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Wind power forecasting accuracy and uncertainty in Finland 

Hannele Holttinen, Jari Miettinen & Samuli Sillanpää. Espoo 2013. VTT Technology 95. 
60 p. + app. 8 p. 

Abstract 
Wind power cannot be dispatched so the production levels need to be forecasted 
for electricity market trading. Lower prediction errors mean lower regulation bal-
ancing costs, since relatively less energy needs to go through balance settlement. 
From the power system operator point of view, wind power forecast errors will 
impact the system net imbalances when the share of wind power increases, and 
more accurate forecasts mean less regulating capacity will be activated from the 
real time Regulating Power Market. 

In this publication short term forecasting of wind power is studied mainly from a 
wind power producer point of view. The forecast errors and imbalance costs from 
the day-ahead Nordic electricity markets are calculated based on real data from 
distributed wind power plants. Improvements to forecasting accuracy are present-
ed using several wind forecast providers, and measures for uncertainty of the 
forecast are presented.  

Aggregation of sites lowers relative share of prediction errors considerably, up 
to 60%. The balancing costs were also reduced up to 60%, from 3 €/MWh for one 
site to 1–1.4 €/MWh to aggregate 24 sites. Pooling wind power production for 
balance settlement will be very beneficial, and larger producers who can have 
sites from larger geographical area will benefit in lower imbalance costs. The ag-
gregation benefits were already significant for smaller areas, resulting in 30–40% 
decrease in forecast errors and 13–36% decrease in unit balancing costs, depend-
ing on the year. The resulting costs are strongly dependent on Regulating Market 
prices that determine the prices for the imbalances. Similar level of forecast errors 
resulted in 40% higher imbalance costs for 2012 compared with 2011. 

Combining wind forecasts from different Numerical Weather Prediction provid-
ers was studied with different combination methods for 6 sites. Averaging different 
providers’ forecasts will lower the forecast errors by 6% for day-ahead purposes. 
When combining forecasts for short horizons like the following hour, more ad-
vanced combining techniques than simple average, such as Kalmar filtering or 
recursive least squares provided better results. 

Two different uncertainty quantification methods, based on empirical cumulative 
density function and kernel densities, were analysed for 3 sites. Aggregation of 
wind power production will not only decrease relative prediction errors, but also 
decreases the variation and uncertainty of prediction errors. 

Keywords wind power, wind energy, forecasting, uncertainty, electricity market, 
imbalance costs 
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Preface 

This publication is part of SGEM research programme work package WP5 managing 
variable renewables, with part financing from Nordic TFI programme project Icewind. The 
report is based on real data on wind power production and wind speed forecasts for more 
than 20 sites in Finland, for 3 years. In addition to analyses on the forecast errors and 
imbalance costs, there is a summary of work on improving the forecast accuracy by com-
bining several meteorological forecasts, published as a thesis for Helsinki University. The 
publication also presents work on possibilities to provide probability intervals to simple 
point forecasts. 

One of the authors, Samuli Sillanpää, has moved to Helsinki University before the pub-
lishing of this report.  
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1. Introduction 
 
Wind power production and short term forecasting applications are still small in Fin-
land. In 2012 wind power penetration was only 0.6% from the total electricity con-
sumption [1]. However, in EU goals have been set to increase the share of renewable 
sources in EU to 20% before 2020. In order to reach the target, each member country 
has been given its own target. In Finland the amount of renewable energy sources 
from the energy consumption should be 38% before 2020 [2]. As part of this target, 
increasing the amount of wind power to 2500 MW (6 TWh, 6% of electricity consump-
tion) is planned.  

In Finland the guaranteed price subsidy is constructed in a way that wind power 
producers are responsible for their own balancing costs. Imbalances occurring due to 
forecast errors are settled in the balance settlement and will incur costs depending on 
the balancing price for the hour. Thus, forecast errors turn into costs and therefore 
market participant should strive for accuracy in the forecasts for hourly power produc-
tion. This is challenging for wind power since the source is variable and non-
dispatchable. Short term forecasting tools are essential in this process. 

Quantification of wind power production uncertainty becomes more crucial as the 
wind power penetration increases. System operators (TSOs) would be interested to 
see how wind power production varies on different look-ahead hours, and what the 
probability of certain variation is. Wind power can be thought as a stochastic source 
of generation. Quantification of wind power production’s uncertainty would help TSOs 
to understand predictability of wind power and it would also provide a tool to diminish 
the challenges that the variable nature of wind induces. Quantification of uncertainty 
would also help in assuring adequate balancing is available from the balancing mar-
ket, called Regulating Power Market in the Nordic countries. 

In this publication Section 2 explains the basics of wind power forecasting espe-
cially in day-ahead trading in the Nordic market. The data used in this publication is 
presented in Section 3. In Section 3.3 prediction errors in Finland 2010, 2011 and 
2012 are analysed. The weight is given to the level of prediction errors in different 
geographical areas and the balancing costs induced for a producer. In Section 5 a 
method to combine Numerical Weather Prediction (NWP) models is presented in 
order to improve the accuracy of wind power predictions. In Section 6 methods to 
derive probability intervals to forecasts and effects of how aggregation of wind power 
production affects probability intervals are presented.   
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2. Short term forecasting of wind power 
 
Wind power production forecasts are created by forecasting models. The purpose 
of a forecast model is to turn inputs, which are supplied to the forecast model, to k-
steps ahead wind power forecast. Typically used inputs are lagged values of wind 
power production and wind forecast with other weather related variables by Nu-
merical Weather Prediction (NWP) model. Also some temporal information such 
as what is the current time of day or season of a year are used. Model inputs are 
defined according to model needs. Usually, forecast models are tuned into a cer-
tain temporal horizon. For time span of minutes, it is highly unlikely that a model 
for making forecasts days ahead will perform well. 

2.1 Different types of forecasting models 

Forecast models can be distinguished by: forecasting interval and type of a fore-
cast model. The type of a forecast model can be physical, statistical or a combina-
tion of these two. Temporal forecasting horizons can be separated mainly into very 
short term, short term and medium term forecasting.  

Very short term forecasting is used when forecasting from minutes up to some 
hours ahead. This kind of information is especially needed for controlling wind 
turbines. The temporal horizon of short term forecasting is up to 72 hours ahead. 
In this temporal horizon forecast results are used by the TSOs and the energy 
traders. Wind power forecasting can be extended to cover following week, which 
would give additional help for scheduling maintenance plans. This forecast horizon 
can be called as a medium term. In this publication the weight is given to forecasts 
in day-ahead electricity trade and thus the temporal scale of this trade will be short 
term forecasting by definition [3] [4]. 

Forecast models of very short term forecasting differ from models of other tem-
poral scales. It is quite convenient to use purely statistical models on very short 
term forecasting, since the models based on global or local NWP models cannot 
be used on such a short time scale. Also the variability wind power can be quite 
well explained by persistent and stochastic nature of wind power up to one hour 
ahead. However, in the forecast horizon above 6 hours, persistent nature of wind 
power is already low and pure statistical model, which only relies to the past val-
ues of power production, or history data of other explanatory variables, starts to 
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perform poorly. Therefore, the physical world must be included to forecast inputs 
in the form of meteorological forecasts. These meteorological forecasts can be 
attained by running NWP models (ECMWF, HIRLAM etc.), which are highly com-
plex and computationally heavy.  

Forecast models can be grouped by whether a statistical or physical approach 
has been used. These models can be further divided into various subcategories.  

A physical model tries to refine the wind field in a site by using information from 
the area of interest, such as local orography, roughness and obstacles. The as-
sumptions and theories are based on the physical behaviour of wind in the atmos-
pheric boundary layer. Thus, a physical model continues refining the wind field 
with a finer resolution than the NWP forecast can provide. Usually the grid size of 
NWP forecast can be order of magnitude from couple of square kilometres up to 
tens of square kilometres. Physical models may require a lot of computational 
capacity and this can set a limit for a grid size. Since a physical model tries to 
create wind field in a wind power plant; there must be a wind to power transfor-
mation, which needs to be modelled with wind turbine or wind farm power curve. 
In principle, a physical prediction model would not need any SCADA system, 
which provides past power value to the prediction model. This means that the 
model is ready to be used already before some months of data exist from the site. 
Usually Model Output Statistics (MOS) is used to correct the forecast in case there 
is a systematic error in the forecast.  

A statistical model does not try to reform the wind field inside a NWP grid. 
However, a statistical model tries to find dependencies between produced wind 
power (dependent variable) and explanatory variables such as wind and wind 
direction forecast from NWP. Typically the dependencies are found by minimizing 
a loss function, which is a function of actual power production and forecasted 
power values from a statistical model. Statistical models can be also defined by 
the used modelling techniques, for instance grey-box models are using theoretical 
knowledge together with measurements. For black-box models such as Neural 
networks no theoretical knowledge of the process is needed [24]. 

In practice forecast model’s parameters are tuned to correspond past values of 
power production by ending up with a model, which can make forecasts k-steps 
ahead, with sufficient inputs. This model type is called as hybrid forecast model, 
since it relies both on the stochastic and the physical nature of wind power. The 
main challenge in traditional statistical modelling is forming the structural part of 
statistical model, including all necessary parameters from the forecasting capabil-
ity point of view, and excluding parameters that have little value for forecasting 
accuracy.  

The forecast model, which is used in this study, is a statistical model, which 
takes as an input NWP data and some other explanatory variables.  
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2.2 Forecast errors 

In this section properties of forecast errors will be discussed. The nature of wind is 
variable, hard to predict accurately, and therefore forecast errors are always pre-
sent.  

The definition of forecast error is the deviation between forecasted and realisa-
tion of wind power production and it can be interpreted with the following equation 

 
=  

 
(1) 

where  is the measured power at time t and  is corresponding forecasted val-
ue.  

In wind power forecasting reasons behind forecast error can be separated into 
two main sources based on their causes: level and phase errors. Level errors are 
usually caused by biased, systematically erroneous prediction, whereas phase 
errors are caused by forecasting level of production correctly but failing on predict-
ing timing of changes (Figure 1). 
 

 

Figure 1. Forecast errors due to predicting the level of production wrong and due 
to wrongly predicting the timing of wind changes (phase error).  

The reason behind level errors might be badly configured forecast model or the 
source of error might be random. The phase errors are more problematic even 
when the forecast model accuracy is good. Phase errors are usually caused by 
larger changes in wind speed i.e. timing of weather front, which could lead to sub-
stantial forecast errors. Thus, forecast user must be careful when making deci-
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sions that are based on forecasted ramp event since the error of timing can lead to 
large forecast errors, even if the level is forecasted right.  

Usually it is not useful to look at a prediction error at a single hour, but instead 
calculate the average values of prediction errors in a certain horizon, or average 
weighted prediction errors. The first basic performance index is called as mean 
error, or bias, which can written as 

 

bias =
1
N  (2) 

Bias is an important metric since it shows whether the forecast model systemati-
cally under- or overestimates power production. It is usually desirable that forecast 
model’s bias on different look-ahead hours is zero, which means that the forecast-
ed power values, on average fluctuates around the realised power values. The 
bias is usually calculated for each forecast horizon separately. It is important to 
notice that wind to power conversion is a non-linear process, which causes that 
prediction error distributions are not Gaussian.  

The main performance index used to quantify the average error is Mean Abso-
lute Error, MAE. It gives information about performance of prediction model as the 
positive and negative errors do not cancel each other like in the case of bias. 
Another similar index describing the performance of a forecasted model is Root-
Mean-Square-Error (RMSE), that will give more weight on the larger errors than 
MAE. The errors are usually presented relative to installed capacity (normalised 
errors NMAE and NRMSE). Another useful way of presenting errors is relative to 
total energy produced by wind power, and is useful when looking at the actual 
amount of imbalances for the production. There are also different ways of present-
ing the error. A list of some other performance indices can be found in [11]. 

There are many factors affecting the level of prediction errors. One is that the 
performance of prediction systems is highly dependent on the location of wind 
power plant and its surroundings. The main source of uncertainty in wind power 
predictions lies in NWPs, which means there is only a limited amount of improve-
ment on developing more accurate wind power forecasting models [3]. 

When looking at forecast errors from a wider geographical area, forecast errors 
have a tendency to be uncorrelated, which is caused by the spatial smoothing 
effect [7]. The prediction errors smooth out as the geographical dispersion of wind 
farms gets larger [8]. The basic idea is that as the number of sites increases, part 
of the errors from the individual sites will cancel each other and this smoothing 
effect reduces relative share of total prediction error from the aggregated maxi-
mum capacity.  
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2.3 Using forecasts in electricity market 

Short term forecasts are used mainly in electricity markets. This is by setting bids 
to the electricity market that are based on the best view of participant’s power 
production in near future. In Finland the physical electricity trade is taking place at 
Nordic power market Nord Pool Spot markets, which consists two separate mar-
ketplaces; day-ahead market Elspot and intraday market Elbas. Bids for the Elspot 
market must include volume and price information, and the bids are set for each 
delivery hour separately, which are in Finland 01–24, whereas in most of the Nor-
dic countries the delivery hours are one hour lagged behind due to time difference. 
The bids must be placed before the Elspot-market closes at noon (1 p.m. Finnish 
time), and therefore there is a 12 hour gap from the closure of Elspot to the first 
delivery hour. Thus, a forecast tool is needed with a forecast capability at least 36 
hours ahead, with an hourly time resolution. The Elspot market is an auction 
where the production bids are accepted on ascending order from cheapest to most 
expensive bid to the point where the sum of production bids meet the consump-
tion. Usually wind power producer bids a price 0 because wind power will be gen-
erated whatever the price at the market, any price above 0 will benefit the producer. 

