perform some form of trace simplification. NuSMV allows the use of 
the cone-of-influence (COI) reduction, which can be used to reduce the number of 
variables in the counterexample before further simplification is applied. The COI 
technique is introduced later on. 
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The counterexample can also easily be simplified by only taking into account 
the input variables of each module. The model behaviour is fully determined by 
exactly these variables. In the modelling approach used, all the other variables 
(output variables, memories of the function blocks) receive their values from the 
input variable sequences in a deterministic way. Thus, the counterexample can 
also be described in terms of the input variables only. A list of ‘free variables’ can 
be extracted from the module dependencies and the abstraction levels of the 
modules. Free variables determine the behaviour of the system in an unambigu-
ous way. All free variables of an abstracted model are either:  

 Interface variables: input variables of the non-abstracted modules that 
receive their value from an interface module, or  

 Non-deterministic variables: input variables whose value is determined 
non-deterministically in the model (they can have any value at all times). 

Thus, an input variable whose value is received from a non-abstracted module M 
(a module that is included in the abstraction) is not a free variable, since its value 
is determined by the input variables of module M. This leads to two realizations: 

 Only variable assignments for the free variables are preserved in the 
counterexample. Other variable assignments are redundant and can be 
left out. 

 The non-deterministic variables of an abstract model are also non-
deterministic in the full non-abstracted model. The non-deterministic vari-
ables cannot cause false feasibility answers in the algorithm nor can their 
removal lead to reductions in the abstraction refinement step. Therefore, 
the non-deterministic variables should not be the target of minimization. 
The non-deterministic variables are always included in the minimized 
counterexample. 

Thus, our counterexample minimization techniques focus on further minimizing the 
variable assignments of the counterexample (already minimized using the cone-of-
influence reduction of NuSMV) that are the interface variables of the current ab-
straction.  

The minimization techniques are based on the idea of creating modified copies 
of the model in which some variables of the model are forced to follow the behav-
iour described by the counterexample.  

The modified copy is created by adding a clock variable and clauses for the 
forced variables. The clock variable clock is simply an integer variable that is add-
ed to the model. The clock variable has the values from 0 to the length of the 
counterexample. The clock variable’s initial value is 0. After that, the value is in-
creased by one at each time step. When the length of the counterexample is 
reached, the value of the clock is permanently set to the highest value. For exam-
ple, if the counterexample consists of two time points, the NuSMV code for the 
clock variable would be: 
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init(clock):= 0; 

next(clock) := case 

clock < 2 : clock +1 ; 

TRUE : 2 ; 

esac; 

For each forced variable, the init and next clauses of NuSMV are created so that 
the variable follows the counterexample values until the end of the counterexam-
ple. For example, a variable that has the value FALSE at time point 0 and TRUE 
at time points 1 and 2 in the counterexample would translate into the clauses: 

init( variable1 ) :- FALSE; 
next( variable1 ) := case 

clock = 0  : TRUE ; 
clock = 1  : TRUE ; 
TRUE :  {TRUE, FALSE} ; 

esac; 
TRUE : {TRUE, FALSE} ; 
esac; 

Using the modified copies of the model, it can then be verified by model checking 
whether the copies are such that the error always manifests itself. If it does, the 
set of forced variables can be used to create a new minimized counterexample. 
Other variables are irrelevant. In order to find the smallest possible counterexam-
ple, the naive approach would be to create a modified model for every subset of 
variable assignments in the counterexample and check each one separately. The 
smallest subset leading to a true minimized counterexample would then be the 
smallest possible counterexample. However, checking all subsets of the variable 
assignments is too laborious, and some heuristics are needed. We use, for exam-
ple, local search techniques, and apply the techniques on several granularity lev-
els. 

Each minimization technique can be applied on at least three different granular-
ity levels:  

 
 Module level minimization: Since one of the objectives of the minimi-

zation is to break dependencies between modules, it makes sense to 
find out whether some module as a whole is irrelevant with respect to 
the counterexample. On the module level, the variable assignments 
are grouped according to the module that outputs them. The subsets 
of these groups are then examined to find the smallest subset, such 
that any execution still always leads to the error in the counterexam-
ple. The variable assignments related to irrelevant modules are then 
removed from the counterexample. For example, if the module M1 is 
removed as a result, assignments of variables output by M1

 are re-
moved from the counterexample at all time points. 
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of the counterexample. The modified model is then model checked against a spe-
cial CTL specification in order to determine the minimum number of TRUE as-
signments in these lock variables that are required to force the system to violate 
the original property. The ideas are explained in detail in what follows. 

Variables under minimization are forced to the counterexample values through 
lock variables and a clock variable keeping track of time. The clock variable clock 
is simply an integer variable that is added to the model (similarly to that in random 
walk minimization).  

A new variable, lockX (that has values 0 and 1), is added for each interface var-
iable (variables that are the target of the minimization). A mapping is created in 
which the correspondences between the lock variables and the interface variables 
are determined. The lock variables are such that they non-deterministically choose 
a value (0/1) at the initial time point and retain the value at all future time points. 
This is done by omitting the NuSMV init statement and using next statements such 
as: 

next(lockX):= lockX; 

The value 1 of a lock variable means that the variable related to it has the same 
value as the counterexample at time points less than or equal to the length of the 
minimized counterexample. If lockX has value 0, the value of the variable related 
to that lock variable is not restricted in any way. 

The behaviour of the lock variables is realized through init and next statements 
written for all variables in the counterexample: 

 
init( variable1 ) case 
  lock1 = 1 : FALSE ; 
  TRUE : {TRUE, FALSE} ; 
esac; 
next( variable1 ) := case 

clock = 0  : case  
lock1 = 1 :  TRUE ;  
TRUE :  {TRUE, FALSE} ;  

esac; 
TRUE : {TRUE, FALSE} ; 

esac; 
  

In the above example, according to the original counterexample, variable1 takes 
the value FALSE at time point 0 and the value TRUE at time point 1. If lock1 has 
the value TRUE, variable1 takes the value FALSE at time point 1 and the value 
TRUE at time point 2. At all other time points the value of variable1 is non-
restricted. Enumerative variables are also supported. The variable domain is read 
in the beginning of the counterexample minimization from the module dependency 
information. The full domain range then replaces {TRUE, FALSE} in all instances.  
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The number of variables that is locked is controlled through another variable: 

nro_of_locked_variables :=  lock0 +  lock1 +  ... lockN; 
 

Finally, the examined property is a CTL property: 

CTLSPEC ! (nrolockedvars = x & AF(clock = y & error)); 

where:  

 x is a variable that determines the number of locked variables 
 y+1 is the length of the original counterexample 
 error is the negation of the original invariant property. 

 
The CTL formula states that no such initial state exists in which a certain number x 
of the interface variables are locked to the values of the original counterexample 
so that no matter what the values of the other non-locked interface variables are, 
the system will eventually lead to the error state manifested in the original coun-
terexample. However, if the formula leads to a counterexample, it means that such 
a choice of locked variables exists. The actual locked variables can be deduced 
from the counterexample trace. If the formula is true, a higher value of x should be 
tried out when looking for a minimal counterexample. (Note that the ‘function’ here 
is monotonous. If the formula is true for x=5, then the formula is also true for x < 5. 
If the formula is true for some value of x, then if a smaller value of x were to exist 
that resulted in a counterexample of the formula, then the same counterexample 
could be produced by choosing these variables and a number of other variables. If 
the formula is false for x=10 then a counterexample also exists for all x > 10. If a 
set of variables and time points exist that are sufficient to produce the counterex-
ample, then adding other variable assignments cannot change this.) 

Now, the resulting modified model can be used to check if it is possible to lock 
a certain number of interface variables in such a way that the original error mani-
fests itself no matter what the other non-locked variable assignments are. The 
number of interface variables is known, and the minimum number of locks re-
quired can be found through binary search: 

 
binarySearch(low, high): 
x = (high + low) / 2 
model check modified model using specification: 
‘CTLSPEC ! (nrolockedvars = x & AF(clock = y & error));’ 
if (specification is false): 

return min(minimization, binarySearch(low, x-
1)) 

else: 
 return binarySearch(x+1, high) 

 
The counterexample minimization described here can also be used on the module 
level and the variable/time point level. On the module level, a lock variable is cre-
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removing variables that cannot influence the variables of the specification. The 
basic idea is to create a dependency graph of the variables in the model and then 
traverse the graph starting from the variables of the specification. Since the cone 
of influence reduction reduces the number of variables in a model, it also reduces 
the number of variable assignments in the counterexample. 

The cone of influence reduction can be improved by taking into account the dif-
ferent time points at which a variable can have influence on the specification. This 
technique is referred to as Bounded Cone of Influence (BCOI) [Biere et al. 1999]. 

3.5.4.2 Brute Force Lifting 

The technique called Brute Force Lifting (BFL) [Ravi & Somenzi 2004] was intro-
duced in the context of minimizing bounded model checking (BMC) counterexam-
ples. BMC counterexamples are satisfying assignments to a Boolean formula, 
typically in conjunctive normal form (CNF). The idea is to derive a minimally satis-
fying counterexample that, together with the Boolean formula describing the mod-
el, implies a violation of the checked property. 

The examined technique is performed on the level of Boolean formulas solved 
by a SAT solver. On that level, the paper describes a process of simplification 
called lifting. Lifting is the process of removing literals or variables from a satisfy-
ing assignment such that for each valuation of the lifted variables the formula is 
still satisfiable. Some variables are clearly irrelevant with respect to the checked 
property and can be lifted. The relevance of other variables has to be checked by 
brute force. This means that for each checked literal, the negation of the property 
is checked with a SAT solver. If the result is satisfiable, then the literal cannot be 
lifted. The BFL technique described in the paper is performed on the inputs of a 
system. Since a SAT solver run is needed for a single lifting, the technique can be 
quite expensive computationally. However, the experimental results showed that 
the average reduction in counterexample variables was 71%. 

The BFL technique can be further improved by the elimination of sets of varia-
bles simultaneously [Shen et al. 2005]. The technique is based on refutation anal-
ysis and incremental SAT. The idea is that after checking the negation of the 
property with a SAT solver and receiving an UNSAT result, the result is analysed 
to find out if it implies that other free variables are also irrelevant. If the result of 
the check is UNSAT, then there must be a conflict clause at decision level 0. The 
conflict clause is then used to traverse the implication graph in the reverse direc-
tion to obtain the set of clauses that leads to that conflict. The irrelevant variables 
are then the variables that are in that conflict-causing set and whose negation is 
also in that set. These variables are the reason the problem is UNSAT. Thus, they 
are the reason the counterexample must always happen. These are also the irrel-
evant free variables that can be lifted at the same time. The idea is equal to the 
finding of an unsatisfiable core of the formula and the free variables and their 
negations that are in the core. 
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The general idea of checking the satisfiability of the negation of the property is 
also used in our work. In our work, the check is performed with the model checker, 
while a set of variables is set free. The variables in our work are the variables of 
the model, not the low abstraction level variables of the Boolean formula given to 
the SAT solver. The general idea, however, is similar. 

