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Introduction to constrained Gibbs energy methods in process and
materials research

Monifaasisysteemien laskenta rajoitettua Gibbs’in energian minimointia käyttäen.
Pertti Koukkari. Espoo 2014. VTT Technology 160. 100 p. + app. 11 p.

Abstract
In process and materials chemistry, digitalization with computational methods has
been a long-time continuing process. The methodology based on numerical methods
in reaction kinetics as well as for fluid phase thermodynamics applying equations
of state has been well established. During the last two decades, however, multi-
phase technology based on the minimization of Gibbs free energy has made progress
in such fields of process and materials chemistry, where the conventional methods
have not been applicable. Recent advancements also include introduction of such
new Gibbs’ian algorithms, which, in addition to complex equilibrium problems,
facilitate modelling of time-dependent dynamic changes in multi-phase systems.

Within the said period, VTT has been an active performer in the development of
multiphase Gibbs’ian techniques. The research work performed at VTT has led to
several new algorithms with practical industrial applications. The particular focus
has been the development of the Constrained Gibbs Free energy minimization
technique, where instead of material balances and stoichiometric relations derived
thereof, also immaterial physical conditions are applied as constraints in the free
energy minimizing calculation.

In this report, the method of constrained Gibbs energy minimization for calculat-
ing chemical equilibria in arbitrary multiphase systems is derived using basic
thermodynamic concepts. The method of Lagrange undetermined multipliers is
introduced for a simple system of an ideal gas phase and a number of condensed
phases, constrained by the number of moles of the system components. The use
of additional constraints in the Gibbs energy minimization procedure is facilitated
by applying the concept of generalised work-coefficients as the Lagrange multipli-
ers of immaterial components in the system. The thus introduced method of imma-
terial constraints in Gibbs energy minimization is illustrated with a number of sim-
ple practical examples such as electrochemical Donnan equilibria applied for pulp
suspensions, surface equilibria and systems constrained by reaction kinetics via
the extent of chemical reactions. A few examples of non-equilibrium and parametric
phase diagrams calculated with the immaterial constraints are also given. Finally,
the applicability of the method for biochemical systems is shortly discussed.

Keywords Gibbs free energy, constrained minimization, immaterial constraint, work-
coefficient, extent of reaction, paraequilibrium
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Monifaasisysteemien laskenta rajoitettua Gibbsin energian
minimointia käyttäen

Introduction to constrained Gibbs energy methods in process and materials research.
Pertti Koukkari. Espoo 2014. VTT Technology 160. 100 s. + liitt. 11 s.

Tiivistelmä
Laskennallisten menetelmien käyttö prosessi- ja materiaalitekniikassa on jatkunut
useiden vuosikymmenien ajan uusien numeeristen tekniikoiden käyttöönoton
seuratessa tietokoneiden laskentatehon kasvua. Etenkin reaktiokinetiikkaan, vir-
taustekniikkaan ja termodynamiikan tilanyhtälöihin perustuvat menetelmät ovat
saavuttaneet vahvan jalansijan myös näiden alojen teollisuudessa. Lisäksi kahden
viimeksi kuluneen vuosikymmenen aikana termodynaamiset monifaasimenetelmät,
jotka perustuvat tilanyhtälöiden asemesta systeemin vapaan energian (Gibbsin
energian) minimointiin, ovat voittaneet alaa etenkin sellaisissa prosessi- ja materi-
aalitekniikan tasapainosovelluksissa, joissa perinteiset tilanyhtälömenetelmät ovat
osoittautuneet riittämättömiksi. Termodynaamisen tasapainolaskennan ohella on
kehitetty Gibbsin energiaan nojaavia algoritmeja, jotka mahdollistavat myös ki-
neettisesti rajoitettujen ajasta riippuvien monifaasisysteemien simuloinnin.

VTT:llä 1990-luvun puolivälistä jatkuneessa tutkimustyössä on kehitetty erityinen
rajoitetun vapaan energian laskentatekniikka osittaisten ja ajan suhteen rajoitettujen
kemiallis-termodynaamisten systeemien kvantitatiiviseen tarkasteluun. Menetelmä
perustuu termodynaamisen vapaaenergiafunktion käyttöön, ja sen minimin numeeriseen
ratkaisuun systeemiä tai sen osaa kulloinkin rajoittavien ehtojen voimassaollessa.
Uuden lähestymistavan ero perinteiseen Gibbsin energian minimointiin nähden on
menetelmän kyky käyttää ainetase-rajoittimien lisäksi fysikaalisesti perusteltuina
rajoittimina systeemin aineettomia ehtoja.

Tässä julkaisussa monifaasisysteemeille soveltuva rajoitetun Gibbsin energian
menetelmä johdetaan termodynaamisista perussuureista. Vapaa energia minimoidaan
soveltamalla Lagrangen määräämättömien kertoimien tekniikkaa yksinkertaiselle
monifaasisysteemille, jota rajoitetaan suljetun systeemin ainetaseella. Aineettomien
rajoitusten käyttö minimoinnissa on tämän jälkeen esitetty yleistettyjen työkertoimien
ja vastaavien työkoordinaattien avulla, jolloin Lagrange-kertoimet antavat ratkaisuna
aineettomien systeemikomponenttien kemialliset potentiaalit. Tällä tavoin laajen-
netulla vapaaenergian laskentatekniikalla on havaittu olevan runsaasti sovelluksia,
joista yksinkertaisin esimerkein kuvataan rajoitetun vapaaenergiatekniikan käyttö
sähkökemiallisen Donnan-potentiaalin määräämiseen kuitususpensioissa sekä
edelleen sen soveltaminen reaktiokineettisesti rajoitettujen monifaasisysteemien ja
kemiallisten reaktorien laskentaan. Materiaalitekniikan sovelluksista käsitellään
monikomponenttisysteemien pintaenergialaskenta sekä partiaalisten ja koostu-
musrajoitteisten faasitasapainojen laskeminen. Lopuksi arvioidaan vielä lyhyesti
mahdollisuuksia soveltaa termodynaamista laskentaa biokemiallisille systeemeille.

Avainsanat Gibbs free energy, constrained minimization, immaterial constraint, work-
coefficient, extent of reaction, paraequilibrium
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Preface

These notes on multiphase chemical thermodynamics have evolved during ca 20
years of university short course lecturing while simultaneously developing ad-
vanced thermodynamic methods for various problems, often with practical indus-
trial significance. The notes have been used as supporting material for teaching
computational thermodynamics as an intensive course. During this period of time,
the adaptation of the modern computational approach has created a completely
new way to treat multicomponent and multi-phase problems in chemical thermo-
dynamics. The new opportunities offered by modern computers and data pro-
cessing have encouraged both long-standing compilation of comprehensive ther-
modynamic databases and development of new algorithms for thermodynamic
problem solution.

