
V
T

T
 T

E
C

H
N

O
L

O
G

Y
 1

2

 M
o

d
e
l c

h
e
c
k
in

g
 m

e
th

o
d

o
lo

g
y fo

r la
rg

e
 syste

m
s, fa

u
lts a

n
d

...

ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Model checking methodology
for large systems, faults and
asynchronous behaviour

SARANA 2011 work report

Jussi Lahtinen | Tuomas Launiainen | Keijo Heljanko |
Jonatan Ropponen

•VISIO
N
S
•S

C
IE

N
C

E
•T

ECHNOLOGY
•R

E
S

E
A

R
C

H
H
IGHLIGHTS

12

VTT TECHNOLOGY 12

Model checking methodology
for large systems, faults and
asynchronous behaviour

SARANA 2011 work report

Jussi Lahtinen

VTT Technical Research Centre of Finland

Tuomas Launiainen, Keijo Heljanko, Jonatan Ropponen

Aalto University, Department of Information and Computer Science

ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2012

JULKAISIJA – UTGIVARE – PUBLISHER

VTT
PL 1000 (Vuorimiehentie 5, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 4374

VTT
PB 1000 (Bergsmansvägen 5, Esbo)
FI-2044 VTT
Tfn +358 20 722 111, telefax +358 20 722 4374

VTT Technical Research Centre of Finland
P.O. Box 1000 (Vuorimiehentie 5, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax + 358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Model checking methodology for large systems, faults and
asynchronous behaviour
SARANA 2011 work report

Jussi Lahtinen, Tuomas Launiainen, Keijo Heljanko & Jonatan Ropponen. Espoo
2012. VTT Technology 12. 84 p.

Abstract

Digital instrumentation and control (I&C) systems are challenging to verify. They
enable complicated control functions, and the state spaces of the models easily
become too large for comprehensive verification through traditional methods.
Model checking is a formal method that can be used for system verification. A
number of efficient model checking systems are available that provide analysis
tools to determine automatically whether a given state machine model satisfies the
desired safety properties.

This report reviews the work performed in the Safety Evaluation and Reliability
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system,
and methodology to model function-block-based systems asynchronously. In order
to improve the usability of our model checking methods, we have developed an
algorithm for model checking large modular systems. The algorithm can be used
to verify properties of a model that could otherwise not be verified in a straightfor-
ward manner.

Keywords model checking, verification, I&C, NuSMV, UPPAAL, SARANA, SAFIR

4

Preface

This report has been prepared as part of the research project Safety Evaluation
and Reliability Analysis of Nuclear Automation (SARANA), which is part of the
Finnish Research Programme on Nuclear Power Plant Safety 2011–2014
(SAFIR2014). This report describes the development of fault modelling methodol-
ogy, methodology for modelling asynchronous systems using timed automata and
a method for analysing large system designs.

We wish to express our gratitude to the representatives of the organizations
that provided us with the case examples and all those who have given their valua-
ble input in the meetings and discussions during the project.

Espoo, January 2012

The Authors

Con

Abstra

Preface

1. Int

2. Mo
2.1
2.2

3. Mo
3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8

ntents

act

e

roduction

odel Checking
 Model chec

2 Fault mode

odel checking
 Abstracting

2 Property ve
3 Automatizi
4 Invariant m
5 Counterexa

 Rand3.5.1
 Minim3.5.2
 CTL 3.5.3
 Relat3.5.4

3.5.4.1
3.5.4.2
3.5.4.3
3.5.4.4

3.5.4.5

3.5.4.6
3.5.4.7
3.5.4.8
3.5.4.9

6 Checking t
7 Abstraction
8 Preliminary

......................

......................

......................

g
cking large sy
els for model c

g large system
g the model ...
erification usin
ng abstraction

model checking
ample minimiz
dom walk-base
mization using
query-based m
ted work
1 Program slici
2 Brute Force L
3 Simulation-ba
4 Minimizing au

counterexam
5 Explaining co

segments
6 Symbolic Tra
7 Localizing er
8 Error cause e
9 Delta debugg
the feasibility o
n refinement ..
y results.........

5

......................

......................

......................

......................
ystems
checking

ms
......................
ng the abstrac
n-level selectio
g
zation
ed minimizatio

g delta debugg
minimization t
......................
ing and the co
Lifting
ased bug trac
utomata-base

mples
ounter-examp

ajectory Evalu
rrors in counte
extraction thro
ging
of the counter
......................
......................

......................

......................

......................

......................

.....................

.....................

......................

.....................
ctions
on
.....................
.....................
on
ging technique
technique
.....................

one of influenc
.....................

ce minimization
ed model chec
.....................
les through fo
.....................
ation

erexample trac
ough variations
.....................

rexample
.....................
.....................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................
es
......................
......................
ce reduction ...
......................
n

cking
......................
rced and free
......................
......................
ces
s of the error .
......................
......................
......................
......................

.......... 3

.......... 4

.......... 8

........ 10

........ 11

........ 12

........ 13

........ 13

........ 15

........ 16

........ 20

........ 20

........ 24

........ 25

........ 25

........ 28

........ 28

........ 29

........ 30

........ 31

........ 31
........ 31
........ 33
........ 33
........ 34
........ 35
........ 36
........ 38

3.9

4. Arc
4.1
4.2
4.3

4.4
4.5
4.6

5. As
5.1

5.2

5.3

5.4

5.5

5.6

5.7

9 Shortcomin

chitecture-lev
 Model chec

2 An exampl
3 Modelling m

 Softw4.3.1
 Hard4.3.2
 Cons4.3.3

4.3.3.1
4.3.3.2
4.3.3.3
4.3.3.4
4.3.3.5

4 Application
5 Results
6 Remaining

ynchronous
 Introductio

 Work5.1.1
 The U5.1.2

2 Modelling T
 Stand5.2.1
 Func5.2.2
 Func5.2.3
reduc

3 Modelled C
 Stand5.3.1
 Func5.3.2
 Func5.3.3
reduc

4 Java progr
 Desc5.4.1
 Exam5.4.2

5 Modelled S
 Case5.5.1
 Case5.5.2
 Case5.5.3
 Prope5.5.4
 Verifi5.5.5

6 Results
 Verifi5.6.1
 Achie5.6.2

7 Summary .

ngs of the curr

vel model che
cking systems
e system
methodology .
ware modelling
ware modellin

siderations on
1 Component f
2 Failure time d
3 Failure priorit
4 Single-fault to
5 Consequenti
n of compositio
......................

g problems

techniques f
n

k description ..
UPPAAL mod
Techniques ...
dard asynchro

ction-based as
ction-based as
ctions
Components ..
dard asynchro

ction-based as
ction-based as
ctions
ram
cription of the p
mple reduction
Systems
e study: emerg
e study: emerg
e study: power
erties of the sy
ied properties
......................
ication results
eved input red
......................

6

rent approach

ecking
s with detailed
......................
......................
g
ng

fault modellin
failures and co
dependency ..
tization
olerance exam
al failures......
onal verificatio
......................
......................

for modelling
......................
......................
el checker
......................
onous modellin
synchronous m
synchronous m
......................
......................
onous modellin
synchronous m
synchronous m
......................
......................
program

n
......................
gency tank sys
gency diesel s
r reduction un
ystems

......................
s
ductions
......................

h and further d

......................
d fault models
.....................
.....................
.....................
.....................

ng
ommon cause
.....................
.....................

mination
.....................

on
.....................
.....................

 timed autom
.....................
.....................
.....................
.....................
ng technique

modelling tech
modelling tech
.....................
.....................
ng technique

modelling tech
modelling tech
.....................
.....................
.....................
.....................
.....................
stem

system
it
.....................
.....................
.....................
.....................
.....................
.....................

evelopment ..

......................

......................

......................

......................

......................

......................

......................
e failures
......................
......................
......................
......................
......................
......................
......................

mata
......................
......................
......................
......................
......................
nique
nique with inp
......................
......................
......................
nique
nique with inp
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................
......................

........ 39

........ 41

........ 41

........ 42

........ 46

........ 47

........ 48

........ 49

........ 49

........ 49

........ 50

........ 51

........ 52

........ 53

........ 54

........ 56

........ 58

........ 58

........ 58

........ 58

........ 59

........ 59

........ 59
put
........ 60
........ 62
........ 62
........ 67
put
........ 71
........ 72
........ 72
........ 72
........ 73
........ 73
........ 73
........ 73
........ 74
........ 75
........ 75
........ 75
........ 77
........ 78

6. Co

Refere

 Effici5.7.1
 Simp5.7.2

onclusions

nces

ency of the an
plicity of the mo

......................

......................

7

nalysis
odelling

......................

......................

.....................

.....................

......................

......................

......................

......................

......................

......................

........ 78

........ 78

........ 80

........ 82

1. Introduction

8

1. Introduction

The verification of digital instrumentation and control (I&C) systems is challenging
because programmable logic controllers enable complicated control functions, and
the state spaces (number of distinct values of inputs, outputs and internal
memory) of the designs easily become too large for comprehensive manual in-
spection. Design verification is a key task in the design flow because it can elimi-
nate tricky design errors that are hard to detect later in the development process
and very expensive to repair, often leading to a major redesign and reimplementa-
tion cycle. Typically, verification and validation (V&V) activities rely heavily on
subjective evaluation, which only covers a limited part of the possible behaviours
of the system, and more rigorous formal methods are therefore required. Such
formal methods have been studied (see, for example, [Valkonen 2008] for an
overview) but they are not yet widely used.

Model checking [Clarke et al. 1999] is a formal method that can be used to veri-
fy the correctness of system designs. Internationally, it has been used in the verifi-
cation of, e.g., hardware and microprocessor designs, data communications pro-
tocols and operating system device drivers. Several model checking systems and
tools exist. In our work, we have focused on two model checking tools: NuSMV
and UPPAAL. The tools are able to determine automatically whether a given state
machine model satisfies given specifications. Model checking can also handle
delays and other time-related operations that are crucial in safety I&C systems
and challenging to design and verify.

This report reviews the work performed in the Safety Evaluation and Reliability
Analysis of Nuclear Automation (SARANA) project in 2011 regarding model check-
ing. We have developed new, more exact modelling methods that are able to
capture the behaviour of a system more realistically. In particular, we have devel-
oped more detailed fault models depicting the hardware configuration of a system
as well as methodology to model function-block-based systems asynchronously.
In order to improve the usability of our model checking methods, we have devel-
oped an algorithm for model checking large modular systems. The algorithm can
be used to verify properties of a model that could otherwise not be verified in a
straightforward manner.

The MODSAFE project previously experimented with a technique based on the
modular structure of the model, in which the model could be over-approximated by
leaving the behaviour of some of the modules out of consideration. Using such a

1. Introduction

9

technique, any composition of the modules can be formed and analysed with little
effort. In this work, these modular abstractions are used to create an algorithm that
is able to verify automatically a large modular system. This work is reported in
Section 3.

We have also developed methodology to model system faults so that the failure
behaviour of systems can easily be integrated into traditional models depicting the
software logic of a system. The work regarding fault modelling is represented in
Section 4.

Finally, we have created asynchronous techniques for modelling function-block-
based designs using timed automata. This work is covered in Section 5.

2. Model Checking

10

2. Model Checking

Model checking [Clarke et al. 1999], [Clarke & Emerson 1981], [Quielle & Sifakis
1981] is a computer-aided verification method developed to formally verify the
correct functioning of a system design model by examining all of its possible be-
haviours. The models used in model checking are quite similar to those used in
simulation as, basically, the model must describe the behaviour of the system
design for all sequences of inputs. However, unlike simulation, model checkers
examine the behaviour of the system design with all input sequences and com-
pare it with the system specification. In model checking, at least in principle, the
analysis can be fully automated with computer-aided tools. The specification is
expressed in a suitable language, temporal logics being a prime example, describ-
ing the permitted behaviours of a system. Given a model and a specification as
inputs, a model checking algorithm determines whether the system has violated its
specification. If none of the behaviours of the system violates the given specifica-
tion, the (model of the) system is correct. Otherwise, the model checker will auto-
matically give a counter-example execution of the system demonstrating how the
specification has been violated.

In the SARANA project we have used two model checkers: NuSMV [Cavada et
al. 2010], [NuSMV 2011], which was originally designed for hardware model
checking, and UPPAAL [Uppaal 2009], which supports model checking of timed
automata. NuSMV is a state-of-the-art symbolic model checker that supports syn-
chronous state machine models in which the real-time behaviour must be mod-
elled with discrete time steps using explicit counter variables that are incremented
at a common clock frequency. NuSMV supports model checking using both Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL) [Clarke et al. 1999],
making it quite flexible in expressing design specifications. Several model check-
ing algorithms are employed in this work. The standard algorithm is based on
symbolically representing and exploring the state space of the system using Bina-
ry Decision Diagrams (BDDs) [Bryant 1986] [McMillan 1993]. SAT-based (Proposi-
tional Satisfiability) bounded model checking [Biere et al. 1999] is also supported
by NuSMV [Biere et al. 2006] for finding bugs in larger designs. The sophisticated
model checking techniques used by NuSMV can handle non-determinism induced
by free input variables well, but modelling real-time aspects can be more challeng-

2. Model Checking

11

ing due to the inherently discrete time nature of the synchronous state machine
model employed by NuSMV.

UPPAAL is a model checking tool for timed systems based on modelling the
system as a network of timed automata that communicate through message
channels and shared variables. The timed automata have a finite control structure
and real-valued clocks [Alur & Dill 1994], making the modelling of timers fairly
straightforward. Networks of timed automata can express the real-time behaviour
of the system in continuous time and still be automatically analysed. This is feasi-
ble because all the possible behaviours of the system can be captured using a
finite graph on which different clock valuations with the same behaviour are intui-
tively grouped into a finite number of equivalence classes called regions [Alur &
Dill 1994]. The model checking algorithms use symbolic methods to represent
compactly the clock valuations associated with each state of the system quite
efficiently in terms of memory. The model checking algorithms employed inside
UPPAAL [Alur & Dill 1994], [Larsen et al. 1997] are able to check a subset of the
temporal logic TCTL (Timed Computation Tree Logic) [Alur et a. 1990] by explicit
state model checking that explicitly traverses the finite graph induced by the be-
haviour of the system. The main strength of UPPAAL is in analysing the complex
timing behaviour of a system. However, it is not well suited to systems with a very
high amount of non-determinism as induced by, e.g., reading a large number of
input variables (sensor readings) provided by the environment because each
combination of inputs is explicitly explored by the employed model checking algo-
rithms.

2.1 Model checking large systems

Model checking has been successfully used to analyse individual functions of
safety-critical automation systems. However, it is often necessary to examine
several functions simultaneously because the functions may influence the same
system parameters. A system may also have several redundant implementations
whose behaviour should also be covered. Applying the current model checking
methods in a straightforward manner is not always possible in these large and
complex systems because the behaviour of the models becomes too rich (i.e. the
state explosion problem).

 A normal approach to avoid state explosion would be to create an abstraction
of the system manually. Based on the verified specification, some system func-
tionality can be irrelevant and left out of the model. Unfortunately, creating such an
abstracted model manually for each specification requires a great amount of work.
The motivation for our work is: 1) to reduce the amount of work by creating these
abstractions automatically, 2) to infer system correctness based on verifications
performed automatically on these abstractions, and 3) to reduce the computational
effort (avoiding the state explosion of the model).

2. Model Checking

12

2.2 Fault models for model checking

Single-fault tolerance has been analysed using model checking in the MODSAFE
project in the SAFIR2010 research programme. Our model checking methodology
has traditionally included quite non-detailed fault models. Typically, only the sta-
tus/fault bits of an automation system have been implemented in the model. Ex-
tended fault models that allow the model to include physical faults such as faults in
telecommunication links, microprocessor faults and electrical faults influencing all
equipment in a cabinet were created in SARANA in 2011.

3. Model checking large systems

13

3. Model checking large systems

This work focuses on the analysis of large function-block-based systems. These
systems can be modelled as a collection of interacting modules each of which
encompasses the functionality of a few function blocks. The methodology is also
applicable to other kinds of systems that can be modelled in a similar way.

The analysis of large systems is based on two separate aspects. The first is
that the system should be modelled in a way that allows different abstraction-level
versions of the model to be created in a practical way. The second part of the
verification approach is finding a suitable abstraction level using that framework.
The abstraction level should have enough detail to allow verification but not too
much, so that the system is still computationally verifiable. In what follows, we first
describe how abstractions are created from the models and then an algorithm that
can be used to verify large modular systems automatically. The algorithm is im-
plemented for use together with NuSMV model checking software.

3.1 Abstracting the model

Typically, only a small part of the model is needed to verify a specification. The
model must be able to be divided easily into such parts, and it should be possible
to easily leave some parts of the model outside examination. We have modelled
function-block-based systems as a collection of interacting modules (see Figure
1). This section presents the over-approximation already introduced in [Lahtinen et
al. 2010] that can be used to create abstractions of the model by replacing some
modules with interface modules.

We should be able to select a set of the modules whose functionality we want
to analyse. We do not want to set any limitations for the modules that are left out
of the analysis. The creation of an abstract model based on a selection of modules
should be done automatically and the resulting abstraction should be unambigu-
ous.

3. Mode

The ab
created
inner fu
of the m
interfac
then cr
module
selectio

In ad
the inte
algorith
the mo
venient

el checking la

Figure 1. T

straction is im
d. The abstrac
unctionality. O
module are ch
ce versions ar
reated by sele
e and creating
on of modules
ddition to the
erconnections
hm also uses
del (including
tly read by the

rge systems

The dependen

mplemented so
ct version, cal

Only the interfa
anged into no
re located in

ecting either a
g a model file
 is also referre
different mod
between the
a model data
dependencie

e algorithm.

14

ncy graph of a

o that an abstr
lled the interfa
aces of the mo
on-determinist

separate files
a normal versio
e based on t
ed to as the co
dules, the mo
modules are

a file in which
es between m

system with 2

ract version of
ace module, i
odule are imp
ic variables. T
s. An abstrac
on or the inte
he selections
onfiguration of
del has the m
defined. Our i

h all relevant
odules) are lis

22 modules.

f every modul
s such that it

plemented. All
The modules a
tion of the sy
rface version
(see Figure

f the model.
main module i
implementatio
information re
sted and can

le is first
t has no
outputs

and their
ystem is
of each
2). The

in which
on of the
egarding
be con-

3. Model checking large systems

15

Figure 2. Creating an abstraction of the model by replacing some modules with
interface modules

3.2 Property verification using the abstractions

The abstractions discussed above are such that the abstract model always has
more behaviour than the non-abstracted model (the interface module is an over-
approximation). This is because the interface modules that are used in abstract
models are not restricted in any way. The interface modules can output any se-

3. Model checking large systems

16

quence of outputs (unlike the non-abstracted modules). This feature of the ab-
straction allows verification of safety properties.

A safety property asserts that nothing bad happens. A typical safety property
would assert that a defined error state is not reachable in the model. If a safety
property is true on some configuration of modules, of which some are interface
modules, the property is also true on the original non-abstracted configuration.
This is because the interface module abstraction adds behaviours to the model. If
a safety property is true in a configuration that has more behaviours than the non-
abstracted model, the property is also true in the non-abstracted model.

Our algorithm is designed to verify only safety properties. In particular, the algo-
rithm currently verifies only invariant properties. Invariant properties state that a
condition holds for all reachable states. Invariant properties are safety properties
but not all safety properties are invariants.