Intraday market starts after the Elspot has ended. Elbas is a continuous market 
where for every sell or purchase bid a counterparty is needed. Thus, it can be 
seen as more traditional commodity or stock market. When making offers to the 
Elbas, Elspot-price of each delivery hour is public information and usually the 
prices at Elbas follow the Elspot prices. For wind power more recent forecasts are 
available from the NWP provider, and closer to the delivery hour also the current 
wind power production level can be used to forecast production 2–3 hours ahead. 
It is possible to trade power in Elbas until 30 minutes before a delivery hour. This 
makes it ideal from the wind power producer point of view since the bidding can be 
done right before the delivery hour, which decreases forecast error and also low-
ers balancing costs [5]. Liquidity of Elbas has been quite low, only 0.3% of the 
electricity consumption is traded in Elbas [6], and Elspot remains as a main market 
place for trading energy – more than 70% of electricity in the Nordic countries is 
traded at Elspot. 

It is not straightforward to decide whether to correct the forecast errors at intra-
day market Elbas. When wind power share is still low, the forecast errors are 
penalised only about 50% of the time. This will only be known after the delivery 
hour. It was shown in [23] that the revenue for Finnish wind power producers will 
not necessarily increase although a market participant places bids to the Elbas-
market. The balancing prices are not known at the time of Elbas-prices and there-
fore it is possible that a market participant is correcting imabances, which are not 
causing any costs in the balancing settlement. However, it was shown in [5] that 
for large wind penetration levels, like the case of Denmark, intra-day trading can 
effectively reduce balancing costs. Probably already at lower shares of wind pow-
er, correcting the larger forecast errors in the intra-day market would be cost effec-
tive for the producer, and this would also reduce the impact of wind power on the 
balancing markets and system imbalances.   
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3. Data 

In this section data used in the study is presented. The analyses are based on real 
wind power plant hourly data and forecasts. 

Wind production data for 2010–2012 is mainly provided by Finnish Energy in-
dustries (Energiateollisuus). This data has Åland wind power plants as one aggre-
gated time series. To make the forecasting to the separate sites, production data 
from wind turbines located in Åland islands was provided by Allwinds for the years 
2010 and 2011. For 2012 the aggregated sum wind power data for whole Åland 
was used. For the analyses in Chapters 5 and 6 only six and seven months of 
data, respectively, and less sites were used, according to how wind forecast data 
was available for several NWP data providers. 

3.1 Numerical weather prediction data 

The weather forecasts consist of the estimated wind speed and direction valid at a 
small time interval around each hour at the location and hub height of the wind 
power plant. Data from three different NWP-providers were used in this study:  

 For  all  sites  (Section  4):  Foreca ETA for  year  2010,  Foreca ECMWF 
for years 2011–12 

 For 3 sites (Section 5): Swedish Meteorological and Hydrological Insti-
tute (SMHI) and 

 For 3 sites (Sections 5–6): Finnish Meteorological Institute FMI.  

For 2010, hourly wind speed and direction prediction was provided by Foreca ETA 
NWP-model. In 2011 it was noticed that Foreca ECMWF NWP outperformed ETA 
model and the forecasts for wind were changed to ECMWF model. Thus, there is 
some difference in forecast accuracy when comparing results between year 2010 
and years 2011 and 2012. Foreca’s predictions are produced twice a day, at 00 
and 12 UTC time. However, there are 6 hours of data that cannot be used, due to 
delays of acquiring the data. When one participates in the Elspot-market, which 
closes at 1 pm Finnish time, it is possible to notice that forecast made at 12 UTC 
time cannot be used in day-ahead trading. Thus, the power production predictions 
are based on the forecast made at 00 UTC. However, when trading in the intraday 
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market the forecasts commenced at 12 UTC until the next 00 UTC forecast are 
available.  

Weather forecasts from FMI and SMHI are both based on the same forecasting 
system, HIRLAM (HIgh Resolution Limited Area Model), with horizontal resolutions 
of 7.5 and 5.5 kilometers, respectively. Foreca uses a different model, ETA (2010), 
with a horizontal resolution of 15 kilometers and ECMWF (2011 and 2012) with 16 
kilometers of horizontal resolution. Weather forecasting horizon is reaching 55 
hours ahead. Although, forecasting data up to 36 hours ahead are used. 

In Section 3.3, data from one NWP provider was used for all sites (24, 25 and 
23 sites for years 2010, 2011 and 2012, respectively). In Section 5, data from 
three NWP providers was used. Six wind turbine sites were used, for which NWP-
prediction data from 2–3 providers were available. In Section 6 data from FMI and 
Foreca ECMWF was used for three sites. Aggregated wind power production data 
from 30 sites was also included in Chapter 6, which was based on Foreca’s 
ECMWF weather forecasts.  

3.2 Sites and regions studied 

In Section 3.3 wind power production in Finland has been divided into four differ-
ent geographical areas. The locations of the turbines sites and aggregation areas 
used in the study can be seen from the Figure 2. The total length of the area is 
695 kilometres, and if the sites located on the Gulf of Finland are neglected, rest of 
the sites are located on almost linear line, which can be drawn from Åland to Oulu. 
The four different areas are: one site, whole Åland, Åland and Bothnian Sea 
(Selkämeri) and Åland, Bothnian Sea and Bothnian Bay (Perämeri). Analysis will 
also be made for aggregation of all of the sites included in the simulation. 
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Figure 2. Aggregation areas used in the study. Red, green and blue rectangles 
are aggregation areas of Åland, Bothnian sea and Bothnian bay, respectively. 
Yellow triangle is representing the aggregation area of all wind turbine sites in-
cluded in the study. 

Aggregation areas are chosen so that when moving to larger areas there will be 
approximately 20 MWs more wind power capacity than in the previous area. In 
Table 1 number of sites in different aggregation areas and their aggregated wind 
power capacities are presented. 

Table 1. Number of sites, installed total capacity and region area for different 
aggregation areas. 

  A [sites] A+S [sites] A+S+P [sites] All [sites] 

2010 8 (21.3 MW) 12 (42.9 MW) 18 (62.9 MW) 24 (105.0 MW) 
2011 9 (21.3 MW) 13 (42.9 MW) 18 (68.6 MW) 25 (126.0 MW) 
2012 9 (21.3 MW) 11 (36.0 MW) 15 (59.7 MW) 23 (130.6 MW) 
Area 
[km2] 7000 27400 64000 231000 
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3.3 Market data 

Electricity price data is required in Chapter 4 where forecast errors and their in-
duced costs for different sizes of producers are analysed. Actual historical Finnish 
area prices from Nord Pool Spot and up and down regulation prices from Fingrid 
are used to analyse balancing costs for a wind power producer.  

In Figure 3 development of Finnish area prices and up and down regulation 
prices for years 2004–2012 are shown. The balancing costs, which are shown as 
error bars in Figure 3, are the unit prices that a producer must pay extra (or re-
ceive less) for having imbalance energy. Thus, unit balancing prices are differ-
ences between up and down regulation prices and spot-prices. Balance settlement 
prices are based on prices in Regulating Power Market and they usually follow 
spot-prices (Figure 3).  

 
Figure 3. Average Finnish area prices (grey bars) and average balancing costs 
(black bars) for years 2004–12. This study uses data from 2010–12.  

The average Finnish area prices have varied considerably for the past eight years, 
from 27.6 €/MWh (2004) up to 56.6 €/MWh (2010). For the years 2010–2012 the 
average area price has decreased steadily. Duration curves of Finland area prices 
are shown in Figure 4 for the three years studied. The area prices have been more 
stable in 2012 than in years 2010–2011.  
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Figure 4. Finland spot duration curves for years 2010–2012. 

The unit balancing costs for up and down regulation have been quite symmetric 
compared to average area price in past eight years (Figure 3). However, the abso-
lute value of unit balancing costs for down regulation have been greater than up 
regulation for six of those years. The average unit balancing cost for whole 2004–
2012 period was 3.9 €/MWh. The variation on different years can still be substan-
tial – for year 2012 the average up regulation cost was 9.6 €/MWh and down regu-
lation cost was -4.9 €/MWh. The duration curves for up and down regulation costs 
for years 2010–12 are shown in Figure 5. The duration curves are quite similar 
with an exception that in 2012 up regulation prices have been larger than in previ-
ous years.  
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Figure 5. Duration curves for up and down regulation costs in Finland for years 
2010–2012. 
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4. Forecast errors in Finland 
 
In this chapter forecast errors in Finland are analysed for different time horizons 
and geographical areas. Also, costs for different size market participants are cal-
culated to see what benefits pooling geographically dispersed wind power give to 
a market participant.  

Day-ahead wind power predictions have been made for 24, 25 and 23 sites 
along the coastline of Finland for the years 2010, 2011 and 2012, respectively. 
Similar study was performed in [8], however in this study aggregation of geograph-
ical areas is carried out differently. The analysis is made for different region sizes:  

 one site  
 whole Åland 
 Åland and Bothnian Sea (Selkämeri) and  
 Åland, Bothnian Sea and Bothnian Bay (Perämeri) 
 Aggregation of all of the sites included in the simulation.  

The main interest is what will happen to the imbalance costs when wind power 
production is aggregated to larger area. The three areas Åland, Bothnian Sea and 
Bothnian Bay have approximately 20 MW wind power capacity each. In Table 1 
the number of sites in different aggregation areas and their aggregated wind pow-
er capacities are presented. The aggregation areas are also shown in Figure 2. 
Results show costs for years 2010 to 2012. The costs are calculated by using 
actual market data from Nord Pool Spot and balancing prices from Fingrid. The 
detailed results can found in Appendix A. 

4.1 Description of VTT forecasting model 

Wind power forecasts in this study were created using forecast model developed 
at VTT [9]. The system has been designed to be used as a research model for 
existing data. It calculates point forecasts for one month at a time, and is given  
1–3 months of data (from previous time period) to be used for training. The predic-
tion system is based on a NARX (non-linear autoregressive with exogenous in-
puts) time-series model that utilizes both the past realized values of the power 
production and external information. Thus, the model can be characterised as a 
hybrid statistical model. Meteorological forecasts consisting of the forecasted 
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hourly wind speed and direction for the geographic location and elevation of the 
wind power plant are used as external information.  

In order to make forecasts, two separate time windows are defined: training and 
forecast window. Forecasts are made on a monthly basis and therefore training 
window for the forecast model remains the same for the whole month. Training 
period, where model’s monthly parameters are estimated is lagged by a year. 
Thus, for year 2011 forecasts, model was trained by using data from year 2010, 
and similarly for year 2010 data from year 2009. Best results were attained by 
using three months training window, which were centred to the month of interest. 
Main reasons why data from previous year were used is that seasonal effect of 
wind power production can be included to the forecast model parameter estima-
tion. 

VTT forecast model does not take into account which turbines are out of opera-
tion. Thus, there might be outages and the forecasted power production in a site is 
based on false assumptions. Since the forecast model is a statistical model, it 
requires a training period where the model’s parameters are estimated. Therefore 
if behaviour of turbines on the training period differs greatly from the behaviour on 
the forecasting period, it leads to forecast model with badly configured parame-
ters. Some sites were left out of the results because of low technical availability 
either in training or forecasting period. 

4.2 Forecast errors for different time horizons 

In Figure 6 average errors for different horizons are presented for single wind 
power plants for year 2011. The average absolute error NMAE is relative to in-
stalled capacity of each wind power plant. All 24 sites are included in the results, 
one wind power plant showing close to average forecast accuracy, as well as the 
range of errors are shown.  

There are a lot of differences in results for single sites, for example for 24 hours 
ahead prediction the average absolute error can be between 7–14% of installed 
capacity. This can be partly due to the different accuracy for different types of 
sites, like different orography and roughness, and how homogenous the grid cell 
for the numerical weather prediction model is. Results also depend on the wind 
resource on the sites – low wind situations are usually easier to predict and thus 
low wind sites have less error, relative to installed capacity. Prediction errors in 
low wind situations can still be higher relative to yearly energy.  

The forecast error is significantly lowered for the first six hours. The physical 
reason behind this is that wind itself has an auto-correlated nature and the model 
takes this into account by last measured power value when making forecasts to 
the future. As the forecast horizon increases the variation range seems to increase 
quite linearly.  
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Figure 6. Forecast errors on different horizons for 2011. 

Results of calculating the average error for different size areas can be seen from 
the Figure 7, for all three years. One could notice that MAE of energy is a bit larger 
for year 2010, which is caused by different wind forecast inputs used. In years 
2011 and 2012 same NWP-model were used, whereas 2010 there was a different 
NWP-model. In 2011 it was noticed that Foreca ECMWF NWP outperformed ETA 
model and the forecasts for wind were changed to ECMWF model. Therefore, the 
variation range in the future is more like in years 2011 and 2012.  

The MAE, relative to yearly energy production, varies between 52–56% for one 
site in years 2011–2012. When aggregating the whole Åland’s wind power produc-
tion the MAE values are decreased significantly, when comparing to the single 
wind farm case. Åland as an aggregation area can easily correspond to a single 
distribution company in continental Finland. The result of aggregation drops the 
range of variation to 33%, which is approximately 40% improvement from the 
single site case.  

When including wind power production from Bothnian Sea to the wind power 
production at Åland, it is possible to further decrease MAE of energy. When calcu-
lating the MAE aggregated for all simulated sites it is possible to achieve 20% 
MAE of energy, which is more than 60% improvement from the single site case.  
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Figure 7. Prediction errors relative to total energy produced. A, S and P stands for 
Åland, Bothnian Sea and Bothnian Bay, respectively. In “All” column includes 
every wind farm/turbine, which were included to the simulations on a particular 
year. 

4.3 Forecast errors and share of errors that cause balancing 
costs from day-ahead bidding 

The previous section showed how the aggregation of power production decreases 
MAE of energy significantly. Decrease of forecast errors will have a large impact 
on the balancing cost reduction as well.  