The worldwide community of expert thermochemists has developed a contem-
porary methodology, which is based on active use of computational techniques in
connection with the classical Gibbs’ian theory on multiphase systems. The ad-
vances are eminent within both the international academic community and in in-
dustry when the rigorous and systematic approach of chemical thermodynamics
has been connected with the performance in data-processing of the present-day
computers. Novel extensive models have been developed for complex mixtures for
high-temperature slags and melts as well as for concentrated aqueous solutions while
simultaneously the multicomponent methodology has been successfully applied
for interrelated material properties. Use of Gibbs’ian thermodynamics in process
modelling and simulation has become a part of the development of best available
and new emerging technologies striving for improved sustainability.

Concurrent thermodynamic databanks cover fields for many classes of sub-
stances ranging from organic and biochemical systems to various inorganic and
metallurgical materials. The systematic data storage and management in connec-
tion with the increasing numerical capability of modern computers enables the
treatment of the thermochemistry of complex systems as a whole. Thus, accurate
theoretical studies of the phase stability and equilibria of systems with a great
number of chemical components can be made. Recent advancements also in-
clude introduction of such new algorithms, which facilitate modelling of time-
dependent dynamic changes in multi-phase systems.

The text will serve as an introduction to the calculation basis of well-defined
thermochemical systems when the actual equilibrium calculation is made with the
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multi-component Gibbs energy minimization technique. The basic thermodynamic
functions as well as the formulation of the chemical potentials used in these calcu-
lations will be presented shortly for the introduction of the min(G) principle. The
focus is, however, not in the conventional Gibbs’ian technique nor in its most widely
spread applications of calculating global chemical equilibria and equilibrium phase
diagram for ideal and non-ideal thermodynamic systems, but in the application of
the Gibbs energy minimization method for problems which are subjected to other
conditions than those directly derived from the stoichiometry or the mass balance
of the system under consideration.

The minimization of Gibbs energy is solved by using the method of Lagrange
with mass balance constraints of the independent components as the subsidiary
conditions. Following this, the use of complementary, immaterial constraints is
introduced and their physical significance in connection with the general Gibbs
equation is outlined. A number of examples with immaterial constraints are ex-
plained in more detail.

The first 5 Chapters are devoted to fundamental concepts and equations. The
fundamental concepts are briefly presented through conventional mathematical
techniques of classical thermodynamics and without illustrations. By following the
simple calculus, the systematic route from fundamental concepts of work and heat
to Entropy and Gibbs free energy should become evident. [Temperature, pressure
and amount of matter are then chosen as the independent variables]. Other well-
known thermodynamic potentials are not considered, as the Gibbs free energy is
by far the most useful when applying computational methods and as there are a
great number of comprehensive texts introducing potentials with alternative choices
of independent variables.

No specific treatment of the excess Gibbs energy models of various systems is
given. Their detailed presentation would be beyond the scope of this kind of text
and for a general reader it is more important to understand the broad idea of the
division of the chemical potential to its ideal an non-ideal (excess) parts in all kind
of real systems. An exception is made in terms of the introduction of Equation of
States (EOS) into the Gibbs’ian multiphase domain, as this has rarely been done
and will provide new opportunities for the multiphase modelling of organic sys-
tems. Chapters 6-8 deal with Gibbs free energy minimization and its relation with
the conventional expression of chemical equilibrium.

The constrained Gibbs free energy method (CFE) is explained in Chapter 9.
Chapters 10-15 involve applications of the CFE method. In Chapter 16 the con-
ventions of biochemical thermodynamics are presented and their connection with
CFE is shortly explained.

As for notation, the formalism of generalized work coordinates and work coeffi-
cients, originally introduced by Haase has been used quite extensively. Though
this approach may appear less specific and less familiar, it is well-founded for the
later introduction of the constrained Gibbs energy method, where the different
work terms appear as formally equivalent.



7

Contents
Abstract ........................................................................................................... 3

Tiivistelmä ....................................................................................................... 4

Preface ............................................................................................................. 5

List of abbreviations ........................................................................................ 9

List of symbols .............................................................................................. 10

1. Introduction ............................................................................................. 13

2. Basic concepts ........................................................................................ 15

3. Work, heat and enthalpy ......................................................................... 17
3.1 Generalised work.............................................................................. 17
3.2 Energy and heat ............................................................................... 18
3.3 Enthalpy ........................................................................................... 19
3.4 Partial molar quantities ..................................................................... 21
3.5 Heat capacity ................................................................................... 22
3.6 Enthalpy and heat in open systems ................................................... 23

4. Entropy and its properties ...................................................................... 25
4.1 Entropy and chemical potential ......................................................... 25
4.2 Properties of entropy ........................................................................ 27

5. Gibbs energy of the system .................................................................... 29

6. Entropy and Gibbs function at chemical equilibrium ............................. 31

7. Basis for Gibbs energy calculations ....................................................... 35
7.1 Conventions for pure substances and ideal mixtures .......................... 35
7.2 Non-ideal mixtures ............................................................................ 37
7.3 Use of Equation of State (EOS) data ................................................. 39
7.4 Overview of the Lagrange method for Gibbs energy minimization ....... 41



8

8. Law of mass action for the chemical equilibrium ................................... 47

9. The minimization problem with immaterial constraints ......................... 50

10. Surface energies of mixtures .................................................................. 56

11. Electrochemical potential and Donnan equilibria in multiphase
systems ................................................................................................... 60

12. ‘Resistances to change‘ in systems with metastable equilibria ............. 65

13. Immaterial constraints related to extents of reaction ............................. 67

14. Use of actual reaction kinetics in Gibbs’ian calculations ...................... 70
14.1 Rate controlled Gibbs energy methods .............................................. 70
14.2 Example 1. A simple reaction kinetic system ...................................... 72
14.3 Example 2.  Use of reaction quotient and/or affinity in the

reaction rate expression .................................................................... 74
14.4 Example 3. Anatase-rutile transformation .......................................... 75
14.5 Features of the virtual species in kinetically constrained calculations ..... 77

15. Non-equilibrium and parametric phase diagrams .................................. 81
15.1 Uses of phase diagrams ................................................................... 81
15.2 Paraequilibrium diagrams ................................................................. 81
15.3 Partial equilibria in reactive systems (isoaffinity diagrams) ...................... 84
15.4 Parametric diagrams for magnetic systems ....................................... 86