3.3 Automatizing abstraction-level selection

As it is possible to create abstractions of the model by selecting the modules
whose functionality we want to analyse, it is possible to find a suitable abstraction
level automatically. By suitable, we mean that the abstraction is sufficiently de-
tailed to verify the analysed property, and the abstraction level is coarse enough to
be model checked in reasonable time. The whole verification process should also
require less time than model checking the non-abstracted model as such.

The technique of finding a suitable abstraction level is largely based on the idea
of the Counterexample-Guided Abstraction Refinement technique (CEGAR) by
Clarke et al. [Clarke et al. 2004]. The general idea of the CEGAR technique is to
model check an abstraction of the system that preserves all behaviours of the
concrete system. If the property is true on the abstraction, it is also true in the
concrete system. However, a property may be false in the abstraction and still be
true in the concrete system (a spurious counterexample is found). In this case, the
abstraction is refined based on the counterexample. The refined abstraction is
such that it eliminates the spurious behaviour. The process is repeated until the
abstract system satisfies the property or a true counterexample is found.

Our algorithm follows the general CEGAR loop, but the adaptation of the pro-
cess to our modular framework is novel. In addition, we attempt to increase the
performance of the algorithm through counterexample minimization. The abstrac-
tion refinement step is also different from the ideas in [Clarke et al. 2004].

Our algorithm to model check large modular systems is as follows:

1. Choose the initial configuration of modules based on the invariant proper-
ty.

2. Model check the current configuration of the modules.
3. If the property is true, return ‘true’. Otherwise, a counterexample is given.
4. Minimize the counterexample.

3. Model checking large systems

17

5. Check the feasibility of the counterexample on the non-abstracted model.
If the scenario is feasible, a real error has been found. Return the coun-
terexample.

6. Refine the abstraction based on the counterexample.
7. Go to step 2.

The general intention of the algorithm is to begin with as much abstraction as
possible, and then iteratively add modules to the configuration until the abstraction
satisfies the property or a counterexample is found. As input the algorithm re-
ceives:

 An invariant property
 The main module describing the system as modules
 The modules that consist of a collection of function blocks
 A function block library
 Interface module descriptions for each module
 Dependency information regarding the model: inputs/outputs of each

module and the dependencies between modules. It is also possible to
extract this information automatically by parsing the main module.

In order to clarify the operation of the algorithm, we present an example run of the
algorithm. Suppose that we want to verify the system in Figure 1. The arrows
depict dependencies between the modules (outputs that are used as inputs to
another module). Each module in Figure 1 consists of a set of function blocks. We
want to check if the system satisfies the property that the outputs of modules 19
and 13 (M19 and M13) are never true at the same time (both have only one output
‘out1’). We write an invariant:

 INVARSPEC ! (M19.out1 & M13.out1);

Next, we choose the initial configuration of modules based on the invariant proper-
ty (Step 1 of the algorithm). This is done simply by extracting the variables from
the invariant (M19.out1, M13.out1) and determining the modules that have these
variables as outputs (Modules M19 and M13). These modules are selected as the
initial configuration. Other modules of the system are replaced by their respected
interface modules. The initial configuration is illustrated in Figure 3.

3. Model checking large systems

18

Figure 3. The initial configuration of the example run of the algorithm.

Next, based on the selection of modules, we generate the model file by appending
the main module with appropriate module files and apply model checking to this
file. We use the invariant checking algorithm of the NuSMV tool together with the
cone of influence reduction (described later).

In our running example, NuSMV outputs a counterexample in which the outputs
of M13 and M19 are both true at the same time. Next we attempt to minimize the
counterexample. Based on the dependency graph we can see that our current
abstraction (M13 and M19) is dependent on modules M11, M16, M17 and M18.
Since the modules are deterministic, we know that the outputs of M11, M16, M17
and M18 cause the error in the counterexample. In the counterexample minimiza-
tion step we check whether there is some subset of these outputs in the counter-
example that would be the cause of the error. Counterexample minimization is
discussed in the next section in more detail. In our example, let us assume that we

3. Model checking large systems

19

deduce that the outputs of module M18 are irrelevant with respect to the counter-
example. We remove the variable assignments referring to module M18 from the
counterexample.

The fifth step of the algorithm is to check whether the minimized counterexam-
ple is feasible in the non-abstracted model. We generate a configuration of the
model in which all modules are non-abstracted and add clauses that force the
model towards behaviour described by the counterexample. Then we check
whether the last state of the counterexample can be reached in the model. If it can
be reached, the counterexample is feasible in the non-abstracted model and de-
picts a true error in the system. If the last state cannot be reached, the counterex-
ample is spurious, and the abstraction level should be refined.

Figure 4. The refined abstraction level after one iteration.

3. Model checking large systems

20

Suppose that in our running example, the counterexample is not feasible in the
non-abstracted model. We have to refine the abstraction in such a way that it
eliminates the spurious counterexample (but still adds as few modules as possi-
ble). The refinement step starts by looking at the dependency graph. Earlier we
concluded that the error is caused by modules M11, M16 and M17 (M18 was
deduced to be irrelevant). We first check whether adding these three modules
eliminates the counterexample. We generate the module configuration (M11, M13,
M16, M17, M19) and perform another feasibility check. In our example, the config-
uration is not feasible, which is exactly what we were looking for (the spurious
counterexample is eliminated). We can still try to improve the refinement by check-
ing if adding some subset of the new modules M11, M16 and M17 also eliminates
the counterexample. We find out that the smallest such subset is (M11, M17). The
resulting refined abstraction is then (M11, M13, M17, M19); see Figure 4. The
abstraction refinement is also discussed in more detail later.

Finally, the refined abstraction is model checked again. In our example, the re-
sult is true, which implies that the non-abstracted model satisfies the specification.
The algorithm finishes and returns the value ‘true’.

In what follows, some steps of the algorithm (invariant model checking, coun-
terexample minimization, feasibility checking of the counterexample, and abstrac-
tion refinement) are discussed in more detail.

3.4 Invariant model checking

The second step of the algorithm is model checking the current configuration of
modules. In this step, we use two model checking algorithms in parallel: BDD-
based invariant checking and bounded model checking (BMC) -based invariant
checking. The BDD-based model checking algorithm may require a large amount
of time when the size of the model increases. This is why the bounded model
checking is run in parallel. The BMC algorithm can find counterexamples faster (if
they exist). This can reduce the run-time of the algorithm because the BDD algo-
rithm can be interrupted when a BMC counterexample is found. On the other
hand, we need both algorithms because the used BMC algorithm may not be able
to prove a property within a reasonable bound.

3.5 Counterexample minimization

If model checking an abstract configuration leads to a counterexample, the feasi-
bility of the counterexample should be checked on the non-abstracted full model.
The counterexample is minimized before the feasibility check.

The abstract counterexample consists of a set of variable assignments on dif-
ferent time steps. The counterexample can be minimized so that only the relevant
variable assignments remain that actually cause the counterexample. The mini-
mized counterexample is such that the variable assignments in it always lead to

3. Model checking large systems

21

the original error despite the variable assignments that exist outside the minimized
counterexample.

Counterexample minimization is performed for two reasons:

 Free non-deterministic variables of the abstract model can be restricted
in the full non-abstracted model in a way that makes the counterexample
infeasible. However, these variables may not be causing the error de-
scribed by the counterexample (values are irrelevant). Leaving these var-
iables outside the counterexample reduces false negative feasibility an-
swers.

 The abstract model includes the behaviour of a set of modules A. These
modules are dependent on signals received from a set of modules B that
are not in the abstract model. In the abstraction refinement step of the al-
gorithm, the set A is increased by adding new modules from the set B
based on the dependency relation. If it can be demonstrated that a mod-
ule M in B is irrelevant with respect to the examined counterexample, that
module M can be left out in abstraction refinement, and thus the size of
the abstract model after refinement is decreased. The size of the model
has major influence on the performance of the algorithm. It may be pos-
sible to simplify the dependency relation of the modules based on coun-
terexample minimization (if all signals from one module M in B are mini-
mized).

In what follows, we describe techniques for counterexample minimization that can
be used together with the algorithm. The techniques based on random walk and
delta debugging are search methods that do not produce the smallest possible
counterexample. The CTL query-based technique does produce the smallest
possible counterexample but the technique requires more computation.

Some issues are related to the minimization regardless of the minimization
technique. The counterexample minimization techniques require:

 The model file
 The model checker (NuSMV)
 The abstraction level of the model (which modules are abstracted as in-

terface modules)
 Module dependency information (A list of modules, their inputs and the

modules from which these inputs are received)
 The counterexample file in XML format
 The examined invariant property (only invariant properties and their coun-

terexamples are supported).

The counterexample given as input can be simplified by itself. Typically, the model
checker can perform some form of trace simplification. NuSMV allows the use of
the cone-of-influence (COI) reduction, which can be used to reduce the number of
variables in the counterexample before further simplification is applied. The COI
technique is introduced later on.

3. Model checking large systems

22

The counterexample can also easily be simplified by only taking into account
the input variables of each module. The model behaviour is fully determined by
exactly these variables. In the modelling approach used, all the other variables
(output variables, memories of the function blocks) receive their values from the
input variable sequences in a deterministic way. Thus, the counterexample can
also be described in terms of the input variables only. A list of ‘free variables’ can
be extracted from the module dependencies and the abstraction levels of the
modules. Free variables determine the behaviour of the system in an unambigu-
ous way. All free variables of an abstracted model are either:

 Interface variables: input variables of the non-abstracted modules that
receive their value from an interface module, or

 Non-deterministic variables: input variables whose value is determined
non-deterministically in the model (they can have any value at all times).

Thus, an input variable whose value is received from a non-abstracted module M
(a module that is included in the abstraction) is not a free variable, since its value
is determined by the input variables of module M. This leads to two realizations:

 Only variable assignments for the free variables are preserved in the
counterexample. Other variable assignments are redundant and can be
left out.

 The non-deterministic variables of an abstract model are also non-
deterministic in the full non-abstracted model. The non-deterministic vari-
ables cannot cause false feasibility answers in the algorithm nor can their
removal lead to reductions in the abstraction refinement step. Therefore,
the non-deterministic variables should not be the target of minimization.
The non-deterministic variables are always included in the minimized
counterexample.

Thus, our counterexample minimization techniques focus on further minimizing the
variable assignments of the counterexample (already minimized using the cone-of-
influence reduction of NuSMV) that are the interface variables of the current ab-
straction.

The minimization techniques are based on the idea of creating modified copies
of the model in which some variables of the model are forced to follow the behav-
iour described by the counterexample.

The modified copy is created by adding a clock variable and clauses for the
forced variables. The clock variable clock is simply an integer variable that is add-
ed to the model. The clock variable has the values from 0 to the length of the
counterexample. The clock variable’s initial value is 0. After that, the value is in-
creased by one at each time step. When the length of the counterexample is
reached, the value of the clock is permanently set to the highest value. For exam-
ple, if the counterexample consists of two time points, the NuSMV code for the
clock variable would be:

3. Model checking large systems

23

init(clock):= 0;

next(clock) := case

clock < 2 : clock +1 ;

TRUE : 2 ;

esac;

For each forced variable, the init and next clauses of NuSMV are created so that
the variable follows the counterexample values until the end of the counterexam-
ple. For example, a variable that has the value FALSE at time point 0 and TRUE
at time points 1 and 2 in the counterexample would translate into the clauses:

init(variable1) :- FALSE;
next(variable1) := case

clock = 0 : TRUE ;
clock = 1 : TRUE ;
TRUE : {TRUE, FALSE} ;

esac;
TRUE : {TRUE, FALSE} ;
esac;

Using the modified copies of the model, it can then be verified by model checking
whether the copies are such that the error always manifests itself. If it does, the
set of forced variables can be used to create a new minimized counterexample.
Other variables are irrelevant. In order to find the smallest possible counterexam-
ple, the naive approach would be to create a modified model for every subset of
variable assignments in the counterexample and check each one separately. The
smallest subset leading to a true minimized counterexample would then be the
smallest possible counterexample. However, checking all subsets of the variable
assignments is too laborious, and some heuristics are needed. We use, for exam-
ple, local search techniques, and apply the techniques on several granularity lev-
els.

Each minimization technique can be applied on at least three different granular-
ity levels:

 Module level minimization: Since one of the objectives of the minimi-

zation is to break dependencies between modules, it makes sense to
find out whether some module as a whole is irrelevant with respect to
the counterexample. On the module level, the variable assignments
are grouped according to the module that outputs them. The subsets
of these groups are then examined to find the smallest subset, such
that any execution still always leads to the error in the counterexam-
ple. The variable assignments related to irrelevant modules are then
removed from the counterexample. For example, if the module M1 is
removed as a result, assignments of variables output by M1

 are re-
moved from the counterexample at all time points.

3. Mode

The gra
minimiz
reduce
using m

 3.5.1

Random
we des
applied

The
which a
the cou

1.

2.
3.

4.
5.

6.

7.

The alg
is a loc
terexam
ample i

el checking la

 Variable
smallest
terexamp
removed
from the

 Variable/
time-poin
the small
example,
point 0 bu

anularity leve
zation only on

the size of t
minimization o

Random wal

m walk-based
scribe the func
d similarly.

idea of rando
all variables th
unterexample.

All variables
is empty.
If Forced=R
Select some
Result.
Remove V f
Create a n
forced to the
Check whet
exists no m
be done us
go to step 2
Put V back

gorithm return
cal minimum. I
mple, the rand
is then selecte

rge systems

level minim
subset of var

ple always lea
by minimizat

counterexamp
/time point le

nt) pair of the
lest subset of
, the variable
ut assignment

ls are indepe
 some granula
the counterex
n the variable/

k-based mini

d minimization
ctioning on the

m walk-based
hat are targets
Then, we follo

s that are to be

Result, return R
e random var

from Forced.
ew modified
e values in the
ther M is such
atter what the

sing the bound
2.
into the set Fo

s a set of vari
In order to de

dom walk can
ed.

24

mization: At th
riables whose
ad to the erro
tion, variable
ple at all time
evel minimiza
counterexam

f assignments
assignments

ts at other tim

endent of each
arity level or f

xample and th
/time point lev

imization

n can be appli
e variable leve

d minimization
s of the minim
ow the algorit
e minimized a

Result.
iable V from t

model M in w
e counterexam
h that the erro
e values of the
ded model ch

orced, add V t

iables that alw
crease the siz
be run a few

he variable le
variable assig

or. For examp
assignments
points.
ation: At this
ple can be m
that always le
of var1 could

e points could

h other. It is
first use the m
hen further re
vel.

ed on all gran
el only. Other

n is to start wit
mization are fo
hm:

are in the set F

the set Forced

which the var
mple
or described by
e variables no

hecking algorit

to Result and

ways leads to
ze of the resu
times, and the

evel, we look
gnments in th

ple, if variable
of var1 are r

level, each (v
inimized. We
eads to the er
d be removed
d still be releva

possible to ap
module level to

fine the minim

nularity levels.
granularity lev

h a modified m
orced to the v

Forced; the se

d such that it

riables in For

y the countere
ot in Forced. T
thm in NuSMV

go to step 2.

the error, and
lting minimize
e smallest cou

k for the
he coun-
e var1 is
removed

variable,
look for

rror. For
d at time
ant.

pply the
o quickly
mization

. Below,
evels are

model in
values in

et Result

is not in

rced are

example
This can
V. If so,

d the set
ed coun-
unterex-

 3.5.2

The m
granula
Other g

The
approa
differ. I
a count
checkin
vides th
subsets

1.
2.
3.
4.

5.

6.
7.

 3.5.3

The mi
Below,
levels a

In th
of the a
ple. Th
variable
variable
called t

Minimization

inimization ba
arity levels. Be
granularity leve
reasoning in
ch, but the he
n delta debug
ter-example is
ng the subset
he variables in
s explains the

Set granula
Divide S int
Calculate th
For x in Sub
4.1. Create

the va
4.2. Check

exists
be don
so, se

For x in Com
5.1. Create

the va
5.2. Check

exists
done u
set n=

If granularity
Else (Granu

CTL query-ba

inimization ba
we describe

are applied sim
he minimizatio
abstract mode
he difference f
es are not se
e is introduced
the lock varia

n using delta

ased on delta
elow, we des
els are applied
this approach

euristics of se
gging, the min
s looked for b
s and their co
nto two sets a
counterexam

rity n=2. The s
o n subsets (S

he complemen
bsets:
e a modified m
lues of the co

k if M is such
no matter wh

ne using the b
t n=2 and S=x
mplements:
e a modified m
lues of the co

k if M is such
no matter wh

using the boun
2 and S=x, an
y n < |S|, set n
ularity is greate

ased minimiz

ased on CTL q
the functionin

milarly.
n by CTL que

el in which var
from the prev
lected one by
d for each va

able determine

25

debugging te

a debugging
cribe the func
d similarly.
h is somewhat
lecting candid

nimal set of fo
by dividing the
omplements o
and then incre

mple. We follow

set of variable
Subsets).
nts of the Subs

model M in wh
unterexample
that the error

hat the values
bounded mod
x, and go to st

model M in wh
unterexample
that the error

hat the values
nded model c
nd go to step 2
n=min(|S|, 2*n
er than or equ

zation techniq

queries can b
ng on the va

eries, the idea
riables are for
vious minimiza
y one by the a
riable under m
es whether th

3. Model ch

echniques

techniques ca
ctioning on th

t similar to the
dates for a sm
rced variables

e forced variab
one by one. T
eases the gra
w the algorithm

es that are to b

sets (Complem

hich the variab
e.
r described by
 of the variab
el checking a
tep 2.

hich the variab
e.
r described by
s of variables
checking algor
2.
n) and go to st
ual to |S|) retur

que

be applied on
riable level on

a is again to cr
rced to values
ation techniqu
algorithm. Ins
minimization. T
e variable it lo

hecking large s

an be applied
e variable lev

e random wal
maller countere
s that always
bles into subs

The search ini
nularity if non

m below:

be minimized i

ments).

bles in x are fo

y the countere
les not in x. T
lgorithm in Nu

bles in x are fo

y the countere
not in x. This
ithm in NuSM

ep 2.
rn S.

all granularity
nly. Other gra

reate modified
s in the counte
ues is that the
tead, a new B
The Boolean
ocks follows th

systems

d on all
vel only.

k-based
example
leads to

sets and
itially di-

ne of the

is S.

orced to

example
This can
uSMV. If

orced to

example
s can be

MV. If so,

y levels.
anularity

d copies
erexam-
e forced
Boolean
variable

he value

3. Model checking large systems

26

of the counterexample. The modified model is then model checked against a spe-
cial CTL specification in order to determine the minimum number of TRUE as-
signments in these lock variables that are required to force the system to violate
the original property. The ideas are explained in detail in what follows.

Variables under minimization are forced to the counterexample values through
lock variables and a clock variable keeping track of time. The clock variable clock
is simply an integer variable that is added to the model (similarly to that in random
walk minimization).

A new variable, lockX (that has values 0 and 1), is added for each interface var-
iable (variables that are the target of the minimization). A mapping is created in
which the correspondences between the lock variables and the interface variables
are determined. The lock variables are such that they non-deterministically choose
a value (0/1) at the initial time point and retain the value at all future time points.
This is done by omitting the NuSMV init statement and using next statements such
as:

next(lockX):= lockX;

The value 1 of a lock variable means that the variable related to it has the same
value as the counterexample at time points less than or equal to the length of the
minimized counterexample. If lockX has value 0, the value of the variable related
to that lock variable is not restricted in any way.