3.5.4.3 Simulation-based bug trace minimization 

The minimization of simulation bug traces is examined in [Chang et al. 2007]. In 
simulation, the system is run against a set of assertions. For example, random 
simulation can be run on some design, while assertions are monitored. The appli-
cation of simulation late in the life cycle of the product results in detailed and long 
traces. The technique and the tool examined in the paper analyse a simulation 
bug trace and produce an equivalent trace of shorter length. The technique relies 
on both simulation and formal methods. 

The techniques described in [Chang et al. 2007] are two-fold. Some techniques 
intend to remove redundant time steps from the bug trace. Another group of tech-
niques intends to simplify the trace by identifying essential input values.  

Proposed shortening techniques by the paper: 

1. Single-cycle elimination: remove cycles completely and re-simulate to 
see if the bug still exists. 

2. Alternative path to bug: simulate with alternative transitions during the 
trace and detect if a shorter path violating the assertion is found. 

3. State-skip: identify non-unique states that represent loops. If the same 
state is in the trace twice there is a loop. 

4. BMC-based refinement: search locally for shorter paths between two 
trace states. 

Proposed simplification techniques: 

1. Input event elimination: re-simulate with fewer input events. For example, 
set c=0 instead of c=1. If the bug still manifests itself, the input event is 
redundant. 

2. Essential variable identification: use three-value simulation to identify 
non-essential inputs. 

In most cases, traces can be reduced to a fraction of their initial size. The average 
reduction in a trace produced by random simulation was 99% in terms of cycles 
and input events. For traces that were produced by a semi-formal method, the 
techniques are also effective (reduced traces ~75-90%). 

Our work focuses on simplifying but not shortening the counterexample in time. 
We also use BMC to produce the shortest possible counterexample. 
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3.5.4.4 Minimizing automata-based model checking counterexamples 

Gastin et al. [Gastin et al. 2004] minimize automata-based model checking coun-
terexamples. Their objective is to find minimal counterexamples in terms of time 
steps in the counterexample. If the model is represented as a Kripke structure, 
checking LTL properties is equivalent to testing whether the intersection of the 
model and a Büchi automaton describing violating executions has no accepting 
run. The traditional algorithms look for accepting runs with a depth-first algorithm 
that returns the first accepting run found. The algorithm described in [Gastin et al. 
2004] performs a depth-first search to find a minimal bug trace. The idea is that 
the search does not necessarily stop when a state already visited is reached. 
Reaching a state with a distance to the initial state smaller than for the previous 
visit may lead to a shorter counterexample. Therefore, for each state, there is an 
additional field, storing the smallest length on which that state occurred. The min-
imal counterexample found so far is also stored. 

3.5.4.5 Explaining counter-examples through forced and free segments 

The paper [Jin et al. 2002] distinguishes between ‘control’ and ‘data’ signals in the 
counterexample. The paper discusses the explanation of counterexamples rather 
than minimization. The explanation is performed through the annotation of the 
error traces by alternation of fated (forced) and free segments. The fated seg-
ments show unavoidable progress towards the error while free segments repre-
sent avoidable choices that have led to the error. The annotation helps in the error 
interpretation. The fated segments are control signal values that lead towards the 
error. The free segments represent mistakes made in the choice of data values 
that also lead towards the error. 

The paper also interprets counterexample minimization as a two-player concur-
rent reachability game. The two players are the (hostile) environment and the 
system. The environment chooses values for the controlling variables and the 
system simultaneously chooses the values for the rest of the variables (data vari-
ables). The environment’s goal is to reach the error state of the counterexample. A 
(memoryless) strategy for the environment is a function that maps each state to 
one valuation of the control variables. Likewise, a strategy for the system is a 
function that maps each state to one valuation of the data variables. A position is a 
winning position for the environment if there is an environment strategy such that, 
for all system strategies, the error state is eventually reached. A position is a win-
ning strategy for the system if the error state is never reached. 

3.5.4.6 Symbolic Trajectory Evaluation 

The ideas of counterexample minimization are also somewhat similar to the tech-
niques used in the abstraction refinement of symbolic trajectory evaluation [Roor-
da & Claessen 2006].  
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Symbolic Trajectory Evaluation (STE) [Seger & Bryant 1995] is a formal verifi-
cation technique that combines three-valued simulation with symbolic simulation. 
STE is used to verify assertions of the form A  C, where A is called the anteced-
ent and C is called the consequent. The expression A specifies the values used in 
the simulation, while the expression C depicts the expected result. STE is often 
used to verify digital circuits, e.g., the technique is extensively used at Intel. 

In three-valued simulation, a third value is introduced to the (Boolean) simula-
tor. The third value X represents an unknown value. A state with some variables 
set to X covers those states obtained by replacing the X values with all combina-
tions of 0 and 1. When three-valued simulation is used, the transition relation of 
the model is extended to cover also the value X. With three-valued simulation it is 
possible to verify the STE assertions using fewer simulation runs, since one simu-
lation run corresponds to several of the original Boolean simulations. 

In symbolic simulation, Boolean expressions over symbolic variables are used 
to verify system properties. A Boolean expression over symbolic variables can be 
written for the model and the consequent of the STE assertion. The expressions 
should then be compared for equality. One way of doing this is to use the BDD 
data structure. A BDD is calculated for each input of the model, and for each gate 
a BDD is calculated that represents the output of the gate. Finally, a BDD is calcu-
lated for the whole circuit. Since BDD is a canonical data structure, the compari-
son with the BDD of the consequent is simple. The disadvantage of symbolic 
simulation is that the number of symbolic variables needed can be huge, which 
leads to the BDD blow-up. 

The two techniques work well together since three-valued simulation decreases 
the number of symbolic variables that are needed.  

The STE abstraction is typically initially not proven because the antecedent 
yields X values for nodes that are required to have some particular Boolean value 
by the consequent. When this happens the abstraction must be refined. The ab-
straction refinement issue is discussed in [Roorda & Claessen 2006]. Roorda et al. 
have invented the concept of strengthening, which indicates the input of a circuit 
that needs to be given a non-X value in order to take non-X values at the relevant 
outputs. The writers have created a tool that can calculate strengthenings that 
correspond to counter-examples of the assertion. In this sense, calculating the 
weakest satisfying strengthening has similarities with counterexample minimiza-
tion. The weakest satisfying strengthening of a counterexample indicates the vari-
ables of the model that have to have some particular Boolean value so that the 
counterexample manifests itself. The number of such variables is also minimal.  

In [Roorda & Claessen 2006], SAT-formulas are generated whose solutions 
represent the satisfying strengthenings of the assertion. An incremental SAT-
solver is used iteratively to find the weakest strengthening. This is done using 
constraints to block the last found strengthening and allowing only strictly weaker 
strengthenings. 

There are many similarities to ideas used in our minimization method. We also 
look for the minimal number of variable assignments that are needed to produce 
the counterexample. Instead of using three-valued simulation, we modify the mod-
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el and use a distinct specification that is checked by the model checker. We also 
find the minimal number of variables iteratively. The difference between our tech-
nique and the one in [Roorda & Claessen 2006] is that their three-valued abstrac-
tion has some inherent information loss. This means that the technique based on 
three-valued simulation may come up with a non-minimal result. In other words, 
some variables of the counterexample may not be necessary to produce it, but the 
three-valued abstraction requires that they are not removed. Information loss can 
also occur due to the fact that the STE method performs only forward simulation. If 
the antecedent of the assertion specifies some output value but not the inputs 
relevant to it, the inputs are assigned value X, which can cause the assertion to 
fail. However, the information loss caused by three-valued abstraction and for-
wards simulation can be avoided by adding extra symbolic variables. 

3.5.4.7 Localizing errors in counterexample traces 

The paper [Ball et al. 2003] discusses finding the cause of errors in a counterex-
ample trace by comparing the trace against correct traces. They also demonstrate 
how multiple error traces with independent causes can be generated. The algo-
rithms are implemented in the context of the software model checking tool SLAM. 

The counterexample is seen as a symptom of the error. The cause of the error 
is extracted by comparing these erroneous traces against correct traces and look-
ing for transitions of the error trace that are not in any correct trace of the program. 
Program statements inducing these transitions are likely to contain the causes of 
the error. Other possible causes of the same error can be looked for by replacing 
the detected erroneous transitions with halt statements and re-running the model 
checker until no more error traces can be found. Thus, a single error trace can be 
outputted for each possible cause of the error. The approach is problematic in 
detecting the cause of errors in some cases: all transitions of the counterexample 
also exist in some correct trace, in which case the cause of the error is empty 
(coincidental correctness). In general, the algorithm managed to identify the cause 
of an error directly in 11 out of 15 error traces. In three cases, the cause could be 
deduced by tweaking the algorithm. In one case, the abstraction level of the model 
inhibited finding the cause of the error. In many cases, the error causes found 
were only a small fraction of the error trace. (All were less than 16% of the transi-
tions in the error trace, typically about 1%.) 

3.5.4.8 Error cause extraction through variations of the error 

Other traces are also used in [Groce & Visser 2003] to extract the error cause. 
The paper describes how an automated method can be used to find other versions 
of the error and a set of correct traces and to analyse the executions to extract the 
cause of the error. 

The work focuses on finite executions demonstrating violation of safety proper-
ties in Java programs. The algorithms are implemented in the Java Pathfinder 
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model checker. The paper defines a set of executions called negatives as varia-
tions of the counterexample trace that produces the same error. A second set 
called positives is defined as a set of traces that are variations of the original error 
trace in which the error does not occur. Negatives are executions that reach the 
error state from the same control location; not all possible ways to reach the error 
state are accepted. Similarly, positives are executions that pass through that con-
trol location without proceeding to the error state. The method of generating the 
negatives and positives uses a model checker to explore backwards from the 
original counterexample.  

The paper introduces three analysis methods that can be performed on the 
negatives and the positives to extract the cause of the error: 

1. Analysis of the transitions (similar to the method described in [Ball et al. 
2003]): computes sets of projected transitions (pairs of control locations 
and actions). After this, the transitions that appear in all positive/negative 
traces are reported. The transitions that only appear in negative/positive 
traces are also reported. It is also indicated whether these transitions are 
such that they appear in all negative/positive traces (causal transitions 
that denote precisely the common behaviour that differentiates the nega-
tive and positive sets). 