16. Conventions used in biochemical thermodynamics .............................. 89

17. Concluding remark.................................................................................. 94

Acknowledgements ....................................................................................... 96

References ..................................................................................................... 97

Appendices

Appendix A: Notation for heterogenous and open systems

Appendix B:  The sources of entropy (relation between entropy and heat)

Appendix C:  Example: Solution of CO/CO2/O2 equilibrium with the Lagrange-
method

Appendix D:  Linearization of the Lagrangian equations



9

List of abbreviations

CFE constrained Gibbs (free) energy minimization

EOS equation of state
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SGTE Scientific Group Thermodata Europe (www.sgte.org)

VL Vapour-liquid system

VLE Vapour liquid equilibrium
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List of symbols

A surface or interfacial area m2

molar surface area m2.mol-1

unit (molar) area m2.mol-1

affinity of reaction J

B magnetic flux density T

VP CC , heat capacity at constant P or V J.mol-1.K-1

E energy J

F Faraday constant 96485 C mol

G Gibbs free energy J

'G free energy function matching system specific
constraints J

H enthalpy J

I ionic strength of aqueous solution mol.dm-3

aa QK , equilibrium constant and reaction quotient
based on activities

thermodynamic work coefficient

thermodynamic work co-ordinate

M molar magnetisation J.T-1 mol-1

P pressure Pa = N m

Q heat J

R gas constant J.mol-1.K-1

S entropy J.K-1
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T temperature K, C

U internal energy J

W work J

Z arbitrary extensive property

( × ) matrix of stoichiometric coefficients

stoichiometric coefficient between component
 and species . Element of

activity of species

( × 1) column vector of molar amounts of
components mol

molar amount of component mol

molar concentration of species 3dmmol

kf̂ fugacity Pa = N m

Lagrangian function

number of components in the system

magnetic moment J.T-1

molal concentration of species 1
OH2

kgmol

number of species in the system

number of components in the system

( × 1) column vector of molar amount of
species mol

amount of species mol

, charge total charge of region C

number of reactions

mole fraction of species

constant mole fraction of substitutional spe-
cies k

, charge total charge of region C

charge number of species k

A frequency factor s

aE activation energy J.mol-1
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chemical reaction rate constant (p = order of
reaction)

1131 )(dmmol spp

number of reactions

chemical reaction rate 13dmmol s

time s

activity coefficient of species k

electrochemical potential V

electric potential V

k̂
fugacity coefficient

Lagrange multiplier j

Donnan distribution coefficient

chemical potential of species k J.mol-1

stoichiometric coefficient of species k in reac-
tion r

chemical potential of component j J.mol-1

volume constraining osmotic or other pressure Pa = N m

surface tension J.m-2

The used subscripts and superscripts are explained in the text.
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1. Introduction

During the last decades quite some effort has been laid on computational thermo-
dynamics with main focus on its equilibrium applications in materials science and
complex multiphase chemistry, in particular for studies of global chemical equilib-
ria and construction of phase diagrams. Then, there still appear little or no treat-
ments of computational multiphase thermodynamics with emphasis in process
simulation. However, applications in this field have extensively been developed
during the last 20 years, while the advantages of using Gibbs’ian thermodynamic
methods in process models have also become more evident. In chemical engi-
neering there is a much longer tradition in process simulation with extensive use of
thermodynamic equations of state for different conditions. Such methods are suc-
cessful for processes where a limited number of fluids appear as major phases.
For more complex systems with brines and solid phases, mineral processing,
metallurgy, steelmaking as well as in pulp and paper chemistry more degrees of
freedom are needed and it has proven advisable to use Gibbs free energy models.
The accuracy of such models, due to their ability to reproduce the rich multi-phase
chemistry and thermodynamic state properties is often astonishing, even when
applied to complex industrial processes.

The use of state properties also allows for linking between various phenomena,
whether physical, chemical or even biological. The simulation model appears
useful, if it may bring together quantitative and interdisciplinary relations and de-
pendencies. Particularly in macroscopic systems, where thermal, electrical or
mechanical functions affect the chemical or biochemical changes, the state prop-
erties based on Gibbs energy provide a general methodology to be applied for
quantitative calculations.

Yet, the conventional global equilibrium methods are not always applicable, as
the systems often are constrained by other factors than their (internal) molar
abundancy, the other constraining factors including effects due to e.g. electro-
chemical, -magnetic, interfacial or mechanical work. Such conditions can be taken
into account by using conserved immaterial components in the Gibbs’ian calcula-
tion system. The immaterial components may represent a physical entity (such as
surface area) or be deduced as virtual aids from a given physical condition (e.g.
partitionless phase transformation). Their introduction with the Constrained Free
Energy method (CFE) enables the use of work-related constraints into the con-
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temporary Gibbs energy minimization routines. This method also allows for sys-
tematic and rigorous simulation of various partial equilibria, including those con-
strained by reaction kinetics while the assumption of local chemical equilibrium
(LCE) is valid for the ‘unconstrained’ reactions. The significance of the CFE meth-
od is thus quite considerable, as its applications range in materials science from
complex surface tension calculations to metallurgical paraequilibria and in process
simulation from electrochemical Donnan equilibria (e.g. in pulp suspensions) to the
use of Gibbs’ian methods in kinetically controlled chemical reactor engineering.

Applying multi-phase thermodynamics in process simulation inherently provides
treatment of non-isothermal systems in process modelling as the free energy data
will be used as temperature dependent. By applying the constrained minimization
method the extent of reaction can be introduced to the thermodynamic calculation
as an additional time-dependent parameter, the calculation then resulting with the
non-zero affinities of the kinetically constrained reactions (at the global equilibrium
all affinities of chemical reactions must of course be zero). For chemical reactors, the
non-isothermal CFE simulation allows for the effect of the changing temperature on
incremental reaction rates. Heat exchange between the system (often called as
the control volume of simulation) and its surroundings is also straightforward to
include by using an appropriate heat transfer model. Thus, the chemical change
becomes simulated as a thermodynamic ‘natural process’, and the result of the
calculation can be verified to follow the basic laws of the thermodynamic theory.

The text pursues to serve as an introduction to the usage of the advanced
Gibbs free energy techniques in process and materials research. The focus is thus
on the basic methods. As for more sophisticated treatments, the reader is referred
to a number of former publications while several industrial applications have also
been described earlier (Koukkari 2009).