The behaviour of the lock variables is realized through init and next statements
written for all variables in the counterexample:

init(variable1) case
 lock1 = 1 : FALSE ;
 TRUE : {TRUE, FALSE} ;
esac;
next(variable1) := case

clock = 0 : case
lock1 = 1 : TRUE ;
TRUE : {TRUE, FALSE} ;

esac;
TRUE : {TRUE, FALSE} ;

esac;

In the above example, according to the original counterexample, variable1 takes
the value FALSE at time point 0 and the value TRUE at time point 1. If lock1 has
the value TRUE, variable1 takes the value FALSE at time point 1 and the value
TRUE at time point 2. At all other time points the value of variable1 is non-
restricted. Enumerative variables are also supported. The variable domain is read
in the beginning of the counterexample minimization from the module dependency
information. The full domain range then replaces {TRUE, FALSE} in all instances.

3. Model checking large systems

27

The number of variables that is locked is controlled through another variable:

nro_of_locked_variables := lock0 + lock1 + ... lockN;

Finally, the examined property is a CTL property:

CTLSPEC ! (nrolockedvars = x & AF(clock = y & error));

where:

 x is a variable that determines the number of locked variables
 y+1 is the length of the original counterexample
 error is the negation of the original invariant property.

The CTL formula states that no such initial state exists in which a certain number x
of the interface variables are locked to the values of the original counterexample
so that no matter what the values of the other non-locked interface variables are,
the system will eventually lead to the error state manifested in the original coun-
terexample. However, if the formula leads to a counterexample, it means that such
a choice of locked variables exists. The actual locked variables can be deduced
from the counterexample trace. If the formula is true, a higher value of x should be
tried out when looking for a minimal counterexample. (Note that the ‘function’ here
is monotonous. If the formula is true for x=5, then the formula is also true for x < 5.
If the formula is true for some value of x, then if a smaller value of x were to exist
that resulted in a counterexample of the formula, then the same counterexample
could be produced by choosing these variables and a number of other variables. If
the formula is false for x=10 then a counterexample also exists for all x > 10. If a
set of variables and time points exist that are sufficient to produce the counterex-
ample, then adding other variable assignments cannot change this.)

Now, the resulting modified model can be used to check if it is possible to lock
a certain number of interface variables in such a way that the original error mani-
fests itself no matter what the other non-locked variable assignments are. The
number of interface variables is known, and the minimum number of locks re-
quired can be found through binary search:

binarySearch(low, high):
x = (high + low) / 2
model check modified model using specification:
‘CTLSPEC ! (nrolockedvars = x & AF(clock = y & error));’
if (specification is false):

return min(minimization, binarySearch(low, x-
1))

else:
 return binarySearch(x+1, high)

The counterexample minimization described here can also be used on the module
level and the variable/time point level. On the module level, a lock variable is cre-

3. Mode

ated fo
module
each va
lock va
ple cou
cific tim
not affe
minimiz
lock va

The
ing algo
CTL ch
but ma
minimiz

 3.5.4

Counte
hardwa
large a
simulat
traces
ples of
and mu
usually
the cou

Tech
Some o
themse
reviewe

3.5.4.1

Program
with res
such th
The ide
where
gram a
the red
known

Con
creases
model t

el checking la

r each module
e. On the varia
ariable-time p

ariables are cre
uld be further
me point is rel
ect the realiza
zation approa
riables and a
CTL-based m

orithm availab
hecks are too
y not return th
zation over op

Related work

erexample (or
are and softw
mount of man
tion and mode
or counter-ex
model checki

ultiple time po
 important, an

unterexample.
hniques have
of these tech

elves. In what
ed.

Program slic

m slicing [We
spect to a giv

hat it holds on
eas of the pro
a temporal lo

analysis of mo
duced model if
as the cone o
e of influence
s the state sp
that are releva

rge systems

e and these lo
able/time poin
point pair, e.g.
eated for each
minimized bec
evant. The va
tion of the err
ch can be too
state explosio

minimization a
ble in NuSMV.

complex. The
he minimal co

ptimal minimiza

k

bug trace) m
ware verificatio
nual effort is r
el checking (a

xamples is tim
ng, for examp
ints. However

nd most variab

 already bee
niques have
t follows, som

cing and the c

eiser 1981] is
en condition c
the full progra

ogram slicing
ogic formula is
del checking
f and only if i

of influence red
(COI) [Clarke

pace of the m
ant to the exam

28

ocks affect the
nt level, a sepa

 if the counte
h interface va
cause in som
alue of some
ror. In large m
o complex. Th
on.
approach cann
. Its result is o
e minimization
ounterexample
ation.

minimization h
on. Novel ver
required to an
and other form

me-consuming
ple, can consis
r, only a fracti
ble values hav

en developed
been impleme

me research o

cone of influen

an abstractio
called the slici
am if and only
techniques h

s interpreted
models the te
t holds on the
duction used i
e et al. 1999] i
model by focu
mined specific

e interface va
arate lock vari

erexample has
ariable. This w
e cases only
variable at ot

models, howev
he approach c

not use the bo
optimal, but in
n through delt
e. In our algor

has been a re
rification tools
nalyse the res
mal methods)

and laboriou
st of hundreds
on of the varia

ve no influence

for counterex
ented in the m
on counterexa

nce reduction

on of a progra
ing criterion. T

y if it holds on t
ave been use
as the slicing

emporal logic
e full model. T
n hardware ve
is an abstracti
using only on
cation. The red

riables related
iable is introdu
s five time poi

way, the counte
a value at som
ther time poin

ver, this more
can lead to to

ounded mode
practice the r

a debugging i
rithm, we prefe

esearch topic
s are effective
ults of these t
, the analysis
s. The counte

s of different v
able assignme
e on the realiz

xample minim
model checkin
ample minimiz

am or a spec
The slicing crit
the reduced p
ed in model c

criterion. In t
formula must
The technique
erification.
on technique
 the variables
duction is obta

d to that
uced for
ints, five
erexam-
me spe-
nts does
detailed

oo many

el check-
required
is faster
fer quick

in both
e, but a
tools. In
s of bug
erexam-

variables
ents are
zation of

mization.
ng tools
zation is

cification
terion is

program.
checking
the pro-
hold on

e is also

that de-
s of the
ained by

3. Model checking large systems

29

removing variables that cannot influence the variables of the specification. The
basic idea is to create a dependency graph of the variables in the model and then
traverse the graph starting from the variables of the specification. Since the cone
of influence reduction reduces the number of variables in a model, it also reduces
the number of variable assignments in the counterexample.

The cone of influence reduction can be improved by taking into account the dif-
ferent time points at which a variable can have influence on the specification. This
technique is referred to as Bounded Cone of Influence (BCOI) [Biere et al. 1999].

3.5.4.2 Brute Force Lifting

The technique called Brute Force Lifting (BFL) [Ravi & Somenzi 2004] was intro-
duced in the context of minimizing bounded model checking (BMC) counterexam-
ples. BMC counterexamples are satisfying assignments to a Boolean formula,
typically in conjunctive normal form (CNF). The idea is to derive a minimally satis-
fying counterexample that, together with the Boolean formula describing the mod-
el, implies a violation of the checked property.

The examined technique is performed on the level of Boolean formulas solved
by a SAT solver. On that level, the paper describes a process of simplification
called lifting. Lifting is the process of removing literals or variables from a satisfy-
ing assignment such that for each valuation of the lifted variables the formula is
still satisfiable. Some variables are clearly irrelevant with respect to the checked
property and can be lifted. The relevance of other variables has to be checked by
brute force. This means that for each checked literal, the negation of the property
is checked with a SAT solver. If the result is satisfiable, then the literal cannot be
lifted. The BFL technique described in the paper is performed on the inputs of a
system. Since a SAT solver run is needed for a single lifting, the technique can be
quite expensive computationally. However, the experimental results showed that
the average reduction in counterexample variables was 71%.

The BFL technique can be further improved by the elimination of sets of varia-
bles simultaneously [Shen et al. 2005]. The technique is based on refutation anal-
ysis and incremental SAT. The idea is that after checking the negation of the
property with a SAT solver and receiving an UNSAT result, the result is analysed
to find out if it implies that other free variables are also irrelevant. If the result of
the check is UNSAT, then there must be a conflict clause at decision level 0. The
conflict clause is then used to traverse the implication graph in the reverse direc-
tion to obtain the set of clauses that leads to that conflict. The irrelevant variables
are then the variables that are in that conflict-causing set and whose negation is
also in that set. These variables are the reason the problem is UNSAT. Thus, they
are the reason the counterexample must always happen. These are also the irrel-
evant free variables that can be lifted at the same time. The idea is equal to the
finding of an unsatisfiable core of the formula and the free variables and their
negations that are in the core.

3. Model checking large systems

30

The general idea of checking the satisfiability of the negation of the property is
also used in our work. In our work, the check is performed with the model checker,
while a set of variables is set free. The variables in our work are the variables of
the model, not the low abstraction level variables of the Boolean formula given to
the SAT solver. The general idea, however, is similar.

3.5.4.3 Simulation-based bug trace minimization

The minimization of simulation bug traces is examined in [Chang et al. 2007]. In
simulation, the system is run against a set of assertions. For example, random
simulation can be run on some design, while assertions are monitored. The appli-
cation of simulation late in the life cycle of the product results in detailed and long
traces. The technique and the tool examined in the paper analyse a simulation
bug trace and produce an equivalent trace of shorter length. The technique relies
on both simulation and formal methods.

The techniques described in [Chang et al. 2007] are two-fold. Some techniques
intend to remove redundant time steps from the bug trace. Another group of tech-
niques intends to simplify the trace by identifying essential input values.

Proposed shortening techniques by the paper:

1. Single-cycle elimination: remove cycles completely and re-simulate to
see if the bug still exists.

2. Alternative path to bug: simulate with alternative transitions during the
trace and detect if a shorter path violating the assertion is found.

3. State-skip: identify non-unique states that represent loops. If the same
state is in the trace twice there is a loop.

4. BMC-based refinement: search locally for shorter paths between two
trace states.

Proposed simplification techniques:

1. Input event elimination: re-simulate with fewer input events. For example,
set c=0 instead of c=1. If the bug still manifests itself, the input event is
redundant.

2. Essential variable identification: use three-value simulation to identify
non-essential inputs.

In most cases, traces can be reduced to a fraction of their initial size. The average
reduction in a trace produced by random simulation was 99% in terms of cycles
and input events. For traces that were produced by a semi-formal method, the
techniques are also effective (reduced traces ~75-90%).

Our work focuses on simplifying but not shortening the counterexample in time.
We also use BMC to produce the shortest possible counterexample.

3. Model checking large systems

31

3.5.4.4 Minimizing automata-based model checking counterexamples

Gastin et al. [Gastin et al. 2004] minimize automata-based model checking coun-
terexamples. Their objective is to find minimal counterexamples in terms of time
steps in the counterexample. If the model is represented as a Kripke structure,
checking LTL properties is equivalent to testing whether the intersection of the
model and a Büchi automaton describing violating executions has no accepting
run. The traditional algorithms look for accepting runs with a depth-first algorithm
that returns the first accepting run found. The algorithm described in [Gastin et al.
2004] performs a depth-first search to find a minimal bug trace. The idea is that
the search does not necessarily stop when a state already visited is reached.
Reaching a state with a distance to the initial state smaller than for the previous
visit may lead to a shorter counterexample. Therefore, for each state, there is an
additional field, storing the smallest length on which that state occurred. The min-
imal counterexample found so far is also stored.

3.5.4.5 Explaining counter-examples through forced and free segments

The paper [Jin et al. 2002] distinguishes between ‘control’ and ‘data’ signals in the
counterexample. The paper discusses the explanation of counterexamples rather
than minimization. The explanation is performed through the annotation of the
error traces by alternation of fated (forced) and free segments. The fated seg-
ments show unavoidable progress towards the error while free segments repre-
sent avoidable choices that have led to the error. The annotation helps in the error
interpretation. The fated segments are control signal values that lead towards the
error. The free segments represent mistakes made in the choice of data values
that also lead towards the error.

The paper also interprets counterexample minimization as a two-player concur-
rent reachability game. The two players are the (hostile) environment and the
system. The environment chooses values for the controlling variables and the
system simultaneously chooses the values for the rest of the variables (data vari-
ables). The environment’s goal is to reach the error state of the counterexample. A
(memoryless) strategy for the environment is a function that maps each state to
one valuation of the control variables. Likewise, a strategy for the system is a
function that maps each state to one valuation of the data variables. A position is a
winning position for the environment if there is an environment strategy such that,
for all system strategies, the error state is eventually reached. A position is a win-
ning strategy for the system if the error state is never reached.

3.5.4.6 Symbolic Trajectory Evaluation

The ideas of counterexample minimization are also somewhat similar to the tech-
niques used in the abstraction refinement of symbolic trajectory evaluation [Roor-
da & Claessen 2006].

3. Model checking large systems

32

Symbolic Trajectory Evaluation (STE) [Seger & Bryant 1995] is a formal verifi-
cation technique that combines three-valued simulation with symbolic simulation.
STE is used to verify assertions of the form A  C, where A is called the anteced-
ent and C is called the consequent. The expression A specifies the values used in
the simulation, while the expression C depicts the expected result. STE is often
used to verify digital circuits, e.g., the technique is extensively used at Intel.

In three-valued simulation, a third value is introduced to the (Boolean) simula-
tor. The third value X represents an unknown value. A state with some variables
set to X covers those states obtained by replacing the X values with all combina-
tions of 0 and 1. When three-valued simulation is used, the transition relation of
the model is extended to cover also the value X. With three-valued simulation it is
possible to verify the STE assertions using fewer simulation runs, since one simu-
lation run corresponds to several of the original Boolean simulations.

In symbolic simulation, Boolean expressions over symbolic variables are used
to verify system properties. A Boolean expression over symbolic variables can be
written for the model and the consequent of the STE assertion. The expressions
should then be compared for equality. One way of doing this is to use the BDD
data structure. A BDD is calculated for each input of the model, and for each gate
a BDD is calculated that represents the output of the gate. Finally, a BDD is calcu-
lated for the whole circuit. Since BDD is a canonical data structure, the compari-
son with the BDD of the consequent is simple. The disadvantage of symbolic
simulation is that the number of symbolic variables needed can be huge, which
leads to the BDD blow-up.

The two techniques work well together since three-valued simulation decreases
the number of symbolic variables that are needed.

The STE abstraction is typically initially not proven because the antecedent
yields X values for nodes that are required to have some particular Boolean value
by the consequent. When this happens the abstraction must be refined. The ab-
straction refinement issue is discussed in [Roorda & Claessen 2006]. Roorda et al.
have invented the concept of strengthening, which indicates the input of a circuit
that needs to be given a non-X value in order to take non-X values at the relevant
outputs. The writers have created a tool that can calculate strengthenings that
correspond to counter-examples of the assertion. In this sense, calculating the
weakest satisfying strengthening has similarities with counterexample minimiza-
tion. The weakest satisfying strengthening of a counterexample indicates the vari-
ables of the model that have to have some particular Boolean value so that the
counterexample manifests itself. The number of such variables is also minimal.

In [Roorda & Claessen 2006], SAT-formulas are generated whose solutions
represent the satisfying strengthenings of the assertion. An incremental SAT-
solver is used iteratively to find the weakest strengthening. This is done using
constraints to block the last found strengthening and allowing only strictly weaker
strengthenings.

There are many similarities to ideas used in our minimization method. We also
look for the minimal number of variable assignments that are needed to produce
the counterexample. Instead of using three-valued simulation, we modify the mod-

3. Model checking large systems

33

el and use a distinct specification that is checked by the model checker. We also
find the minimal number of variables iteratively. The difference between our tech-
nique and the one in [Roorda & Claessen 2006] is that their three-valued abstrac-
tion has some inherent information loss. This means that the technique based on
three-valued simulation may come up with a non-minimal result. In other words,
some variables of the counterexample may not be necessary to produce it, but the
three-valued abstraction requires that they are not removed. Information loss can
also occur due to the fact that the STE method performs only forward simulation. If
the antecedent of the assertion specifies some output value but not the inputs
relevant to it, the inputs are assigned value X, which can cause the assertion to
fail. However, the information loss caused by three-valued abstraction and for-
wards simulation can be avoided by adding extra symbolic variables.

3.5.4.7 Localizing errors in counterexample traces

The paper [Ball et al. 2003] discusses finding the cause of errors in a counterex-
ample trace by comparing the trace against correct traces. They also demonstrate
how multiple error traces with independent causes can be generated. The algo-
rithms are implemented in the context of the software model checking tool SLAM.

The counterexample is seen as a symptom of the error. The cause of the error
is extracted by comparing these erroneous traces against correct traces and look-
ing for transitions of the error trace that are not in any correct trace of the program.
Program statements inducing these transitions are likely to contain the causes of
the error. Other possible causes of the same error can be looked for by replacing
the detected erroneous transitions with halt statements and re-running the model
checker until no more error traces can be found. Thus, a single error trace can be
outputted for each possible cause of the error. The approach is problematic in
detecting the cause of errors in some cases: all transitions of the counterexample
also exist in some correct trace, in which case the cause of the error is empty
(coincidental correctness). In general, the algorithm managed to identify the cause
of an error directly in 11 out of 15 error traces. In three cases, the cause could be
deduced by tweaking the algorithm. In one case, the abstraction level of the model
inhibited finding the cause of the error. In many cases, the error causes found
were only a small fraction of the error trace. (All were less than 16% of the transi-
tions in the error trace, typically about 1%.)

3.5.4.8 Error cause extraction through variations of the error

Other traces are also used in [Groce & Visser 2003] to extract the error cause.
The paper describes how an automated method can be used to find other versions
of the error and a set of correct traces and to analyse the executions to extract the
cause of the error.

The work focuses on finite executions demonstrating violation of safety proper-
ties in Java programs. The algorithms are implemented in the Java Pathfinder

3. Model checking large systems

34

model checker. The paper defines a set of executions called negatives as varia-
tions of the counterexample trace that produces the same error. A second set
called positives is defined as a set of traces that are variations of the original error
trace in which the error does not occur. Negatives are executions that reach the
error state from the same control location; not all possible ways to reach the error
state are accepted. Similarly, positives are executions that pass through that con-
trol location without proceeding to the error state. The method of generating the
negatives and positives uses a model checker to explore backwards from the
original counterexample.

The paper introduces three analysis methods that can be performed on the
negatives and the positives to extract the cause of the error:

1. Analysis of the transitions (similar to the method described in [Ball et al.
2003]): computes sets of projected transitions (pairs of control locations
and actions). After this, the transitions that appear in all positive/negative
traces are reported. The transitions that only appear in negative/positive
traces are also reported. It is also indicated whether these transitions are
such that they appear in all negative/positive traces (causal transitions
that denote precisely the common behaviour that differentiates the nega-
tive and positive sets).

2. Analysis of data invariants over the executions: the same control loca-
tions may be present in both negative and positive traces. It may be that
the control location does not induce the error, but the choice of data val-
ues does. In this analysis, data invariants are calculated over the nega-
tives and these invariants are compared with the invariants of the positive
traces. The invariants are calculated using Daikon [Ernst et al. 2007].

3. Analysing the minimal transformations between negatives and positives:
here the least number of changes required to make a positive into a neg-
ative if looked for.