Figure 8 shows forecast errors and the part of forecast errors that incur balanc-
ing costs (wind power produce’s balancing need is the same up or down as the 
system regulation cost). They are presented for 2010, 2011 and 2012, as share of 
total energy produced by wind power. There are some difference for the results for 
different years, but the result for aggregation are similar: relative prediction errors 
are decreasing when aggregation area is increased. The benefits, in terms of 
forecast error, are clear already when aggregating wind power production in the 
relatively small region of Åland. In 2011 (2012) for a single wind farm relative 
share of prediction errors for up- and downwards direction are 33.2% (28.4%) and 
-23.1% (-24.3%) from the total production, respectively. When the whole Åland is 
considered as a balancing area, prediction errors are 17.0% (16.3%) and -16.7% 
(-17.6) for up and down regulation.  
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Figure 8. The share of total production that will be prediction errors (blue bars) 
and share of energy causing penalties in imbalance settlements (red bars), for a 
single site and clusters of sites in 2010 (upper figure), 2011 (middle) and 2012 (low-
er). A, S and P stands for Åland, Bothnian Sea and Bothnian Bay, respectively. 

In balance settlement, there is no extra penalty if producer has been short and 
buying up-regulation energy when there has been down-regulation needed in the 
power system for that hour. The same applies if producer is long and needs to sell 
surplus energy for down-regulation price and there has been up-regulation need 
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during that hour. In these cases the producer buys missing energy or sells surplus 
energy at spot price without extra penalty or imbalance cost. As wind power is still 
very small in Finland and also relatively small in the Nordic electricity market, wind 
power imbalances do not correlate with system imbalances, and about 50% of 
time there is no extra cost. This is why in Figure 8 the red bars, showing the 
amount of energy for which there is imbalance cost, is much smaller than the total 
forecast error in energy. As the relative share of balancing energy decreases, 
when the balancing area increases, the relative share of balancing costs decreas-
es. For a single site the share of energy that causes down regulation is -15.9% 
(11.1%) from the total production and for up regulation 6.1% (7.3%). When aggre-
gating more sites together also the share of energy that causes imbalance costs 
reduces. For calculating all the sites on both years, the share of total production 
that causes up regulation and down regulation are 3.70% (2.4%) and -4.8% 
(4.7%) from the total production, respectively.  

The comparison of the years is presented in Figure 9 where the shares of en-
ergy that are wrong predicted and shares of energy that result in imbalance costs 
for the three years 2010 to 2012 are presented for single site and all of the sites. 
There are some small differences in how the errors are distributed up and down, 
but similar behaviour can been observed from all of the years. The 2010 prediction 
errors are a bit larger than prediction errors for years 2011 and 2012, but there is 
not as much differences in the amount of energy that needs up or down regulation 
in balance settlement. See for detailed results in Appendix A. 
 

 
Figure 9. The share of prediction errors from the total production (blue bars) and 
errors causing penalties in balance settlements (red bars), for a single site and for 
all of the sites in years 2010–2012. 
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4.4 Imbalance costs from day-ahead market bidding 

Wind power producer’s revenue can be formulated by using two terms: revenue 
from Spot-trade, and cost/revenue of balancing energy for up and down regula-
tion. Balancing energy and regulation need is the same as prediction error for a 
WPP, and minimizing prediction error is the way to maximize the revenue for the 
participant 

In Figure 10 average unit balancing costs (€/MWh) for different years and areas 
are shown. There is considerable difference in the balancing costs for the years 
2010–12. The forecast errors were reduced in 2011–12, explaining the drop from 
2010 to 2011. In 2012 the balancing costs from the market were much higher than 
in 2011, compared to Elspot prices. This explains the increase in 2012 – as seen 
from previous graphs, the forecast errors were at a similar level in 2011 and 2012.  

The penalty that balancing costs incur for a small producer who has only one 
site, is on average 3 € less revenue for each produced MWh, than the revenue 
would have been without forecasting errors. For instance producer who has one 3 
MW turbine with 30% capacity factor would have 23 000 € losses from balancing 
in a year.  

Conventional power producers have much less imbalances as they can adjust 
their output and avoid most of the balancing costs. Wind power plants can also 
adjust their output by curtailing some production, however this would mean losing 
the production and thus incurring costs as well, especially as the subsidies are 
often based on production.  

The unit balancing costs decrease considerably as the balancing area increas-
es. When the balancing area is “All”, which means that there are sites all over the 
coastline of Finland, then the unit balancing costs are only half of that for single 
wind power plant. Wind power has similarities to electricity consumption, in that 
there is a strong aggregation benefit as individual forecast errors will partly cancel 
each other. Acquiring wind power plants from geographically different areas would 
benefit the producer, as the balancing costs per MWh will be reduced. For the 
previous example case of small producer, when buying new turbines from other 
geographical locations and bidding to the market aggregated power production, 
the balancing cost would even drop down to 1.4 €/MWh. This means imbalances 
would incur 11 000 € costs in a year, and a saving of almost 13 000 €/year, when 
comparing to the previous example.  
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Figure 10. Unit balancing costs. A, S and P stands for Åland, Bothnian Sea and 
Bothnian Bay, respectively. 

The results are calculated for Finland area prices and are only valid for low wind 
power penetration level (wind power not impacting the Regulating market prices 
and their direction).  

Unit balancing costs are naturally highly dependent on the balancing prices. 
The level of unit balancing costs in the future depends greatly how much cost 
effective regulating power will be available in the Nordic Regulating power market 
– increasing wind power in the system will bring more demand for Regulating 
power and the prices will probably rise in future. The forecasting model develop-
ment will improve the accuracy, which may slow down the impact that increasing 
wind power has on the market prices. We have here looked at day-ahead trading 
only, the possibility to correct at least part of the largest forecast errors as more 
accurate forecasts arrive some hours before delivery may lower both the imbal-
ance costs for the producers as well as impacts for the system. This intra-day 
trade, at Elbas is not analysed in this section. Some analyses have been made 
before in [23] and show that for small penetration levels of wind power and mod-
erate imbalance prices, a continuous trade in Elbas is not cost effective for the 
producer. 

The results are based on two-price balancing costs used for production. In [8] 
balancing costs for one-price balancing cost system are calculated for year 2010 
in Finland. One price model would be better for a wind power producer since unit 
balancing costs would be smaller than in two-price balancing system.  
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5. Improving the accuracy of wind power 
forecasts by using multiple NWP-models 

 
This section summarises the results of a study [11] on how the accuracy of the 
forecasts can be improved by using alternative weather forecasts from several 
providers instead of a single one. In the study, 2–3 weather forecasts were availa-
ble for each wind power plant for making hourly bids for the electricity markets 
(day-ahead and 1, 12, and 36 hours ahead). When used as inputs to a prediction 
system this resulted in several alternative production forecasts that needed to be 
combined together into a final forecast.  

The task was approached by treating it as a model combination problem, where 
the combined forecast is a weighted linear sum of the alternative forecasts and the 
challenge lies in selecting the weights so that the long term forecast error is mini-
mized. To take into account changing weather conditions, the combination weights 
were readjusted online when needed in response to recent forecast errors. This 
made the combined forecast a linear sum using time-varying weights.  

Combination methods previously presented in the literature were implemented 
and integrated into an existing (VTT) prediction system. How the prediction model 
functions is explained in more detail in Chapter 4.1. The algorithms were evaluat-
ed by generating hourly power forecasts for six wind turbine sites in Finland during 
a four month forecast period. The results were compared against an average of 
the alternative production forecasts, where all members of the combination were 
weighted equally, and to production forecasts based on only a single weather 
forecast, where model combination was not used.  

5.1 Selected combination methods 

Previous research on model combination gives some suggestions on how to se-
lect a suitable combination method among the various alternatives. Unfortunately, 
no method has been found to perform well under all conditions and error 
measures [13]. Results from wind power related applications have also been re-
ported to be very location dependent. For this reason, it was decided to select a 
number of candidate methods that have been utilized in previous work, and evalu-
ate them using two practical test scenarios: 
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 Simple average (later abbreviated AVG), where all combination mem-
bers are equally weighted and the final combination is an aritmethic 
mean of the alternative forecasts.  

 Optimal combination (OPT) by Bates and Granger [12] that selects the 
combination weights in order to minimize the variance of the combined 
errors. Forecast errors may also be assumed to be independent (OPT-
IND). 

 Regression (REG-NO) using the realized value (production) as the 
dependent variable and the alternative predictions as independent var-
iables [14]. Weighting the combination members according to the least 
squares solution minimizes the squared differences between realized 
and predicted values. Possible systematical errors of the forecasts 
may be compensated by using an intercept term in the regression 
equation (REG).   

 Composite post-processing (COM) that was developed for combining 
short-term wind forecasts by weighing the combination members ac-
cording to their past accuracy [15]. 

 Outperformance (OUT), which weights the competing forecasts pro-
portionally to their relative past performance measured with a squared 
loss function [16]. 

 Fixed share (SHARE) [17] that readjust the combination weights by 
repeating the following two steps. First, a combination member is 
weighted according to its previous error and learning rate of the algo-
rithm. The learning rate controls how fast the algorithm reacts to 
changing conditions. Second, a specified fraction of the weight is dis-
tributed between all combination members.  

 AEC (AEC), which attempts to improve on a previously presented ag-
gregating algorithm (Aggregated Forecast Combination Through Ex-
ponential Reweighting) [19] by allowing the weights of combination 
members that have been performing poorly in the past to recover 
along time, and this way make the algorithm more suitable to non-
stationary settings [18]. 

 Kalman filter (KALMAN), which is a widely used algorithm within the 
family of state-space methods [21]. It uses the minimum mean-
squared estimate, considering all available information, as an estimate 
of the current state of the system that is being tracked. In this study 
Kalman filter was utilized as described in [20]. 

 Recursive least squares that updates the least-squares solution to a 
regression equation repeatedly when new information becomes avail-
able [21]. In this study, the regression equation was formed both with 
an intercept (RLS) and without (RLS-NO).  
 

More detailed description of the evaluated algorithms and their implementation for 
the evaluation can be found in [11]. 
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5.2 Methodology and case study 

Six wind power plants in Finland (Table 2) were used in testing the new prediction 
system. The power plants are located along the Finnish coastline and in the Åland 
islands. Largest distance between the power plants is approximately 600 km. 

Table 2. Selected sites for the evaluation of multiple NWP models. 

Location Capacity 
(MW) 

Turbines Hub 
height (m) 

Monthly 
downtime (h) 

NWP- 
providers 

Oulunsalo ~ 10 ~ 5 ~ 60–80 ~ 50–100 1,2 

Kokkola < 5 < 5 ~ 60 ~100–250 1,2 

Raahe > 15 ~ 10 < 50 < 30 1,3 

Hamina ~ 10 ~ 5 ~ 100 < 30 1,2,3 

Pori ~ 15 ~ 10 ~ 60–100 ~ 50–100 1,2,3 

Nyhamn, 
Åland 

~ 15 ~ 5 ~ 60 n/a 1,2 

 
For all power plants, realized production data and meteorological forecasts from  
2–3 providers were available. A single weather forecast was used for all turbines 
in one wind power plant site. Two months of data was used in parameterizing the 
combination methods (07/01/2011–08/31/2011), and four months (09/01/2011–
12/31/2011) in the evaluation. Depending on the provider, 2–4 updated weather 
forecasts are delivered per day, reaching up to 55 hours ahead.  

Weather forecasts from providers 2 and 3 are both based on the same fore-
casting system, HIRLAM (HIgh Resolution Limited Area Model), with horizontal 
resolutions of 7.5 and 5.5 kilometers, respectively. Provider 1 uses a different 
model, ETA, with a horizontal resolution of 15 kilometers. 

When producing updated power forecasts for a particular wind power plant at 
time t, in addition to the weather forecasts also the realized production values are 
known for the preceding hours t-1, …, t-n. In most cases, the realized production 
from all wind turbines belonging to the same wind power plant is aggregated into a 
single time series. It is worth to note that the average monthly downtime for wind 
power plant 2 is quite high, which may increase the forecast errors as the detailed 
data on downtime was not available to be taken into account when providing the 
forecasts. 

As an error measure, RMS (Root Mean Squared) errors are reported separate-
ly for each evaluated combination method. The four month forecast period con-
sisted of 2902 hourly time points. Power forecasts were generated separately for 
each month and variances of the monthly errors were calculated. Considering the 
error variances and results across different wind power plants gives information on 
the robustness of the methods. A robust method is less affected by various site 
specific factors, such as the complexity of the terrain and local weather conditions, 
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and therefore generalizes better to other locations as well. Simple average (AVG) 
is used as a baseline and the advantage of using more sophisticated combination 
methods was considered by comparing their results to the average 

The combination methods were evaluated using two test scenarios, where wind 
power forecasts are produced for the needs of the electricity market: 

1. Daily updated forecasts, where hourly power production forecasts are de-
livered once per day at 12:00 CET for the upcoming 12–36 hours using 
same weights for all horizons.  

2. Hourly updated forecasts, where updated power forecasts are delivered 
hourly for the next hour in addition to 12 and 36 hours ahead with weights 
selected separately for each forecasted hour and horizon. 

The two scenarios differ in how often updated forecasts are delivered and whether 
the weights are adjusted separately for each forecasted time point. Both forecasts 
can be used for day ahead markets, for hourly updated forecasts this means tak-
ing the available forecasts at 12:00 CET for all hours next day as basis for bids. 
Since the production of each hour needs to be forecasted, the delay between 
consecutive updates determines the required length of the forecast horizon. Daily 
forecasts pose more problems since the forecast errors increase together with the 
horizon. When the production forecasts (and bids made according to them) are 
delivered once per day and for several hours ahead, it is very likely that the 
weights of the combination would need to be adjusted during this time period, 
when new information become available. However, this is possible only when new 
forecasts are delivered, every 24 hours. This means that even if online measure-
ments of the realized production would indicate a need to readjust the combina-
tion, the already delivered forecasted production values cannot be changed. Up-
dated weights can therefore be used at the earliest when delivering the next fore-
cast. To what extent this affects the error of the combined forecast is determined 
by the stationarity of the relative accuracies of the alternative forecasts.  