2. Analysis of data invariants over the executions: the same control loca-
tions may be present in both negative and positive traces. It may be that 
the control location does not induce the error, but the choice of data val-
ues does. In this analysis, data invariants are calculated over the nega-
tives and these invariants are compared with the invariants of the positive 
traces. The invariants are calculated using Daikon [Ernst et al. 2007]. 

3. Analysing the minimal transformations between negatives and positives: 
here the least number of changes required to make a positive into a neg-
ative if looked for. 

 
In experimental tests, the algorithms found 131 variations on one found error. The 
analysis implied a function call that was present in all negatives, but also in some 
positives, and a few short transformations indicating that the function call has to be 
made in certain conditions related to time. 

3.5.4.9 Delta debugging 

Counterexample minimization has similarities to the test case simplification of the 
delta debugging method [Zeller 2002], [Zeller & Hildebrandt 2002]. In delta debug-
ging, a test case that produces a failure is simplified to a minimal test case that still 
produces the failure. Every part of the resulting minimal test case is significant in 
reproducing the failure. The delta debugging algorithm works by successively 
running test cases that contain only a subset of inputs of the original test case. It 
also runs test cases in which the complement of the set of inputs is always cho-
sen. If some of the input sets can produce the failure they are chosen as the new 
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failure inducing test case in the algorithm. If none of the subsets causes the fail-
ure, the granularity of the subsets is increased until a failure-inducing subset (or its 
complement) is found. For example, the algorithm starts by dividing the test case 
into two halves. If these input sets do not produce the failure, the test case is split 
into three mutually exclusive subsets. The complements of these subsets are also 
checked. The algorithm stops when removing any single input causes the failure 
to disappear.  

The delta debugging algorithm is also used in our work to generate sets of vari-
ables that are used to create models that are then model checked. In a way, we 
have adapted the delta debugging method (originally used with test cases) to 
model checking. We also use delta debugging style minimization in the abstraction 
phase of our algorithm. 

3.6 Checking the feasibility of the counterexample 

The idea of feasibility checking is to find out whether it is possible to obtain the 
same error that was discovered in the abstracted model using the non-abstracted 
version of the model. If a trace of the full model can be produced that includes all 
relevant free variable assignments (the minimized counterexample) then the coun-
terexample is a true counterexample and describes a true error in the mod-
el/system. If the trace is not feasible, this is because some modules’ functionalities 
prohibit the variables from obtaining the values of the counterexample. Non-
feasibility means that the specification has to be checked on a more refined ab-
straction of the model. 

In order to check counterexample feasibility the following inputs are required: 

 The full non-abstracted model. 
 A counterexample discovered in the abstract version of the model. The 

counterexample should be minimized with respect to the number of free 
variable assignments. 

The feasibility of the counterexample is checked through the use of invariant 
states. The full model is modified by adding a clock variable and invariant states 
(NuSMV INVAR clauses) that restrict the behaviour of the model so that only be-
haviours that follow the values of the counterexample are allowed. The clock vari-
able is initialized at 0, and the value is incremented by 1 at each time step until the 
length of the counterexample is exceeded. After this, the clock value remains at 
the highest value (counterexample length +1). For example, for a counterexample 
that consists of seven states the added clock statements would be: 

init(clock):= 0; 
next(clock) := case 
 clock < 7 : clock + 1 ; 
 TRUE : 7; 
esac; 
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Now, in order to restrict the behaviour of the full model, invariant clauses are add-
ed for each variable of the counterexample. The invariant clauses are such that 
the clock value implies the value of a certain variable at given times. For example, 
if the counterexample states that variable1 has value TRUE at time points 1 and 6, 
and FALSE at other time points (time points 0, 2, 3, 4, 5) then the following INVAR 
statements would be added:  

INVAR (clock = 0) -> (variable1 = FALSE) 

INVAR (clock = 1) -> (variable1 = TRUE) 

INVAR (clock = 2) -> (variable1 = FALSE) 

INVAR (clock = 3) -> (variable1 = FALSE) 

INVAR (clock = 4) -> (variable1 = FALSE) 

INVAR (clock = 5) -> (variable1 = FALSE) 

INVAR (clock = 6) -> (variable1 = TRUE) 

In order to see whether the counterexample is realizable, we can find out whether 
the last state (in which clock is 6) is reachable from the initial state. In this running 
example, this can be done by checking the invariant specification: 

INVARSPEC (clock != 6); 

If the specification is true, it means that the end of the counterexample cannot be 
reached in the full model and thus the counter-example is not feasible in the full 
model. If the specification is false, a new trace is given as output that describes 
how the counterexample (the error) is realized in the full model. 

Counterexample feasibility can also be checked using the model checker’s own 
command line options. In NuSMV, it is possible to check feasibility of partial traces 
by executing them in the full model. This can be done through the command line 
option execute_partial_traces. This approach was not used here due to the proce-
dure sometimes terminating and making the result hard to read. 

3.7 Abstraction refinement 

The idea of abstraction refinement is to find a new abstraction (i.e. a configuration 
of non-abstracted modules and interface modules) that is more detailed than the 
current configuration of the model and makes the current counterexample infeasi-
ble. The purpose is to find an abstraction level that is between the full model and 
the current configuration that could be model checked more efficiently but for 
which the refined abstraction could not result in the same counter-example that 
has already been extracted from the earlier abstract model. The refined abstrac-
tion can then be used to check the original invariant specification again. 

As input, the abstraction refinement step requires: 
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 The current abstraction level (configuration of modules) 
 Module/variable dependency information 
 A counterexample trace 
 The full non-abstracted model. 

The set of modules before the abstraction refinement is denoted by Current. The 
set of modules that is added to this set is denoted by Refinement. This set is ini-
tially empty. The general abstraction refinement process is as follows: 

1. Find out the shortest prefix P of the minimized counterexample that is not 
feasible in the full non-abstracted model. 

2. Examine the last state of the prefix P. Extract variable assignments on 
this state. Using the dependency graph, deduce the modules that output 
these variables. Add these modules to the set Refinement. 

3. Check the feasibility of the counterexample prefix P in the model in which 
the modules in Current or Refinement are non-abstracted and other 
modules are interface modules. 

4. If the counterexample is not feasible, go to step 6. 
5. Examine the dependency graph of the model. Extract modules that pre-

cede modules in Current or Refinement. Add these modules to the set 
Refinement. Go to step 3. 

6. Minimize the set Refinement using delta debugging. 

In the first step, the shortest infeasible prefix of the counterexample is looked for. 
All the feasibility checks used in abstraction refinement are performed as de-
scribed in Section 3.6. The last state of that trace includes some variable assign-
ments that make the trace infeasible in the full non-abstracted model (but are 
possible in the current abstraction). Since we want a refined abstraction that 
makes the counterexample infeasible, it seems logical to remove the abstractions 
that cause the values of these variables. We attempt this by replacing interface 
modules that directly influence the values of these critical variables with their non-
abstracted versions. If this does not make the counterexample infeasible, we ex-
pand the set of new non-abstracted modules based on the dependency graph until 
the counterexample becomes infeasible. This will ultimately happen, since we 
know that the counterexample is not feasible in the full model. 

When a successful refinement is first found, it is not necessarily a minimum re-
finement. It is worthwhile to keep the size of the model as small as possible. Thus, 
minimizing the refinement is necessary, especially since the feasibility checks 
required in the minimization are quite fast to perform. The objective of the minimi-
zation is to find a subset of the modules in Refinement that is sufficient to make 
the counterexample infeasible. For this minimization, we use delta debugging (the 
algorithm already described in Section 3.5.2) to generate subsets of Refinement 
that are checked for feasibility. The approach leads to a local minimum subset of 
modules.  
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3.8 Preliminary results 

A prototype implementation of the algorithm was created in the Python program-
ming language. In order to analyse the effectiveness of the algorithm, a model was 
created based on the case study in [Lahtinen et al. 2010]. The system is a func-
tion-block-based control system. The detailed implementation is not presented due 
to confidentiality issues. We only used a small, simplified portion of the full model 
and divided that resulting model into 22 modules (see Figure 1). The tested model 
was kept small so that the running times would also remain reasonable. 

Testing the algorithm involves many aspects that should be taken into account. 
The model checking times vary greatly based on the selected counterexample 
minimization, technique and abstraction refinement technique. Other issues that 
affect the verification time are the checked property and our implementation that 
uses parallel execution. Due to the required diversity of the tests to analyse ade-
quately the algorithm, we only give some preliminary results. A more thorough 
analysis is left to future research.  

In the preliminary tests, we have used the delta debugging technique in coun-
ter-example minimization and in abstraction refinement. The counter-example 
minimization was used on the module level. The running times of the algorithm 
were compared with algorithms available in NuSMV:  

 the standard NuSMV invariant checking algorithm: NuSMV command 
‘check_invar’ with the command line option ‘–coi’ (cone-of-influence 
reduction) 

 the NuSMV invariant-checking algorithm: NuSMV command 
‘check_invar’ with the command line options ‘-coi’ (the cone-of-
influence reduction) and 
‘-dynamic’ (dynamic variable ordering) 

 the NuSMV bounded model checking algorithm for invariants: NuSMV 
command ‘check_invar_bmc_inc’. 

The model used was the same full non-abstracted model as that used in our algo-
rithm. 

The verified properties 1, 2 and 3 are random invariants that are false in the 
model. The properties 4, 5, 6 and 7 are derived from the requirement specification 
of the original system. Properties 4, 5 and 7 are true in the model. Property 6 is 
not true because some parts of the system have not been included in the model. 

  
  



3. Model checking large systems
 

39 

Table 1. Model checking times of the compared algorithms. 

 NuSMV invariant 
checking  

NuSMV invariant checking 
with dynamic variable 
ordering 

NuSMV BMC 
algorithm for in-
variants 

Our CEGAR loop-
based algorithm 

Property 1 0.2 s 0.7 s 0.3 s 0.9 s 
Property 2 5 min 50 s 8.6 s 3.6 s 4.9 s 
Property 3 0.3 s 1.1 s 0.4 s 1.2 s 
Property 4 5 min 50 s 8.4 s 3.3 s 53 s 
Property 5 >1h 6.7 s 5.0 s 0.6 s 
Property 6 11 min 15 s 8.3 s 8.2 s 14 s 
Property 7 >1h 2 min 14 s 6.5 s 2 min 25 s 

 
The performance of the BMC algorithm is very good in all cases. The BMC algo-
rithm also manages to prove the invariants that are true. Most BMC algorithms can 
only find counter-examples but not prove properties. The BMC algorithm em-
ployed in Table 1 can also prove properties but the needed bounds can be too 
high to do so in practice. 