In experimental tests, the algorithms found 131 variations on one found error. The
analysis implied a function call that was present in all negatives, but also in some
positives, and a few short transformations indicating that the function call has to be
made in certain conditions related to time.

3.5.4.9 Delta debugging

Counterexample minimization has similarities to the test case simplification of the
delta debugging method [Zeller 2002], [Zeller & Hildebrandt 2002]. In delta debug-
ging, a test case that produces a failure is simplified to a minimal test case that still
produces the failure. Every part of the resulting minimal test case is significant in
reproducing the failure. The delta debugging algorithm works by successively
running test cases that contain only a subset of inputs of the original test case. It
also runs test cases in which the complement of the set of inputs is always cho-
sen. If some of the input sets can produce the failure they are chosen as the new

3. Model checking large systems

35

failure inducing test case in the algorithm. If none of the subsets causes the fail-
ure, the granularity of the subsets is increased until a failure-inducing subset (or its
complement) is found. For example, the algorithm starts by dividing the test case
into two halves. If these input sets do not produce the failure, the test case is split
into three mutually exclusive subsets. The complements of these subsets are also
checked. The algorithm stops when removing any single input causes the failure
to disappear.

The delta debugging algorithm is also used in our work to generate sets of vari-
ables that are used to create models that are then model checked. In a way, we
have adapted the delta debugging method (originally used with test cases) to
model checking. We also use delta debugging style minimization in the abstraction
phase of our algorithm.

3.6 Checking the feasibility of the counterexample

The idea of feasibility checking is to find out whether it is possible to obtain the
same error that was discovered in the abstracted model using the non-abstracted
version of the model. If a trace of the full model can be produced that includes all
relevant free variable assignments (the minimized counterexample) then the coun-
terexample is a true counterexample and describes a true error in the mod-
el/system. If the trace is not feasible, this is because some modules’ functionalities
prohibit the variables from obtaining the values of the counterexample. Non-
feasibility means that the specification has to be checked on a more refined ab-
straction of the model.

In order to check counterexample feasibility the following inputs are required:

 The full non-abstracted model.
 A counterexample discovered in the abstract version of the model. The

counterexample should be minimized with respect to the number of free
variable assignments.

The feasibility of the counterexample is checked through the use of invariant
states. The full model is modified by adding a clock variable and invariant states
(NuSMV INVAR clauses) that restrict the behaviour of the model so that only be-
haviours that follow the values of the counterexample are allowed. The clock vari-
able is initialized at 0, and the value is incremented by 1 at each time step until the
length of the counterexample is exceeded. After this, the clock value remains at
the highest value (counterexample length +1). For example, for a counterexample
that consists of seven states the added clock statements would be:

init(clock):= 0;
next(clock) := case
 clock < 7 : clock + 1 ;
 TRUE : 7;
esac;

3. Model checking large systems

36

Now, in order to restrict the behaviour of the full model, invariant clauses are add-
ed for each variable of the counterexample. The invariant clauses are such that
the clock value implies the value of a certain variable at given times. For example,
if the counterexample states that variable1 has value TRUE at time points 1 and 6,
and FALSE at other time points (time points 0, 2, 3, 4, 5) then the following INVAR
statements would be added:

INVAR (clock = 0) -> (variable1 = FALSE)

INVAR (clock = 1) -> (variable1 = TRUE)

INVAR (clock = 2) -> (variable1 = FALSE)

INVAR (clock = 3) -> (variable1 = FALSE)

INVAR (clock = 4) -> (variable1 = FALSE)

INVAR (clock = 5) -> (variable1 = FALSE)

INVAR (clock = 6) -> (variable1 = TRUE)

In order to see whether the counterexample is realizable, we can find out whether
the last state (in which clock is 6) is reachable from the initial state. In this running
example, this can be done by checking the invariant specification:

INVARSPEC (clock != 6);

If the specification is true, it means that the end of the counterexample cannot be
reached in the full model and thus the counter-example is not feasible in the full
model. If the specification is false, a new trace is given as output that describes
how the counterexample (the error) is realized in the full model.

Counterexample feasibility can also be checked using the model checker’s own
command line options. In NuSMV, it is possible to check feasibility of partial traces
by executing them in the full model. This can be done through the command line
option execute_partial_traces. This approach was not used here due to the proce-
dure sometimes terminating and making the result hard to read.

3.7 Abstraction refinement

The idea of abstraction refinement is to find a new abstraction (i.e. a configuration
of non-abstracted modules and interface modules) that is more detailed than the
current configuration of the model and makes the current counterexample infeasi-
ble. The purpose is to find an abstraction level that is between the full model and
the current configuration that could be model checked more efficiently but for
which the refined abstraction could not result in the same counter-example that
has already been extracted from the earlier abstract model. The refined abstrac-
tion can then be used to check the original invariant specification again.

As input, the abstraction refinement step requires:

3. Model checking large systems

37

 The current abstraction level (configuration of modules)
 Module/variable dependency information
 A counterexample trace
 The full non-abstracted model.

The set of modules before the abstraction refinement is denoted by Current. The
set of modules that is added to this set is denoted by Refinement. This set is ini-
tially empty. The general abstraction refinement process is as follows:

1. Find out the shortest prefix P of the minimized counterexample that is not
feasible in the full non-abstracted model.

2. Examine the last state of the prefix P. Extract variable assignments on
this state. Using the dependency graph, deduce the modules that output
these variables. Add these modules to the set Refinement.

3. Check the feasibility of the counterexample prefix P in the model in which
the modules in Current or Refinement are non-abstracted and other
modules are interface modules.

4. If the counterexample is not feasible, go to step 6.
5. Examine the dependency graph of the model. Extract modules that pre-

cede modules in Current or Refinement. Add these modules to the set
Refinement. Go to step 3.

6. Minimize the set Refinement using delta debugging.

In the first step, the shortest infeasible prefix of the counterexample is looked for.
All the feasibility checks used in abstraction refinement are performed as de-
scribed in Section 3.6. The last state of that trace includes some variable assign-
ments that make the trace infeasible in the full non-abstracted model (but are
possible in the current abstraction). Since we want a refined abstraction that
makes the counterexample infeasible, it seems logical to remove the abstractions
that cause the values of these variables. We attempt this by replacing interface
modules that directly influence the values of these critical variables with their non-
abstracted versions. If this does not make the counterexample infeasible, we ex-
pand the set of new non-abstracted modules based on the dependency graph until
the counterexample becomes infeasible. This will ultimately happen, since we
know that the counterexample is not feasible in the full model.

When a successful refinement is first found, it is not necessarily a minimum re-
finement. It is worthwhile to keep the size of the model as small as possible. Thus,
minimizing the refinement is necessary, especially since the feasibility checks
required in the minimization are quite fast to perform. The objective of the minimi-
zation is to find a subset of the modules in Refinement that is sufficient to make
the counterexample infeasible. For this minimization, we use delta debugging (the
algorithm already described in Section 3.5.2) to generate subsets of Refinement
that are checked for feasibility. The approach leads to a local minimum subset of
modules.

3. Model checking large systems

38

3.8 Preliminary results

A prototype implementation of the algorithm was created in the Python program-
ming language. In order to analyse the effectiveness of the algorithm, a model was
created based on the case study in [Lahtinen et al. 2010]. The system is a func-
tion-block-based control system. The detailed implementation is not presented due
to confidentiality issues. We only used a small, simplified portion of the full model
and divided that resulting model into 22 modules (see Figure 1). The tested model
was kept small so that the running times would also remain reasonable.

Testing the algorithm involves many aspects that should be taken into account.
The model checking times vary greatly based on the selected counterexample
minimization, technique and abstraction refinement technique. Other issues that
affect the verification time are the checked property and our implementation that
uses parallel execution. Due to the required diversity of the tests to analyse ade-
quately the algorithm, we only give some preliminary results. A more thorough
analysis is left to future research.

In the preliminary tests, we have used the delta debugging technique in coun-
ter-example minimization and in abstraction refinement. The counter-example
minimization was used on the module level. The running times of the algorithm
were compared with algorithms available in NuSMV:

 the standard NuSMV invariant checking algorithm: NuSMV command
‘check_invar’ with the command line option ‘–coi’ (cone-of-influence
reduction)

 the NuSMV invariant-checking algorithm: NuSMV command
‘check_invar’ with the command line options ‘-coi’ (the cone-of-
influence reduction) and
‘-dynamic’ (dynamic variable ordering)

 the NuSMV bounded model checking algorithm for invariants: NuSMV
command ‘check_invar_bmc_inc’.

The model used was the same full non-abstracted model as that used in our algo-
rithm.

The verified properties 1, 2 and 3 are random invariants that are false in the
model. The properties 4, 5, 6 and 7 are derived from the requirement specification
of the original system. Properties 4, 5 and 7 are true in the model. Property 6 is
not true because some parts of the system have not been included in the model.

3. Model checking large systems

39

Table 1. Model checking times of the compared algorithms.

 NuSMV invariant
checking

NuSMV invariant checking
with dynamic variable
ordering

NuSMV BMC
algorithm for in-
variants

Our CEGAR loop-
based algorithm

Property 1 0.2 s 0.7 s 0.3 s 0.9 s
Property 2 5 min 50 s 8.6 s 3.6 s 4.9 s
Property 3 0.3 s 1.1 s 0.4 s 1.2 s
Property 4 5 min 50 s 8.4 s 3.3 s 53 s
Property 5 >1h 6.7 s 5.0 s 0.6 s
Property 6 11 min 15 s 8.3 s 8.2 s 14 s
Property 7 >1h 2 min 14 s 6.5 s 2 min 25 s

The performance of the BMC algorithm is very good in all cases. The BMC algo-
rithm also manages to prove the invariants that are true. Most BMC algorithms can
only find counter-examples but not prove properties. The BMC algorithm em-
ployed in Table 1 can also prove properties but the needed bounds can be too
high to do so in practice.

In the case of properties 1, 2 and 3, the algorithm discovers an abstract coun-
terexample that is minimized and checked for feasibility on the full model. A single
iteration of the algorithm is required. For property 2, our algorithm is faster that the
NuSMV invariant-checking algorithms.

In the case of property 5, our algorithm discovers that the initial abstract model
is true. The verification is faster than all the NuSMV algorithms.

While verifying property 4, our algorithm performs two iterations. It is still quite
fast: the verification is faster than the standard NuSMV invariant-checking algo-
rithm.

Property 7 is the most difficult to verify. Our algorithm uses three iterations to
solve it. Compared with the NuSMV invariant-checking algorithms, the verification
time is still quite competent.

3.9 Shortcomings of the current approach and further
development

The efficiency of the algorithm depends largely on the examined formal property.
In particular, if the property is such that it requires multiple iterations of the algo-
rithm it is probable that the algorithm will not outperform traditional model checking
methods. In some cases, all modules of the model may have to be analysed in
order to verify a particular property. In these cases the algorithm is of no use.

In cases where the verification leads to a counterexample, a simple BMC check
on the full non-abstracted model is likely to be faster than using the algorithm. This
is because BMC is usually quite fast even in large models. However, traditional
BMC cannot prove that a property is true. The algorithm becomes valuable when a
counterexample cannot be found by BMC in reasonable time and traditional BDD-

3. Model checking large systems

40

based model checking cannot prove the property with reasonable resources (time
or memory). In these cases, it is possible that the algorithm finds a sufficient sub-
set of the modules that is computationally feasible. The algorithm can sometimes
be used to prove properties of a system that cannot be otherwise proven.

Another shortcoming of the algorithm is that only safety properties can be veri-
fied. The implementation of the algorithm is currently for the invariant properties of
NuSMV. Verifying liveness properties, for example, is left to future research.

The algorithm spends significant effort minimizing the counterexample traces.
This is a trade-off situation. Minimization tends to support the counterexample
feasibility checks and keeping the size of the abstraction small. On the other hand,
if too much effort is put into minimization, the verification takes a long time (possi-
bly more than just applying traditional model checking methods). It may be rea-
sonable to perform minimization only on a broad level. Simple module-level mini-
mization may be enough.

Improving the counterexample minimization step is one potential future re-
search subject. Using a QBF (quantified Boolean formula) solver in counterexam-
ple minimization may make the minimization step faster. The counterexample
minimization problem can be solved by writing it as a quantified Boolean formula
(Boolean logic with quantifiers). The solutions to this formula describe a minimized
counterexample.

New approaches could also be found for the abstraction refinement step. Using
a MUS solver in abstraction refinement is a possible improvement. A MUS solver
finds a minimal unsatisfiable core of clauses in a set of clauses (a SAT problem).
Since the model checking problem can be described as a SAT problem, a MUS
solver could be used to find these clauses. The set of clauses would then be used
in abstraction refinement to select a minimal set of modules that makes the spuri-
ous counterexample infeasible.

Further improvements to the algorithm could be related to using assume-
guarantee reasoning. Assumptions related to different modules can be used to
facilitate the verification. The assumptions could then be verified separately. How-
ever, some more systematic methodology is needed.

Finally, we plan to extend the current methodology to more detailed models.
We envision that fault models (as described in Section 4) and asynchronous prop-
erties (as seen in the UPPAAL models in Section 5) could be integrated into our
methodology in a modular manner. This kind of modular extension of the model
together with the use of the algorithm could allow the verification of very large and
detailed models of a system.

4. Architecture-level model checking

41

4. Architecture-level model checking

This section discusses model checking of I&C safety systems at architecture level.
‘Architecture level’ in our context means that in addition to modelling the intended
(software function of a) safety I&C system, we also take into account the hardware
architecture of the system. In particular, hardware is modelled as a set of individu-
al components and container elements through which the information flows.
Hardware failures (possibly including a defined set of common cause failures) are
included in the model to induce alterations to the information flow. The intention is
to examine the effects of a set of hardware failures on the overall operation of the
safety system.

The YVL guides state that a safety system (typically implemented in several
subsystems) shall accomplish the safety function in the case of a single failure and
simultaneous inoperability of any other component due to maintenance. Using the
methodology described in this section, the realization of the safety function imple-
mented in software can be verified using a model that also examines the behav-
iour of the system in all possible hardware failure cases. The methodology also
allows, e.g., the analysis of hypothetical common cause failures and their effect on
the safety function.

The term ‘architecture level’ in this section is only discussed in the context de-
fined above. For instance, issues related to control room architecture, software
architecture and system security are not addressed.

4.1 Model checking systems with detailed fault models

Our model checking methodology has focused primarily on the verification of logic
designs. We have also analysed single-fault tolerance of these designs, but the
fault models have been quite non-detailed. Typically, the exact functional behav-
iour of the system is abstracted to a bare minimum to focus on the fault tolerance
issues and thus only the status/fault bits of an automation system have been im-
plemented in the model. However, the behaviour of a system can be examined in
more detail by creating more detailed fault models. The fault models can include
physical faults such as faults in telecommunication links, microprocessor faults,

4. Architecture-level model checking

42

cable failures and electrical faults influencing all equipment in a cabinet. Common-
cause failures (CCFs) could also be postulated in such a fault model.

Using detailed fault models, model checking could be used to analyse the fault
tolerance of hardware architecture designs. If it were possible to analyse the logi-
cal design together with a fault model based on the hardware architecture, the
overall system behaviour could be analysed under various assumptions. However,
in this work the logical design is abstracted to a bare minimum to focus on the
faults themselves. In addition to single-fault tolerance, all kinds of failure assump-
tions can be made on the model.

This paper presents how an I&C system can be modelled so that various hard-
ware failures are taken into account. The model checking tool used in this work is
NuSMV. The technique is intended to be an extension of our current techniques of
modelling logic designs, so that these two aspects of the system could be exam-
ined in the future using a single combined model. Modelling logic designs requires
as input only low-level design diagrams such as function block diagrams and a set
of requirements. In addition to this, detailed fault models require a hardware archi-
tecture description of the system and a document covering the postulated failing
components and their failure modes. For example, a failure mode and effects
analysis (FMEA) report typically provides this information.

4.2 An example system

The fault model methodology was developed using a simple imaginary system.
The example is essentially realistic though it does not encompass all the relevant
details of a real I&C system. Most importantly, the example does not have any
redundancy that would allow more sensible analysis of the system under various
failure assumptions. The purpose of the example is to demonstrate the fault mod-
elling methodology.

4. Architecture-level model checking

43

Figure 5. Hardware architecture of the example system.

The hardware configuration of the imaginary system is described in Figure 5. The
system produces actuator signals based on three measurements located in Cabi-
net 1. Measurement 1 is of analogue type and has values in the range of 0 to 20.
Measurements 2 and 3 have binary values. Each measurement is delivered
through a cable to a processing unit that decides when the actuator signals are
set. The processing unit located in Cabinet 2 has two parts: a communication
processor that collects the input signals and a processor that does the calcula-
tions. The output signals of the processor are sent to the two actuators via two
cables. Finally, all the hardware components are located inside buildings: the
measurement devices inside Cabinet 1 are located in Room 1, the processing unit
inside Cabinet 2 is located in Room 2, and the actuators are located in Room 3.
Cables 1, 2 and 3 are located in Rooms 1 and 2. Cables 4 and 5 are located in
Rooms 2 and 3.

The logical function realized by the processor of the example system is illus-
trated in Figure 6. The logic consists of a comparator function block, an AND func-
tion block, a set-reset flip-flop and a TON timer. The flip-flop is set whenever Input
1 has a high value (over 10) and Input 2 is true. If Inputs 1 and 2 have low values,

4. Architecture-level model checking

44

the flip-flop can be reset by Input 3. Output 1 is set whenever the flip-flop is set.
Output 2 is set whenever the flip-flop has been set for 3 seconds.

Figure 6. The logical function of the example system.

In the example system we want to be able to model both the logical function of the
system and a set of failures related to the hardware structure. In the example, we
assume the following failing components and failure modes (the failures can occur
at any time point):

4. Architecture-level model checking

45

 Component 1: Analogue measurement device
 Failure mode 1: Value stuck at minimum value
 Failure mode 2: Value stuck at maximum value
 Failure mode 3: Non-deterministic value (changes at every

time point)
 Components 2–3: Digital measurement devices

 Failure mode 1: Value stuck at ‘0’
 Failure mode 2: Value stuck at ‘1’
 Failure mode 3: Random value

 Components 4–8: Cables
 Failure mode 1: Cable broken
 Failure mode 2: Disturbance causing overcurrent

 Component 9: Communication processor
 Failure mode 1: Loss of operation
 Failure mode 2: The two Boolean signals are erroneously

swapped
 Component 10: Processor

 Failure mode 1: Loss of operation
 Components 11–12: Actuators

 Failure mode 1: Loss of operation
 Failure mode 2: Spurious actuation.

We also assume a set of common cause failures that lead to the failure of several
components simultaneously:

 CCF 1: Cabinet 1 electrical failure leading to loss of functions in Cabi-
net 1. This is represented by values of the measurement devices being
stuck at the minimum value.

 CCF 2: Cabinet 2 electrical failure leading to loss of functions in Cabi-
net 2. This is represented by the loss of function in the processors.

 CCF 3: Fire in Room 1 damages Cables 1, 2 and 3 and causes the
measurement devices to fail.

 CCF 4: Fire in Room 2 causes loss of function in the processors and
damages all cables.

 CCF 5: Fire in Room 3 destroys Actuators and Cables 4 and 5.
 CCF 6: Due to electromagnetic disturbance all cables experience dis-

turbance.