This problem affects the hourly forecasts less, since new forecasts are deliv-
ered each hour. When forecasting the next hour the prediction system can react to 
changing situations faster by readjusting the combination weights at each update 
and separately for each forecasted hour and horizon, according to forecast errors 
that occurred during preceding hours.  

The prediction system was trained separately for each (monthly) test period us-
ing three months of data consisting of past meteorological forecasts and realized 
power production (in Appendix B). The training phase was performed separately 
for each wind power plant and forecast horizon. 

The combination methods weight the alternative forecasts based on past fore-
casted and realized values. Of the evaluated methods Fixed share, Kalman filter, 
Recursive least squares and AEC have been designed for online operation. They 
continuously monitor the forecast errors and adjust themselves accordingly. Apart 
from the simple average, the remaining methods (Optimal, regression, Outperfor-
mance and COM) need a separate training period to estimate the combination 
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weights. This calibration phase was repeated before each new power forecast 
delivery, using all available information so far.  

The delay between consecutive delivered forecasts restricts how often the 
combination weights may be modified. The prediction system may internally adjust 
the weights every hour after knowing the previous forecast error, but updated 
weights may be used only when combining forecasts for the following delivery. In 
this study, two cases were studied. First, keeping the weights same for all hori-
zons next day and updating once a day. Second, adjusting the weights separately 
for each horizon and updating every hour. Weights for the daily forecasts were 
only allowed to change every 24 hours. This affects the combination methods, 
since they are unaware of whether the updated weights are in use or not. Since 
the hourly forecasts are updated each hour, new weights became active immedi-
ately when forecasting the following hour.  

When producing updated forecasts for the next hour, the error from the previ-
ous forecasted hour was available and could be utilized by the prediction system. 
However, with 12 and 36 hour horizons the realized production, and therefore the 
forecast error, is known only after several time steps (determined by the length of 
the horizon) have passed. For example, when forecasting the production for hour 
t+h at hour t, the realized production for hour t-1 is known, but not for hour t+h-1. 
In other words, even though the prediction system utilizes the most recent errors 
available at each time instant, it has no information on the errors that occur after 
several hours in the future. This affects all combination methods besides averag-
ing, since they all assign the combination weights based on the past accuracy of 
the members. 

Some of the combination methods (regression, Fixed share, Recursive least 
squares and AEC) have configurable parameters that affect the behavior of the 
algorithms. The parameters control, for example, how fast the method reacts to 
changing conditions and how quickly older information gets discarded. Suitable 
values for these parameters were searched by running the prediction system as 
previously described using weather forecasts from two providers, combining the 
power forecasts using various configurations and observing how it affects the 
forecast error. Two months of data (07/01/2011–08/31/2011) was reserved for this 
purpose and not used in the actual evaluation. Further details of the parametriza-
tion can be found in [11]. 

On-site measurements of the actual wind speed and direction were not availa-
ble for this study. The weather conditions during the evaluation period 
(09/01/2011–12/31/2011) based on weather forecasts shows a relatively high wind 
period, increasing wind speeds from September to December. At the end of De-
cember there were some stormy days. Wind power plant no 6 is a high wind re-
source site, the others show similar average wind speeds.  

An excerpt of the evaluation period showing the hourly forecasted wind condi-
tions together with the realized power production can be seen in Figure 11. Pro-
vider 1 frequently forecasts higher wind speeds compared to the other two provid-
ers. The differences are larger during more windy conditions. Wind speed histo-
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grams (Figure 12) confirm the same observations. Distributions for provider 1 are 
wider and have more weight assigned to higher wind speeds.  

 

 

Figure 11. Excerpt from the evaluation period showing the alternative wind speed 
forecasts used in producing daily forecasts (12–36 hours ahead) for one of the 
wind power plants. Realized power production has been normalized by the capaci-
ty of the site. 

 

Figure 12. Histograms of forecasted wind speeds used in producing daily updated 
forecasts (12–36 hours ahead) for one of the wind power plants during the evalua-
tion period. 

The correlation for the daily updated forecasts (12–36 hours ahead) lies approxi-
mately in the range 0.84 to 0.92 for all wind power plants Correlation of forecasts 2 
and 3 is larger than the other two pairs, even exceeding 0.9. This is easy to be-
lieve since the two forecasts are based on the same HIRLAM system. In general, 
combining several forecasts usually leads to better results when the forecasts are 
not too correlated. 

Correlation between the hourly updated forecasts (next hour, 12 and 36 hours 
ahead) decreases with longer horizons. This is explained by the increasing uncer-
tainty, which also increases the differences between the forecasts.  

5.3 Results 

Detailed resuls are presented in tables of Appendix B. There is a clear benefit of 
combining that can be seen already from the simplest combination method, aver-
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aging. When considering the whole evaluation period it is rare that the average 
has a larger error than the best performing forecast using a single weather fore-
cast. However, this does happen for example for site 6. For most wind power 
plants, averaging decreases the errors of the daily forecasts (12–36 hours ahead) 
by 3–16% compared to power forecasts using a single weather forecast. The 
average forecast may not be the best performing alternative at each time point, 
but the advantage is apparent when examining the errors during a longer period.  

Comparing the remaining combination methods against averaging for the daily 
forecasts shows that improvements are very rare and minor. RLS and Kalman 
filter are clearly unsuitable for this scenario. Also Optimal method without the 
independence assumption produces remarkably large errors at most sites. When 
assuming the forecast errors as independent, the errors are decreased. Overall, 
both variants still perform at most sites worse than averaging. 

 

(a) Daily updated forecast for 12–36 hours ahead. The ordering of the power 
forecasts based on single weather forecasts varies along time. 

 

(b) Next hour forecasts. The differences between the two combination meth-
ods can be clearly seen at times when the production was zero. Kalman 
filter was able to adapt rapidly to the uncommon conditions, most likely 
caused by very high wind speeds, by adjusting the combination weights 
according to recent realized values. 

Figure 13. Absolute forecast errors for one of the evaluated sites during the last 
two weeks of December 2011 normalized by the installed capacity of the site. 
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5.3.1 Impact of using different weights for different horizons 

There is benefit of updating the forecasts hourly and the possibility of adjusting the 
combination weights after each time step and separately for each forecasted hour 
and horizon can be clearly seen in the results. Errors of the next hour forecasts 
are noticeably smaller for all wind power plants when compared to the daily up-
dated forecasts. Here averaging is not the best option, instead Kalman filter and 
RLS are substantially better than any other method (Appendix B). For both meth-
ods, using an intercept leads to improved results and can be recommended for all 
sites. Errors for Kalman filter with an intercept are 15–32% smaller compared to 
averaging. A larger fraction of the errors are small, which can be seen from the 
distributions (Figure 14). Omitting the intercept leads to large errors for sites 1, 2, 
and 5. This points out that using more sophisticated combination methods may 
occasionally be risky compared to averaging that has no configurable parameters 
and is not as condition dependent.  

The benefits of Kalman filter over averaging can also be seen by examining the 
normalized absolute errors of the next hour forecasts during the last two weeks of 
December that had the storm event (Figure 13). In addition to being overall more 
accurate, Kalman filter is able to react faster to uncommon circumstances. An 
example can be seen when the production suddenly dropped to zero, due to very 
high wind speeds exceeding the cut-off wind speed of the turbines. Kalman filter 
monitored the realized production values from the recent hours and quickly 
adapted the forecast accordingly. Compared to the averaged forecast, which re-
acts only together with the combination members, the forecast errors were signifi-
cantly smaller.  

 

 
 

Figure 14. Histograms of normalized errors of next hour forecasts for one of the 
power plants during the evaluation period.  
 
The distribution for Kalman filter is noticeably sharp, which indicates that a larger 
fraction of the errors are small. For next hour forecasts RLS produces constantly 
somewhat larger errors than Kalman filter. Compared to averaging, RLS with an 
intercept excels in all power plants and decreases the errors by 10–18%. It is also 
worth to note that in some power plants variances of the monthly errors for hourly 
forecasts are smaller with Kalman filter and RLS than with averaging. Of the re-
maining combination methods, Regression with an intercept (0.1–1.4%), Fixed 
share (1–4%) and AEC (0.4–2.0%) also improve on averaging, but with clearly 
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smaller margins. Once again, Optimal method without independence assumption 
leads often to large forecast errors.  

Updating the forecasts hourly and increasing the forecast horizon to 12 and 36 
hours affects Kalman filter and RLS the most. Their forecast errors increase very 
rapidly which makes the methods unsuitable to these two scenarios. The errors of 
Fixed share and AEC also increase, and are either larger than with averaging or 
lead to very minor improvements. The remaining methods occasionally improve 
slightly over averaging, but the results are site specific and not significant. 

Interestingly, improvements resulting from combining using averaging increase 
when the horizon is longer. When forecasting 36 hours ahead averaging performs 
better than NWP-2 also for wind power plant 6. This is most likely explained by the 
fact that the weather forecasts are less correlated with longer horizons, and com-
bining forecasts is usually more beneficial when the members differ more from 
each other. It is also in line with the general advice that recommends combining 
forecasts in situations with higher uncertainty. 

5.3.2 Selecting the combination members 

In addition to selecting a combination method, one also needs to pick the fore-
casts to be included in the combined forecast. When having more than two fore-
casts available, it becomes possible to discard some forecast(s) from the combi-
nation altogether. In the evaluation, three weather forecasts were available for 
wind power plants 4 and 5, and therefore it was possible to test the combination 
methods using all four possible combinations of the alternative power forecasts 
(Appendix C).  

When comparing the forecast errors of using various combination members 
one notices that they are in line with the previous analysis: averaging is still very 
favorable for daily updated forecasts, and Kalman filter together with RLS for next 
hour forecasts. For all scenarios, the best combination varies according to the 
selected combination method and forecasted wind power plant. Combining fore-
casts 2 and 3 is frequently the worst option. This is most likely explained by the 
fact that these two are the most correlated among all forecast pairs, which usually 
decreases the expected improvements obtained by combining. Overall, differ-
ences between different combinations are often quite minor, but seem to increase 
for the hourly updated forecasts when the horizon is longer. 

An interesting question is whether a combination member should be discarded 
if its forecast error is known to be larger compared to the other members. Based 
on the results, the answer once again varies according to the wind power plant, 
forecast update delay and the selected combination method. For example, with 
next hour forecasts discarding the worst forecast decreases the error, compared 
to averaging all three forecasts at both wind power plants. However, contrary 
results (where averaging all forecasts is the best option) are also common. All 
things considered, the results show that a forecast that would not perform so well 
on its own may despite this be useful when combined with other forecasts. 
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5.4 Discussion and recommendations 

In this section the benefits of using weather forecasts from several providers and 
combining the resulting alternative power forecasts were evaluated. Previously 
used algorithms for forming the combined forecast (Optimal combination by Bates 
and Granger, linear regression, Outperformance, COM, Fixed share, AEC, Kal-
man filter and Recursive least squares) were selected and compared against the 
simplest combination method, averaging. The evaluation was carried out by gen-
erating power forecasts for six wind power plants in Finland during a four month 
forecast period. Two test scenarios were tested: First by keeping the combination 
weights the same for all hours next day (12–36 hours ahead) and updating the 
forecasts only once per day. Second by adjusting the weights separately for each 
forecasted horizon (next hour, 12 and 36 hours ahead) and updating hourly. The 
suitability of the selected methods for these purposes was evaluated using accu-
racy and robustness as criteria.  

Using several weather forecasts resulted in decreased forecast errors for most 
sites and for both test scenarios. Averaging was very close to the best performing 
combination method for daily updated forecasts with same weights for horizons 
12–36 hours ahead. For most tested wind power plants it decreased the errors by 
3–16% compared to power forecasts based on a single weather forecast. For next 
hour forecasts, Kalman filter decreased the errors by 15–32% depending on the 
site, compared to averaging. AEC and Fixed share were also more accurate than 
averaging, but one needs to consider whether the improvements are large enough 
to overweight the additional effort of implementing and configuring a more com-
plex algorithm.  

For next hour forecasts the selection of an appropriate combination method is a 
compromise between improved accuracy and implementation efforts. Averaging is 
recommended when a simple and parameter free combination method is pre-
ferred. However, the best performing combination methods are the ones originally 
designed for online operation (Kalman filter, RLS, Fixed share and AEC). Adaptive 
algorithms are able to react to changing conditions by gradually dismissing older 
information and adjusting the combination weights to take into account the fore-
cast errors during the previous time points. Especially using Kalman filter and RLS 
with intercepts lead to significant improvements compared to averaging. The 
benefits of using a Kalman filter are in line with previous research in power fore-
casting, where the method has been reported to be useful in debiasing weather 
forecasts [11, 22]. Fixed share and AEC also outperform averaging for the next 
hour forecasts. However, especially with AEC the improvements might not be 
significant enough to be worth the extra effort of implementing and configuring a 
more complex algorithm. Similar to RLS, some improvements could perhaps be 
obtained by learning their configurable parameters (learning rate etc.) separately 
for each site.  