In the case of properties 1, 2 and 3, the algorithm discovers an abstract coun-
terexample that is minimized and checked for feasibility on the full model. A single 
iteration of the algorithm is required. For property 2, our algorithm is faster that the 
NuSMV invariant-checking algorithms.  

In the case of property 5, our algorithm discovers that the initial abstract model 
is true. The verification is faster than all the NuSMV algorithms.  

While verifying property 4, our algorithm performs two iterations. It is still quite 
fast: the verification is faster than the standard NuSMV invariant-checking algo-
rithm.  

Property 7 is the most difficult to verify. Our algorithm uses three iterations to 
solve it. Compared with the NuSMV invariant-checking algorithms, the verification 
time is still quite competent.  

3.9 Shortcomings of the current approach and further 
development  

The efficiency of the algorithm depends largely on the examined formal property. 
In particular, if the property is such that it requires multiple iterations of the algo-
rithm it is probable that the algorithm will not outperform traditional model checking 
methods. In some cases, all modules of the model may have to be analysed in 
order to verify a particular property. In these cases the algorithm is of no use. 

In cases where the verification leads to a counterexample, a simple BMC check 
on the full non-abstracted model is likely to be faster than using the algorithm. This 
is because BMC is usually quite fast even in large models. However, traditional 
BMC cannot prove that a property is true. The algorithm becomes valuable when a 
counterexample cannot be found by BMC in reasonable time and traditional BDD-
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based model checking cannot prove the property with reasonable resources (time 
or memory). In these cases, it is possible that the algorithm finds a sufficient sub-
set of the modules that is computationally feasible. The algorithm can sometimes 
be used to prove properties of a system that cannot be otherwise proven. 

Another shortcoming of the algorithm is that only safety properties can be veri-
fied. The implementation of the algorithm is currently for the invariant properties of 
NuSMV. Verifying liveness properties, for example, is left to future research.  

The algorithm spends significant effort minimizing the counterexample traces. 
This is a trade-off situation. Minimization tends to support the counterexample 
feasibility checks and keeping the size of the abstraction small. On the other hand, 
if too much effort is put into minimization, the verification takes a long time (possi-
bly more than just applying traditional model checking methods). It may be rea-
sonable to perform minimization only on a broad level. Simple module-level mini-
mization may be enough. 

Improving the counterexample minimization step is one potential future re-
search subject. Using a QBF (quantified Boolean formula) solver in counterexam-
ple minimization may make the minimization step faster. The counterexample 
minimization problem can be solved by writing it as a quantified Boolean formula 
(Boolean logic with quantifiers). The solutions to this formula describe a minimized 
counterexample.  

New approaches could also be found for the abstraction refinement step. Using 
a MUS solver in abstraction refinement is a possible improvement. A MUS solver 
finds a minimal unsatisfiable core of clauses in a set of clauses (a SAT problem). 
Since the model checking problem can be described as a SAT problem, a MUS 
solver could be used to find these clauses. The set of clauses would then be used 
in abstraction refinement to select a minimal set of modules that makes the spuri-
ous counterexample infeasible.  

Further improvements to the algorithm could be related to using assume-
guarantee reasoning. Assumptions related to different modules can be used to 
facilitate the verification. The assumptions could then be verified separately. How-
ever, some more systematic methodology is needed. 

Finally, we plan to extend the current methodology to more detailed models. 
We envision that fault models (as described in Section 4) and asynchronous prop-
erties (as seen in the UPPAAL models in Section 5) could be integrated into our 
methodology in a modular manner. This kind of modular extension of the model 
together with the use of the algorithm could allow the verification of very large and 
detailed models of a system. 
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4. Architecture-level model checking 

This section discusses model checking of I&C safety systems at architecture level. 
‘Architecture level’ in our context means that in addition to modelling the intended 
(software function of a) safety I&C system, we also take into account the hardware 
architecture of the system. In particular, hardware is modelled as a set of individu-
al components and container elements through which the information flows. 
Hardware failures (possibly including a defined set of common cause failures) are 
included in the model to induce alterations to the information flow. The intention is 
to examine the effects of a set of hardware failures on the overall operation of the 
safety system.  

The YVL guides state that a safety system (typically implemented in several 
subsystems) shall accomplish the safety function in the case of a single failure and 
simultaneous inoperability of any other component due to maintenance. Using the 
methodology described in this section, the realization of the safety function imple-
mented in software can be verified using a model that also examines the behav-
iour of the system in all possible hardware failure cases. The methodology also 
allows, e.g., the analysis of hypothetical common cause failures and their effect on 
the safety function.  

The term ‘architecture level’ in this section is only discussed in the context de-
fined above. For instance, issues related to control room architecture, software 
architecture and system security are not addressed. 

4.1 Model checking systems with detailed fault models  

Our model checking methodology has focused primarily on the verification of logic 
designs. We have also analysed single-fault tolerance of these designs, but the 
fault models have been quite non-detailed. Typically, the exact functional behav-
iour of the system is abstracted to a bare minimum to focus on the fault tolerance 
issues and thus only the status/fault bits of an automation system have been im-
plemented in the model. However, the behaviour of a system can be examined in 
more detail by creating more detailed fault models. The fault models can include 
physical faults such as faults in telecommunication links, microprocessor faults, 
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cable failures and electrical faults influencing all equipment in a cabinet. Common-
cause failures (CCFs) could also be postulated in such a fault model.  

Using detailed fault models, model checking could be used to analyse the fault 
tolerance of hardware architecture designs. If it were possible to analyse the logi-
cal design together with a fault model based on the hardware architecture, the 
overall system behaviour could be analysed under various assumptions. However, 
in this work the logical design is abstracted to a bare minimum to focus on the 
faults themselves. In addition to single-fault tolerance, all kinds of failure assump-
tions can be made on the model.  

This paper presents how an I&C system can be modelled so that various hard-
ware failures are taken into account. The model checking tool used in this work is 
NuSMV. The technique is intended to be an extension of our current techniques of 
modelling logic designs, so that these two aspects of the system could be exam-
ined in the future using a single combined model. Modelling logic designs requires 
as input only low-level design diagrams such as function block diagrams and a set 
of requirements. In addition to this, detailed fault models require a hardware archi-
tecture description of the system and a document covering the postulated failing 
components and their failure modes. For example, a failure mode and effects 
analysis (FMEA) report typically provides this information.  

4.2 An example system 

The fault model methodology was developed using a simple imaginary system. 
The example is essentially realistic though it does not encompass all the relevant 
details of a real I&C system. Most importantly, the example does not have any 
redundancy that would allow more sensible analysis of the system under various 
failure assumptions. The purpose of the example is to demonstrate the fault mod-
elling methodology. 
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Figure 5. Hardware architecture of the example system. 
 

The hardware configuration of the imaginary system is described in Figure 5. The 
system produces actuator signals based on three measurements located in Cabi-
net 1. Measurement 1 is of analogue type and has values in the range of 0 to 20. 
Measurements 2 and 3 have binary values. Each measurement is delivered 
through a cable to a processing unit that decides when the actuator signals are 
set. The processing unit located in Cabinet 2 has two parts: a communication 
processor that collects the input signals and a processor that does the calcula-
tions. The output signals of the processor are sent to the two actuators via two 
cables. Finally, all the hardware components are located inside buildings: the 
measurement devices inside Cabinet 1 are located in Room 1, the processing unit 
inside Cabinet 2 is located in Room 2, and the actuators are located in Room 3. 
Cables 1, 2 and 3 are located in Rooms 1 and 2. Cables 4 and 5 are located in 
Rooms 2 and 3. 

The logical function realized by the processor of the example system is illus-
trated in Figure 6. The logic consists of a comparator function block, an AND func-
tion block, a set-reset flip-flop and a TON timer. The flip-flop is set whenever Input 
1 has a high value (over 10) and Input 2 is true. If Inputs 1 and 2 have low values, 
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the flip-flop can be reset by Input 3. Output 1 is set whenever the flip-flop is set. 
Output 2 is set whenever the flip-flop has been set for 3 seconds. 

 

 
Figure 6. The logical function of the example system. 

 
In the example system we want to be able to model both the logical function of the 
system and a set of failures related to the hardware structure. In the example, we 
assume the following failing components and failure modes (the failures can occur 
at any time point): 
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 Component 1: Analogue measurement device 
 Failure mode 1: Value stuck at minimum value 
 Failure mode 2: Value stuck at maximum value 
 Failure mode 3: Non-deterministic value (changes at every 

time point) 
 Components 2–3: Digital measurement devices 

 Failure mode 1: Value stuck at ‘0’ 
 Failure mode 2: Value stuck at ‘1’ 
 Failure mode 3: Random value 

 Components 4–8: Cables 
 Failure mode 1: Cable broken 
 Failure mode 2: Disturbance causing overcurrent 

 Component 9: Communication processor 
 Failure mode 1: Loss of operation 
 Failure mode 2: The two Boolean signals are erroneously 

swapped 
 Component 10: Processor 

 Failure mode 1: Loss of operation 
 Components 11–12: Actuators 

 Failure mode 1: Loss of operation 
 Failure mode 2: Spurious actuation. 

We also assume a set of common cause failures that lead to the failure of several 
components simultaneously: 

 CCF 1: Cabinet 1 electrical failure leading to loss of functions in Cabi-
net 1. This is represented by values of the measurement devices being 
stuck at the minimum value. 

 CCF 2: Cabinet 2 electrical failure leading to loss of functions in Cabi-
net 2. This is represented by the loss of function in the processors. 

 CCF 3: Fire in Room 1 damages Cables 1, 2 and 3 and causes the 
measurement devices to fail. 

 CCF 4: Fire in Room 2 causes loss of function in the processors and 
damages all cables. 

 CCF 5: Fire in Room 3 destroys Actuators and Cables 4 and 5. 
 CCF 6: Due to electromagnetic disturbance all cables experience dis-

turbance. 

In addition to the failure mode effects in the components, the consequential effects 
of the failures have to be identified. Special attention is needed in cases in which 
the failure causes the output of the component to become outside range, such as 
overcurrent/overvoltage/loss of signal. In our example, the following are taken into 
consideration: 

 A disturbance in the cable is transferred to the communication proces-
sor or actuator. The communication processor identifies the failure (if it 
operates), and changes the status bit of the signal to TRUE. If the ac-
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tuator receives this signal disturbance, and the actuator is operable, it 
produces a spurious actuation. 

 The processor can only perform calculations using proper signals. If 
the received input signal has disturbances this is detected and the in-
put used for software calculations is set to a minimum value. 