The formalism used in this text follows that of Haase (Haase 1990), whose ex-
cellent introductory part of ‘Fundamental concepts’ is recommended for more
extensive studies on macroscopic thermodynamics. Some features have also
been adapted from the classic books of Lawden (Lawden 2005) and Guggenheim
(Guggenheim 1977). However, in the present text the basic concepts of chemical
thermodynamics have been gathered while keeping in focus their further use in
Gibbs energy minimization calculations and in particular their significance when
introducing the constrained Gibbs energy minimization method.
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2. Basic concepts

In Figure (2.1) a volume element of a chemical reactor in correspondence with its
surroundings is shown. In the following, the thermodynamic equations to interpret
any chemical processes in the control volume are compiled. The basic laws of
thermodynamics will be followed, yet without their axiomatic representation

The volume element in Figure 2.1 may, when calculations concerning its ther-
mochemical behaviour are done, be treated as a thermodynamic system. A system
which is so separated from the outside world that no matter can pass through the
system boundary is called closed. A system, which may exchange matter with its
surroundings is called open. Respectively, expressions ’’closed region’’ or ’’open
region’’ may be used. The term isolated is used of a system which is cut off from
all exchange with the surroundings and thus applies to a system, which does not
exchange heat or other forms of energy with its surroundings.

The variables which describe the system macroscopically are called state vari-
ables. For the thermodynamic application, the internal variables such as internal
energy, temperature, pressure, volume, amounts of different substances etc. are
the most meaningful. The state variables are represented by macroscopic meas-
urable quantities. The thermodynamic theory also gives consistent mathematical
relations for these quantities, thus providing the basis for chemical calculus.

An intensive variable is independent of the quantity of matter considered and
has a definite value at each point of the materially filled space. An extensive quan-
tity is proportional to the quantity of matter in the region considered and is in-
creased by n times when the amount of all substances present is increased n
times at a fixed value of the intensive variables. For example, temperature (T) and
pressure (P) are intensive variables; volume (V) is an extensive quantity.

With changing internal variables (e.g. varying chemical composition) the system
of Figure 2.1 experiences a process called state change. The processes that ac-
tually take place are called natural processes. The process is called reversible if
the conceptual change can be reversed and the system returned to its original
state without changes remaining in the surroundings of the system. All actual
processes are irreversible, that is, a system cannot be recycled with a set of state
changes without having an effect on the surroundings of the system. The concept
of a reversible process is, for example, useful to distinguish between practical
variables, such as different kinds of work (Haase 1990).
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Figure 2.1. Volume element of a chemical reactor with mass flow of reactants
(subscript R) and products (subscript P);  denotes time-dependent heat flux. The
Greek letters indicate presence of separate regions (phases).

T, P, nkmR

Q

mP
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3. Work, heat and enthalpy

3.1 Generalised work

The fundamental concepts of work are most often used for the illustration of the
macroscopic thermodynamic theory. Work is the measurable entity, which leads to
the more abstract concepts of thermodynamic potentials, and serves also to intro-
duce the fundamental principle of conservation of mass and energy. As the work
appears in several forms, it is often useful to use a single generalized concept for it.
The notation of Haase is systematic and used below in somewhat simplified ex-
pressions. The generalised reversible deformation work [Wl] is then defined for a
closed system as follows:

i
iil dlLdW (3.1)

where Li is the generalized work-coefficient with intensive character and li is the
corresponding generalized work-co-ordinate with extensive character. [The super-
script  refers to the region or phase under consideration]. Familiar examples of
work are: dWl = -PdV + dA for an isotropic system with infinitesimal compression
or expansion work (P = pressure, V = volume) and work due to surface tension (
= surface tension, A = surface area).

The general expression of work [W] performed for the region (phase)  is:

adissl dWdWdWdW        (3.2)

where Wdiss is the dissipative work due to such effects as friction, turbulence, elec-
tric conduction etc.  Alternatively for an arbitrary infinitesimal change in a system
of several regions:

*dWdWdWdW al      (3.3)

where Wa is the external work done on the system, caused by external force fields
and bringing about changes in the external co-ordinates of the system. In the latter
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expression, W* includes the dissipative work due to such effects as friction, turbu-
lence, electric conduction etc. For a system of several regions it may also contain
reversible portions in addition to the dissipation effects (Haase 1990).

It is worth emphasizing that several kinds of reversible work may be utilized in
computational chemical thermodynamics. From the point of view of ‘purely’ chemi-
cal systems, the reversible compression/expansion work –PdV is yet often the
most interesting. For this reason and also for its familiarity in classical textbooks it
will also be most frequently used below. However, several other forms of internal
or external work (electrochemical, surface, electric-magnetic) will have salient
effects on the multiphase chemistry of the interrelated properties of functional
materials and thus they become more important in the latter parts of the text.

3.2 Energy and heat

For the closed system, the following relations between energy, work and heat hold:

change)adiabatic(EW )
(3.4)

change)adiabatic-non(EW (3.5)

change)adiabatic-non(WEQ (3.6)

where E designates the energy of the system and Q is called the heat supplied to
the system from the surroundings. Thus the adiabatic change takes  place  in  a
thermally insulated system.

Accordingly, the change in energy E is:

WQE = (3.7)

WdQddE = (3.8)

where Qd and Wd  are inexact differentials, as heat and work are not functions
of state, but concepts which indicate how the change of state will occur, i.e. they
will describe the interaction of the system with its surroundings during the course
of the change. The values of Q and W thus are dependent on the path of the inte-
gration and cannot be defined by the properties of the initial and final state.

Further, the energy of a system is divided to its kinetic, potential, and internal parts:

UEEE potkin=
(3.9)
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where

U U = (3.10)

with U denoting the internal energy of the system. It will be obvious that for multi-
phase thermodynamic treatment, the interest will be in the internal changes of the
system, and consequently the internal energy is the focal quantity in what follows.

Thus for an internal state change in a closed system (Wa=0, E U ):

*W W Q= WQ=U l + (3.11)

from which particular cases such as *WU =  for the adiabatic change with con-
stant work-co-ordinates follow. This balance also sets the first law of thermody-
namics for a closed system without chemical changes. Considering a system with
merely reversible deformation work, the infinitesimal change in the internal energy
becomes:

PdVdQdU dW dQ=dU l ; (3.12)

where the latter form is for systems with reversible compression or expansion
work. The sign conventions for work and heat are illustrated in Figure 3.1.

Figure 3.1. The sign conventions for the first law of thermodynamics. The term
dn relates to chemical potentials and exchange of matter (see Chapter 4).