For hourly updated forecasts 12 and 36 hours ahead the errors of the adaptive 
methods increase rapidly. This applies especially to Kalman filter, but for most 
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sites neither RLS, Fixed share nor AEC offer meaningful improvements over aver-
aging. Most likely this is caused by changes in the wind conditions during the time 
interval of producing the forecast and receiving the forecast error. If the conditions 
vary greatly during the interval, the combination weights assigned several hours 
ago will most likely be far from optimal. By considering that wind conditions and 
power production may vary on hourly basis, it is understandable that the situation 
may also vary during 12 or 36 hours. For this reason, especially Kalman filter and 
RLS are in most cases applicable only to next hour forecast. In contrast, the long-
er horizon would most likely affect the results less if the wind conditions would be 
more stationary. This could explain why RLS without an intercept improves on 
averaging in wind power plant 5 also for hourly forecasts 12 and 36 hours ahead. 
More data would be needed to determine whether this is an exception. It is worth 
to note that the varying wind conditions further explain the behavior of the adaptive 
methods also when producing daily forecasts 12–36 hours ahead. For daily up-
dated forecasts with same weights for all horizons, simple averaging is very close 
to the best performing combination method for most sites. Averaging is reliable, 
but may still perform slightly worse than the best combination member, as can be 
seen from the results for wind power plant 6. The accuracies of the adaptive 
methods depend heavily on the delay between forecast updates. The longer delay 
between consecutive daily updated forecasts puts the algorithms into an unex-
pected situation by postponing the time point when updated weights become ac-
tive. This leads to large errors, especially for Kalman filter and RLS. For daily 
updated forecasts the remaining methods (regression, Optimal, COM and Outper-
formance) seldom bring notable improvements compared to averaging. This may 
be caused by the choice of using all available information when determining the 
combination weights. Better results could perhaps be obtained by restricting the 
time window, even when weighting the data within the time window equally. 

Averaging is more beneficial with longer horizons, compared to using a single 
weather forecast. Since the combination members are weighted equally, their past 
performance is of no interest when producing the forecast. The larger benefits for 
longer horizons is most likely explained by considering that the weather forecasts 
are less correlated when made further ahead, and that combining forecasts is 
generally recommended in more uncertain conditions. Neither here do the remain-
ing methods, apart from a few exceptions, offer meaningful improvements over 
averaging. 

Varying the combination of included weather forecasts had a quite minor effect 
on the forecast error. If the weather forecasts were less correlated, the differences 
would most likely be larger. Also, having a larger pool of forecasts to choose from 
might emphasize the importance of selecting the “correct” members. Not surpris-
ingly, combining power forecasts based on the most correlated pair of weather 
forecasts was often the worst option. Therefore, correlation seems also here to be 
a good measure when selecting forecasts to be left out from the combination. The 
best performing combination members vary also according to the combination 
method. Combining all three forecasts did not always lead to the best results. 
Then again, including the worst forecast was occasionally more beneficial than 
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discarding it from the combination altogether. Due to the small differences, includ-
ing all forecasts may nevertheless be appropriate in practise. Another option 
would be to first select the combination method, and then test all the possible 
forecast combinations on archived data, and select the best performing combina-
tion for final use. 

Table 3. Recommendations based on the results of the evaluation. 

Method 
updated: 

hours ahead: 
Daily 
12–36 

Hourly 
next hour 12 36 

AVG  Simple average  yes yes  yes  yes 
KALMAN  Kalman filter  no  yes  no  no 
KALMAN-NO  Kalman filter, no intercept  no  no 1  no  no 
RLS  Recursive least squares  no  yes  no  no 
RLS  Recursive least squares, no intercept  no  no 1  no  no 
REG  Regression  no  no  no  no 
REG-NO  Regression, no intercept  no  no  no  no 
OPT Optimal combination  no  no  no  no 
OPT-IND  Optimal with independence assumption  no  no  no  no 
OUT  Outperformance  no  no  no  no 
COM  COM  no  no  no  no 
SHARE  Fixed share  no  possibly 2  no  no 
AEC  AEC  no  possibly 2  no  no 
 

1Including an intercept improves the results and increases the robustness of Kalman filter. 
2Depending on the site, improvements over averaging might not be significant enough. 
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6. Probabilistic wind power forecasts using 
multiple NWP-models 

 
Compared to deterministic point forecasts that consist of a single value for each 
forecasted time point, a probabilistic forecast provides additional information on 
the uncertainty of the forecasted values. This is used, for example, when produc-
ing interval forecasts, where the outcome is in a range within which the realized 
value will fall with a specified probability. 

In the following, two methods for producing probabilistic wind power forecasts 
are compared. The methods produce quantile forecasts by using deterministic 
point forecast as input data. A quantile forecast consists of point values such that 
a specified proportion of realized values will fall below them. Quantile forecasts 
were used to derive interval forecasts. Both evaluated methods are based on an 
empirical approach where the error distribution is estimated using a sample of 
most recently occurred errors.  

Another aim of the evaluation was to examine whether the accuracy of proba-
bilistic forecasts may be increased by using multiple weather forecasts. Point 
forecasts that were used as input data to the evaluated methods were produced 
using weather forecasts obtained from two NWP-providers. Combined interval 
forecasts that utilize all weather forecast data were produced by averaging the 
alternative forecasts in two different ways. First, by using averaged point forecasts 
as input to the interval methods. Second, by producing separate interval forecasts 
for each alternative point forecast and averaging the resulting interval forecasts.  

6.1 Probability forecasts 

In Figure 15 an example of probability quantiles is shown. The different lines in the 
figure represent probability quantiles from 5–95%, which mean that the 5% quan-
tile is the line closest to zero and 95% quantile is line nearest to 100%. These 
probability quantiles formulates probability intervals, which are illustrated with 
different colours. 90% probability interval consist an area, which is limited by 5% 
and 95% probability quantiles. Whereas, 10% probability interval is an area 
bounded by 45% and 55% quantiles. The median, or the centre of probability 
mass, is located at 50% probability quantile. It is the most likely outcome of fore-



6. Probabilistic wind power forecasts using multiple NWP-models 
 

 

42 
 

cast, which is the point-forecast or deterministic forecast of a forecast model. The 
VTT forecast model is providing this point-forecast and also NWP is giving its wind 
forecasts as point forecasts. 

 
Figure 15. Example of a probability forecast. 

6.2 Methods 

Quantile forecasts were derived from deterministic point forecasts by adding the 
estimated error of each time point to the point forecast. The error of each time 
point was estimated using past errors during similar forecasted production levels. 
For this purpose, forecast errors were stored and binned according to the normal-
ized forecasted production level when realized values became available. Break-
points were assigned at values 0, 0.2, 0.5 and 0.7. Each forecast error was placed 
into the bin corresponding to its closest breakpoint. This was done separately for 
each wind power plant and time horizon, since they are known to affect the fore-
cast errors. To make the system adaptive to changing conditions, the oldest point 
within the bin was discarded if the total number of points in the bin exceeded a 
threshold of 350 points.  

Samples belonging to each bin were used to estimate the distribution of the 
most recent forecast errors during a certain forecasted production level. With the 
first method (abbreviated later CDF), the empirical cumulative distribution function 
of past N errors within a bin was calculated as 

 

( ) =
1

( , ), (3) 

where  is an indicator function 
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( , ) = 1  ,  0 (4) 

The empirical inverse cumulative distribution of past errors was calculated as 

( ) = max  . . ( )  (5) 

and evaluated at each time point and quantile proportion to get estimates of the 
forecast errors at specified probabilities.  

With the other evaluated method (abbreviated later KDE) the distribution of 
binned forecast errors was estimated by using a kernel density estimate of the 
error distribution 

 

( ) =
1 ( )

, 

 

(6) 

where  are past errors within the bin,  the kernel function, and  the bandwidth, 
which controls the level of smoothing. For the implementation, ksdensity -
method of Matlab was used with a Gaussian kernel and automatic bandwidth 
selection to evaluate the inverse of  at each time point and quantile. 

The resulting quantile points may be used to derive intervals with specified 
coverages. For example, the range of the 90% interval was formed by using as 
endpoints estimated error values corresponding to the 0.05% (lower limit) and 
0.95% (upper) quantiles, and adding these values to the deterministic point fore-
cast. 

6.3 Study cases 

Hourly deterministic wind power point forecasts for three wind power plants in 
Finland from two different NWP-provider was used in this study. In addition, the 
two forecasts were averaged hourly to get a simple, combined point forecast. 

Deterministic forecasts were produced using a statistical model that uses pro-
duction data and wind forecasts as input (VTT model, [9]). Wind forecasts were 
obtained from two providers, and were based on different NWP-models, ECMWF 
(16 km horizontal resolution) and Hirlam (7.5 km). The wind power prediction 
model was trained and run separately using wind forecast data from both provid-
ers to get two alternative point power forecasts with 1–36 hour lead times covering 
the period 1.9.2011–31.3.2012 (5110 time points).  
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Interval forecasts were produced using the two evaluated methods, CDF and 
KDE. Three alternative point forecasts were used as input data: deterministic 
forecasts of two different NWP-providers (Foreca and FMI) and their average. 
Finally, interval forecasts obtained by using both methods were combined hourly 
by averaging the upper and lower limits for all forecasted time points. Therefore, 
interval forecasts were produced using KDE and CDF methods for each site for 
four different evaluation methods shown in Table 4.  

Table 4. Types of interval forecasts evaluated. 

Interval forecast Input to the interval method 
NWP-1 Point forecasts using weather forecasts from provider 1 
NWP-2 Point forecasts using weather forecasts from provider 2 
AVG-1 Averaged point forecasts NWP-1 and NWP-2  
AVG-2 Both point forecasts (NWP-1 and NWP-2). The two re-

sulting interval forecasts were combined by averaging the 
upper and lower limits for all forecasted time points. 

 
Table 5 gives some information about the wind farms that were used in the model-
ling. Wind farm at the Pori is a bit larger than the other two sites and it consists 10 
turbines, whereas in Oulunsalo and Hamina there are only five turbines in each 
site.   

Table 5. Wind power plants used in the evaluation. 

Location Capacity (MW) Turbines Hub height (m) 
Oulunsalo ~ 10 ~ 5 ~ 60–80 
Hamina ~ 10 ~ 5 ~ 100 
Pori ~ 15 ~ 10 ~ 60–100 

6.4 Evaluation metrics 

Accuracy was considered as the most important property when evaluating the 
interval forecasts. This was measured by calculating the portion of realized values 
that fell within the interval. The resulting empirical coverage value should be as 
close as possible to the nominal coverage of the interval, for example 70% interval 
should have values 70% of the time. The difference between the values consti-
tutes the bias of the interval forecast, and was calculated by subtracting the empir-
ical coverage from the nominal coverage. Therefore, a negative bias indicates that 
the empirical coverage was too high, i.e. the realized values fell within the interval 
too often compared with the nominal coverage.  

Sharpness of an interval forecast was measured by the average length of the 
hourly intervals. When two interval forecasts have similar biases, the one with a 
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smaller average interval length (which is sharper) should be preferred. Standard 
deviation of the interval lengths indicates to what level the interval forecast varies 
based on the current conditions. A higher value is considered favorable, since it 
indicates that the forecast has been adjusted to changing conditions by varying 
the lengths of the interval. For example, it is intuitively clear that the uncertainty of 
the forecast is higher during high winds, and that this increased uncertainty should 
lead to a change in the interval length. 

Finally, a skill score [10] for quantile with proportion  was calculated as 

 

( )( ), (7) 

where  is the realized power production of hour i,  the forecasted production 
corresponding to quantile  of hour i and  an indicator variable 

 
= 1  ,  0 (8) 

A  perfect  forecast  would  receive  a  skill  score  of  0.  The  score  is  an  attempt  to  
summarise the performance of an interval forecast by considering both the accu-
racy and interval lengths. 

When evaluating the results, 750 hours (points) were discarded from the begin-
ning of the test period to take into account that both methods require past forecast 
errors for estimating the error distributions. Therefore the actual test period con-
sisted of 4360 points. 

6.5 Results 

The following analysis is based on the results of evaluating interval forecasts with 
90% coverage. In other words 90% ( = 0.9%) of realized values should fall within 
the interval during the test period. Correspondingly, the skill scores have been 
calculated for quantile forecast corresponding to the 90% quantile. 

Comparing the biases of the CDF-method when using different point forecasts 
as input shows that AVG-2 leads to smallest biases for most horizons (Figure 16). 
The bias for AVG-2 interval forecasts are often positive and lie in the range -0.5–
2.5% for all sites and horizons. This means that the empirical coverages were too 
low. Differences to AVG-1 forecasts are quite small, approximately up to 0.5 per-
centage points. Differences between NWP-1 and NWP-2 are approximately 0.5–
1.0 percentage points in favour of NWP-2.  

Results for interval forecasts produced using the KDE-method show that the bi-
ases lie in the range -2.0–3.0%. With KDE, using point forecasts AVG-1 leads to 
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smaller biases compared to using AVG-2. In Oulunsalo and Hamina, AVG-1 is the 
most accurate interval forecast for most horizons. In Pori, NWP-2 leads to slightly 
smaller biases. In most cases NWP-2 is more accurate than NWP-1. 

Overall, it can be seen that utilizing several weather forecast providers im-
proves the accuracy of interval forecasts. Next, CDF and KDE forecasts were 
compared side by side. Both weather forecasts providers were used based on the 
approach that were previously found to lead to smaller biases: AVG-2 (i.e. averag-
ing the two interval forecasts) was used with CDF and AVG-1 (averaging the two 
point forecasts used as input) with KDE. The results for the two methods are in 
most cases quite close to each other (Figure 18). This is also reflected in the skill 
scores that are very similar (Figure 19). There clearly is no significant difference 
between the two methods. The increasing uncertainty when forecasting with long-
er horizons is apparent when examining the length of the intervals (Figure 20): 
both methods produce longer intervals when the forecast horizon is further ahead. 
Average length increases from 22% at to almost 45%, relative to the production 
level. In other words, the methods compensate the higher uncertainty by making 
the intervals longer. This explains why the biases do not seem to depend on the 
horizon. On average, intervals of CDF are slightly longer than with KDE, especially 
above horizons of 12 hours, although the differences are only up to a couple of 
percentage points. There is no big difference on average length of interval fore-
casts (Figure 20), other than that the curvature of Hamina’s standard deviation 
differs from the other two sites. 

Probabilistic wind power forecasts may be derived from deterministic point 
forecasts by collecting past forecast errors, evaluating the error distribution at 
specified points and adding the result to the forecasted values for each time point. 
The evaluated two methods resulted in biases that lay the range -1.0–2.5% for the 
90% interval forecast.  