4.3 Modelling methodology 

The general idea is to have a model that consists of separate modules for depict-
ing hardware and the effects of failures, and modules for realizing the software 
functionality. In our example system, the corresponding model has two hardware 
modules and one software module. The first hardware module represents the 
hardware, failures and information flows before the software is executed. The 
software module implements the logical function of the system. The second hard-
ware module represents hardware, failures and information flow after software 
execution. The module composition is illustrated in Figure 7. 
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Boolean value can choose to have value 1, and if 1 is chosen the value 
will not change anymore. 

In this example, we have chosen to model failures that are permanent after the 
first failing time step. Any other desired temporal behaviour of failures can be 
created by modifying these two model variables. 

4.3.3.3 Failure prioritization  

We assume multiple failures. This is why there must be some prioritization of the 
CCF failures and failures of individual components, i.e. if an individual component 
fails and there is a simultaneous CCF affecting that component, how will the com-
ponent behave? Which failure is dominating? The end results (which failure 
modes actually take place in the components) when all CCFs are taken into ac-
count are represented by another set of variables: 

 A Boolean array failure_manifestation [1..12]: a Boolean variable for 
each individual component indicating whether the component failures 
and CCFs lead to an end effect that is experienced as a failure at a giv-
en time point.  

 An array of type (1/2/3) failure_type [1..12]: for each individual compo-
nent, the value indicates the failure mode at a given time point that is 
experienced when component failures and CCFs are taken into account. 

Below is some actual model code of Component 1 (the analogue measurement 
device). The component is affected by CCFs: Cabinet 1 failure and Room 1 fire. 
The CCFs are presented before the component failure variable in the case struc-
ture, so that in case of a CCF occurring simultaneously with a failure in the ana-
logue measurement device, the loss of failure caused by the CCF overrides any 
other component failure. The time points at which the failures occur are also taken 
into account (variables ccf_realizes, component_failure_realizes). 

 
init(failure_manifestation[1]) := case  
 ccf_failure[1] & ccf_realizes[1] : TRUE; 
 ccf_failure[3] & ccf_realizes[3] : TRUE; 
 TRUE : component_failure[1] & compo-
nent_failure_realizes[1]; 
esac; 
next(failure_manifestation[1]) := case  
 next(ccf_failure[1]) & next(ccf_realizes[1]) : 
TRUE; 
 next(ccf_failure[3]) & next(ccf_realizes[3]) : 
TRUE; 
TRUE : next(component_failure[1])& 
next(component_failure_realizes[1]); 
esac; 
init(failure_type[1]) := case 
 ccf_failure[1] & ccf_realizes[1] : 1; 
 ccf_failure[3] & ccf_realizes[3] : 1; 
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 TRUE : component_failuretype[1]; 
esac; 
next(failure_type[1]) := case 
 next(ccf_failure[1]) & next(ccf_realizes[1]) : 
1; 
 next(ccf_failure[3]) & next(ccf_realizes[3]) : 
1; 
 TRUE : next(component_failuretype[1]); 
esac; 

The prioritization of the component failures and CCFs can be difficult because the 
issue is not typically addressed in an FMEA that primarily focuses only on a single 
failure occurring at a given time.  

4.3.3.4 Single-fault tolerance examination 

Limiting the model so that only a single failure is examined makes the verification 
task simpler. This could be done, e.g., by using a variable that non-
deterministically chooses one of the failure cases (instead of the arrays that are 
used in the example). Examining only single failures also simplifies the issue of 
failure prioritization. 

Our modelling methodology, however, also allows the analysis of single failure 
tolerance. The code below restricts the model to behaviour in which a single com-
ponent failure or a CCF is occurring. The code creates a variable nro_of_faults 
that calculates the number of occurring component failures and CCFs (non-
deterministic variables). The last line is an invariant clause that states that 
nro_of_faults should not be greater than 1. The invariant could easily be changed 
to any number of failures. 
  
DEFINE 
nro_of_faults := toint(component_failure[1]) +  
 toint(component_failure[2]) + 
 toint(component_failure[3]) + 
 toint(component_failure[4]) + 
 toint(component_failure[5]) + 
 toint(component_failure[6]) + 
 toint(component_failure[7]) + 
 toint(component_failure[8]) + 
 toint(component_failure[9]) + 
 toint(component_failure[10])+ 
 toint(component_failure[11]) + 
 toint(component_failure[12])+ 
   toint(ccf_failure[1])+  
   toint(ccf_failure[2])+  
   toint(ccf_failure[3])+  
   toint(ccf_failure[4])+  
   toint(ccf_failure[5])+  
   toint(ccf_failure[6]); 
ASSIGN 
INVAR nro_of_faults <= 1;   
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4.3.3.5 Consequential failures 

The modelling methodology created here allows for the examination of some con-
sequential failures. By this we mean that, for example, a voltage spike in a cable 
could cause a consequential failure also in the device receiving the signal. Such 
cases are modelled using a parameter that carries information about the signal 
quality. Based on the case, this could include at least overvoltage/overcurrent, low 
voltage/current, loss of signal or a drift in the signal. The behaviour of the compo-
nent receiving the bad signal should then be modelled in that component’s sub-
module. This may require prioritization: which failure dominates if there is disturb-
ance in the input and a simultaneous component failure? If the component cannot 
detect the input disturbance and retransmits the value as such, this signal quality 
information can also be given as output of the sub-module. 

Below, the definitions for two component sub-modules are given as an example 
of how consequential failure effects can be analysed. In hardware module 2, ca-
bles transmit the signal to the actuators. If the cable is broken (failure mode 1), the 
transmitted signal (output) takes a logical ‘0’ (min) value. In addition, the signal 
quality output (output_errortype) also takes the value ‘0’ indicating that the signal 
is lost, and it is not an actual logical ‘0’ that is transmitted. In the case of the dis-
turbance (failure mode 2) in the cable, the logical output is set to ‘1’ (max), and a 
‘2’ is given as signal quality output indicating an overcurrent. In the actuator sub-
module, the signal quality is received as an input (signalerror) and the value ‘2’ 
(overcurrent) causes the actuator to reach the spurious failure mode. As a conse-
quence, the logical output of the actuator is set to ‘1’ (max). The final result is a 
spurious actuation caused by an overcurrent in the cable. 
 
MODULE cable(var, var_FAULT, min, max, range, signalerror, 
failure, failuretype,  id) 
DEFINE 

broken := failure[id] & (failuretype[id]=1); 
 disturbance := failure[id] & (failure-
type[id]=2) ; 
 output := case 
  broken : min; 
  disturbance : max; 
  TRUE : var; 
 esac; 
 output_FAULT := var_FAULT; 
 output_errortype := case 
  disturbance : 2; --# overcur-
rent to the next hw component 
  broken : 0; 
  TRUE : signalerror; --# the possible 
existing disturbance in the signal  
     
 transfers through the cable 
 esac; 
ASSIGN 
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MODULE actuator(var, var_FAULT, min, max, range, signal-
error, failure, failuretype,  id) 
DEFINE 
 lossofoperation := failure[id] & (failure-
type[id]=1) ; 
 spurious := case 
  failure[id] & (failuretype[id]=2) : 
TRUE; 
  signalerror = 2 : TRUE; 
  TRUE : FALSE; 
 esac; 
 output := case 
  lossofoperation : min; 
  spurious : max; 
  TRUE : var; 
 esac; 
 output_FAULT := var_FAULT; 
 output_errortype := 1;  
ASSIGN 

4.4 Application of compositional verification 

The software and hardware in the example are separated. This suggests that 
some verification tasks could be divided into smaller subtasks that together imply 
correct behaviour. In fact, assume-guarantee reasoning can be applied to the 
verification of our example system.  

In assume-guarantee reasoning, the system M is verified against a specification 
P by dividing the system into two parts, M1 and M2, that are verified in isolation. 
The system is typically expected to satisfy its requirements only in a specific con-
text. For example, it can be assumed that M1 satisfies another specification A. 
Now, we can verify P on M compositionally: 

1. First we verify that M1 satisfies A. 
2. Next we verify that if A is assumed then M2 satisfies P. In other words 

the specification AP is checked on M2. 
3. These two independent verifications imply that the whole system M 

satisfies P. 

In systems such as our example, given a specification P, it can be possible to 
separately verify the software functionality and after that verify the functionality of 
the hardware system (in specified failure conditions) assuming that the software 
functions as specified. In other words, the model M is divided into software (M1) 
and hardware (M2). The assumption A that software works as specified is first 
derived from P and verified on M1. Then it is verified that the hardware part (M2) 
satisfies the specification P if A is assumed. In the analysis of the hardware, the 
software module can be replaced with an interface module that has no internal 
functionality. The checked specification is changed into the form: ‘if the software 
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inputs and outputs behave as specified, then the overall system behaves as speci-
fied’. 

4.5 Results 

The resulting model describing the behaviour of the running example is quite large 
(~1000 lines of code). A major part of the model consists of the init and next 
clauses of the variables determining the failing components and failure modes at a 
given time point. This is because case structures have to be written separately for 
each component, each CCF and each failure mode variable. 

Even though the example is quite simple, the resulting model becomes com-
plex. This is mainly because our methodology allows multiple failures that compli-
cate the model. The model would be more efficient without the assumption of 
multiple simultaneous failures. To see how the assumption of the number of simul-
taneous errors affects the running time of the model, two temporal logic specifica-
tions were checked on three versions of the model. The first version has an addi-
tional invariant that states that no failures are allowed. The second model allows 
one failure. The third model makes no limitations on the number of possible fail-
ures. The examined temporal specifications were: 

 Specification 1: A value 20 of the analogue measurement 1 and a 
true value of the digital measurement 2; always cause the first actuator 
to actuate. In LTL this can be written as: 
G ((measurement1 = 20 & measurement2 = TRUE)   
actuator1_operates) 
 

 Specification 2: A value 20 of the analogue measurement 1 and a 
true value of the digital measurement 2; will eventually lead to the ac-
tuation of the second actuator. In LTL this is written as: 

(G (measurement1 = 20 & measurement2 = TRUE))     
F actuator2_operates 

 
If no failures are allowed, both specifications are true. In case of failures, both 
specifications are false. For example, if a single failure is assumed, the first speci-
fication results in a counterexample that describes the behaviour in which meas-
urement device 2 experiences a random failure that masks the true value. The 
model checking times for all model versions are shown in Table 2. We can see 
that when the number of assumed simultaneous failures increases, the model 
checking times also increase. For such a small system, the model checking time 
of the multiple failure model is quite long. 
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Table 2. Model checking times of two specifications. 