In addition to the failure mode effects in the components, the consequential effects
of the failures have to be identified. Special attention is needed in cases in which
the failure causes the output of the component to become outside range, such as
overcurrent/overvoltage/loss of signal. In our example, the following are taken into
consideration:

 A disturbance in the cable is transferred to the communication proces-
sor or actuator. The communication processor identifies the failure (if it
operates), and changes the status bit of the signal to TRUE. If the ac-

4. Architecture-level model checking

46

tuator receives this signal disturbance, and the actuator is operable, it
produces a spurious actuation.

 The processor can only perform calculations using proper signals. If
the received input signal has disturbances this is detected and the in-
put used for software calculations is set to a minimum value.

4.3 Modelling methodology

The general idea is to have a model that consists of separate modules for depict-
ing hardware and the effects of failures, and modules for realizing the software
functionality. In our example system, the corresponding model has two hardware
modules and one software module. The first hardware module represents the
hardware, failures and information flows before the software is executed. The
software module implements the logical function of the system. The second hard-
ware module represents hardware, failures and information flow after software
execution. The module composition is illustrated in Figure 7.

 4.3.1

The so
checkin
implem

F

Software mo

oftware was m
ng. The mode

ment the softwa

Figure 7. Modu

odelling

modelled using
el is based on
are function in

4

47

ule compositio

g the tradition
n a small fun

n Figure 6.

. Architecture-

on of the mode

nal methods o
nction block li

-level model c

el.

of I&C system
brary that is

checking

m model
used to

4. Arch

 4.3.2

The ha
nents a
ple, the
analogu
failures
nessed
puts of
ble fail
given a

Each
module












Based
value o
have a
the nex

In ou
the har
compon
rooms
ures in

The
can thu
process
describ
for exa
that en
come o
override
sor sub
cessor

itecture-level

Hardware mo

ardware modu
and the inform
ere are two ha
ue variable an

s of the comp
d by the logic

the software
ure effects). T

as output of HW
h of the hard
e is modelled a

The value o
A fault statu
The specifie
Signal distu
carried inste
A variable in
array)
A variable i
time point (a
An identifica

on the failure
of the signal,
risen. These t
xt hardware co
ur example, th
rdware modul
nents that dire
were modelle
the actual com
software is ex

us be modelle
sor sub-modu

be failures that
mple, in input
velop the soft
of the softwar
e the results o
b-module was
were modelle

model checkin

odelling

ules describe
mation flows th
ardware modu
nd two Boolea
ponents it enc
program (soft
to the approp
The resulting
W module 2.
ware compon
as a sub-modu

of the signal tra
us signal (inhe
ed range of the
urbance inform
ead of a signa
ndicating the c

indicating the
an array)
ation tag of the

e information
the fault stat

three values a
omponent sub
he cabinets an
e, since it wa
ectly influence

ed as common
mponents.
xecuted by the
d in both of th

ule in both ha
t can be seen
t reception. Th
tware outputs
re is if the pro
of the software
created in bo

ed in the secon

ng

48

the behaviou
hat exist betw
les (see Figur

an variables. T
capsulates an
tware module
priate actuator

actuator beh

nents (e.g. ca
ule. A sub-mo

ansferred via t
erent actual sta
e signal includ

mation (if, for
al value in the
components th

failure mode

e particular ha

given as inpu
tus of the sign
are then given
b-module.
nd rooms wer
as interpreted
e the informa
n cause failure

e processor, a
he hardware m
ardware modu
n to occur befo
he second pa
. (For exampl

rocessor has
e calculations
oth hardware
nd part (in HW

ur of a group
een the comp
re 7. HW mod
The module ta
nd gives as o
). HW module
rs (again takin
aviour produc

able, processo
odule has as in

the componen
atus bit used b
ding minimum
example, an
proper range)
hat will fail at a

s of these co

ardware comp

ut, the sub-mo
nal and wheth
n as output an

re not modelle
that these as

tion flow. Fail
es that cause

and the proce
modules. This
ules. The first
ore the calcula

art can be use
le, it does not
no power. Th

s.) In our exam
modules but a

W module 2).

of hardware
ponents. In the
dule 1 has as i
akes into acco

output the valu
e 2 transmits
ng into accoun
ced by the sy

or) inside a ha
nput:

nt (e.g. ‘0’/‘1’)
by the softwar
and maximum
overvoltage s

)
a given time p

omponents at

onent.

odule determi
her any distu

nd further as in

ed as sub-mod
spects are no
lures of cabin
 a defined se

ssor’s fault be
is done by cre
part can be

ations are per
ed to describe
t matter what
hese kinds of
mple model, a
all failures of

compo-
e exam-
input an
ount the
ues wit-
the out-

nt possi-
ystem is

ardware

re)
m value
signal is

point (an

a given

ines the
rbances
nputs to

dules of
ot actual
nets and
et of fail-

ehaviour
reating a
used to

rformed,
 failures
the out-
failures
proces-
the pro-

 4.3.3

Our mo
and the
this sec

4.3.3.1

Every s
the pos
two fail





In addi
modelle
nents, c
achieve



4.3.3.2

The so
manifes
least al





Consideratio

odelling metho
e issues that
ction.

Component

single compon
ssible failure m
ure modes at

A Boolean
nent there i
fail. The ar
deterministi
An array of
component,
lected acco
number 3, s
value is cho
will not chan

tion to failure
ed. A commo
causing them
ed by:

A Boolean
possible C
do not cha

Failure time

oftware behav
st themselves
low compone

A Boolean
for each in
enced by t
time point
chosen the
A Boolean
scenario in
tem. The v

ons on fault m

odology allows
arise due to t

failures and c

nent can choo
modes related
the same time

array compon
s a Boolean v

rray is such th
cally, and the
type [1..3] co

, the failure mo
rding to the co

since only two
osen non-dete
nge after that.

s of single co
n cause failur
to reach one

n array ccf_fa
CF scenario. T
nge after the i

dependency

iour is depen
s. In order to c
nts to fail after

array compo
ndividual com
he system. Th
the Boolean

e value will not
 array ccf_re

ndicating whet
values of the

4

49

modelling

s multiple sim
the multiple fa

common caus

ose to fail in a
d to that comp
e. This achiev

nent_failure [1
variable that s
hat the initial
value will not

omponent_failu
ode (1, 2 or 3
omponent, i.e

o failure modes
erministically a

omponents, co
re will affect a

e of the failure

ailure [1..6]: A
The values ar
initial time ste

dent on the t
cover all possi
r a non-specif

onent_failure_r
ponent indica
he values of t
value can ch
t change anym

ealizes [1..6]:
ther the CCF
variables are

. Architecture-

multaneous fail
ailure assump

e failures

a way that is
ponent. A com
ved by:

1..12]: For ea
states whethe

Boolean valu
change after

uretype [1..12
) is selected. T
. a cable cann
s are specified

at the initial tim

ommon cause
a number of t

e modes of tha

A Boolean var
re chosen non
p.

time instance
ible scenarios
fied time. This

realizes [1..12
ating whether
the variables a
hoose to have
more.
a Boolean va
failure is exp

e such that at

-level model c

lures. Fault m
ption are discu

manifested by
mponent cann

ach individual
er that compon
ues are chose
that.

2]: For each in
The initial valu
not have failur
d. Other than t

me step, and th

e failures can
the individual
at component

riable exists f
n-deterministic

at which the
, our model sh
is achieved b

2]: a Boolean
the failure is

are such that
e value 1, and

ariable for eac
perienced by t
t each time p

checking

modelling
ussed in

y one of
not be in

compo-
nent will
en non-

ndividual
ue is se-
re mode
that, the
he value

also be
compo-

t. This is

for each
cally and

failures
hould at

by:

variable
s experi-

at each
d if 1 is

ch CCF
the sys-

point the

4. Architecture-level model checking

50

Boolean value can choose to have value 1, and if 1 is chosen the value
will not change anymore.

In this example, we have chosen to model failures that are permanent after the
first failing time step. Any other desired temporal behaviour of failures can be
created by modifying these two model variables.

4.3.3.3 Failure prioritization

We assume multiple failures. This is why there must be some prioritization of the
CCF failures and failures of individual components, i.e. if an individual component
fails and there is a simultaneous CCF affecting that component, how will the com-
ponent behave? Which failure is dominating? The end results (which failure
modes actually take place in the components) when all CCFs are taken into ac-
count are represented by another set of variables:

 A Boolean array failure_manifestation [1..12]: a Boolean variable for
each individual component indicating whether the component failures
and CCFs lead to an end effect that is experienced as a failure at a giv-
en time point.

 An array of type (1/2/3) failure_type [1..12]: for each individual compo-
nent, the value indicates the failure mode at a given time point that is
experienced when component failures and CCFs are taken into account.

Below is some actual model code of Component 1 (the analogue measurement
device). The component is affected by CCFs: Cabinet 1 failure and Room 1 fire.
The CCFs are presented before the component failure variable in the case struc-
ture, so that in case of a CCF occurring simultaneously with a failure in the ana-
logue measurement device, the loss of failure caused by the CCF overrides any
other component failure. The time points at which the failures occur are also taken
into account (variables ccf_realizes, component_failure_realizes).

init(failure_manifestation[1]) := case
 ccf_failure[1] & ccf_realizes[1] : TRUE;
 ccf_failure[3] & ccf_realizes[3] : TRUE;
 TRUE : component_failure[1] & compo-
nent_failure_realizes[1];
esac;
next(failure_manifestation[1]) := case
 next(ccf_failure[1]) & next(ccf_realizes[1]) :
TRUE;
 next(ccf_failure[3]) & next(ccf_realizes[3]) :
TRUE;
TRUE : next(component_failure[1])&
next(component_failure_realizes[1]);
esac;
init(failure_type[1]) := case
 ccf_failure[1] & ccf_realizes[1] : 1;
 ccf_failure[3] & ccf_realizes[3] : 1;

4. Architecture-level model checking

51

 TRUE : component_failuretype[1];
esac;
next(failure_type[1]) := case
 next(ccf_failure[1]) & next(ccf_realizes[1]) :
1;
 next(ccf_failure[3]) & next(ccf_realizes[3]) :
1;
 TRUE : next(component_failuretype[1]);
esac;

The prioritization of the component failures and CCFs can be difficult because the
issue is not typically addressed in an FMEA that primarily focuses only on a single
failure occurring at a given time.

4.3.3.4 Single-fault tolerance examination

Limiting the model so that only a single failure is examined makes the verification
task simpler. This could be done, e.g., by using a variable that non-
deterministically chooses one of the failure cases (instead of the arrays that are
used in the example). Examining only single failures also simplifies the issue of
failure prioritization.

Our modelling methodology, however, also allows the analysis of single failure
tolerance. The code below restricts the model to behaviour in which a single com-
ponent failure or a CCF is occurring. The code creates a variable nro_of_faults
that calculates the number of occurring component failures and CCFs (non-
deterministic variables). The last line is an invariant clause that states that
nro_of_faults should not be greater than 1. The invariant could easily be changed
to any number of failures.

DEFINE
nro_of_faults := toint(component_failure[1]) +
 toint(component_failure[2]) +
 toint(component_failure[3]) +
 toint(component_failure[4]) +
 toint(component_failure[5]) +
 toint(component_failure[6]) +
 toint(component_failure[7]) +
 toint(component_failure[8]) +
 toint(component_failure[9]) +
 toint(component_failure[10])+
 toint(component_failure[11]) +
 toint(component_failure[12])+
 toint(ccf_failure[1])+
 toint(ccf_failure[2])+
 toint(ccf_failure[3])+
 toint(ccf_failure[4])+
 toint(ccf_failure[5])+
 toint(ccf_failure[6]);
ASSIGN
INVAR nro_of_faults <= 1;

4. Architecture-level model checking

52

4.3.3.5 Consequential failures

The modelling methodology created here allows for the examination of some con-
sequential failures. By this we mean that, for example, a voltage spike in a cable
could cause a consequential failure also in the device receiving the signal. Such
cases are modelled using a parameter that carries information about the signal
quality. Based on the case, this could include at least overvoltage/overcurrent, low
voltage/current, loss of signal or a drift in the signal. The behaviour of the compo-
nent receiving the bad signal should then be modelled in that component’s sub-
module. This may require prioritization: which failure dominates if there is disturb-
ance in the input and a simultaneous component failure? If the component cannot
detect the input disturbance and retransmits the value as such, this signal quality
information can also be given as output of the sub-module.

Below, the definitions for two component sub-modules are given as an example
of how consequential failure effects can be analysed. In hardware module 2, ca-
bles transmit the signal to the actuators. If the cable is broken (failure mode 1), the
transmitted signal (output) takes a logical ‘0’ (min) value. In addition, the signal
quality output (output_errortype) also takes the value ‘0’ indicating that the signal
is lost, and it is not an actual logical ‘0’ that is transmitted. In the case of the dis-
turbance (failure mode 2) in the cable, the logical output is set to ‘1’ (max), and a
‘2’ is given as signal quality output indicating an overcurrent. In the actuator sub-
module, the signal quality is received as an input (signalerror) and the value ‘2’
(overcurrent) causes the actuator to reach the spurious failure mode. As a conse-
quence, the logical output of the actuator is set to ‘1’ (max). The final result is a
spurious actuation caused by an overcurrent in the cable.

MODULE cable(var, var_FAULT, min, max, range, signalerror,
failure, failuretype, id)
DEFINE

broken := failure[id] & (failuretype[id]=1);
 disturbance := failure[id] & (failure-
type[id]=2) ;
 output := case
 broken : min;
 disturbance : max;
 TRUE : var;
 esac;
 output_FAULT := var_FAULT;
 output_errortype := case
 disturbance : 2; --# overcur-
rent to the next hw component
 broken : 0;
 TRUE : signalerror; --# the possible
existing disturbance in the signal

 transfers through the cable
 esac;
ASSIGN

4. Architecture-level model checking

53

MODULE actuator(var, var_FAULT, min, max, range, signal-
error, failure, failuretype, id)
DEFINE
 lossofoperation := failure[id] & (failure-
type[id]=1) ;
 spurious := case
 failure[id] & (failuretype[id]=2) :
TRUE;
 signalerror = 2 : TRUE;
 TRUE : FALSE;
 esac;
 output := case
 lossofoperation : min;
 spurious : max;
 TRUE : var;
 esac;
 output_FAULT := var_FAULT;
 output_errortype := 1;
ASSIGN

4.4 Application of compositional verification

The software and hardware in the example are separated. This suggests that
some verification tasks could be divided into smaller subtasks that together imply
correct behaviour. In fact, assume-guarantee reasoning can be applied to the
verification of our example system.

In assume-guarantee reasoning, the system M is verified against a specification
P by dividing the system into two parts, M1 and M2, that are verified in isolation.
The system is typically expected to satisfy its requirements only in a specific con-
text. For example, it can be assumed that M1 satisfies another specification A.
Now, we can verify P on M compositionally:

1. First we verify that M1 satisfies A.
2. Next we verify that if A is assumed then M2 satisfies P. In other words

the specification AP is checked on M2.
3. These two independent verifications imply that the whole system M

satisfies P.

In systems such as our example, given a specification P, it can be possible to
separately verify the software functionality and after that verify the functionality of
the hardware system (in specified failure conditions) assuming that the software
functions as specified. In other words, the model M is divided into software (M1)
and hardware (M2). The assumption A that software works as specified is first
derived from P and verified on M1. Then it is verified that the hardware part (M2)
satisfies the specification P if A is assumed. In the analysis of the hardware, the
software module can be replaced with an interface module that has no internal
functionality. The checked specification is changed into the form: ‘if the software

4. Architecture-level model checking

54

inputs and outputs behave as specified, then the overall system behaves as speci-
fied’.

4.5 Results

The resulting model describing the behaviour of the running example is quite large
(~1000 lines of code). A major part of the model consists of the init and next
clauses of the variables determining the failing components and failure modes at a
given time point. This is because case structures have to be written separately for
each component, each CCF and each failure mode variable.

Even though the example is quite simple, the resulting model becomes com-
plex. This is mainly because our methodology allows multiple failures that compli-
cate the model. The model would be more efficient without the assumption of
multiple simultaneous failures. To see how the assumption of the number of simul-
taneous errors affects the running time of the model, two temporal logic specifica-
tions were checked on three versions of the model. The first version has an addi-
tional invariant that states that no failures are allowed. The second model allows
one failure. The third model makes no limitations on the number of possible fail-
ures. The examined temporal specifications were:

 Specification 1: A value 20 of the analogue measurement 1 and a
true value of the digital measurement 2; always cause the first actuator
to actuate. In LTL this can be written as:
G ((measurement1 = 20 & measurement2 = TRUE) 
actuator1_operates)

 Specification 2: A value 20 of the analogue measurement 1 and a
true value of the digital measurement 2; will eventually lead to the ac-
tuation of the second actuator. In LTL this is written as:

(G (measurement1 = 20 & measurement2 = TRUE)) 
F actuator2_operates

If no failures are allowed, both specifications are true. In case of failures, both
specifications are false. For example, if a single failure is assumed, the first speci-
fication results in a counterexample that describes the behaviour in which meas-
urement device 2 experiences a random failure that masks the true value. The
model checking times for all model versions are shown in Table 2. We can see
that when the number of assumed simultaneous failures increases, the model
checking times also increase. For such a small system, the model checking time
of the multiple failure model is quite long.

4. Architecture-level model checking

55

Table 2. Model checking times of two specifications.

 No failures Single failures Multiple
failures

Specification 1 5s 10s 163s
Specification 2 4s 9s 199s

If the compositional assume-guarantee approach described in Section 4.4 is used,
two additional specifications are first written:

 Specification 1a: A software input1 value 20 of the analogue input

and a true value of software input2; always cause software output1 to
be set. In LTL this can be written as:

G ((input1 = 20 & input2 = TRUE)  output1)

 Specification 2a: A software input1 value 20 of the analogue input
and a true value of software input2; will eventually lead to software
output2 set. In LTL this is written as:

((G (input1 = 20 & input2 = TRUE))  F output2)

Specifications 1a and 2a are separately checked on models that consist only of
the software module. Both specifications are true. The model checking time is <<
1s in both cases. After this, the software module in the model of the overall system
is replaced with an interface module in which the internal behaviour is removed,
and the two software outputs are changed into non-deterministic Boolean varia-
bles. This modified model is then checked against specifications:

 Assume-guarantee specification 1: Whenever specification 1a is

true, specification 1 is also true. In LTL this can be written as:

G ((input1 = 20 & input2 = TRUE)  output1)

G ((measurement1 = 20 & measurement2 = TRUE) 
actuator1_operates)

 Assume-guarantee specification 2: Whenever specification 2a is
true, specification 2 is also true. In LTL this can be written as:

((G (input1 = 20 & input2 = TRUE))  F output2)

((G (measurement1 = 20 & measurement2 = TRUE)) 
F actuator2_operates))

4. Architecture-level model checking

56

Table 3. Model checking times using the assume-guarantee approach.

The model checking times using the assume-guarantee approach are shown in
Table 3. We can see that the assume-guarantee-based verification approach is
much more effective.

4.6 Remaining problems

The most important problem in our example seems to be that even a model of a
simple system quickly becomes quite complex. The application of assume-
guarantee reasoning has a significant effect on the verification time of the system.
Limiting the scope of the analysis by, e.g. focusing only on single failures, simpli-
fies the verification.