3.3 Enthalpy

For any region  a new state variable H  can defined in terms of the internal
energy and the reversible deformation work:

dQ > 0

µdn > 0 (µ > 0; dn > 0)

dW < 0
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HH = (3.13)

VPUVPUH +)(-- (3.14)

Equation (3.14) is valid for the isotropic region ( ) with no electrification and
magnetization (the negative pressure P  thus being the sole work-coefficient of
the region). Enthalpy (H) of the system is of extensive character. To define its
relation to work and heat, consider an internal state change in a closed system
with constant pressure. Then, omitting superscripts, from (3.1) there is:

PdVdWl

VPWl       (constant P)

and

from which

PVUH =

VPWWQVPU l *= VPWVPQ *+-=

= + *       (const. P) (3.15)

The same reasoning applies for all systems with constant work-coefficients, which
means that the energy appearing as heat or other than expansion work will equal

H in such systems which are free to expand or to contract as the process occurs.
Thus, changes in these systems due to Q (heat exchange with the surroundings)
or W* (work due to dissipation effects or, e.g. electrochemical processes) reflect in
the enthalpy state function, which is so extensively used in all practical calcula-
tions involving interrelated chemical and thermal phenomena. Typical examples of
systems with constant work coefficients are kilns and furnaces, which most often
are operated at ambient pressure. For systems that involve reactors with changing
pressure and with heat losses the definition of enthalpy from (3.14) is used to-
gether with the appropriate properties of U.

*WWQWQU l+=
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3.4 Partial molar quantities

Changes in multicomponent systems, which involve chemical reactions, will ne-
cessitate the expression of properties in terms of the amounts of matter and as
related to their molar composition. Within a single region, for an arbitrary extensive
property Z (e.g. volume, internal energy, enthalpy) there is:

),,( ki nLTZZ = (3.16)

[(index  omitted for sake of brevity)] with the temperature T, the work-
coefficients Li and the amounts nk of the substances contained in the region have
been chosen as the independent variables (Li will often be replaced by P, when
only PV work is considered). The partial molar quantity of substance k for the con-
sidered region is defined as:

kji nLTk
k n

Z
Z

,,
(3.17)

The mole fraction of species k is:

n
n

n
nx k

k
k

k
k =

(3.18)

The molar quantity is:

n
ZZm

(3.19)

and the generalized density of Z:

V
ZZV

(3.20)

Further, the extensive quantity is received from its partial molar contributors:

k
kk ZnZ = (3.21)
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This relation follows mathematically from Euler’s theorem valid for homogenous
functions of first degree and thus the extensive quantities (Z) are made up addi-
tively by a contribution Zk from unit amounts of each substance k.

Finally, from (1) the total differential of Z in terms of the temperature, pressure
and amounts of substances:

k
kk dnZdP

P
ZdT

T
ZdZ

(3.22)

where the summation is taken over all substances (nk) within the region. The par-
tial molar quantities are then as defined in Equation (3.17). While the partial deriv-
atives in terms of temperature and pressure are of so outstanding importance for
many observations in classical thermodynamics involving changes due to heat
and work, the partial molar quantities are of no less significance in systems with
chemical and phase changes. They become particularly useful when the extensive
property (Z) represents a thermodynamic potential of a multi-component multi-
phase system such as the Gibbs free energy.

3.5 Heat capacity

Considering the absorption of heat into a region (with no work done on or by the
system) either constant volume or constant pressure may be assumed. Conse-
quently, the heat capacity for such a region can be defined either by the internal
energy or by the enthalpy, as follows:

knV
V T

UC
,

(3.23)

knP
P T

HC
,

(3.24)

Thus, applying (3.22) for enthalpy:

k
kk dnHdP

P
HdT

T
HdH

Using heat capacity (CP), partial molar enthalpies (Hk) and assuming a system with
constant pressure this becomes:
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k
kkP dnHdTCdH (3.25)

for the simple chemical system. Using (3.15) in (3.25) gives:

II

I

II

I K
kkP WQdnHdTCH *

(3.26)

H C dT H dn QP k k
KI

II

I

II

(3.27)

Here, the integration is performed between two arbitrary states with different tem-
peratures TI and TII, producing the enthalpy balance of a thermodynamic system
with constant pressure. The latter expression is valid for such closed system, in
which chemical reactions may occur but no work is done on the system (W* = 0).
This relation forms the basis for the calculation of non-isothermal processes, as
the balance may be written to an arbitrary volume or system element. If the heat
transfer from the element to its surroundings is known (by measurement or from a
heat transfer function) and the composition can be deduced from a (ther-
mo)chemical solution procedure, such as Gibbs energy minimization, the tempera-
ture of the system can be solved. While the molar enthalpies as well as heat ca-
pacities are functions of temperature and the chemical composition, the solution of
T will most often be iterative, balancing the left and right hand sides of (3.27) by
solving both composition and temperature to match the known heat transfer to or
from the element.

3.6 Enthalpy and heat in open systems

When processes of practical importance are quantitatively described, it is often
necessary to define the streams of matter in terms of open systems. This will then
need some additional notation, which will specify the exchange of matter and heat
across the system boundaries. A short review of the notation for open systems,
consistent with the rest of the text has been collected in Appendix A.

The term ‘work’ is actually indeterminate for open regions. However, expressing W
for the work that would be done to region if it were closed there is (Haase 1990, p.17):

i
adissii dWdWdlLdW (3.28)

when all the individual terms to the right have definite meanings also for open
regions. This applies for the actual work-coefficients (Li) and the work-coordinates
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(li). The dissipative work and the work due to external force fields affecting the
open region in question may be calculated from their outside sources (electric-
magnetic work, lifting work in a gravitational field, acceleration work etc.).

The heat absorbed by an open phase from surroundings during an infinitesimal
state change is (cf. 3.8)

k
kek ndHdWdEdQ (3.29)

Here the relation (A1, see Appendix A) has been used for the infinitesimal in-
crease of matter either due to material transport or chemical reactions:

kekrk ndnddn (A.1)

where the subscript e refers to exchange of matter either between neighbouring
regions or with the surroundings of the entire system and subscript r refers to
chemical reactions within the system.