 No failures Single failures Multiple  
failures 

Specification 1 5s 10s 163s 
Specification 2 4s 9s 199s 

 
If the compositional assume-guarantee approach described in Section 4.4 is used, 
two additional specifications are first written: 

 
 Specification 1a: A software input1 value 20 of the analogue input 

and a true value of software input2; always cause software output1 to 
be set. In LTL this can be written as: 

 
G ((input1 = 20 & input2 = TRUE)   output1) 
 

 Specification 2a: A software input1 value 20 of the analogue input 
and a true value of software input2; will eventually lead to software 
output2 set. In LTL this is written as: 

 
((G (input1 = 20 & input2 = TRUE))   F output2) 

 
Specifications 1a and 2a are separately checked on models that consist only of 
the software module. Both specifications are true. The model checking time is << 
1s in both cases. After this, the software module in the model of the overall system 
is replaced with an interface module in which the internal behaviour is removed, 
and the two software outputs are changed into non-deterministic Boolean varia-
bles. This modified model is then checked against specifications: 

 
 Assume-guarantee specification 1: Whenever specification 1a is 

true, specification 1 is also true. In LTL this can be written as:  
 

G ((input1 = 20 & input2 = TRUE)  output1) 
   
G ((measurement1 = 20 & measurement2 = TRUE)   
actuator1_operates) 
 

 Assume-guarantee specification 2: Whenever specification 2a is 
true, specification 2 is also true. In LTL this can be written as:  

 
((G (input1 = 20 & input2 = TRUE))  F output2)  
   
((G (measurement1 = 20 & measurement2 = TRUE))     
F actuator2_operates)) 
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Table 3. Model checking times using the assume-guarantee approach. 

 
The model checking times using the assume-guarantee approach are shown in 
Table 3. We can see that the assume-guarantee-based verification approach is 
much more effective. 

4.6 Remaining problems 

The most important problem in our example seems to be that even a model of a 
simple system quickly becomes quite complex. The application of assume-
guarantee reasoning has a significant effect on the verification time of the system. 
Limiting the scope of the analysis by, e.g. focusing only on single failures, simpli-
fies the verification.  

The single-failure analysis of safety systems could be made more efficient by 
integrating the approach to the algorithm used for model checking large systems 
described in Section 3. The integration would require the system (software, hard-
ware and fault modelling) to be modelled in a compatible manner. Using separate 
modules for software and hardware is a good starting point. In the running exam-
ple discussed in this report, the software module is already compatible with the 
algorithm for large systems, as it can be replaced with an interface module. Similar 
modelling techniques for abstracting the hardware modules are probably needed. 
Furthermore, a major part of the failure model is currently part of the main module 
of the model. This behaviour needs to be encapsulated in a separate module or 
integrated with the hardware modules. The role of assume-guarantee reasoning 
together with the algorithm is also an open matter. Creating more systematic 
methodology for large systems and detailed fault models is left to future research. 

Another practical problem is the modelling of communication architectures. In 
our example, all connections were point-to-point, which made modelling the infor-
mation flow easy. Safety systems may, however, implement all kinds of network 
topologies (e.g. serial bus) to transmit signals. The modelling of these issues is left 
to future research. 

Failures in hardware components are frequently discussed in the context of 
probabilistic reliability analysis. The methodology developed here should be made 
consistent with these already existing concepts and methods. Differences between 
the two approaches have not yet been identified. Merging this method with the 
reliability analysis environment is left to future research. 

 No failures Single failures Multiple  
failures 

Assume-
guarantee 1 

3s 5s 7s 

Assume-
guarantee 2 

3s 5s 9s 
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 Finally, our fault models could possibly be used in the identification of new 
common-cause failures. For example, if a new consequential failure effect in the 
system is identified or postulated, it may not be clear how it affects the overall 
system. The methodology used here could be used to analyse the overall effects 
of hypothetical consequential failures in the system. 
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ered unnecessary, they may be removed from the model to increase verification 
speed and decrease the effort of modelling. 

This technique decreases the verification time by reducing the number of pos-
sible input combinations and removing the need to calculate these values sepa-
rately. The technique tends to be useful for systems with a large time-independent 
section preceding the first time-dependent components and many input signals 
compared with the number of outputs of the time-independent section. More pre-
cisely, the more combinations of outputs that can be reduced by the program, the 
better this technique is for the system in question. On the other hand, for some 
systems the technique does not provide any impossible output combinations. 
Even then, removing the initial time-independent section of the system increases 
verification speed. 

However, it is not always best to explicitly list all possible combinations if the list 
is overly long. It is most beneficial to list values for the inputs whose combinations 
decrease most, while inputs that are relatively independent from others may be 
modelled with functions, similarly to the previous technique. The user of this tech-
nique has to analyse the data given by the external program carefully to determine 
the best course of action. 

This technique makes modelling significantly more complicated, as you must 
first construct the time-independent section of the system with the external pro-
gram, have it calculate outputs and then modify the input component of the 
UPPAAL model. However, for simple systems, the possible output combinations 
can be deduced without the help of the program. It is particularly easy to deter-
mine the possible combinations of fault inputs because the value 1 of a fault varia-
ble generally spreads to all following components. 

If there are large clusters of time-independent components between time-
dependent components, it may be worthwhile to use this technique even when the 
first time-dependent components are early in the system. Namely, it is possible to 
examine the outputs of the time-dependent components and then use the program 
to determine which combinations of inputs for the next time-dependent compo-
nents are possible. 

The external program used was written in Java with the help of the JavaBDD 
library. The program takes as input the BDDs, binary decision trees, describing the 
time-independent section of the system. For each output of the time-independent 
section, a BDD is given as input. The program then constructs a BDD that de-
scribes whether there is a combination of inputs that results in a specific combina-
tion of outputs of the time-independent section. Finally, the program prints the 
truth values satisfying the BDD, in other words the possible combinations of output 
values for the time-independent section. 

The following pictures demonstrate the functionality of this technique. The first 
picture describes modelling with regular inputs, while the second picture describes 
modelling with input reductions.      
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Component IN1 models a non-deterministic input signal. The produced signal is 
binary, as required by UPPAAL, so 0 and 1 are the only possible input values. 
Each transition in the IN1 component is equivalent to the value of the input signal 
changing. When the value of the input signal changes, a synchronization signal is 
sent to the affected components. There are separate transitions for changes in the 
fault variables, which can be deactivated with the ENABLE_FAULTS guards.    
 

 
 
 
 
 
 
 
 

I1_C! ENABLE_FAULTS
update(I1_F)update(I1)

Figure 10. An input automaton. 

Figure 11. An automaton for the AND function. 

(BO1 == BO1_old) & (BO1_F == BO1_F_old)

(BO1 != BO1_old) | (BO1_F != BO1_F_old)

BO1_C!
BO1_old = BO1, 
BO1_F_old = BO1_F

BI2_C?
and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)

BI1_C?

and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)
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Components AND, OR and NEG function like their counterparts in Boolean logic. 
AND gives 1 as its output signal only if both input signals are 1, OR gives 1 if at 
least one of the input signals is 1 and NEG inverts the input signal. These compo-
nents are particularly simple and only require a few locations and transitions. AND, 
OR and NEG are similar in structure, the main difference being the change in 
functions. Thus, only the figure of AND is displayed. 

FF_STAT_R is a static RS flip-flop, with the preferred state on the reset side 
(the R side) and priority on the set side (the S side). The UPPAAL model of 
FF_STAT_R is similar to AND and OR in structure but with a different function 
handling the change in output. The behaviour of FF_STAT_R is best described by 
its truth table. The symbol X describes a situation in which the value of the input 
variable is irrelevant. After each cycle, the value of Output 1 is stored in the inter-
nal memory of the component.     

Table 4. Truth table for a static RS flip-flop. 

Input 1 (S) Input 2 (R) Output 1, 
previous cycle 

Output 1 (S) Output 2 
(R) 

0 X 0 0 1 
0 0 1 1 1 
0 1 1 0 1 
1 X X 1 0 

 
It can be seen that output 2 is the complement of output 1. Furthermore, if input 1 
has the value 1, output 1 will be 1 regardless of the other input signals. This is 
called the set command of the flip-flop. If input 1 is 0 and input 2 is 1, output 1 will 
be 0. This is called the reset command. If the fault variable becomes active, the 
internal memory will not be changed until the fault variable has receded. In addi-
tion, the output signals will retain the value of the last faultless cycle.     
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ONDELAY and OFFDELAY have a predetermined delay before the value of the 
output is changed according to the input. In ONDELAY, when the input signal 
changes its value from 0 to 1, a timer is set. After a sufficient amount of time has 
passed, if the input is still 1, the output of the component is also set to 1. However, 
if the input changes to 0, the output is immediately set to 0. OFFDELAY behaves 
similarly: if the input changes from 1 to 0 and remains at 0 after the specified time, 
the output is set to 0. If the input changes to 1, the output is immediately set to 1. 
In both ONDELAY and OFFDELAY, time counting is stopped when the fault varia-
ble has the value 1. The UPPAAL template of OFFDELAY is also similar to the 
model of ONDELAY, so only the figure of ONDELAY is shown.     
  

Out1_Fault1

delay <= duration

Out0_Fault1

delay <= duration

Out0_Fault0Out1_Fault0

BO1_C!

BI1 & !BI1_F
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1

!BI1
BI1_C?
BO1 = 0

BO1_C!

BO1 = 1

BO1_C!

!BI1 & BI1_F
BI1_C?
BO1 = 0

BI1 & !BI1_F
BI1_C?
BO1_F = 0,
delay = 0

!BI1 & !BI1_F
BI1_C?
BO1 = 0, BO1_F = 0BO1_C!

BI1_F
BI1_C?
BO1_F = 1

!BI1
BI1_C?

!BI1 & !BI1_F
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

delay == duration
BO1 = 1

!BI1
BI1_C?

BI1
BI1_C?
delay = 0

Figure 12. An automaton for the ONDELAY function block. 
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PULSE produces a pulse of the output signal for a specified time. When the input 
signal changes from 0 to 1, the output is set to 1 and time begins to elapse. The 
output remains at 1 until the time has passed, at which point it changes back to 0. 
When the fault variable is 1, time counting is stopped and the output remains at 
the value of the last faultless cycle.                 
  

delay <= duration

Out0_Fault1

Out1_Fault1Out1_Fault0
delay <= durationOut0_Fault0

BO1_C!

BO1_C!

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

BO1 = 0

!BI1_F & BI1 & !BI1_old
BI1_C?
BO1 = 1, BO1_F = 0,
delay = 0

BO1_C!