 
 



6. Probabilistic wind power forecasts using multiple NWP-models
 

47 
 

 

 

 

 

Figure 16. Biases of interval forecasts produced using the CDF-method for Oulun-
salo (top), Hamina (middle) and Pori (bottom). 
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Figure 17. Biases of interval forecasts produced using the KDE-method for Oulun-
salo (top), Hamina (middle) and Pori (bottom). 
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Figure 18. Biases of CDF and KDE interval forecasts. 

 

Figure 19. Skill scores (Equation 5) of CDF and KDE interval forecasts. 
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Figure 20. Average length (top) and standard deviation of hourly lengths (bottom) 
of CDF and KDE interval forecasts.   

6.6 Probability forecasting for aggregated production  

In the previous chapter methodology how to draw probabilistic forecasts was in-
troduced. Also, tools to analyse probability intervals were shown. In this chapter 
similar study will be carried out, however whereas in the previous chapter the 
weight was given to probability intervals of single wind power plants in this chapter 
aggregated wind power production is studied. There will be two cases where ef-
fects of aggregation are studied. First, aggregated values of three wind power 
plants, which are the same as in Chapter 6. Second, aggregated values of 30 wind 
power plants in Finland. However, ensemble forecast is possible to perform only 
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for the three wind farms since the NWP data from FMI is only received from those 
three points. NWPs from Foreca-ECMWF are available for 30 wind farms. Thus, 
the averaged point-forecast, AVG and averaged quantile forecast, AVG2 are not 
possible to calculate when examining probability intervals from 30 wind farms. 

The results of aggregation can be seen in Figure 21 to Figure 26. From Figure 
21 one can see that the skill-scores are clearly improving (increasing) as a wider 
area is used for aggregating wind power production. Skill score tries to combine 
both the accuracy and length of the interval into one metric. Thus, a clear im-
provement in skill-score will definitely will lead to more accurate forecasting inter-
vals.  

 

Figure 21. Skill-score for different look ahead hours. KDE stands for Kernel Densi-
ty Estimation and CDF Cumulative Distribution Function. Aggregated forecasts 
have higher skill-scores than single turbine sites. 

Figure 22 shows how the uncertainty decreases as more wind farms are aggre-
gated together. The average 90% interval width varies between 16–30% of nomi-
nal capacity for three aggregated wind farms, and between 11–24% for 30 aggre-
gated wind farms.  

It is natural that the interval widths will increase as forecasted further to the fu-
ture since the uncertainty of wind forecast provided by NWP forecast will increase 
with increasing forecasting horizon.  
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Figure 22. Width of 90% probability interval for different look ahead hours. Aggre-
gated forecasts have smaller intervals than single turbine sites. 

Aggregation has also effects on the standard deviation as it is possible to see from 
Figure 23. Aggregation significantly lowers standard deviation, as interval width is 
not varying as much as it is for single wind power plants. The main reason for 
reduced variability of width is spatial smoothing effect, which levels out wind power 
production. This is quite understandable since for one site power production can 
vary a lot from time to time and therefore the interval widths must be flexible in 
order to consider this variability. However, when aggregating more wind turbine 
sites, the power production is levelled out and thus the interval widths can be more 
static. The same study would have been done to other than 90% probability inter-
val, but wide probability intervals are usually providing more information than the 
narrow probability intervals. 
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Figure 23. Standard deviation of 90% probability interval. Aggregated forecast 
forecasts do not have as variable uncertainty interval widths for different weather 
situation than the single turbine sites. 

In Figure 24 to Figure 26 aggregated data from three wind power plant s are used. 
Average interval widths have a tendency to grow as the forecast horizon increas-
es, see Figure 24. This can be explained so that uncertainty of 2 hours ahead 
forecast is much lower than the uncertainty of 24 or 36 hours ahead forecast. 
 

 
Figure 24. Average interval width on different probability intervals for forecasts 2, 
24 and 36 hours ahead for three aggregated sites. 

The development of different probability intervals, as the forecast horizon increas-
es, can be seen in Figure 25. Since, the forecast model considers last measured 
power when making the 36-hour forecast ahead; there is some non-linearity in the 
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couple first hours of forecasting horizon. However, as the horizon increases, its 
dependency to the last measured power starts to diminish, which happens for 
forecast horizons 5–6 hours ahead, and after that the interval width increases 
quasi-linearly. The same phenomena can be also seen from Figure 22. 

 

 
Figure 25. Development of probability interval widths for different probability inter-
vals for three aggregated sites. 

In Figure 15 and Figure 26 a probability forecast of wind power is shown. There 
are many properties, which are important to understand. The following explanation 
will be made for single turbine, and the same analogy will work for aggregated 
wind production data but different wind speeds. First of all, since the wind power 
curve is a strongly a nonlinear process, which has properties that on the middle of 
the power curve small deviation in wind speed will cause a large deviation in wind 
turbine’s output. Thus, if the wind speed will fluctuate approximately between 4–10 
m/s, the output will change in relation of cube of wind speed. However, if the wind 
speed is lower than 4 m/s or higher than 10 m/s, the wind to power conversion is 
much flatter in these areas and thus small deviations in wind speed will only cause 
small deviations in the power output of a wind turbine. When looking at the Figure 
15 one can see that the probability distribution is really compact on the first seven 
look-ahead hours. This is due to two different aspects, first the previous mentioned 
small variability of wind power plant output in low wind speeds, and secondly, 
intervals should be smaller on average when forecasting to near future, as it is 
possible to see from Figure 22. As the wind power forecast increases to 50% of 
the nominal capacity, the uncertainty increases notably as different probability 
quantiles starts to spread from the median quantile, which is a sign of increased 
uncertainty. One could notice from Figure 15 how well the forecasted power pro-
duction corresponds to actual power production. This is not necessarily always the 
case. Thus, in Figure 26 another example of interval forecast is shown where 
forecast has a level error and therefore the actual power is quite frequently outside 
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of the 90% probability interval. Although, the actual power is outside of the 90% 
probability interval it does not mean that the intervals are necessarily badly adjust-
ed. By the probability theory there should be 10% of the time when the realization 
of power production should be outside of the 90% probability interval. Therefore, 
one could ask why not to use 99.9% probability intervals. The answer is simple, by 
the probability theory if a high reliability level is chosen, upper and lower quantiles 
are reaching the extreme values most of the time and thus there won’t be much 
information on those intervals 
 

 
Figure 26. Example of probability forecast for three aggregated sites where there 
is some level error. 
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7. Summary and discussion 
 
In this publication short term forecasting of wind power is studied mainly from a 
wind power producer point of view. The forecast errors and imbalance costs from 
the day-ahead Nordic electricity markets are calculated based on real data from 
distributed wind power plants. Improvements to forecasting accuracy are present-
ed using several wind forecast providers, and measures for uncertainty of the 
forecast are presented.  

Imbalance cost calculations have been made for years 2010–2012 for over 20 
wind turbine sites in Finland. Predictions are calculated by VTT’s wind power 
prediction model, and the prediction errors were calculated for each site with one 
hour resolution for day-ahead trading purposes (12–36 hours ahead). The predic-
tions errors were calculated for different sizes of geographical areas, starting from 
one site and ending with calculating prediction errors for the aggregation of all 
sites. Aggregation of sites lowers relative share of prediction errors considerably, 
up to 60%. The balancing costs were also reduced up to 60%, from 3 €/MWh for 
one site to 1–1.4 €/MWh to aggregate 24 sites. Pooling wind power production for 
balance settlement will be very beneficial, and larger producers who can have 
sites from larger geographical area will benefit in lower imbalance costs. The ag-
gregation benefits were already significant for smaller areas, resulting in 30–40% 
decrease in forecast errors and 13–36% decrease in unit balancing costs, depend-
ing on the year. The resulting costs are strongly dependent on Regulating Market 
prices that determine the prices for the imbalances. Similar level of forecast errors 
resulted in 40% higher imbalance costs for 2012 compared with 2011. Thus, in-
creasing prices in the Regulating Power Market will impact the imbalance costs in 
future. The forecasting model development will improve the accuracy, which may 
slow down the impact that increasing wind power has on the balancing market 
prices.   

The analyses presented will give some insight also from the system operator 
(TSO) point of view of. It is beneficial to have dispersed wind power production. 
Also improving the accuracy, and correcting errors before delivery will result in 
less demand for balancing power from the Regulating power markets. 

Improving the accuracy of forecast models is one way to minimize the predic-
tion errors. Using more elaborate forecasting models will also incur a cost to the 
producer, however, when larger amounts of wind power are predicted, the costs 
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for forecasting can usually be gained by reduced imbalance costs. Another meas-
ure to reduce the errors is by dispersing wind power plant sites on wider geo-
graphical area to decrease relative prediction errors. Another way to reduce the 
imbalances from day-ahead forecasts is to use intra-day markets. However, it is 
not straightforward to decide whether to correct the forecast errors at intraday 
market Elbas. When wind power share is still low, the forecast errors are penal-
ised only about 50% of the time. This will only be known after the delivery hour 
and therefore it is possible that a market participant is correcting imbalances, 
which are not causing any costs in the balancing settlement. The revenue for 
Finnish wind power producers will not necessarily increase although a market 
participant places bids to the Elbas-market. For large wind penetration levels, like 
the case of Denmark, intra-day trading can effectively reduce balancing costs. 
Probably already at lower shares of wind power, correcting the larger forecast 
errors in the intra-day market would be cost effective for the producer, and this 
would also reduce the impact of wind power on the balancing markets and system 
imbalances 

Combining wind forecasts from different Numerical Weather Prediction provid-
ers was studied with different combination methods for 6 sites. Averaging different 
providers’ forecasts will lower the forecast errors by 6% for day-ahead purposes 
where this robust method gave best results. When combining forecasts for short 
horizons like the following hour, more advanced combining techniques such as 
Kalmar filtering or recursive least squares provided better results. Of all combina-
tion methods, Kalman filter and RLS are most dependent on the delay between 
consecutive forecasts and the length of the forecast horizon. They work best when 
the combination weights are allowed to be updated frequently. 

Two different uncertainty quantification methods, based on empirical cumulative 
density function and kernel densities, were analysed for 3 sites. Combination of 
forecasts was done by averaging separate forecasts. There was no big difference 
between the methods, but the bias of 90% probability interval was a bit smaller for 
method that uses kernel densities. Probability densities were created for each 
prediction horizon separately and it was based on the past performance of deter-
ministic forecasts or prediction errors. Aggregated wind prediction data was also 
studied, and it lowered 90% probability interval width significantly. Therefore, ag-
gregation of wind power production will not only decrease relative prediction er-
rors, but also decreases the variation and uncertainty of prediction errors. 
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Appendix A: More detailed results for fore-
cast errors and balancing costs for different 
size market players 
Table A1. Detailed results of forecast error and costs for different sizes of  
producers, 2010. 

  
1 site 8 sites  

(A) 
12 sites  
(A+S) 

18 sites  
(A+S+P) 

24 sites 
 (All) 

  
            
            
Pred. Error:           
% prod. 60.7% 42.3% 35.6% 29.7% 29.6% 
% time 100.0% 100.0% 100.0% 100.0% 100.0% 
Error up:           
% prod. 30.9% 18.8% 15.9% 14.3% 13.8% 
% time 64.5% 55.6% 56.0% 57.1% 55.8% 
Error down:           
% prod. 29.8% 23.5% 19.7% 15.4% 15.8% 
% time 35.5% 44.4% 44.0% 42.9% 44.2% 
Up-reg cost:           
% prod. 10.6% 7.7% 6.0% 4.7% 4.6% 
% time 11.7% 14.2% 13.5% 13.0% 13.1% 
€/MWh, reg 11.07 10.59 10.03 10.51 13.19 
Down-reg cost:           
% prod. 10.6% 6.2% 5.1% 4.4% 4.1% 
% time 24.1% 20.0% 19.1% 19.3% 17.9% 
€/MWh, reg 17.95 13.70 14.64 16.29 18.07 
Spot price no           
error €/MWh 55.05 56.24 55.76 55.73 55.81 
Balancing cost           
€/MWh, prod 3.07 1.66 1.34 1.21 1.34 
two-price system           
Net income           
€/MWh 51.97 54.59 54.41 54.52 54.47 
MAE of energy 0.61 0.42 0.36 0.30 0.30 

 



 

A2 

Table A2. Detailed results of forecast error and costs for different sizes of  
producers, 2011. 

  1 site  9 sites 
 (A) 

13 sites 
 (A+S) 

18 sites  
(A+S+P) 

25 sites  
(All)   

            
            
Pred. Error:           
% prod. 56.3% 33.7% 25.8% 23.6% 20.9% 
% time 100.0% 100.0% 100.0% 100.0% 100.0% 
Error up:           
% prod. 33.2% 17.0% 11.3% 8.1% 9.8% 
% time 65.2% 56.1% 51.6% 45.1% 52.1% 
Error down:           
% prod. 23.1% 16.8% 14.5% 15.5% 11.2% 
% time 34.8% 43.9% 48.4% 54.9% 47.9% 
Up-reg cost:           
% prod. 6.1% 5.0% 4.3% 4.5% 3.7% 
% time 10.2% 13.6% 15.5% 17.4% 15.9% 
€/MWh, reg 11.33 14.25 15.44 13.10 13.78 
Down-reg cost:           
% prod. 15.9% 7.5% 5.5% 3.6% 4.8% 
% time 29.2% 24.9% 23.2% 19.1% 23.5% 
€/MWh, reg 11.23 10.62 10.86 10.78 10.18 
Spot price no           
error €/MWh 47.31 48.94 48.70 47.97 48.42 
Balancing cost           
€/MWh, prod 2.47 1.51 1.26 0.99 1.00 
two-price system           
Net income           
€/MWh 44.84 47.44 47.44 46.98 47.43 
MAE of energy 0.56 0.34 0.26 0.24 0.21 
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Table A3. Detailed results of forecast error and costs for different sizes of  
producers, 2012. 