In (3.29) the enthalpy ‘carry-over’ due to exchange of matter between the re-
gion and its surroundings has been taken into account. For such internal changes
with dE=dU and dWa=0,

i k
kekdissii ndHdWdlLdUdQ (3.30)

or, in the more usual isotropic system without electrical or magnetic effects:

k
kek ndHPdVdUdQ (3.31)

At constant pressure one has, for the entire system, by (3.15) and (3.25):

k
kkP dnHdTCdHPVUdPdVdU )(

Using this and (A1) in (3.31) the following relation is received:

dQ C dT H d nP k r k
k

(3.32)

which then reduces to Equation (3.27) for an isotropic closed system with no ex-
change of matter from either outside or from neighbouring regions ( 0kend ).
Thus the ‘heat’ absorbed by the open region is balanced by the temperature
change of the system and enthalpy change due to the chemical reactions within
the system.
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4. Entropy and its properties

4.1 Entropy and chemical potential

The state function entropy (S) at constant amounts of substances kn  is defined by
using internal energy and volume as the complete set of independent variables for
the system where no chemical or phase changes take place. Then, the differential
form of entropy is as follows:

PdVdUTdS (4.1)

Substituting dQ from Equation (3.12) to (4.1) there is

T
dQdS

(4.2)

which connects the quantity of heat to the state properties U and S and the tem-
perature T appears as the integrating factor for dQ. This relation is due to the sec-
ond law of thermodynamics and thus the entropy differential (4.1) presents a fun-
damental equation which combines the first and second laws.

Further from (4. 1)

1
, ki nVU

ST (4.3)

P
V
ST

knU ,
(4.4)

Note that if the general form of reversible work dW L dll i i
i

 is used in-

stead of –PdV, equation (4. 4) takes the form
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i
nlUi

L
l
ST

kj ,,
(4.5)

which defines different work-coefficients in terms of the entropy state function.
Thus, all work processes have an effect on the entropy state function.

Equation (4. 1) represents the entropy change in a system, where yet no chem-
ical changes take place. When they do occur, the variable amounts of substances
as well contribute to the entropy function. Then, by analogy with the work-
coefficients (Li) there is

kjj nlUk
k n

ST
,,

(4.6)

And thus the differential of the entropy may be generalized for chemically reacting
systems:

k
kk dndVPdUdST (4.7)

Here again only –PdV work in each region has been taken into account. This is
often called the generalized Gibbs equation. The internal energy is a homogene-

ous function of degree one in terms of the extensive variables S , V  and kn , and
thus from Euler’s theorem:

k
kk nVPUST (4.8)

where k ’s refer to the chemical composition of the system and each k  is
called the chemical potential of substance k in the respective phase [ ]. The rela-
tion between entropy and chemical potential is given by the definition of k  in
Equation (4. 6). The result (4. 8) results as a conceptual integration over the quan-
tity of material present while keeping all intensive quantities such as temperature,
pressure and composition constant.

Replacing the –PdV work term with the general work-coefficients and work-
coordinates the Gibbs equation becomes

k
kki

i
i dndlLdUdST (4.9)
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and in the Euler form

k
kk

i
ii nlLUST (4.10)

The more general expressions obviously become important for systems, which, in
addition to the reversible deformation work include other kinds of reversible work
(e.g. surface work, electrification or magnetization).

4.2 Properties of entropy

The entropy of a system is an extensive quantity:

SS (4.11)

For the arbitrary state change I  II :

SSSSS iaIII (4.12)

where (again) the subscript a refers to exchange between the system and its sur-
roundings and subscript i to an internal process within the system. In terms of
differentials:

SdSddS ia (4.13)

The properties of entropy are found by experience as follows:

0Sa  (thermally insulated system) (4.14)

i S 0  (reversible change) (4.15)

i S 0  (irreversible change) (4.16)

i S 0  (impossible change) (4.17)

Thermal insulation means prevention of mass and heat exchange with the sur-
roundings. Thus a S represents the entropy change of the system due to mass
and heat exchange with the outside world and thus it may appear either positive or
negative. i S  is the entropy increase of the system due to processes taking
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place inside the system, being either positive or zero. The subscripts a and i are
respectively used for heat as daQ and diQ (see Appendix A).

Whereas S  and a S  can during an arbitrary state change be positive,

negative or zero, there always is i S 0 . This condition follows from the second
law of thermodynamics1 and thus for irreversible changes the entropy production is
always positive.

1  The change in internal energy U e.g. in an isothermal constant volume system is
U, which in the surroundings leads to the respective entropy change U/T. The

total entropy change (of the universe) is then

T
USS

T
UStotalS ia)(

 As aS must be equal with U/T, the 2nd law of thermodynamics then states that
iS  0 (for more detailed treatments see Haase 1990 or e.g. Atkins 2007).
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5. Gibbs energy of the system

The thermochemical Gibbs energy (G) is deduced from Equation (4. 10) as follows:

STlLUn
i

ii
k

kk (5.1)

STH (5.2)

G (5.3)

and with the summation of all phase contributions the extensive state function (G)
is received:

aGG (5.4)

The partial molar Gibbs energy is (see 3.17 and 3.21):

kink
k n

G
),,( kk nPT (5.5)

k k
kkkk nnG (5.6)

The Gibbs energy is deduced from the generalized Gibbs equation, its complete
set of independent variables being T and P (or, more generally Li ) with the amount
of  matter  (  ), as expressed in (5.6) on the right hand side. It is an extensive
state property, which is received from the internal energy with the respective
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change of variables (from V to P (from li to Li ), and from S to T). For any problem
dealing with chemical and phase changes, where temperature and pressure as
intensive variables are either easily held constant or can be effortlessly measured,
this choice is obviously the most practical.

The functionality of the Gibbs energy can be deduced by using its definition
(5.2) and considering the respective change of G at constant temperature and
pressure, G(T,P). By using (3.14) and (5.2)- (5.4) there is G(T,P) = U + P V -
T S. Here P V deducts the expansion work at constant pressure and -  T S the
heat transferred to the surroundings in a constant temperature reversible process
(cf. 4.12), thus leaving that part of the energy which yet may be utilized for useful
(non-expansion) work. A significant contribution to the Gibbs (free) energy is de-
duced from the changes in the chemical composition of the system, but also will
include effects arising from e.g. electric-magnetic, mechanical or interfacial work.

From Equations (5.1) and (4. 9), the differential form of Gibbs energy is

k
kki

I
i dndLldTSdG (5.7)

k
kk dndPVdTSdG (5.8)

The latter form is valid for the isotropic system with e.g. no effects due to electrifi-
cation or magnetization. For the partial molar quantities, from (5.5) and (5.2) one
has

kkk STH (5.9)

Equation (5.9) is of great importance in computational thermodynamics, as it forms
the starting point for Gibbs energy calculations. The tabulated values mostly ap-
pear in the form of molar enthalpies and entropies of chemical substances, or, as
temperature-dependent formulas of heat capacities, from which entropies and
enthalpies easily can be derived. Thus the convention of Gibbs energy calcula-
tions is most conveniently based on Equations (5.6) and (5.9). The use of enthalpy
and heat capacity data or adequate temperature-dependent Gibbs energy formu-
las also allows for direct calculation of heat balances and enthalpic processes, which
in industrial practice often appear as non-isothermal.