!BI1_F & (!BI1 | BI1_old)
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1, 
BI1_old = BI1

!BI1_F
BI1_C?
BO1_F = 0, 
delay = 0

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

delay == duration
BO1 = 0

BI1 && !BI1_F
BI1_C?

BO1 = 1,
delay = 0

Figure 13. An automaton for the PULSE function block. 
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Figure 15. Function-based ONDELAY automaton. 



5. Asynchronous techniques for modelling timed automata
 

69 

 
 

 
 
  

delay <= duration

Out0_Fault1

Out1_Fault1Out1_Fault0
delay <= durationOut0_Fault0

O1_C!

O1_C!

I1_F
I1_C?
O1_F = 1

O1_C!

O1 = 0, I1_old = I1

!I1_F & I1 & !I1_old
I1_C?
O1 = 1, O1_F = 0,
I1_old = I1, delay = 0O1_C!

!I1_F & (!I1 | I1_old)
I1_C?
O1_F = 0, 
I1_old = I1

I1_F
I1_C?
O1_F = 1, 
I1_old = I1

!I1_F
I1_C?
O1_F = 0, 
delay = 0

I1_F
I1_C?
O1_F = 1

O1_C!

delay == duration
O1 = 0, I1_old = I1

!I1_old & I1 
& !I1_F
I1_C?
O1 = 1, I1_old = I1,
delay = 0

Figure 16. Function-based PULSE automaton. 



5. Asyn
 

Instead
are now
indepen
    

nchronous tec

Fi

d of each inpu
w generated 
ndent section 

hniques for m

gure 17. Func

t signal having
in a single c
of the system

modelling timed

70 
 

ction-based L

g its own com
component, IN

m before the fir
 

d automata 

IMIT automato

mponent, all th
N_ALL. It als
rst time-depen

on. 

e values of th
so contains th
ndent compone

he inputs 
he time-
ents. 

 



 
 

 

IN_ALL
integer 
IN_ALL
change
initial ti
compon

The 
questio

 5.3.3

Compa
IN_ALL
combin
program
the dec
fore, IN
indepen

Rand
rand =
get_o
O3, O

L changes the
Rand. The a

L, one input fo
ed if the fault s
ime-independe
nents. 
declarations 

on. The picture

Function-bas

reductions 

ared with the p
L. Instead of c
nation of inputs
m. Similarly to
clarations pag
N_ALL uses 
ndent section.

nd: int[0,7]
d = Rand,
_outputs(O1, O1_F,
, O3_F, O4, O4_F)

Figure 1

5. Asynch

Figure 1

e value of on
affected input 
or each value 
signals are en
ent section an

and the max
e above is from

sed asynchro

previous techn
changing the 
s out of the po
o the previous
ge of IN_ALL, 

these inputs
. 

F, O2, O2_F, 
)

19. IN_ALL au

hronous techn

71 

18. IN_ALL au

ne input signa
signals are 

of Rand. Valu
nabled. IN_AL
nd gives them

ximum value o
m one of the c

onous model

nique, the onl
value of one

ossible combi
s technique, th

one for each
s to compute

O_C!

utomaton used

iques for mod

utomaton. 

al, determined
listed on the 
ues of the fau
L also compu

m as inputs to

of Rand depe
case studies.  

ling techniqu

ly UPPAAL co
e input signal,
nations determ

he input comb
value of the 

e the outputs

Rand: int[0,5]
ENABLE_FAULT
rand = Rand,
get_fault_outputs
O3, O3_F, O4, O

!

d with input re

elling timed au

d by the value
declarations 
lt signals can 
tes the output
o the time-dep

end on the sy
   

ue with input 

omponent cha
 it now choos
mined by the e
binations are l
integer Rand.

s of the initia

LTS

uts(O1, O1_F, O2, O
, O4_F)

ductions. 

utomata
 

e of the 
page of 
only be 

ts of the 
pendent 

ystem in 

anged is 
ses one 
external 
isted on 
. As be-
al time-

, O2_F, 

 



5. Asyn
 

5.4 

 5.4.1

The fun
nal pro
indepen
of the J
binary d

In th
tions, t
gram c
that res
Then, t
possibl
gram ca
BDDs f

The 
the sys
outputs
not nec
increas
droppe
gram. 

 5.4.2

We now
system
for it. T
output 
inputs. 

 
It can b
(0, 1) a

nchronous tec

Java progr

Description o

nction-based a
ogram to det
ndent section 
JavaBDD libra
decision diagr
he context of t
he BDDs des

constructs a B
sults in a spe
the program p
e combination
an either cons
from files.  
outputs are o

stem but ther
s of the entire 
cessary to mo
se verification 
d, the corresp

Example red

w examine a s
 and describe

The time-indep
1 being a con
The following

Table 

Input 1 
0 
0 
1 
1 

be seen that t
and (1, 1). The

hniques for m

ram 

of the progra

asynchronous
termine which
are possible.

ary, which the
rams. 
the function-b
scribe the tim
BDD that desc
cific combinat

prints the truth
ns of output v
struct the BDD

ften given as 
e are also ou
system and d

odel these ou
speed and de

ponding BDD 

uction 

small, hypothe
e the resulting
pendent sectio
njunction of th
 chart demons

5. Possible ou

Input 2 
0 
1 
0 
1 

there are only
e combination 

modelling timed

72 
 

am 

s technique w
h combination
. The program
e program us

based asynchr
me-independen

cribes whethe
tion of output
h values satis

values of the t
Ds directly with

inputs to the f
utputs of the 
do not affect t
tputs, they m
ecrease the e
will be left ou

etical example
g input reducti
on consists o

he inputs and 
strates the po

utput combina

Output 1 (A
0 
0 
0 
1 

y three possib
(1, 1) is impo

d automata 

with input redu
ns of outputs

m was written 
es to constru

ronous techni
nt section of t
er there is a c
ts of the time-
sfying the BDD
time-independ
h the JavaBDD

first time-depe
time-independ

time-dependen
may be remove
effort of mode
ut of the execu

e of a time-inde
ons when the

of two inputs a
output 2 bein
ssible output c

ations in the ex

ND) Outpu

ble combinatio
ssible and thu

ctions uses a
s of the initia
in Java with t
ct and modify

que with inpu
the system. T
combination o
-independent 
D, in other wo

dent section. T
D library or rea

endent compo
dent section t
nt components
ed from the m
lling. For each
ution of the Ja

ependent sect
e Java program
and two outpu
g a disjunctio
combinations.

xample. 

ut 2 (OR) 
0 
1 
1 
1 

ons of outputs
us, it does not 

an exter-
al time-
the help 
y BDDs, 

ut reduc-
The pro-
of inputs 
section. 

ords the 
The pro-
ad input 

nents of 
that are 
ts. If it is 
model to 
h output 
ava pro-

ction of a 
m is run 
uts, with 
on of the 
.     

s: (0, 0), 
 have to 



be mod
put com

5.5 

 5.5.1

In the c
ine the 
we mod
compar

Othe
well as
assump
outside
the sys

The 
spondin
face lev
two of t
at least
subsys

In ad
by rem
proach 

 5.5.2

We als
in the M
tion ma
gency. 
MODSA
some s
time-de
techniq

 5.5.3

Anothe
unit. Th
of whic

delled. Natura
mbinations can

Modelled S

Case study: 

case study, we
function of th

del the proble
re them with e
er parts of the
 the behaviou
ptions on the 
e the system w
stem are mode

emergency ta
ng to an emer
vels of the ta
the other subs
t two of them 
tem. 
ddition to testi
oving several
may reveal h

Case study: 

o look into sy
MODSAFE pro
anages the fun

The techniqu
AFE, so certa
sections of the
ependent com
ques. 

Case study: 

er case study t
his case is don
h is to develop

5. Asynch

lly, the presen
n be determine

Systems 

emergency ta

e model a par
he modelled sy
em with differe
each other. 
e system of th
ur of the envir

behaviour of 
we are exami
elled non-dete
ank system co
rgency tank. T
nks, with eac
systems. Ever

are too low, 

ing the system
 inputs, outpu
ow the techniq

emergency d

ystems modifie
oject, as desc
nction of a die
ues evaluated
ain changes h
e systems hav
ponents have

power reduct

that is being w
ne to further th
p modelling m

hronous techn

73 

nted example 
ed without usi

ank system 

rt of an emerg
ystem and the

ent modelling 

he power plan
ronment of the

the environm
ining. The ne

erministically.
onsists of four
The purpose o
ch subsystem 
ry subsystem 
a signal is se

m as a whole, 
uts and time-i
ques scale for

diesel system

ed from the e
cribed in [Rop
esel generator
d in this work 
have been m
ve been cut to
e been remove

tion unit 

worked on is t
he task 3.2 in 

methods for as

iques for mod

is so simple 
ing the Java p

gency tank sys
e individual co
methodologie

nt have been 
e system. As 

ment or the pa
cessary input

r identical sub
of the system 
sending infor

monitors three
ent to the othe

we examine a
ndependent c
r systems of d

m 

mergency die
pponen 2010]. 
r of a power p
partially diffe

made to the sy
o make model
ed to better te

the modelling 
the SARANA
ynchronous a

elling timed au

that the possi
program. 

stem. First, we
omponents in 
s, evaluate th

abstracted a
a result, we m

arts of the sys
ts from other 

bsystems, eac
is to monitor 

rmation on its 
e surface leve
er component

a smaller vers
components. T
ifferent sizes. 

sel system ex
The system i

plant in case o
r from those 
ystems. In pa
lling easier an

est the function

of a power re
project, the o

nd semi-synch

utomata
 

ible out-

e exam-
it. Then 

hem and 

away, as 
make no 
stem left 
parts of 

ch corre-
the sur-

s tank to 
els and if 
ts of the 

sion of it 
This ap-
 

xamined 
in ques-
of emer-
used in 

articular, 
nd some 
n-based 

eduction 
objective 
hronous 



5. Asyn
 

system
chrono

In re
are m
synchro
elemen
of fast 
ments 
the out
to upda
which n

 The
pumps 
pumps 
reductio

The 
clude ti
uremen
measur
measur
the cor

Mod
and sy
the mod
the Nu
weakne
with a 
rately. 
complic
late 20

 P5.5.4

The nu
indepen
ties, so
of inpu
the init
function

nchronous tec

s. Current mo
us or that ther
eality, there a
ultiple subsys
onous system
nts are presen
components (
function much
put signal of a
ate theirs. Acc
no definitive so
e power reduc

that produce
stop working

on unit output 
reduction uni

iming compon
nts: one that is
rements, a co
rement. When
rection is adju

delling and ver
nchronisation 
delling and ve

uSMV and UP
esses with sys
lot of non-det
Ultimately the

cated asynchr
11 and will co

Properties of

umber of inp
ndent compon

o they are con
ts given to th
tial time-indep
n-based mode

 System 1
 System 2
 System 3
 System 4

hniques for m

odelling metho
re are no cons

are systems fo
stems with d
, or there is n

nt. In the latter
(e.g. logic gat
h more slowly
a delay eleme
curately mode
olution exists.
tion unit moni

e a critical re
, the output r
a signal that t
t is implemen

nents. The cir
s accurate and
orrection para
n the corrected
usted until it m
rifying this des
issues, and 

erification tech
PPAAL mode
stems like the
terministic inp
e strengths of
ronous and se
ntinue in 2012

f the systems

put signals a
nents greatly i
nsidered critica
e time-depen

pendent sectio
elling techniqu

1: Emergency 
2: Emergency 
3: Emergency 
4: Emergency 

modelling timed

74 
 

ods either as
straints on the
or which neith
different cloc

no explicit cloc
r case, it is rea
tes) can happ
y. It is therefo

ent changes be
lling and verif

itors the outpu
source for th
rate of the pro
tells the proce

nted as redun
rcuits can mon
d one that upd

ameter is appl
d value appea

matches the ac
sign has uniq
solving them 

hniques. The m
el checking to
ese: NuSMV c
puts, but UPPA
f both the too
emi-synchron
2.  

s 

nd the numb
influence the 
al variables fo
dent compone
on are also i

ues operate. 