The single-failure analysis of safety systems could be made more efficient by
integrating the approach to the algorithm used for model checking large systems
described in Section 3. The integration would require the system (software, hard-
ware and fault modelling) to be modelled in a compatible manner. Using separate
modules for software and hardware is a good starting point. In the running exam-
ple discussed in this report, the software module is already compatible with the
algorithm for large systems, as it can be replaced with an interface module. Similar
modelling techniques for abstracting the hardware modules are probably needed.
Furthermore, a major part of the failure model is currently part of the main module
of the model. This behaviour needs to be encapsulated in a separate module or
integrated with the hardware modules. The role of assume-guarantee reasoning
together with the algorithm is also an open matter. Creating more systematic
methodology for large systems and detailed fault models is left to future research.

Another practical problem is the modelling of communication architectures. In
our example, all connections were point-to-point, which made modelling the infor-
mation flow easy. Safety systems may, however, implement all kinds of network
topologies (e.g. serial bus) to transmit signals. The modelling of these issues is left
to future research.

Failures in hardware components are frequently discussed in the context of
probabilistic reliability analysis. The methodology developed here should be made
consistent with these already existing concepts and methods. Differences between
the two approaches have not yet been identified. Merging this method with the
reliability analysis environment is left to future research.

 No failures Single failures Multiple
failures

Assume-
guarantee 1

3s 5s 7s

Assume-
guarantee 2

3s 5s 9s

4. Architecture-level model checking

57

 Finally, our fault models could possibly be used in the identification of new
common-cause failures. For example, if a new consequential failure effect in the
system is identified or postulated, it may not be clear how it affects the overall
system. The methodology used here could be used to analyse the overall effects
of hypothetical consequential failures in the system.

5. Asyn

5.

5.1

 5.1.1

In this
sented
for mod
based
[Roppo
plicity o

We
the com
flexibilit
easy m
parame
cation s
depend
chart a

Thre
pleted a
trical ci
use fau
to the
inputs.
impact

 5.1.2

UPPAA
time sy
state of

nchronous tec

Asynch
timed a

Introductio

Work descrip

work, we loo
using function

delling, each w
on the metho

onen 2010]. F
of the modellin
form a compo

mponents. The
ty when simila

modelling by c
eterization. Ho
speed, having
ding on the sy
re only repres

ee case studie
and one is cu
ircuits from sa
ult signalling in
circuit, the fa
Models witho
to performanc

The UPPAAL

AL is a real-tim
ystems. The s
f the system i

hniques for m

ronous
utomata

on

ption

k into techniq
n block diagra
with a differen
dologies desi
urthermore, th

ng and the effi
onent library
e component
ar function bl
combining ind
owever, some
g the modeller
ystem. In this

sented by func
es are used to
rrently being w
afety-critical a
n addition to n
ult signal is p

out fault signa
ce.

L model chec

me model che
systems are m
in UPPAAL in

modelling timed

58

techniq
a

ques for mode
ams. Three alt
nt approach to
gned in the M
he techniques
ciency of the a
for UPPAAL
library should
ocks are foun
dividual comp

e of the techni
r make chang

s case, some
ctions of the te
o evaluate the
worked on. Th

automation com
normal signals
propagated to

al processing w

cker

ecker, which c
modelled with
ncludes the lo

d automata

ques for

elling safety-c
ternative tech
o the problem
MODSAFE pro
s are evaluate
analysis acco
to construct s
be as modula

nd in other sy
ponents into t
ques sacrifice

ges to the com
components

emplates of the
e techniques:
he case studie
mponents. Th
s: if a fault is d
o areas that a
were also ma

can model, va
networks of

cations of the

modelli

ritical systems
niques are pre

m. The techniq
oject, as desc
ed based on t
rding to UPPA
systems consi
ar as possible
ystems. This
the entire sys
e modularity fo
mponents them
of the functio

e UPPAAL mo
two have bee

es are models
he automation
detected in th
are affected b
de for compa

lidate and ver
timed automa

e automata as

ing

s repre-
resented
ques are
cribed in
the sim-
AAL.
isting of

e to offer
enables
stem by
or verifi-
mselves
on block
odel.
en com-
of elec-

n circuits
e inputs

by those
aring the

rify real-
ata. The
s well as

the va
http://w

Whe
verify p
is at its
numbe

5.2

In the f
of funct
ling wit
The se
techniq
output c

 5.2.1

This te
MODSA
system
nization
modelli
the com
the ord
ine all p

This
UPPAA
system
ject. Ho
increas
model
indepen
a few lo
er auto

 F5.2.2

With th
the sys
model.
calcula
the hel

alues of the
www.uppaal.co
en the time sc
properties of th
s most useful
r of input sign

Modelling

following sect
tion block diag
h UPPAAL, w

econd techniqu
que expands t
combinations

Standard asy

echnique is t
AFE project, a
 has its own c
n channels fo
ng, the syste

mponents. Ins
er in which th

possible order
s approach m
AL. When mod
 declarations

owever, every
ses the size of

in which so
ndent compon
ocations. On t
mata and requ

Function-bas

e function-bas
stem are not a

Instead, the
ted in the pre
p of functions

5. Asynch

clocks and
om. [Behrmann
cales of the d
he system wit
as a model c
als makes UP

Technique

ion, we prese
grams. The fir

with a UPPAAL
ue replaces c
the second us
of the initial ti

ynchronous m

he asynchron
as seen in [Ro
component in

or input and o
m does not h

stead, the mod
he component
rs of events.

makes modellin
delling the sy
page and new
component o

f the model a
ome compone
nents can be
the other hand
uire the use of

sed asynchro

sed modelling
always repres
output of a ti

eceding input
s. Before an

hronous techn

59

integer var
n et al. 2004]
elays of the s
th conventiona
checking tool.
PPAAL models

es

ent three techn
rst technique
L component
certain compo
sing an extern
me-independe

modelling tec

nous modellin
opponen 2010

the UPPAAL
output. Since
have system-w
del does not m
ts are updated

ng relatively
ystem, it suffic
w variables to

of the system w
and slows dow
ents are rep
modelled with
d, the time-de
f clocks.

onous modell

 technique, th
sented by thei
ime-independ
component o
edge that pro

iques for mod

iables. UPPA

system vary g
al testing. In th
On the other

s particularly s

niques for asy
uses standard
for each comp

onents with fu
nal program t
ent section of

chnique

ng methodolo
]. Each input a
model as we
the technique

wide clock cyc
make any ass
d, thus making

straightforwar
ces to add new
o the declarat
with its own co

wn the verifica
placed with f
h small autom
ependent funct

ling techniqu

he time-indepe
r own compon
ent section o

or time-depen
oduces a sync

elling timed au

AAL is avail

greatly, it is dif
hese cases, U
hand, having

slow to verify.

ynchronous m
d methods for
ponent in the
nctions and t
o determine p
the system.

ogy described
and compone
ll as its own s

e uses asynch
cles for synch
sumptions con
g it possible to

rd to impleme
w component
ions page of t
omponent in U
tion compared
functions. Th
ata consisting
tion blocks ha

e

endent compo
nents in the U
f the system
dent compone
chronization s

utomata

able at

fficult to
UPPAAL
g a large

modelling
r model-
system.

the third
possible

d in the
nt in the
synchro-
hronous

hronizing
ncerning
o exam-

ent with
ts to the
the pro-

UPPAAL
d with a

he time-
g of only
ave larg-

nents of
UPPAAL
may be
ent with
signal is

http://w
http://www.uppaal.co

5. Asyn

taken, t
lated. T
exampl
the firs
thermo
change

Time
placed
ponents
ponents
nel for
input co

This
the mo
may inc
faster t
based t
time-ind
strengt
while ti

How
indepen
case w
the cha

Furth
standar
and va
user al
nents, a
system
compon

 F5.2.3

reduct

This te
program
time-ind
model
output
depend
initial ti
affect th

nchronous tec

the output of t
The result is r
le, the calcula

st time-depend
re, now all th

es the value of
e-independent
with functions
s, but synchro
s with the inpu
an input need
omponents.

s approach de
odel has fewe
crease verifica
than taking tra
technique can
dependent co
h in modelling
me-independe

wever, the in
ndent section

with the standa
ange in input d
hermore, the
rd technique,

ariables to the
so has to ma
although the m
 declarations
nents, thus ma

Function-bas

ions

echnique is ba
m is used to
dependent se
is then modif
values. Man

dent compone
ime-independe
he time-depen

hniques for m

the following g
relayed as inp
ation of the ou
dent compone
he input sign
f one input at a
t components
s. The techniq
onization chan
ut values. It sh
ds its own edg

ecreases the s
r time-indepe
ation speed sin
ansitions in s
n be especially
omponents. W
g time-depend
ent functions a
nput compone
regardless of

ard modelling
does not chang

technique m
it suffices to a

e declarations
ake changes t
modifications
page to som

aking the com

sed asynchro

ased on the p
determine the

ection of the
fied so that it
y of these o

ents of the sy
ent section th
ndent compon

modelling timed

60

group of time-
put to the nex
utput of all tim
ents is includ

nals originate
a time.
s in later part
que is similar
nnels are add
hould be note
ge, making m

space require
ndent compo
nce calculatin

separate comp
y helpful whe

With this tech
dent compone
are easier to m
ent calculate
f the change in

technique, si
ge the output
makes model
add componen
s page. With
to the functio
of the compo

me extent. Thi
mponents syste

onous modell

previous one,
e possible co
system. The

t only produce
outputs are g
ystem. Howev
hat are output
nents. If the m

d automata

-independent
xt time-depen

me-independen
ded in the inp

from a singl

ts of the sys
to the one us

ded from the t
ed that every s
odelling more

ed by the UPP
nents and inp
g only with fun
ponents. As a
n the system
nique, UPPA
ents with real-
model with fun
es all the o
n input value.
nce calculatio
of the followin
ling more co

nts to the syst
the function-b
ns and param
nents resemb
s decreases
em-dependen

ling techniqu

with the add
mbinations of
input compo

es possible c
given as inpu
ver, there are
ts of the entir

modelling of the

components i
dent compone

nt components
put componen
e component

tem can also
sed for the inp
time-depende
synchronizatio
 complicated

PAAL model b
put componen
nctions is sign
a result, the f
has many inp

AAL can focus
-time clock va

nctions.
utputs of the
This is not alw

on may stop q
ng component
omplicated. W
em declaratio
based techniq
meters of the
le the content
the modularity
t.

e with input

ition that an e
f outputs of th
nent of the U
ombinations o

uts to the firs
e also outputs
e system and
ese outputs is

is calcu-
ent. For
s before
nts. Fur-
t, which

o be re-
put com-
ent com-
on chan-
than for

because
nts. This
nificantly
function-
puts and
s on its
ariables,

e time-
ways the
quickly if
ts.
With the
ns page
que, the
compo-

ts of the
y of the

external
he initial
UPPAAL
of these
st time-
s of the
d do not
s consid-

5. Asynchronous techniques for modelling timed automata

61

ered unnecessary, they may be removed from the model to increase verification
speed and decrease the effort of modelling.

This technique decreases the verification time by reducing the number of pos-
sible input combinations and removing the need to calculate these values sepa-
rately. The technique tends to be useful for systems with a large time-independent
section preceding the first time-dependent components and many input signals
compared with the number of outputs of the time-independent section. More pre-
cisely, the more combinations of outputs that can be reduced by the program, the
better this technique is for the system in question. On the other hand, for some
systems the technique does not provide any impossible output combinations.
Even then, removing the initial time-independent section of the system increases
verification speed.

However, it is not always best to explicitly list all possible combinations if the list
is overly long. It is most beneficial to list values for the inputs whose combinations
decrease most, while inputs that are relatively independent from others may be
modelled with functions, similarly to the previous technique. The user of this tech-
nique has to analyse the data given by the external program carefully to determine
the best course of action.

This technique makes modelling significantly more complicated, as you must
first construct the time-independent section of the system with the external pro-
gram, have it calculate outputs and then modify the input component of the
UPPAAL model. However, for simple systems, the possible output combinations
can be deduced without the help of the program. It is particularly easy to deter-
mine the possible combinations of fault inputs because the value 1 of a fault varia-
ble generally spreads to all following components.

If there are large clusters of time-independent components between time-
dependent components, it may be worthwhile to use this technique even when the
first time-dependent components are early in the system. Namely, it is possible to
examine the outputs of the time-dependent components and then use the program
to determine which combinations of inputs for the next time-dependent compo-
nents are possible.

The external program used was written in Java with the help of the JavaBDD
library. The program takes as input the BDDs, binary decision trees, describing the
time-independent section of the system. For each output of the time-independent
section, a BDD is given as input. The program then constructs a BDD that de-
scribes whether there is a combination of inputs that results in a specific combina-
tion of outputs of the time-independent section. Finally, the program prints the
truth values satisfying the BDD, in other words the possible combinations of output
values for the time-independent section.

The following pictures demonstrate the functionality of this technique. The first
picture describes modelling with regular inputs, while the second picture describes
modelling with input reductions.

5. Asyn

5.3

 5.3.1

The co
follows
while O

The
of the in
compon
become
compon
value o
has ret

nchronous tec

Modelled C

Standard asy

mponents of t
: IN1, AND, O

ONDELAY, OF
basic function

nput signals h
nent also hav
es active, the
nents is not ch
of the output w
urned to 0.

F

hniques for m

Componen

ynchronous m

the system an
OR, NEG and
FFDELAY, PU
n of fault varia
has 1 as the va
ve 1 as the va
e internal me
hanged until th
will not change

Figure 9. Syst

Figure 8. Sys

modelling timed

62

nts

modelling tec

nd their corres
FF_STAT_R

ULSE and LIMI
ables is simila
alue of its fau
alue of their f

emory of FF_
he fault variab
e until the val

tem with reduc

stem with regu

d automata

chnique

ponding UPPA
are time-indep
IT are time-de

ar in all compo
lt variable, the
fault variables

_STAT_R and
ble has recede
ue of the faul

ced inputs.

ular inputs.

AAL templates
pendent comp

ependent.
onents. If at le
e output signa
s. If the fault
 the time-dep

ed. In most ca
t variable of th

s are as
ponents,

east one
als of the

variable
pendent

ases, the
he input

5. Asynchronous techniques for modelling timed automata

63

Component IN1 models a non-deterministic input signal. The produced signal is
binary, as required by UPPAAL, so 0 and 1 are the only possible input values.
Each transition in the IN1 component is equivalent to the value of the input signal
changing. When the value of the input signal changes, a synchronization signal is
sent to the affected components. There are separate transitions for changes in the
fault variables, which can be deactivated with the ENABLE_FAULTS guards.

I1_C! ENABLE_FAULTS
update(I1_F)update(I1)

Figure 10. An input automaton.

Figure 11. An automaton for the AND function.

(BO1 == BO1_old) & (BO1_F == BO1_F_old)

(BO1 != BO1_old) | (BO1_F != BO1_F_old)

BO1_C!
BO1_old = BO1,
BO1_F_old = BO1_F

BI2_C?
and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)

BI1_C?

and_2(BI1, BI1_F, BI2, BI2_F, BO1, BO1_F)

5. Asynchronous techniques for modelling timed automata

64

Components AND, OR and NEG function like their counterparts in Boolean logic.
AND gives 1 as its output signal only if both input signals are 1, OR gives 1 if at
least one of the input signals is 1 and NEG inverts the input signal. These compo-
nents are particularly simple and only require a few locations and transitions. AND,
OR and NEG are similar in structure, the main difference being the change in
functions. Thus, only the figure of AND is displayed.

FF_STAT_R is a static RS flip-flop, with the preferred state on the reset side
(the R side) and priority on the set side (the S side). The UPPAAL model of
FF_STAT_R is similar to AND and OR in structure but with a different function
handling the change in output. The behaviour of FF_STAT_R is best described by
its truth table. The symbol X describes a situation in which the value of the input
variable is irrelevant. After each cycle, the value of Output 1 is stored in the inter-
nal memory of the component.

Table 4. Truth table for a static RS flip-flop.

Input 1 (S) Input 2 (R) Output 1,
previous cycle

Output 1 (S) Output 2
(R)

0 X 0 0 1
0 0 1 1 1
0 1 1 0 1
1 X X 1 0

It can be seen that output 2 is the complement of output 1. Furthermore, if input 1
has the value 1, output 1 will be 1 regardless of the other input signals. This is
called the set command of the flip-flop. If input 1 is 0 and input 2 is 1, output 1 will
be 0. This is called the reset command. If the fault variable becomes active, the
internal memory will not be changed until the fault variable has receded. In addi-
tion, the output signals will retain the value of the last faultless cycle.

5. Asynchronous techniques for modelling timed automata

65

ONDELAY and OFFDELAY have a predetermined delay before the value of the
output is changed according to the input. In ONDELAY, when the input signal
changes its value from 0 to 1, a timer is set. After a sufficient amount of time has
passed, if the input is still 1, the output of the component is also set to 1. However,
if the input changes to 0, the output is immediately set to 0. OFFDELAY behaves
similarly: if the input changes from 1 to 0 and remains at 0 after the specified time,
the output is set to 0. If the input changes to 1, the output is immediately set to 1.
In both ONDELAY and OFFDELAY, time counting is stopped when the fault varia-
ble has the value 1. The UPPAAL template of OFFDELAY is also similar to the
model of ONDELAY, so only the figure of ONDELAY is shown.

Out1_Fault1

delay <= duration

Out0_Fault1

delay <= duration

Out0_Fault0Out1_Fault0

BO1_C!

BI1 & !BI1_F
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1

!BI1
BI1_C?
BO1 = 0

BO1_C!

BO1 = 1

BO1_C!

!BI1 & BI1_F
BI1_C?
BO1 = 0

BI1 & !BI1_F
BI1_C?
BO1_F = 0,
delay = 0

!BI1 & !BI1_F
BI1_C?
BO1 = 0, BO1_F = 0BO1_C!

BI1_F
BI1_C?
BO1_F = 1

!BI1
BI1_C?

!BI1 & !BI1_F
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

delay == duration
BO1 = 1

!BI1
BI1_C?

BI1
BI1_C?
delay = 0

Figure 12. An automaton for the ONDELAY function block.

5. Asynchronous techniques for modelling timed automata

66

PULSE produces a pulse of the output signal for a specified time. When the input
signal changes from 0 to 1, the output is set to 1 and time begins to elapse. The
output remains at 1 until the time has passed, at which point it changes back to 0.
When the fault variable is 1, time counting is stopped and the output remains at
the value of the last faultless cycle.

delay <= duration

Out0_Fault1

Out1_Fault1Out1_Fault0
delay <= durationOut0_Fault0

BO1_C!

BO1_C!

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

BO1 = 0

!BI1_F & BI1 & !BI1_old
BI1_C?
BO1 = 1, BO1_F = 0,
delay = 0

BO1_C!

!BI1_F & (!BI1 | BI1_old)
BI1_C?
BO1_F = 0

BI1_F
BI1_C?
BO1_F = 1,
BI1_old = BI1

!BI1_F
BI1_C?
BO1_F = 0,
delay = 0

BI1_F
BI1_C?
BO1_F = 1

BO1_C!

delay == duration
BO1 = 0

BI1 && !BI1_F
BI1_C?

BO1 = 1,
delay = 0

Figure 13. An automaton for the PULSE function block.

LIMIT p
to 0 or
If the f
ONDEL

 5.3.2

Most o
asynch
ever, ce
in case
resulted
LIMIT f
input co

!I1 & !I1_F
I1_C?
O1_F = 0

produces an o
a specified am

fault variable
LAY and OFF

Function-bas

f the compon
ronous mode
ertain conditio
e several of t
d in an addit
from the locat
omponents tha

Out0_Fault1

Out0_Fault0

I
I
O

O1_C!