  1 site 9 sites 
(A) 

11 sites 
(A+S) 

15 sites 
(A+S+P) 

23 sites 
 (All)   

            
            
Pred. Error:           
% prod. 52.7% 33.9% 27.4% 23.5% 20.5% 
% time 100.0% 100.0% 100.0% 100.0% 100.0% 
Error down:           
% prod. 24.3% 17.6% 16.7% 12.7% 11.7% 
% time 59.9% 56.3% 61.0% 57.9% 59.3% 
Error up:           
% prod. 28.4% 16.3% 10.7% 10.8% 8.8% 
% time 40.1% 43.7% 39.0% 42.1% 40.7% 
Up-reg cost:           
% prod. 7.3% 5.2% 3.3% 3.2% 2.4% 
% time 11.1% 13.2% 11.7% 12.3% 11.5% 
€/MWh. reg 25.38 37.44 38.87 34.65 37.01 
Down-reg cost:           
% prod. 11.1% 7.3% 6.9% 5.2% 4.7% 
% time 24.6% 23.0% 24.9% 23.4% 23.8% 
€/MWh. reg 11.48 10.84 11.56 11.32 12.21 
Spot price no           
error €/MWh 37.13 37.34 37.26 37.09 36.99 
Balancing cost           
€/MWh, prod 3.14 2.72 2.09 1.69 1.45 
two-price system           
Net income           
€/MWh 33.99 34.62 35.18 35.41 35.54 
MAE of energy 0.53 0.34 0.27 0.24 0.20 





 

 B1 

Appendix B: More detailed results for fore-
cast combinations 
Table B1. Monthly power forecasts were produced by training the prediction sys-
tem separately for each month using three months of data. 

Month Forecast period Training period 
 (month/day/year) 

9/2011 09/01/2011 – 09/30/2011 10/01/2011 – 12/31/2011 

10/2011 10/01/2011 – 10/31/2011 09/01/2011 – 09/30/2011 & 11/01/2011 – 12/31/2011 

11/2011 11/01/2011 – 11/30/2011 09/01/2011 – 10/31/2011 & 12/01/2011 – 12/31/2011 

12/2011 12/01/2011 – 12/31/2011 09/01/2011 - 11/30/2011 

Table B2. Normalized root mean squared errors (NRMSE) for all wind power 
plants during the evaluation period. Monthly error variances in parentheses. Re-
sults for Kalman filter are not included when the errors are very large. 
 
:: 12-36 hours ahead:  
Method 1 2 3 4 5 6 mean 
NWP-1  12,51 (3,57)  16,60 18,89 18,01 20,45 21,59 18,01 
NWP-2  11,81 

(2,23)  
16,42 
(9,99)  

- (-)  - (-)  - (-)  18,09 
(3,74)  

15,44 
(10,58)  NWP-3  - (-)  - (-)  18,77 

(1,43)  
17,43 

(17,05)  
20,48 

(33,19)  
- (-)  18,89 

(2,34)  AVG  11,41 (2,59)  15,90 17,36 16,52 19,27 18,19 16,44 
RLS  14,11 (5,57)  18,97 20,69 19,17 22,05 19,71 19,12 
RLS-NO  12,45 (2,55)  17,52 

(18,97)  
19,63 
(4,02)  

19,41 
(11,78)  

20,32 
(44,53)  

19,60 
(3,30)  

18,15 
(8,70)  REG  11,61 (2,13)  18,81 

(24,88)  
17,70 
(1,28)  

16,60 
(11,02)  

19,62 
(44,11)  

17,91 
(3,46)  

17,04 
(8,13)  REG-NO  11,56 (2,34)  16,99 

(8,55)  
17,68 
(1,70)  

16,68 
(10,91)  

19,63 
(38,85)  

18,05 
(2,99)  

16,76 
(7,57)  OPT  16,97 (4,64)  16,13 

(4,63)  
20,00 

(20,01)  
18,25 

(37,26)  
19,29 

(26,48)  
21,19 

(18,78)  
18,64 
(3,60)  OPT-IND  11,68 (3,24)  15,96 

(5,11)  
17,77 
(2,98)  

16,71 
(13,57)  

19,28 
(27,09)  

18,00 
(4,62)  

16,57 
(7,03)  OUT  11,51 (2,46)  15,90 

(6,14)  
17,35 
(2,21)  

16,60 
(11,05)  

19,37 
(27,35)  

18,30 
(3,77)  

16,50 
(7,50)  COM  11,54 (2,98)  15,87 

(5,33)  
17,59 
(2,74)  

16,54 
(13,36)  

19,23 
(27,41)  

17,86 
(4,31)  

16,44 
(7,10)  SHARE  11,37 (2,50)  15,90 

(6,20)  
17,40 
(2,87)  

16,51 
(11,46)  

19,25 
(28,02)  

18,20 
(3,76)  

16,44 
(7,59)  AEC  11,40 (2,29)  15,90 

(6,12)  
17,43 
(2,78)  

16,58 
(11,35)  

19,51 
(29,49)  

18,36 
(5,13)  

16,53 
(7,95)  

 
:: Next hour:  
Method 1 2 3 4 5 6 mean 
NWP-1  10,57 13,74 15,34 15,86 14,87 17,25 14,60 
NWP-2  10,51 

(1,01)  
13,89 
(3,72)  

- (-)  - (-)  - (-)  16,30 
(5,09)  

13,57 
(8,45)  NWP-3  - (-)  - (-)  15,85 

(3,59)  
16,32 
(8,12)  

15,41 
(4,22)  

- (-)  15,86 
(0,21)  AVG  10,42 (1,19)  13,68 15,27 15,73 14,94 16,31 14,39 

KALMAN  8,86 (1,89)  11,23 11,48 10,67 11,12 12,62 11,00 
KALMAN-

 
 11,93 
(3,45)  

27,45 
(2,27)  

11,95 
(1,19)  

12,39 
(2,29)  

16,68 
(15,15)  

13,44 
(4,52)  

15,64 
(36,67)  RLS  9,08 (0,75)  12,35 

(4,24)  
12,87 
(2,25)  

14,12 
(2,99)  

12,25 
(0,94)  

14,04 
(3,48)  

12,45 
(3,38)  RLS-NO  9,78 (0,57)  13,35 

(5,60)  
13,63 
(2,24)  

15,05 
(5,45)  

13,19 
(0,67)  

14,65 
(4,54)  

13,27 
(3,48)  REG  10,38 

(1,34)  
13,67 
(3,00)  

15,2Z3 
(3,30)  

15,69 
(6,62)  

14,73 
(2,79)  

16,14 
(4,88)  

14,31 
(4,42)  REG-NO  10,43 (1,29)  13,78 

(3,26)  
15,25 
(3,50)  

15,74 
(6,59)  

14,80 
(2,66)  

16,21 
(5,29)  

14,37 
(4,42)  OPT  12,12 (4,07)  14,56 

(3,60)  
17,40 

(14,82)  
17,07 

(14,81)  
15,18 
(3,47)  

16,84 
(5,83)  

15,53 
(4,05)  OPT-IND  10,49 (1,40)  13,77 

(3,50)  
15,38 
(3,68)  

16,02 
(7,52)  

15,03 
(3,39)  

16,27 
(6,21)  

14,50 
(4,62)  OUT  10,46 (1,21)  13,69 

(3,44)  
15,29 
(3,41)  

15,80 
(6,24)  

14,95 
(3,30)  

16,39 
(5,48)  

14,43 
(4,62)  COM  10,48 (1,36)  13,74 

(3,52)  
15,34 
(3,63)  

15,91 
(7,17)  

14,98 
(3,31)  

16,25 
(5,99)  

14,45 
(4,55)  SHARE  10,14 (1,06)  13,53 

(3,45)  
14,72 
(2,93)  

15,19 
(5,45)  

14,50 
(2,65)  

15,64 
(5,21)  

13,95 
(3,99)  AEC  10,34 (1,19)  13,62 

(3,49)  
15,06 
(3,16)  

15,49 
(5,96)  

14,80 
(2,95)  

15,96 
(5,51)  

14,21 
(4,22)  
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:: 12 hours ahead: 
Method 1 2 3 4 5 6 mean 
NWP-1  11,82 (2,43)  16,17 16,60 17,31 19,10 20,14 16,85 
NWP-2  11,57 

(1,82)  
15,92 
(9,41)  

- (-)  - (-)  - (-)  17,10 
(2,51)  

14,86 
(8,47)  NWP-3  - (-)  - (-)  17,31 

(5,16)  
17,34 

(11,95)  
19,71 

(27,05)  
- (-)  18,12 

(1,90)  AVG  11,12 (1,77)  15,61 15,76 16,40 18,40 17,21 15,75 
RLS  13,41 (5,18)  17,45 16,44 18,16 19,58 21,20 17,71 
RLS-NO  11,92 

(2,56)  
16,50 

(15,36)  
15,93 
(5,11)  

17,53 
(7,68)  

17,97 
(16,95)  

20,16 
(4,72)  

16,67 
(7,55)  REG  11,37 (1,41)  17,63 

(20,07)  
15,88 
(3,42)  

16,63 
(7,84)  

18,69 
(28,99)  

17,23 
(3,47)  

16,24 
(6,58)  REG-NO  11,32 

(1,52)  
16,30 
(9,86)  

15,86 
(4,03)  

16,63 
(7,88)  

18,68 
(29,27)  

17,07 
(3,01)  

15,98 
(6,14)  OPT  15,80 

(17,99)  
18,31 

(12,93)  
17,95 
(9,62)  

16,98 
(13,08)  

19,85 
(19,40)  

18,39 
(10,07)  

17,88 
(1,89)  OPT-IND  11,46 (2,33)  15,81 

(7,92)  
16,52 
(5,73)  

16,79 
(12,06)  

18,40 
(23,09)  

17,10 
(3,93)  

16,01 
(5,70)  OUT  11,23 (1,61)  15,73 

(8,98)  
15,89 
(4,40)  

16,51 
(8,53)  

18,46 
(25,52)  

17,27 
(3,82)  

15,85 
(6,13)  COM  11,30 (2,11)  15,72 

(8,39)  
16,19 
(5,08)  

16,60 
(11,19)  

18,37 
(24,09)  

17,04 
(3,77)  

15,87 
(5,83)  SHARE  11,09 

(1,73)  
15,61 
(9,17)  

15,84 
(4,28)  

16,42 
(8,38)  

18,56 
(26,77)  

17,25 
(3,67)  

15,79 
(6,46)  AEC  11,08 (1,57)  15,63 

(9,17)  
16,08 
(4,12)  

16,55 
(7,86)  

18,89 
(27,84)  

17,65 
(3,72)  

15,98 
(7,15)  

Method 1 2 3 4 5 6 mean 
NWP-1  13,10 17,90 19,89 19,38 21,88 22,90 19,18 
NWP-2  11,77 

(2,72)  
17,32 

(12,80)  
- (-)  - (-)  - (-)  18,91 

(5,75)  
16,00 

(14,06)  NWP-3  - (-)  - (-)  19,02 
(1,34)  

17,40 
(11,71)  

20,86 
(31,08)  

- (-)  19,09 
(2,99)  AVG  11,61 (2,52)  16,96 17,97 16,88 20,03 18,84 17,05 

RLS  14,24 22,14 24,28 20,58 20,25 25,34 21,14 
RLS-NO  12,17 (3,32)  20,12 

(36,90)  
18,91 
(1,26)  

20,25 
(23,55)  

19,34 
(15,15)  

22,05 
(8,77)  

18,81 
(11,74)  REG  11,68 (2,35)  19,48 

(24,30)  
18,24 
(0,91)  

16,89 
(6,76)  

20,62 
(46,40)  

18,58 
(4,29)  

17,58 
(9,91)  REG-NO  11,64 (2,55)  18,22 

(12,96)  
18,16 
(1,24)  

17,14 
(6,46)  

20,65 
(39,36)  

18,78 
(3,75)  

17,43 
(9,40)  OPT  18,38 

(32,25)  
17,70 
(6,44)  

21,33 
(26,85)  

18,16 
(20,29)  

20,50 
(25,54)  

22,12 
(13,70)  

19,70 
(3,46)  OPT-IND  12,41 (1,70)  16,80 

(6,20)  
18,93 
(3,94)  

16,75 
(7,42)  

20,49 
(23,86)  

19,05 
(5,36)  

17,40 
(8,05)  OUT  11,75 

(2,44)  
17,14 
(7,03)  

18,03 
(1,99)  

17,03 
(6,67)  

20,09 
(27,00)  

19,08 
(2,57)  

17,19 
(8,45)  COM  12,16 (1,63)  16,84 

(6,48)  
18,60 
(3,33)  

16,67 
(6,92)  

20,27 
(24,53)  

18,88 
(4,00)  

17,24 
(8,01)  SHARE  11,57 

(2,47)  
16,98 
(7,22)  

17,90 
(2,08)  

16,85 
(7,02)  

20,08 
(27,15)  

18,68 
(2,61)  

17,01 
(8,51)  AEC  11,61 (2,24)  17,27 

(9,79)  
18,03 
(2,40)  

17,10 
(7,60)  

20,33 
(26,88)  

18,90 
(3,25)  

17,21 
(8,93)  
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Table B3. Percentage changes in forecast errors (NRMSE). Power forecasts 
using a single weather forecast (NWP-1, NWP-2 and NWP-3) and the remaining 
combination methods are compared against averaging. Results for Kalman filter 
are not included when the errors are very large. 