6. Entropy and Gibbs function at chemical equilibrium

31

6. Entropy and Gibbs function at chemical
equilibrium

As defined above, entropy is an extensive function of internal energy U, the work
co-ordinate li, and amount of substance nk. For the isotropic, ’chemical’ system
without electric and magnetic effects the work co-ordinate may be replaced by
volume V:

),,( knVUSS (6.1)

The sources of entropy are given in the following sentence (see Appendix B to
derive it):

k k k
krkkukidisskaka ndndSTQddWndSTQddST (B.6)

With the subscript notation of Appendices A and B the right hand terms are obvi-
ous giving the sources of entropy as the heat exchange between the system and
its surroundings (daQ), the transport of entropy due to exchange of matter between
the system and its surroundings (dank), dissipative work, heat transfer within the
system (diQ), the transport of entropy between the regions of the system (dunk)
and, finally due to entropy production in chemical reactions.

To keep the further treatment simple a single isotropic phase without electric of
magnetic polarization is considered below and superscripts will be omitted for
brevity. The condition for chemical equilibrium is then received for the homoge-
nous single phase (closed) system [which may, however be generalized for heter-
ogeneous and continuous systems].

The criteria of equilibrium are listed e.g. by Haase as follows:

1. The macroscopic kinetic energy of the whole system is constant
2. No exchange of matter takes place with the outside world
3. No work is done on the total system
4. No heat flows out of the surroundings into the system
5. The total volume of the system is constant.
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At equilibrium, the system experiences no changes, and all state functions will be
constant. Then, for entropy the condition dS=0 may be derived e.g. from (B.6)
using the above conditions.

First, when considering the single isotropic phase one has dunk=0 (no transfer of
material from the neighbouring regions) and diQ=0 (no heat transfer within the
system). For the closed system dank=0, and excluding dissipative work, dWdiss=0.
[Note that the latter two exclusions are also in accordance with the equilibrium
conditions 2 and 3 as listed above]. Thence from (B.6) for the homogenous,
closed system:

k
krka ndQdTdS (6.2)

In (4.13) the entropy change due to interaction between the system and the sur-
roundings and due to processes taking place inside the system was expressed as:

SdSddS ia (4.13)

then evidently from this and (6.2):

Td S d Qa a (6.3)

k
krki ndSTd (6.4)

At equilibrium, the closed system is in the same temperature as its surroundings,
and no heat transfer takes place [equilibrium condition 4.]. Thus, 0Qda  and
from (6.3) and (4.13) there is:

0QdSTd aa  (at equilibrium) (6.5)

From (6.4), (4.13) and (6.5) the chemical equilibrium condition for the closed sys-
tem thus becomes

k k
kkkrki dnndSTdTdS 0  (at equilibrium) (6.6)

The latter expression being valid since for the single phase closed system one
may write drnk=dnk [no mass transfer to/from surroundings or between phases].
Furthermore, from conditions (6.3) and (6.4), one must have dU= dW + dQ = 0,
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and directly from condition (6. 5), dV=0 (thermal and mechanical equilibrium) for
the closed system. The equilibrium conditions in terms of entropy then are:

0dS (6.7)

0,0 dVdU (6.8)

which may be compared with Equations (6.1) and (4.7).
As was stated above, in systems with chemical or phase changes the Gibbs

energy, being a function of temperature, pressure and chemical composition, is
most often the practical tool to solve equilibrium situations. There is:

),,( knPTGG (6.9)

GG (5.4)

k
kk dndPVdTSdG (5.8)

For a single isotropic phase the superscripts may be omitted and, at equilibrium,
the closed system is at constant temperature and pressure (dT = dP = 0):

k
kk dndG 0 (at equilibrium) (6.10)

which is equivalent with the condition (6.6). [Note that the equilibrium condition for
a system consisting of several regions or phases is analogous with an additional
summation over all regions [ ]]. Then the equilibrium temperature and pressure
must also be uniform throughout the system. The equilibrium criteria in terms of
the Gibbs energy become:

0dG (6.11)

0,0 dPdT (6.12)

Evidently, (6.7) and (6.11) are equivalent and represent extremum points for S and
G (dS = 0, dG = 0). By using the definition of Gibbs energy (G = H-T S = U + PV -
TS) and the properties of entropy as defined above, there is
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SdTTdSVdPPdVdUdG (6.13)

SdTSTdSTdVdPPdVPdVdQdG ia (6.14)

for the isotropic closed system, dQ = TdaS (see eq. 6.3), and at equilibrium, dT = 0
and dP = 0:

0STddG i (6.15)

At equilibrium, following the second law of thermodynamics the Gibbs free energy
reaches its minimum (T, P const.). Having a system at constant T and P, solution of
condition (6.10) then provides the equilibrium composition of the closed system at
the given conditions.

The practical balance or equilibrium calculation is usually performed for the
closed system or such (closed) system element as described in Figure (1) accord-
ing to the above principles.
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7. Basis for Gibbs energy calculations

7.1 Conventions for pure substances and ideal mixtures

The Gibbs energy of the system is given by (5.6):

k
kknG (5.6)

For any calculation to minimize G in terms of the system composition (nk’s), the
actual numeric values of the partial molar Gibbs energies ( k s' ) of the possible
system components should be known. Thus for each species k, the chemical
potential )(Tkk  must be written. All such species that can be stable under the
given conditions should be taken into account in the evaluation of the system Gibbs
energy. The minimum of G then can be reached by numerical computer methods,
e.g. by using the Lagrangian-multiplier technique (Eriksson 1975).

Though the Gibbs energy is the salient function, it is yet customary to store the
thermodynamic data in the form of standard enthalpies and entropies. The stand-
ard condition for pure substance data are T=298.15 K and P(total) = 1 bar (100 kPa).
The convention used in the thermodynamic routines then derives the chemical
potentials of pure species through the conventionally tabulated values of the en-
thalpy of formation, heat capacity and entropy of formation (Eriksson 1975, Roine
1999, Hack 2008). Thence, for each species k at constant pressure:

T
tPf HdTCHTH

298
)298()( (7.1)

T

t

tP
f T

H
dT

T
C

STS
298

)298()( (7.2)

)()()( TTSTHTG f (7.3)

and then, by agreement and for the calculations,
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)()( TGT f
o
k (7.4)

where the simplified notation refers to each pure species k at 1 bar pressure2.
Then in (7.1–7.4)

)298(fH = enthalpy of formation of species at 298.15 K

)298(fS = entropy of the species at 298.15 K

tH = enthalpy change of phase transformation

)(TCP = heat capacity of the species

),( PTo
k  = chemical potential of pure species k.