O

Figu

5. Asynch

output signal o
mount of time
is 1, time cou
DELAY.

sed asynchro

nents are esse
lling techniqu

ons regarding t
the input sign
ional edge in
tion Out0_Fau
at allow sever

I1_F
I1_C?
O1_F = 1

I1
I1_C?
O1 = 1, delay =

O1 =

I1 & I1_F
I1_C?
O1 = 1

I1 &
I1_C
O1 =O1_C!

delay == dura

re 14. A timed

hronous techn

67

of 1 for an inpu
has passed. O

unting in LIMI

onous model

entially uncha
e, with the ex
the fault varia

nals can chan
n the compon
ult0. These a
ral input value

d

y = 0

 = 0

& !I1_F
C?
 = 1, O1_F = 0

I1_F
I1_C?
O1_F

O1_C!

ration && !I1_F
O1 = 0

d automaton fo

iques for mod

ut of value 1 u
Otherwise, the
IT is assumed

ling techniqu

anged compar
xception of the
able have been
nge simultane
nents ONDELA
dditions impro
s to change s

delay <= duration

Out1_Fa

Out1_Fa
delay <=

!I1
I1_C
O1 =

O1_C!

O1_C!

I1 & !I1_F
I1_C?
O1_F = 0,
delay = 0

F
C?
_F = 1

or the LIMIT fu

elling timed au

ntil the input c
e output of LIM
d to stop, sim

ue

red with the s
e input signal
n added to the
eously. This h
AY, OFFDEL
ove compatibi
imultaneously

ion

Fault1

Fault0
 <= duration

_C?
 = 0

_F

 0,
 0

I1
I1
O

!I1 & !I1_F
I1_C?
O1_F = 0

unction block.

utomata

changes
MIT is 0.

milarly to

standard
ls. How-
e guards
has also
LAY and
ility with

y.

I1_F
I1_C?
O1_F = 1

I1
I1_C

_F

 0

_C?

5. Asynchronous techniques for modelling timed automata

68

Out1_Fault1

delay <= duration

Out0_Fault1

delay <= duration

Out0_Fault0Out1_Fault0

!I1 & I1_F
I1_C?
O1 = 0, O1_F = 1

O1_C!

I1 & !I1_F
I1_C?
O1_F = 0

I1 & I1_F
I1_C?
O1_F = 1

!I1 & !I1_F
I1_C?
O1 = 0

O1_C!

!I1_F
O1 = 1

O1_C!

!I1 & I1_F
I1_C?
O1 = 0

I1 & !I1_F
I1_C?
O1_F = 0,
delay = 0

!I1 & !I1_F
I1_C?
O1 = 0, O1_F = 0O1_C!

I1_F
I1_C?
O1_F = 1

!I1 & !I1_F
I1_C?

!I1 & !I1_F
I1_C?
O1_F = 0

I1_F
I1_C?
O1_F = 1

I1_F
I1_C?
O1_F = 1

O1_C!

delay == duration && !I1_F
O1 = 1

!I1 & !I1_F
I1_C?

I1 & !I1_F
I1_C?
delay = 0

Figure 15. Function-based ONDELAY automaton.

5. Asynchronous techniques for modelling timed automata

69

delay <= duration

Out0_Fault1

Out1_Fault1Out1_Fault0
delay <= durationOut0_Fault0

O1_C!

O1_C!

I1_F
I1_C?
O1_F = 1

O1_C!

O1 = 0, I1_old = I1

!I1_F & I1 & !I1_old
I1_C?
O1 = 1, O1_F = 0,
I1_old = I1, delay = 0O1_C!

!I1_F & (!I1 | I1_old)
I1_C?
O1_F = 0,
I1_old = I1

I1_F
I1_C?
O1_F = 1,
I1_old = I1

!I1_F
I1_C?
O1_F = 0,
delay = 0

I1_F
I1_C?
O1_F = 1

O1_C!

delay == duration
O1 = 0, I1_old = I1

!I1_old & I1
& !I1_F
I1_C?
O1 = 1, I1_old = I1,
delay = 0

Figure 16. Function-based PULSE automaton.

5. Asyn

Instead
are now
indepen

nchronous tec

Fi

d of each inpu
w generated
ndent section

hniques for m

gure 17. Func

t signal having
in a single c
of the system

modelling timed

70

ction-based L

g its own com
component, IN

m before the fir

d automata

IMIT automato

mponent, all th
N_ALL. It als
rst time-depen

on.

e values of th
so contains th
ndent compone

he inputs
he time-
ents.

IN_ALL
integer
IN_ALL
change
initial ti
compon

The
questio

 5.3.3

Compa
IN_ALL
combin
program
the dec
fore, IN
indepen

Rand
rand =
get_o
O3, O

L changes the
Rand. The a

L, one input fo
ed if the fault s
ime-independe
nents.
declarations

on. The picture

Function-bas

reductions

ared with the p
L. Instead of c
nation of inputs
m. Similarly to
clarations pag
N_ALL uses
ndent section.

nd: int[0,7]
d = Rand,
_outputs(O1, O1_F,
, O3_F, O4, O4_F)

Figure 1

5. Asynch

Figure 1

e value of on
affected input
or each value
signals are en
ent section an

and the max
e above is from

sed asynchro

previous techn
changing the
s out of the po
o the previous
ge of IN_ALL,

these inputs
.

F, O2, O2_F,
)

19. IN_ALL au

hronous techn

71

18. IN_ALL au

ne input signa
signals are

of Rand. Valu
nabled. IN_AL
nd gives them

ximum value o
m one of the c

onous model

nique, the onl
value of one

ossible combi
s technique, th

one for each
s to compute

O_C!

utomaton used

iques for mod

utomaton.

al, determined
listed on the
ues of the fau
L also compu

m as inputs to

of Rand depe
case studies.

ling techniqu

ly UPPAAL co
e input signal,
nations determ

he input comb
value of the

e the outputs

Rand: int[0,5]
ENABLE_FAULT
rand = Rand,
get_fault_outputs
O3, O3_F, O4, O

!

d with input re

elling timed au

d by the value
declarations
lt signals can
tes the output
o the time-dep

end on the sy

ue with input

omponent cha
 it now choos
mined by the e
binations are l
integer Rand.

s of the initia

LTS

uts(O1, O1_F, O2, O
, O4_F)

ductions.

utomata

e of the
page of
only be

ts of the
pendent

ystem in

anged is
ses one
external
isted on
. As be-
al time-

, O2_F,

5. Asyn

5.4

 5.4.1

The fun
nal pro
indepen
of the J
binary d

In th
tions, t
gram c
that res
Then, t
possibl
gram ca
BDDs f

The
the sys
outputs
not nec
increas
droppe
gram.

 5.4.2

We now
system
for it. T
output
inputs.

It can b
(0, 1) a

nchronous tec

Java progr

Description o

nction-based a
ogram to det
ndent section
JavaBDD libra
decision diagr
he context of t
he BDDs des

constructs a B
sults in a spe
the program p
e combination
an either cons
from files.
outputs are o

stem but ther
s of the entire
cessary to mo
se verification
d, the corresp

Example red

w examine a s
 and describe

The time-indep
1 being a con
The following

Table

Input 1
0
0
1
1

be seen that t
and (1, 1). The

hniques for m

ram

of the progra

asynchronous
termine which
are possible.

ary, which the
rams.
the function-b
scribe the tim
BDD that desc
cific combinat

prints the truth
ns of output v
struct the BDD

ften given as
e are also ou
system and d

odel these ou
speed and de

ponding BDD

uction

small, hypothe
e the resulting
pendent sectio
njunction of th
 chart demons

5. Possible ou

Input 2
0
1
0
1

there are only
e combination

modelling timed

72

am

s technique w
h combination
. The program
e program us

based asynchr
me-independen

cribes whethe
tion of output
h values satis

values of the t
Ds directly with

inputs to the f
utputs of the
do not affect t
tputs, they m
ecrease the e
will be left ou

etical example
g input reducti
on consists o

he inputs and
strates the po

utput combina

Output 1 (A
0
0
0
1

y three possib
(1, 1) is impo

d automata

with input redu
ns of outputs

m was written
es to constru

ronous techni
nt section of t
er there is a c
ts of the time-
sfying the BDD
time-independ
h the JavaBDD

first time-depe
time-independ

time-dependen
may be remove
effort of mode
ut of the execu

e of a time-inde
ons when the

of two inputs a
output 2 bein
ssible output c

ations in the ex

ND) Outpu

ble combinatio
ssible and thu

ctions uses a
s of the initia
in Java with t
ct and modify

que with inpu
the system. T
combination o
-independent
D, in other wo

dent section. T
D library or rea

endent compo
dent section t
nt components
ed from the m
lling. For each
ution of the Ja

ependent sect
e Java program
and two outpu
g a disjunctio
combinations.

xample.

ut 2 (OR)
0
1
1
1

ons of outputs
us, it does not

an exter-
al time-
the help
y BDDs,

ut reduc-
The pro-
of inputs
section.

ords the
The pro-
ad input

nents of
that are
ts. If it is
model to
h output
ava pro-

ction of a
m is run
uts, with
on of the
.

s: (0, 0),
 have to

be mod
put com

5.5

 5.5.1

In the c
ine the
we mod
compar

Othe
well as
assump
outside
the sys

The
spondin
face lev
two of t
at least
subsys

In ad
by rem
proach

 5.5.2

We als
in the M
tion ma
gency.
MODSA
some s
time-de
techniq

 5.5.3

Anothe
unit. Th
of whic

delled. Natura
mbinations can

Modelled S

Case study:

case study, we
function of th

del the proble
re them with e
er parts of the
 the behaviou
ptions on the
e the system w
stem are mode

emergency ta
ng to an emer
vels of the ta
the other subs
t two of them
tem.
ddition to testi
oving several
may reveal h

Case study:

o look into sy
MODSAFE pro
anages the fun

The techniqu
AFE, so certa
sections of the
ependent com
ques.

Case study:

er case study t
his case is don
h is to develop

5. Asynch

lly, the presen
n be determine

Systems

emergency ta

e model a par
he modelled sy
em with differe
each other.
e system of th
ur of the envir

behaviour of
we are exami
elled non-dete
ank system co
rgency tank. T
nks, with eac
systems. Ever

are too low,

ing the system
 inputs, outpu
ow the techniq

emergency d

ystems modifie
oject, as desc
nction of a die
ues evaluated
ain changes h
e systems hav
ponents have

power reduct

that is being w
ne to further th
p modelling m

hronous techn

73

nted example
ed without usi

ank system

rt of an emerg
ystem and the

ent modelling

he power plan
ronment of the

the environm
ining. The ne

erministically.
onsists of four
The purpose o
ch subsystem
ry subsystem
a signal is se

m as a whole,
uts and time-i
ques scale for

diesel system

ed from the e
cribed in [Rop
esel generator
d in this work
have been m
ve been cut to
e been remove

tion unit

worked on is t
he task 3.2 in

methods for as

iques for mod

is so simple
ing the Java p

gency tank sys
e individual co
methodologie

nt have been
e system. As

ment or the pa
cessary input

r identical sub
of the system
sending infor

monitors three
ent to the othe

we examine a
ndependent c
r systems of d

m

mergency die
pponen 2010].
r of a power p
partially diffe

made to the sy
o make model
ed to better te

the modelling
the SARANA
ynchronous a

elling timed au

that the possi
program.

stem. First, we
omponents in
s, evaluate th

abstracted a
a result, we m

arts of the sys
ts from other

bsystems, eac
is to monitor

rmation on its
e surface leve
er component

a smaller vers
components. T
ifferent sizes.

sel system ex
The system i

plant in case o
r from those
ystems. In pa
lling easier an

est the function

of a power re
project, the o

nd semi-synch

utomata

ible out-

e exam-
it. Then

hem and

away, as
make no
stem left
parts of

ch corre-
the sur-

s tank to
els and if
ts of the

sion of it
This ap-

xamined
in ques-
of emer-
used in

articular,
nd some
n-based

eduction
objective
hronous

5. Asyn

system
chrono

In re
are m
synchro
elemen
of fast
ments
the out
to upda
which n

 The
pumps
pumps
reductio

The
clude ti
uremen
measur
measur
the cor

Mod
and sy
the mod
the Nu
weakne
with a
rately.
complic
late 20

 P5.5.4

The nu
indepen
ties, so
of inpu
the init
function

nchronous tec

s. Current mo
us or that ther
eality, there a
ultiple subsys
onous system
nts are presen
components (
function much
put signal of a
ate theirs. Acc
no definitive so
e power reduc

that produce
stop working

on unit output
reduction uni

iming compon
nts: one that is
rements, a co
rement. When
rection is adju

delling and ver
nchronisation
delling and ve

uSMV and UP
esses with sys
lot of non-det
Ultimately the

cated asynchr
11 and will co

Properties of

umber of inp
ndent compon

o they are con
ts given to th
tial time-indep
n-based mode

 System 1
 System 2
 System 3
 System 4

hniques for m

odelling metho
re are no cons

are systems fo
stems with d
, or there is n

nt. In the latter
(e.g. logic gat
h more slowly
a delay eleme
curately mode
olution exists.
tion unit moni

e a critical re
, the output r
a signal that t
t is implemen

nents. The cir
s accurate and
orrection para
n the corrected
usted until it m
rifying this des
issues, and

erification tech
PPAAL mode
stems like the
terministic inp
e strengths of
ronous and se
ntinue in 2012

f the systems

put signals a
nents greatly i
nsidered critica
e time-depen

pendent sectio
elling techniqu

1: Emergency
2: Emergency
3: Emergency
4: Emergency

modelling timed

74

ods either as
straints on the
or which neith
different cloc

no explicit cloc
r case, it is rea
tes) can happ
y. It is therefo

ent changes be
lling and verif

itors the outpu
source for th
rate of the pro
tells the proce

nted as redun
rcuits can mon
d one that upd

ameter is appl
d value appea

matches the ac
sign has uniq
solving them

hniques. The m
el checking to
ese: NuSMV c
puts, but UPPA
f both the too
emi-synchron
2.

s

nd the numb
influence the
al variables fo
dent compone
on are also i

ues operate.

Tank System
Tank System
Diesel System
Diesel System

d automata

sume that the
e timings of sig
her assumptio
ck signals, r
ck synchronisa
asonable to as

pen in any ord
ore not reason
efore the logic
fying such sys

ut rate of a pro
e process. If
ocess must b
ess to slow do
dant asynchro
nitor the outpu
dates quickly.
lied to the qu
ars to differ fro

ccurate value a
ue challenges
will hopefully

models are bu
ools, as both
can handle ve
AAL can mod
ols need to b
ous systems.

ber of time-d
time spent on

or the testing
ents and the
mportant bec

, small version
, full version

m, Subsystem
m, Subsystem

e system is fu
gnal changes.
on holds: eithe
esulting in a
ation, but som
ssume that th
er, but the de
nable to assu
c gates have h
tems is a prob

ocess and an
one or more

e decreased
wn.
onous circuits
ut rate via two
To use both o
ick but less a
om the accura
again.
s related to the
y lead to adva
ilt and verified
have strengt

ery large state
del timing mor
e combined t
This work st

dependent an
n verifying the
process. The
number of ou
ause of the w

n

m 1, small vers
m 1, full version

ully syn-

er there
a semi-

me delay
e timing

elay ele-
ume that
had time
blem for

array of
e of the
and the

s that in-
o meas-
of these
accurate
ate one,

e timing
ances in
d both in
ths and

e spaces
re accu-
to verify
tarted in

nd time-
 proper-
number

utputs of
way the

sion
n

Syst

Syst

 5.5.5

The mo
tem-spe
same p
to a de
fied for

5.6

 5.6.1

The nu
indepen
depend
indepen
these v
5.5.4 fo
structur
time-ind

Ta

tem Inp

1
2
3
4

Ta

tem

1
2
3
4

Verified prop

odelled system
ecific propert

property was v
adlock. Assum
all of them.

Results

Verification r

umber of inp
ndent compon
dent compone
ndent section
variables grea
or the values
re of the syste
dependent co

5. Asynch

ble 6. Propert

puts In
ti
de
co

4
8
8

13

ble 7. Propert

Time
pone

perties

ms differed in
ies would ha

verified for all s
ming the syste

results

put signals a
nents, as well
ents and the
n, are importa
atly influence

of these vari
em is also imp
mponents are

hronous techn

75

ties of the mod

nputs for the
me-
ependent
omponents

4
4
1
1

ties of the mod

-dependent c
ents

4
4
2
2

n structure, so
ave yielded in
systems: whe
ems work prop

nd the numb
as the numbe
number of

ant variables
the time spen
iables for the
portant, includ
e located in the

iques for mod

delled system

Outputs o
initial tim
independ
section

4
8
2
2

delled system

com- Tim
com
stan
excl

o comparing th
nconsistent re
ether the syste
perly, this prop

ber of time-d
er of input sign
output signals
for the testin

nt on verifying
examined sy

ding where the
e system.

elling timed au

s 1.

of the
e-
ent

Outp

s 2.

e-independen
mponents (wit
ndard techniq
luding inputs

14
22
11
18

hem by verify
esults. Therefo
em had a path
perty should b

dependent an
nals given to th
s of the initia

ng process. A
g the properti
ystems. Howe
e time-depend

utomata

puts

8
12
3
3

nt
th the
que
s)

ying sys-
ore, the
 that led
be satis-

nd time-
he time-
al time-

After all,
es. See

ever, the
dent and

5. Asynchronous techniques for modelling timed automata

76

The model checking was performed on a standard PC with 8 GB of RAM and
an Intel Core i5-2500 processor running at 3.30 GHz.

The following results were obtained with UPPAAL version 4.0.11 using default
settings.

Table 8. Verification times for the deadlock property without fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 0 min 2.821 s 0 min 0.349 s 0 min 0.057 s
2 1 min 34.153 s 0 min 0.563 s 0 min 0.083 s
3 0 min 0.441 s 0 min 0.753 s 0 min 0.063 s
4 1 min 1.262 s 2 min 9.264 s 0 min 0.418 s

Table 9. Verification times for the deadlock property with fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 > 27 min 10.779 s
*

0 min 5.498 s 0 min 0.442 s

2 > 41 min 35.992 s
*

0 min 7.316 s 0 min 0.708 s

3 1 min 19.402 s 14 min 36.620 s 0 min 0.357 s
4 > 15 min 15.274 s

*
> 19 min 59.385 s
*

0 min 17.224 s

* Out of memory

The following results were obtained with UPPAAL version 4.1.4 using default
settings.

Table 10. Verification times for the deadlock property without fault signals.