Daily updated forecasts 
(same weights for all horizons) 

:: 12-36 hours ahead: 
site: 

Method 1 2 3 4 5 6 
NWP-1 8,79 4,25 8,11 8,26 5,78 15,75 
NWP-2 3,4 3,2 - - - -0,54 
NWP-3 - - 7,53 5,2 5,89 - 
AVG 0 0 0 0 0 0 
RLS 23,69 19,36 19,21 16,03 14,42 8,36 
RLS-NO 9,08 10,18 13,09 17,47 5,46 7,76 
REG 1,74 18,31 1,99 0,45 1,8 -1,55 
REG-NO 1,27 6,91 1,86 0,98 1,84 -0,78 
OPT 48,76 1,49 15,25 10,48 0,12 16,51 
OPT-IND 2,33 0,41 2,38 1,16 0,05 -1,01 
OUT 0,84 0,01 -0,06 0,49 0,49 0,64 
COM 1,16 -0,18 1,37 0,12 -0,19 -1,8 
SHARE -0,4 0,03 0,27 -0,04 -0,11 0,06 
AEC -0,13 -0,01 0,39 0,38 1,23 0,93 
       

Hourly updated forecasts 
(separate weights for all hours and horizons) 

:: Next hour:    
Method 1 2 3 4 5 6 
NWP-1 1,37 0,5 0,45 0,78 -0,52 5,45 
NWP-2 0,87 1,53 - - - -0,05 
NWP-3 - - 3,64 3,59 3,01 - 
AVG 0 0 0 0 0 0 
KALMAN -14,97 -17,85 -24,83 -32,17 -25,58 -22,63 
KALMAN-NO 14,47 100,73 -21,77 -21,23 11,64 -17,57 
RLS -12,85 -9,68 -15,73 -10,24 -18,01 -13,91 
RLS-NO -6,18 -2,41 -10,78 -4,38 -11,71 -10,19 
REG -0,39 -0,08 -0,3 -0,29 -1,41 -1,04 
REG-NO 0,06 0,79 -0,14 0,02 -0,96 -0,61 
OPT 16,34 6,43 13,89 8,48 1,56 3,3 
OPT-IND 0,7 0,72 0,7 1,82 0,6 -0,22 
OUT 0,34 0,1 0,1 0,42 0,03 0,53 
COM 0,52 0,47 0,45 1,08 0,28 -0,32 
SHARE -2,72 -1,04 -3,66 -3,46 -2,99 -4,11 
AEC -0,77 -0,43 -1,38 -1,53 -0,98 -2,11 
       

 
 :: 12 hours ahead: 

Method 1 2 3 4 5 6 
NWP-1 5,96 3,44 5,03 5,24 3,63 14,52 
NWP-2 3,92 1,92 - - - -0,68 
NWP-3 - - 8,92 5,41 6,63 - 
AVG 0 0 0 0 0 0 
RLS 20,6 11,79 4,29 10,72 6,38 23,17 
RLS-NO 7,21 5,72 1,04 6,9 -2,34 17,1 
REG 2,3 12,93 0,72 1,39 1,54 0,12 
REG-NO 1,84 4,43 0,58 1,4 1,49 -0,85 
OPT 42,12 17,26 13,9 3,57 7,86 6,82 
OPT-IND 3,1 1,26 4,79 2,37 -0,01 -0,65 
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OUT 0,98 0,75 0,82 0,65 0,31 0,32 
COM 1,69 0,73 2,68 1,2 -0,16 -0,98 
SHARE -0,22 -0,01 0,51 0,12 0,83 0,2 
AEC -0,36 0,14 1,99 0,92 2,64 2,52 
       

:: 36 hours ahead: 
Method 1 2 3 4 5 6 
NWP-1 11,31 5,24 9,65 12,92 8,46 17,75 
NWP-2 1,33 2,05 - - - 0,42 
NWP-3 - - 5,53 3,01 3,95 - 
AVG 0 0 0 0 0 0 
RLS 22,62 30,52 35,1 21,95 1,08 34,54 
RLS-NO 4,77 18,6 5,21 20,01 -3,45 17,09 
REG 0,58 14,85 1,48 0,09 2,93 -1,36 
REG-NO 0,19 7,43 1,05 1,57 3,09 -0,28 
OPT 58,26 4,34 18,67 7,58 2,35 17,46 
OPT-IND 6,87 -0,96 5,32 -0,78 2,29 1,15 
OUT 1,2 1,06 0,31 0,88 0,28 1,29 
COM 4,68 -0,69 3,51 -1,26 1,17 0,26 
SHARE -0,35 0,12 -0,39 -0,17 0,22 -0,83 
AEC -0,05 1,82 0,33 1,33 1,48 0,32 

 

Table B4. Forecast errors (NRMSE) when varying the combination members (C1, 
C2, etc). Results for Kalman filter are not included when the errors are very large. 

Daily updated forecasts (same weights for all horizons) 
         
:: 12-36 hours ahead: 

 
site 4: site 5: 

Method C1 C2 C3 C4 mean C1 C2 C3 C4 mean 
NWP-1 18,01 18,01 18,01 - 18,01 20,45 20,45 20,45 - 20,45 
NWP-2 17,16 - 17,16 17,16 17,16 20,38 - 20,38 20,38 20,38 
NWP-3 17,43 17,43 - 17,43 17,43 20,48 20,48 - 20,48 20,48 
AVG 16,08 16,52 16,34 16,51 16,36 19,06 19,27 19,28 19,68 19,32 
RLS 19,79 19,17 19,5 18,33 19,2 21,8 22,05 20,03 21,64 21,38 
RLS-NO 21,69 19,41 19,99 17,2 19,57 20,13 20,32 18,76 19,45 19,67 
REG 16,34 16,6 16,54 16,7 16,54 19,48 19,62 19,61 20,07 19,69 
REG-NO 16,4 16,68 16,59 16,77 16,61 19,43 19,63 19,59 19,99 19,66 
OPT 19,36 18,25 18,95 19,54 19,03 19,03 19,29 19,34 19,7 19,34 
OPT-IND 16,59 16,71 17,02 16,69 16,75 19,05 19,28 19,34 19,75 19,36 
OUT 16,17 16,6 16,46 16,52 16,44 19,08 19,37 19,27 19,69 19,35 
COM 16,33 16,54 16,79 16,56 16,56 19,02 19,23 19,28 19,7 19,31 
SHARE 16,13 16,51 16,4 16,49 16,38 18,97 19,25 19,29 19,64 19,29 
AEC 16,12 16,58 16,52 16,46 16,42 19,25 19,51 19,53 19,8 19,52 
           

 
 Hourly updated forecasts (separate weights for all hours and horizons) 

:: Next hour: 

 
site 4: site 5: 

Method C1 C2 C3 C4 mean C1 C2 C3 C4 mean 
NWP-1 15,86 15,86 15,86 - 15,86 14,87 14,87 14,87 - 14,87 
NWP-2 15,84 - 15,84 15,84 15,84 14,92 - 14,92 14,92 14,92 
NWP-3 16,32 16,32 - 16,32 16,32 15,41 15,41 - 15,41 15,41 
AVG 15,6 15,73 15,52 15,83 15,67 14,81 14,94 14,71 14,97 14,86 
KALMAN 11,02 10,67 10,67 10,25 10,65 11,32 11,12 10,98 11,55 11,24 
KALMAN-NO 12,59 12,39 12,3 12,94 12,56 11,68 16,68 11,15 11,6 12,78 
RLS 14,79 14,12 14,17 14,54 14,41 12,99 12,25 12,25 12,53 12,51 
RLS-NO 15,37 15,05 14,74 15,12 15,07 13,72 13,19 13,17 13,52 13,4 
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REG 15,54 15,69 15,52 15,73 15,62 14,62 14,73 14,61 14,77 14,68 
REG-NO 15,59 15,74 15,57 15,79 15,67 14,68 14,8 14,67 14,83 14,75 
OPT 16,92 17,07 18,16 16,14 17,07 14,89 15,18 14,81 14,99 14,97 
OPT-IND 15,78 16,02 15,79 15,82 15,85 14,85 15,03 14,71 14,99 14,9 
OUT 15,6 15,8 15,53 15,94 15,72 14,81 14,95 14,8 14,97 14,88 
COM 15,72 15,91 15,69 15,82 15,78 14,83 14,98 14,7 14,98 14,87 
SHARE 14,89 15,19 15,04 15,47 15,15 14,25 14,5 14,37 14,73 14,46 
AEC 15,32 15,49 15,3 15,72 15,46 14,67 14,8 14,62 14,89 14,74 

:: 12 hours ahead: 
Method C1 C2 C3 C4 mean C1 C2 C3 C4 mean 
NWP-1 17,31 17,31 17,31 - 17,31 19,1 19,1 19,1 - 19,1 
NWP-2 16,27 - 16,27 16,27 16,27 19,15 - 19,15 19,15 19,15 
NWP-3 17,34 17,34 - 17,34 17,34 19,71 19,71 - 19,71 19,71 
AVG 15,79 16,4 15,75 16,12 16,01 18,18 18,4 18,22 18,8 18,4 
RLS 21,84 18,16 22,86 17,74 20,15 19,53 19,58 19,68 20,39 19,8 
RLS-NO 21,56 17,53 22,64 17,04 19,69 17,93 17,97 17,87 18,29 18,02 
REG 15,93 16,63 15,93 16,28 16,19 18,47 18,69 18,46 18,95 18,64 
REG-NO 15,95 16,63 15,94 16,25 16,19 18,45 18,68 18,42 18,93 18,62 
OPT 17,96 16,98 18,72 17,93 17,9 18,35 19,85 18,83 18,92 18,99 
OPT-IND 16,2 16,79 16,2 16,18 16,34 18,21 18,4 18,21 18,9 18,43 
OUT 16,06 16,51 15,86 16,2 16,16 18,24 18,46 18,26 18,87 18,46 
COM 16,02 16,6 16,02 16,13 16,19 18,17 18,37 18,18 18,85 18,39 
SHARE 15,81 16,42 15,71 16,14 16,02 18,31 18,56 18,23 18,82 18,48 
AEC 15,95 16,55 15,86 16,3 16,16 18,51 18,89 18,44 18,94 18,69 

:: 36 hours ahead: 
Method C1 C2 C3 C4 mean C1 C2 C3 C4 mean 
NWP-1 19,38 19,38 19,38 - 19,38 21,88 21,88 21,88 - 21,88 
NWP-2 17,77 - 17,77 17,77 17,77 21,44 - 21,44 21,44 21,44 
NWP-3 17,4 17,4 - 17,4 17,4 20,86 20,86 - 20,86 20,86 
AVG 16,43 16,88 17,06 16,74 16,78 19,85 20,03 20,36 20,35 20,15 
RLS 19,51 20,58 17,87 19,92 19,47 32,39 20,25 24,1 25,55 25,57 
RLS-NO 19,35 20,25 17,6 19,58 19,2 24,03 19,34 24,65 22,41 22,61 
REG 16,6 16,89 17,16 17,01 16,92 20,45 20,62 20,82 20,81 20,68 
REG-NO 16,8 17,14 17,36 17,09 17,1 20,43 20,65 20,81 20,79 20,67 
OPT 24,12 18,16 20,93 22,37 21,39 20,84 20,5 20,51 20,77 20,66 
OPT-IND 16,58 16,75 17,12 17,01 16,86 20,2 20,49 20,38 20,71 20,44 
OUT 16,69 17,03 17,34 16,76 16,95 19,92 20,09 20,43 20,43 20,22 
COM 16,39 16,67 16,96 16,85 16,72 20,02 20,27 20,36 20,56 20,3 
SHARE 16,43 16,85 17,06 16,75 16,77 19,88 20,08 20,37 20,38 20,18 
AEC 16,81 17,1 17,42 17,05 17,1 20,06 20,33 20,5 20,52 20,35 
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Abstract Wind power cannot be dispatched so the production levels need to be forecasted 
for electricity market trading. Lower prediction errors mean lower regulation balanc-
ing costs, since relatively less energy needs to go through balance settlement. 
From the power system operator point of view, wind power forecast errors will 
impact the system net imbalances when the share of wind power increases, and 
more accurate forecasts mean less regulating capacity will be activated from the 
real time Regulating Power Market. 

In this publication short term forecasting of wind power is studied mainly from a 
wind power producer point of view. The forecast errors and imbalance costs from 
the day-ahead Nordic electricity markets are calculated based on real data from 
distributed wind power plants. Improvements to forecasting accuracy are presented 
using several wind forecast providers, and measures for uncertainty of the forecast 
are presented.  

Aggregation of sites lowers relative share of prediction errors considerably, up 
to 60%. The balancing costs were also reduced up to 60%, from 3 €/MWh for one 
site to 1–1.4 €/MWh to aggregate 24 sites. Pooling wind power production for 
balance settlement will be very beneficial, and larger producers who can have sites 
from larger geographical area will benefit in lower imbalance costs. The aggrega-
tion benefits were already significant for smaller areas, resulting in 30–40% de-
crease in forecast errors and 13–36% decrease in unit balancing costs, depending 
on the year. The resulting costs are strongly dependent on Regulating Market 
prices that determine the prices for the imbalances. Similar level of forecast errors 
resulted in 40% higher imbalance costs for 2012 compared with 2011. 

Combining wind forecasts from different Numerical Weather Prediction provid-
ers was studied with different combination methods for 6 sites. Averaging different 
providers’ forecasts will lower the forecast errors by 6% for day-ahead purposes. 
When combining forecasts for short horizons like the following hour, more ad-
vanced combining techniques than simple average, such as Kalmar filtering or 
recursive least squares provided better results. 

Two different uncertainty quantification methods, based on empirical cumulative 
density function and kernel densities, were analysed for 3 sites. Aggregation of 
wind power production will not only decrease relative prediction errors, but also 
decreases the variation and uncertainty of prediction errors. 
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In this publication short term forecasting of wind power is studied 
mainly from a wind power producer point of view. The forecast errors 
and imbalance costs from the day-ahead Nordic electricity markets 
are calculated based on real data from distributed wind power 
plants. Improvements to forecasting accuracy are presented using 
several wind forecast providers, and measures for uncertainty of the 
forecast are presented.
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