Tank System
Tank System
Diesel System
Diesel System

d automata 

sume that the
e timings of sig
her assumptio
ck signals, r
ck synchronisa
asonable to as

pen in any ord
ore not reason
efore the logic
fying such sys

ut rate of a pro
e process. If 
ocess must b
ess to slow do
dant asynchro
nitor the outpu
dates quickly. 
lied to the qu
ars to differ fro

ccurate value a
ue challenges
will hopefully

models are bu
ools, as both 
can handle ve
AAL can mod
ols need to b
ous systems.

ber of time-d
time spent on

or the testing 
ents and the 
mportant bec

, small version
, full version 

m, Subsystem
m, Subsystem

e system is fu
gnal changes. 
on holds: eithe
esulting in a
ation, but som
ssume that th
er, but the de
nable to assu
c gates have h
tems is a prob

ocess and an 
one or more

e decreased 
wn. 
onous circuits 
ut rate via two
To use both o
ick but less a
om the accura
again. 
s related to the
y lead to adva
ilt and verified
have strengt

ery large state
del timing mor
e combined t
This work st

dependent an
n verifying the 
process. The 
number of ou
ause of the w

n 

m 1, small vers
m 1, full version

ully syn-

er there 
a semi-

me delay 
e timing 

elay ele-
ume that 
had time 
blem for 

array of 
e of the 
and the 

s that in-
o meas-
of these 
accurate 
ate one, 

e timing 
ances in 
d both in 
ths and 

e spaces 
re accu-
to verify 
tarted in 

nd time-
 proper-
number 

utputs of 
way the 

sion 
n 



Syst

Syst

 5.5.5

The mo
tem-spe
same p
to a de
fied for 

5.6 

 5.6.1

The nu
indepen
depend
indepen
these v
5.5.4 fo
structur
time-ind

Ta

tem Inp

1 
2 
3 
4 

Ta

tem 

1 
2 
3 
4 

Verified prop

odelled system
ecific propert

property was v
adlock. Assum
all of them. 

Results 

Verification r

umber of inp
ndent compon
dent compone
ndent section
variables grea
or the values 
re of the syste
dependent co

5. Asynch

ble 6. Propert

puts In
ti
de
co

4 
8 
8 

13 

ble 7. Propert

Time
pone

perties       

ms differed in
ies would ha

verified for all s
ming the syste

results 

put signals a
nents, as well 
ents and the 
n, are importa
atly influence 

of these vari
em is also imp
mponents are

hronous techn

75 

ties of the mod

nputs for the 
me-
ependent 
omponents 

4 
4 
1 
1 

ties of the mod

-dependent c
ents 

4 
4 
2 
2 

n structure, so
ave yielded in
systems: whe
ems work prop

nd the numb
as the numbe
number of 

ant variables 
the time spen
iables for the 
portant, includ
e located in the

iques for mod

delled system

Outputs o
initial tim
independ
section 

4 
8 
2 
2 

delled system

com- Tim
com
stan
excl

o comparing th
nconsistent re
ether the syste
perly, this prop

ber of time-d
er of input sign
output signals
for the testin

nt on verifying
examined sy

ding where the
e system. 

elling timed au

s 1. 

of the 
e-
ent 

Outp

s 2. 

e-independen
mponents (wit
ndard techniq
luding inputs

14 
22 
11 
18 

hem by verify
esults. Therefo
em had a path 
perty should b

dependent an
nals given to th
s of the initia

ng process. A
g the properti
ystems. Howe
e time-depend

utomata
 

puts 

8 
12 
3 
3 

nt 
th the 
que 
s) 

ying sys-
ore, the 
 that led 
be satis-

nd time-
he time-
al time-

After all, 
es. See 

ever, the 
dent and 



5. Asynchronous techniques for modelling timed automata 
 

76 
 

The model checking was performed on a standard PC with 8 GB of RAM and 
an Intel Core i5-2500 processor running at 3.30 GHz. 

The following results were obtained with UPPAAL version 4.0.11 using default 
settings. 

Table 8. Verification times for the deadlock property without fault signals. 

System Standard Function-based Function-based 
with input reduc-
tions 

1 0 min 2.821 s 0 min 0.349 s 0 min 0.057 s 
2 1 min 34.153 s 0 min 0.563 s 0 min 0.083 s 
3 0 min 0.441 s 0 min 0.753 s 0 min 0.063 s 
4 1 min 1.262 s 2 min 9.264 s 0 min 0.418 s 

 

Table 9. Verification times for the deadlock property with fault signals. 

System Standard Function-based Function-based 
with input reduc-
tions 

1 > 27 min 10.779 s 
* 

0 min 5.498 s 0 min 0.442 s 

2 > 41 min 35.992 s 
* 

0 min 7.316 s 0 min 0.708 s 

3 1 min 19.402 s 14 min 36.620 s 0 min 0.357 s 
4 > 15 min 15.274 s 

* 
> 19 min 59.385 s 
* 

0 min 17.224 s 

* Out of memory 
 
The following results were obtained with UPPAAL version 4.1.4 using default 
settings. 

Table 10. Verification times for the deadlock property without fault signals. 

System Standard Function-based Function-based 
with input reduc-
tions 

1 0 min 2.070 s 0 min 0.522 s 0 min 0.048 s 
2 1 min 12.756 s 0 min 0.266 s 0 min 0.063 s 
3 0 min 0.333 s 0 min 0.525 s 0 min 0.036 s 
4 0 min 51.111 s 1 min 29.701 s 0 min 0.218 s 
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tions page and variables to the declarations page. However, with the function-
based technique, changes are also required in the functions and parameters of the 
components themselves, particularly the input component. Even if the modifica-
tions of the components mostly contain the same logical functions as the modifica-
tions of the system declarations page, it still makes the modelling process more 
difficult. This approach decreases the modularity of the components and makes 
them system-dependent. 

It is also possible to replace time-independent components in later parts of the 
system with functions. This can be achieved similarly to that of input components, 
with the addition of synchronization channels from the time-dependent compo-
nents that give the input values. However, each synchronization channel for an 
input requires its own edge in the UPPAAL model, which may make modelling 
tedious. 

Modelling with the function-based asynchronous technique with input reduc-
tions is even more demanding. The user must first construct the time-independent 
section of the system with the external Java program, have it calculate possible 
combinations of outputs and then modify the input component of the UPPAAL 
model. In particular, changes in the Java code of the program require the con-
struction of the BDDs describing the time-independent section. 
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6. Conclusions 

This report presents the model checking results of the SARANA project in 2011. 
The report covers an algorithm for the model checking of large systems, method-
ology for fault models and methods for model checking function-block-based de-
signs in UPPAAL. 

A model checking algorithm for large models was introduced. The algorithm 
can be used with modular models in which an abstraction of the model can be 
created by replacing some of the modules with interface modules. So far, the 
algorithm has been developed and tested using a model of a function-block-based 
design. The algorithm is largely based on counterexample-guided abstraction 
refinement, in which an abstraction of the system is examined and the abstraction 
iteratively refined based on the responses of the model checking tool. The algo-
rithm puts significant effort into counterexample minimization. We present three 
counterexample minimization techniques that can be used on several granularity 
levels. The algorithm has not yet been extensively compared with any standard 
model checking methods. In 2011, the performance of the algorithm was tested on 
a model based on work in [Lahtinen et al. 2010]. These preliminary results suggest 
that in some cases the algorithm can be more effective than using traditional mod-
el checking methods. A more thorough analysis of the performance of the algo-
rithm is left to future research. We plan to analyse the effectiveness of the algo-
rithm using various models and many temporal properties. Some improvements 
and extensions of the methodology are also planned (see Section 3.9). 

In Section 4 we presented new methodology to model faults in a system. The 
fault models take into account the hardware configuration of a system and the 
various failure modes of the different hardware components. In addition, common-
cause failure modes can be included in the fault models. We created a way to 
integrate fault models into models depicting the software logic of a system. How-
ever, when a detailed fault model is used together with the model of the logic of a 
system, the model checking task becomes quite complex. This suggests that it 
could be possible to use fault models modularly together with our traditional meth-
ods, so that hardware faults of a complex system could also be analysed using the 
algorithm for large systems. This work is left to future research. To test the fault 
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modelling methodology, an imaginary system was modelled as a case study. We 
also managed to apply assume-guarantee reasoning to decrease the verification 
time in that model.  

Section 5 describes methodology for modelling function-block-based designs 
asynchronously using timed automata of the UPPAAL model checking tool. Three 
modelling techniques are presented. In the standard technique, a timed automaton 
is created for each function block and input of the system. The function-based 
technique uses functions to replace the time-independent parts of the model. In 
the third technique, the possible inputs of the time-independent part of the model 
are calculated separately using a Java program. The inputs are then used to cre-
ate more efficient functions in the UPPAAL model. The modelling methods have 
been tested using three separate case studies. While the work is still partly un-
derway, the results thus far show that the function-based modelling technique and, 
especially, the input reductions can make the model checking of function-block-
based systems more feasible. UPPAAL is known to behave badly when there are 
a large number of inputs in the system because UPPAAL explicitly checks each 
input combination. The input reductions counter this weakness of the UPPAAL tool 
and the use of input reductions can lead to major improvements in verification 
time. However, using the input reductions is not straightforward and requires more 
modeller expertise. 
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