System Standard Function-based Function-based
with input reduc-
tions

1 0 min 2.070 s 0 min 0.522 s 0 min 0.048 s
2 1 min 12.756 s 0 min 0.266 s 0 min 0.063 s
3 0 min 0.333 s 0 min 0.525 s 0 min 0.036 s
4 0 min 51.111 s 1 min 29.701 s 0 min 0.218 s

T

Syste

* Ou

It would
than ve
version
version
to use a

 5.6.2

We now
time-de

Syst
to 8, wh
total, th

Syst
to 41, w
13. In to

Syst
fault inp

Inpu
system
determ

How
system
and the
for syst
tem is c
so, this
removin

Syst
system

Table 11. Verif

em

1
2

3
4

ut of memory

d appear that
ersion 4.0.11.
n 4.0.11 ran o
n of UPPAAL 4
all of the 8 GB

Achieved inp

w summarize
ependent com
tem 1: The nu
hile the numbe
he number of i
tem 2: The nu
while the num
otal, the numb
tems 3 and 4:
puts.

ut reductions w
s 3 and 4 bec
ining input red

wever, there a
 3 and 4 suc

e entire system
tems 3 and 4
cut in the proc

s could have b
ng the initial ti
tem 1 is a sma
 4. However,

5. Asynch

fication times f

Standard

30 min 43.590
> 32 min 54.4
*
1 min 8.028 s
12 min 30.890

t version 4.1.
Version 4.1.4

out of memory
4.1.4 using mo
B of RAM avai

put reduction

by how much
ponents was r

umber of comb
er of combina
nput combina
mber of comb

mber of combi
ber of input co
: All combinat

were clearly m
cause of struct
ductions did no
are only 2 inp
h inputs in sy
m 4 has 13 inp
is still reduce

cess, so the te
been achieved
me-independe
aller version o
the basic stru

hronous techn

77

for the deadlo

Func

0 s 0 min
421 s 0 min

s 10 mi
0 s > 14

*

4 of UPPAAL
even finished

y. This behav
ore memory th
lable.

ns

h the number
reduced with t
binations of re

ations of fault i
ations was red
binations of re
nations of fau

ombinations w
tions of inputs

much more e
tural differenc
ot yield any im

puts for the fir
ystem 4, while
puts. Therefor
d with the tec

echnique resu
d without actua
ent section.
of system 2, a
ucture of the ti

iques for mod

ock property w

tion-based

 3.539 s
 4.686 s

n 1.501 s
min 40.493 s

L provides fas
d certain verific
viour may be
han UPPAAL 4

r of input com
the Java prog
egular inputs
nputs was red
uced from 256

egular inputs w
ult inputs was
as reduced fro

s are possible

effective for sy
ces between th
mpossible inpu
rst time-depen
e the entire sy
re, in practice

chnique and a
lts in faster ve
ally determinin

nd system 3 i
me-independe

elling timed au

with fault signa

Function-b
with input
tions
0 min 0.344
0 min 0.513

0 min 0.308
0 min 14.29

ster verificatio
cation tasks fo
caused by th
4.0.11 and be

mbinations for
ram for each s
was reduced
duced from 16
6 to 48.
was reduced fr

reduced from
om 65536 to 5
, for both regu

ystems 1 and
hese systems
ut combination
ndent compon
ystem 3 has 8
the number o
large part of t

erification time
ng input reduc

s a smaller ve
ent section is

utomata

ls.

based
reduc-

4 s
3 s

8 s
98 s

on times
or which

he 64-bit
eing able

the first
system.
from 16

6 to 6. In

rom 256
m 256 to
533.
ular and

d 2 than
. In fact,

ns.
nents in
8 inputs
of inputs
the sys-

es. Even
ctions by

ersion of
relative-

5. Asyn

ly simil
numbe

5.7

 5.7.1

Accord
system
reductio
the initi
tions to
reducin
its best
portion
ble.

Dep
asynch
techniq
the initi
is more
ponents
techniq
is faste
the out
lations.

UPP
large n
ling mu
niques,
bles ar
efficien
puts.

It sh
limited
reveal m
system

 5.7.2

Modelli
difficult
nique,

nchronous tec

ar in these s
r of input com

Summary

Efficiency of

ing to the res
s using the f
ons. This app
ial time-indepe
o go through.
ng the model s
t when the init
of the combin

ending on the
ronous mode

que or vice ver
ial time-indepe
e efficient sinc
s. This is the

que than with t
er if a sufficien
puts of the ini

PAAL is not an
umber of inpu
uch more dem
, it is more pla
e used. Using
cy of verifying

hould also be
number of sy
more informat
.

Simplicity of

ng with the
 than with the
the user only

hniques for m

ystems of diff
binations is si

f the analysis

sults, verificat
function-based
roach reduces
endent sectio
This techniqu

size. The func
tial time-indep
nations of out

e system, ver
elling techniqu
rsa. If change
endent section
ce calculating
result of the m
the standard t
nt number of
itial time-indep

n efficient too
ut signals. Th
manding. How
ausible to verif
g input reducti
g UPPAAL m

noted that thi
ystems. In the
tion about whi

f the modellin

function-base
e standard as
y needs to ad

modelling timed

78

ferent scales.
ignificantly gre

s

tion with UPP
d asynchrono
s the number
n and as a re
ue also remo
ction-based te
pendent sectio
tputs can be r

rification may
ue than the

es in the value
n most of the
with functions

model size be
technique. Ne
the possible c
pendent sectio

l for modelling
erefore, havin
wever, with th
fy properties o
ions can be v
odels is highl

is study only e
future, exam

ich modelling

ng

ed asynchrono
synchronous t
d UPPAAL co

d automata

 The proporti
eater for syste

PAAL is fastes
us modelling
of possible o

esult, UPPAAL
oves the time-
echnique with
on of the syste
reduced by the

be faster wit
standard asy

es of the inputs
time, the func
s is faster tha
ing smaller wi

evertheless, th
changes in in
on, resulting i

g large system
ng fault signal
he function-ba
of large system
very beneficial
ly dependent

examined ver
ining a wider
technique is m

ous modelling
technique. Wit
omponents to

onal decrease
m 2 than syst

st with the ex
technique wi

utput combina
L has fewer co
-independent
input reductio

em is large or
e program as

th the function
nchronous m
s affect the ou
ction-based te
n with separa
th the function

he standard te
puts do not in
n unnecessar

ms, particularly
s also makes
ased modellin
ms, even if fau
 namely beca
on the numbe

ification speed
array of syste

most suitable f

g technique
th the standa

o the system d

e in the
tem 1.

xamined
ith input
ations of
ombina-
section,

ons is at
r a large
 infeasi-

n-based
modelling
utputs of
echnique
ate com-
n-based

echnique
nfluence
ry calcu-

y with a
s model-
ng tech-
ult varia-
ause the
er of in-

d with a
ems can
for each

is more
ard tech-
declara-

5. Asynchronous techniques for modelling timed automata

79

tions page and variables to the declarations page. However, with the function-
based technique, changes are also required in the functions and parameters of the
components themselves, particularly the input component. Even if the modifica-
tions of the components mostly contain the same logical functions as the modifica-
tions of the system declarations page, it still makes the modelling process more
difficult. This approach decreases the modularity of the components and makes
them system-dependent.

It is also possible to replace time-independent components in later parts of the
system with functions. This can be achieved similarly to that of input components,
with the addition of synchronization channels from the time-dependent compo-
nents that give the input values. However, each synchronization channel for an
input requires its own edge in the UPPAAL model, which may make modelling
tedious.

Modelling with the function-based asynchronous technique with input reduc-
tions is even more demanding. The user must first construct the time-independent
section of the system with the external Java program, have it calculate possible
combinations of outputs and then modify the input component of the UPPAAL
model. In particular, changes in the Java code of the program require the con-
struction of the BDDs describing the time-independent section.

6. Conclusions

80

6. Conclusions

This report presents the model checking results of the SARANA project in 2011.
The report covers an algorithm for the model checking of large systems, method-
ology for fault models and methods for model checking function-block-based de-
signs in UPPAAL.

A model checking algorithm for large models was introduced. The algorithm
can be used with modular models in which an abstraction of the model can be
created by replacing some of the modules with interface modules. So far, the
algorithm has been developed and tested using a model of a function-block-based
design. The algorithm is largely based on counterexample-guided abstraction
refinement, in which an abstraction of the system is examined and the abstraction
iteratively refined based on the responses of the model checking tool. The algo-
rithm puts significant effort into counterexample minimization. We present three
counterexample minimization techniques that can be used on several granularity
levels. The algorithm has not yet been extensively compared with any standard
model checking methods. In 2011, the performance of the algorithm was tested on
a model based on work in [Lahtinen et al. 2010]. These preliminary results suggest
that in some cases the algorithm can be more effective than using traditional mod-
el checking methods. A more thorough analysis of the performance of the algo-
rithm is left to future research. We plan to analyse the effectiveness of the algo-
rithm using various models and many temporal properties. Some improvements
and extensions of the methodology are also planned (see Section 3.9).

In Section 4 we presented new methodology to model faults in a system. The
fault models take into account the hardware configuration of a system and the
various failure modes of the different hardware components. In addition, common-
cause failure modes can be included in the fault models. We created a way to
integrate fault models into models depicting the software logic of a system. How-
ever, when a detailed fault model is used together with the model of the logic of a
system, the model checking task becomes quite complex. This suggests that it
could be possible to use fault models modularly together with our traditional meth-
ods, so that hardware faults of a complex system could also be analysed using the
algorithm for large systems. This work is left to future research. To test the fault

6. Conclusions

81

modelling methodology, an imaginary system was modelled as a case study. We
also managed to apply assume-guarantee reasoning to decrease the verification
time in that model.

Section 5 describes methodology for modelling function-block-based designs
asynchronously using timed automata of the UPPAAL model checking tool. Three
modelling techniques are presented. In the standard technique, a timed automaton
is created for each function block and input of the system. The function-based
technique uses functions to replace the time-independent parts of the model. In
the third technique, the possible inputs of the time-independent part of the model
are calculated separately using a Java program. The inputs are then used to cre-
ate more efficient functions in the UPPAAL model. The modelling methods have
been tested using three separate case studies. While the work is still partly un-
derway, the results thus far show that the function-based modelling technique and,
especially, the input reductions can make the model checking of function-block-
based systems more feasible. UPPAAL is known to behave badly when there are
a large number of inputs in the system because UPPAAL explicitly checks each
input combination. The input reductions counter this weakness of the UPPAAL tool
and the use of input reductions can lead to major improvements in verification
time. However, using the input reductions is not straightforward and requires more
modeller expertise.

82

References

Alur, R. & Dill, D. L. 1994. ‘A theory of timed automata’. Theoretical Computer

Science, 126(2), 1994, pp. 183–235.

Alur, R., Courcoubetis, C. & Dill, D. 1990. ‘Model-checking for real-time systems’.

In: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer

Science, 1990, pp. 414–425.

Ball, T., Mayur, N. & Rajamani, S.K. 2003. ‘From Symptom to Cause: Localizing

Errors in Counterexample Traces’, POPL’03, January 15–17, 2003, New

Orleans, Louisiana, USA.

Behrmann, G., David, A. & Larsen, K. G. 2004. A Tutorial on Uppaal. Formal

Methods for the Design of Real-Time Systems. Springer Berlin / Heidel-

berg, 2004.

Biere, A., Cimatti, A., Clarke, E. M. & Zhu, Y. 1999. ‘Symbolic model checking

without BDDs’. In: Proc. of the Fifth International Conference on Tools

and Algorithms for the Construction and Analysis of Systems

(TACAS’99).

Biere, A., Heljanko, K., Junttila, T., Latvala, T. & Schuppan, V. 2006. ‘Linear En-

codings of Bounded LTL Model Checking’. Logical Methods in Computer

Science 2(5:5), pp. 1–64.

Bryant, R. E. 1986. ‘Graph-Based Algorithms for Boolean Function Manipulation’.

IEEE Trans. Computers 35(8), pp. 677–691.

Cavada, R., Cimatti, A., Jochim, C. A., Keighren, G., Olivetti, E., Pistore, M., Rov-

eri, M. & Tchaltsev, A. 2010. ‘NuSMV 2.5 User Manual’. FBK-irst.

Chang, K-H., Bertacco, V. & Markov, I. L. 2007. ‘Simulation-Based Bug Trace

Minimization with BMC-Based Refinement’. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No.

1, 2007.

Clarke, E. M., Grumberg, O. & Peled, D. A. 1999. Model checking. Cambridge MA:

MIT Press, 1999. 314. ISBN 0-262-03270-8.

Clarke, E. M. & Emerson, E. A. 1981. ‘Design and synthesis of synchronization of

skeletons using branching time temporal logic’. In: Proceedings of the

83

IBM Workshop on Logics of Programs, Vol. 131 of LNCS, Springer, pp.

52–71.

Clarke, E. M., Gupta, A. & Strichman, O. 2004. ‘SAT-Based Counterexample-

Guided Abstraction Refinement’. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, Vol. 23, No. 7, July

2004.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M.

S. & Xiao, C. 2007. The Daikon system for dynamic detection of likely in-

variants Science of Computer Programming 2007, Vol. 69, No. 1–3, pp.

35-45. ISSN 01676423. Doi: 10.1016/j.scico.2007.01.015

Gastin, P., Moro, P. & Zeitoun, M. 2004. ‘Minimization of counterexamples in

SPIN’. In: SPIN Workshop on Model Checking of Software, pp. 92–108,

2004.

Groce, A. & Visser, W. 2003. ‘What went wrong: Explaining Counterexamples’. In:

SPIN Workshop on Model Checking of Software, pp. 121–135, 2003.

Jin, H., Ravi, K. & Somenzi, F. 2002. ‘Fate and Free Will in Error Traces’, Katoen

J. P. & Stevens, P. (Eds.): TACAS 2002, LNCS 2280, pp. 445–459,

2002.

Lahtinen, J., Björkman, K., Valkonen, J., Frits, J. & Niemelä, I. 2010. ‘Analysis of

an emergency diesel generator control system by compositional model

checking’. MODSAFE 2010 work report. VTT Working Papers 156. 2010.

http://www.vtt.fi/inf/pdf/workingpapers/2010/W156.pdf

Larsen, K. G., Pettersson, P. & Yi, W. 1997. ‘UPPAAL in a nutshell’. International

Journal on Software Tools for Technology Transfer, 1(1–2), 1997, pp.

134–152.

McMillan, K. L. 1993. ‘Symbolic Model Checking’, Kluwer Academic Publ.

NuSMV 2011. NuSMV Model Checker v.2.5.2, 2011. http://nusmv.irst.itc.it/

Quielle, J. & Sifakis, J. 1981. ‘Specification and verification of concurrent systems

in CESAR’. In: Proceedings of the 5th International Symposium on Pro-

gramming, pp. 337–350.

Ravi, K. & Somenzi, F. 2004. ‘Minimal Assignments for Bounded Model Checking’,

Jensen, K. & Podelski, A. (Eds.): TACAS 2004, LNCS 2988, pp. 31–45,

2004.

http://www.vtt.fi/inf/pdf/workingpapers/2010/W156.pdf
http://nusmv.irst.itc.it/

84

Roorda, J-W. & Claessen, K. 2006. ‘SAT-Based Assistance in Abstraction Re-

finement for Symbolic Trajectory Evaluation’, Ball, T. & Jones, R. B.

(Eds.): CAV 2006, LNCS 4144, pp. 175–189, 2006.

Ropponen, J. 2010. Modular modelling with timed automata. Aalto University.

Shen, S., Qin, Y. & Li, S. 2005. ‘A Fast Counterexample Minimization Approach

with Refutation Analysis and Incremental SAT’. In: Proc. ASP-DAC 2005,

pp. 451–454.

Seger, C. H. & Bryant, R. E. 1995. Formal Verification by Symbolic Evaluation of

Partially-Ordered Trajectories, Formal Methods in System Design 1995,

Vol. 6, pp. 147–190.

Uppaal. 2009. UPPAAL integrated tool environment v. 4.0.6, 2009.

http://www.uppaal.com/

Valkonen, J., Karanta, I., Koskimies, M., Heljanko, K., Niemelä, I., Sheridan, D. &

Bloomfield, R. E. 2008. ‘NPP Safety Automation Systems Analysis –

State of the Art’. VTT Working Papers 94, VTT, Espoo. 62 p.

http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf

Weiser, M. 1981. Program slicing. ICSE '81 Proceedings of the 5th International

Conference on Software Engineering. NJ, USA: IEEE Press Piscataway,

1981, pp. 439–449. ISBN 0-89791-146-6.

Zeller, A. 2002. ‘Isolating Cause-Effect Chains from Computer Programs’. In:

SIGSOFT 2002/FSE-10, November 18–22, 2002, Charleston, SC, USA.

Zeller, A. & Hildebrandt, R. 2002. ‘Simplifying and Isolating Failure-Inducing Input’.

In: IEEE Transactions on Software Engineering, Vol. 28, No. 2, February

2002.

http://www.uppaal.com/
http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf

 Series title and number

VTT Technology 12

Title Model checking methodology for large systems,
faults and asyn-chronous behaviour
SARANA 2011 work report

Author(s) Jussi Lahtinen, Tuomas Launiainen, Keijo Heljanko & Jonatan Ropponen

Abstract Digital instrumentation and control (I&C) systems are challenging to veri-
fy. They enable complicated control functions, and the state spaces of the
models easily become too large for comprehensive verification through
traditional methods. Model checking is a formal method that can be used
for system verification. A number of efficient model checking systems are
available that provide analysis tools to determine automatically whether a
given state machine model satisfies the desired safety properties.

This report reviews the work performed in the Safety Evaluation and
Reliability Analysis of Nuclear Automation (SARANA) project in 2011
regarding model checking. We have developed new, more exact model-
ling methods that are able to capture the behaviour of a system more
realistically. In particular, we have developed more detailed fault models
depicting the hardware configuration of a system, and methodology to
model function-block-based systems asynchronously. In order to improve
the usability of our model checking methods, we have developed an algo-
rithm for model checking large modular systems. The algorithm can be
used to verify properties of a model that could otherwise not be verified in
a straightforward manner.

ISBN, ISSN ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)

ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Date March 2012

Language English

Pages 84 p.

Name of the project Safety Evaluation and Reliability Analysis of Nuclear Automation

Commissioned by

Keywords Model checking, verification, I&C, NuSMV, UPPAAL, SARANA, SAFIR

Publisher VTT Technical Research Centre of Finland

P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
T

T
 T

E
C

H
N

O
L

O
G

Y
 1

2

 M
o

d
e
l c

h
e
c
k
in

g
 m

e
th

o
d

o
lo

g
y fo

r la
rg

e
 syste

m
s, fa

u
lts a

n
d

...

ISBN 978-951-38-7625-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

Model checking methodology
for large systems, faults and
asynchronous behaviour

SARANA 2011 work report

Jussi Lahtinen | Tuomas Launiainen | Keijo Heljanko |
Jonatan Ropponen

•VISIO
N
S
•S

C
IE

N
C

E
•T

ECHNOLOGY
•R

E
S

E
A

R
C

H
H
IGHLIGHTS

12

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	1. Introduction
	2. Model Checking
	2.1 Model checking large systems
	2.2 Fault models for model checking

	3. Model checking large systems
	3.1 Abstracting the model
	3.2 Property verification using the abstractions
	3.3 Automatizing abstraction-level selection
	3.4 Invariant model checking
	3.5 Counterexample minimization
	3.6 Checking the feasibility of the counterexample
	3.7 Abstraction refinement
	3.8 Preliminary results
	3.9 Shortcomings of the current approach and furtherdevelopment

	4. Architecture-level model checking
	4.1 Model checking systems with detailed fault models
	4.2 An example system
	4.3 Modelling methodology
	4.4 Application of compositional verification
	4.5 Results
	4.6 Remaining problems

	5. Asynchronous techniques for modelling timed automata
	5.1 Introduction
	5.2 Modelling Techniques
	5.3 Modelled Components
	5.4 Java program
	5.5 Modelled Systems
	5.6 Results
	5.7 Summary

	6. Conclusions
	References