Thus the thermodynamic data is characteristically established on the basis of the
standard element reference state (SER). Then room temperature (298.15 K) and
the total pressure of 1 bar are introduced as standard conditions and the enthalpy
of formation )298(fH  of the state of the elements which are stable under these

conditions is set to zero by convention. The entropy )298(fS  is taken as its abso-

lute value and the heat capacity )(TCP  at constant pressure is presented with a
polynomial, e.g. as follows:

4
42

321)(
T
cTcTccTCP

(7.5)

Through (7.4) the chemical potential of the pure species k is fixed to )(TG f , which may

be called the Gibbs energy of formation of the pure species k at temperature T.
The calculation of the numeric values of chemical potentials in multicomponent

and multiphase mixtures then follows established physico-chemical methods. For
example, a simple ideal gas - pure condensed phases system becomes:

k
o
kk PRTPTPT ln),(),(  (ideal gas) (7.6)

)()( TT o
kk  (pure condensed phases) (7.7)

2  The superscript  has been kept for the chemical potential of the pure species, as
it will be essential in any further treatment of the chemical potentials of mixtures).
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Where Pk is the partial pressure of gaseous species k and ),( PTo
k  has been

used for the standard state of both gaseous and condensed species. For the pure
condensed phases, the chemical potential is assumed to be independent of pressure.

Using (7.6) and (7.7) in (5.6) the overall Gibbs energy of the gas-condensed
system is reached. Other conventions to define numerical values for k ’s of the
pure substances could be used, but the calculation result should be the same,
provided that consistency of the thermodynamic data is maintained.

For other ideal mixture phases than gases the chemical potential is given by an
equation similar to (7.6), where the logarithmic term is given in terms of the ideal
concentration variable, instead of the partial pressure. For the ideal Raoultian
solution, for example, there is

k
o
kk xRTPT ln),( (7.8)

where xk is the mole fraction of species k in the solution. For the Raoultian mixture
the standard value of the chemical potential ),( PTo

k  remains that of the pure sub-
stance k. When other concentration scales (e.g. molality, molar concentrations)
are used for the chemical potentials of mixtures, one should take care to define
one’s standard states according to the appropriate scale.

7.2 Non-ideal mixtures

In non-ideal mixtures the logarithmic concentration factor of the chemical potential
is generally replaced by the respective activity (ak) term. Thus, for a non-ideal
mixture there is,

k
o
kk aRTPTPT ln),(),( (7.9)

kk
o
kk xRTPTPT ln),(),( , )01lim kk x( (7.10)

where kkk xa . From (7.10) it is evident that the activity coefficient ( k ), being
a function of temperature, pressure and composition is used as a non-ideal correc-
tion factor to give the activity in terms of the concentrations. By separating the
ideal and non-ideal parts of the chemical potential, one may write in general

),(),(),( PTPTPT e
k

id
kk (7.11)

The superscripts id and e refer to ideal and non-ideal parts of the chemical poten-
tial. The e

k  is called the partial molar excess Gibbs energy of each non-ideal
species k. The excess Gibbs energies in different systems are generally given in
terms of activities and the respective activity coefficients. The activity then is the
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product of the composition factor and the activity coefficient. The current Gibbs
energy minimization routines allow a number of ways for the user to describe the
non-ideality of the calculation system, generally in terms of the excess Gibbs en-
ergies. In Table 7.1, examples of the non-ideal systems (solution models) covered
in the well-known Gibbs energy minimization routine ChemApp have been listed.
The listing is by far not ‘complete’ as additional excess Gibbs energy models are
continuously being programmed to ChemApp as well as to other respective soft-
ware packages. In Figure 7.1, a simplified data flowsheet of the Gibbs’ian calcula-
tion is presented.

Figure 7.1. Data flowsheet for Gibbs energy minimization calculations.
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Table 7.1. Examples of solution models available in ChemApp/ChemSheet (adapted
from Petersen and Hack, 2007).

Model Application area

Redlich-Kister-Muggianu
Kohler-Toop
Hoch-Arpshofen

For general use with substitutional
or associated solution phases

Compound energy formalism
Two-sublattice order/disorder formalism*

Species chemical potential/bond energy formalism*

Extended compound energy formalism

Solid phases with sublattice
descriptions

Two-sublattice ionic formalism* Ionic liquids

Two-sublattice equivalent fraction formalism
Two-sublattice equivalent fraction formalism
as a polynomial
Guts formalism

Molten salts

Gaye-Kapoor-Frohberg cell model* Modified quasi-
chemical formalism*

Ionic oxidic mixtures with or with-
out non-oxidic solutes

Quadruplet quasichemical model Condensed non-aqueous solutions

Binary defect formalism* Binary condensed phases with a
narrow stoichiometry range

Wagner Metallic dilute solutions

Davies formalism*

Helgeson-Tanger-Shock formalism (ideal)*

Helgeson-Tanger-Shock formalism (Debye-Hückel)*

Helgeson-Tanger-Shock formalism (Davies)*

Dilute aqueous solutions

Pitzer formalism*

Modified Pitzer formalism
Specific ion-interaction formalism*

Helgeson-Tanger-Shock formalism (Pitzer)*

Concentrated aqueous solutions

Revised Helgeson-Kirkham-Flowers (HKF) model* Aqueous solutions up to 5 kbar
and 1300 K

C-H-O-S-N-Ar multicomponent fluid model* Fluid mixtures up to 1 Mbar and
6000 K; important for many geo-
logical and environmental systems

Virial equation with Tsonopoulos’ second virial
coefficient correlation*

Non-ideal gas

* Magnetic contributions not permitted.

7.3 Use of Equation of State (EOS) data

In addition to the excess Gibbs energies as listed e.g. in Table 7.1, it is also possi-
ble to perform vapour-liquid equilibrium calculations by using the multi-component
Gibbs’ian approach. In general the VL (vapour-liquid) equilibria are presented in
terms of equations of state, where the non-ideality of a system is given by using
fugacities. Thus, the classical vapour-liquid equilibrium (VLE) is defined as:
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(7.12)

where y and x are the vapour and liquid molar fractions,  is the fugacity and
is the fugacity coefficient of a species in a mixture phase (hat indicating the property
in a mixture) and P is the total pressure. For example in the phi-phi model, the
fugacity coefficients express the fugacity of both the real vapour and the liquid
phase(s) relative to the ideal gas phase. Then the chemical potential of a species
in a vapour or liquid mixture can be given as:

(7.13)

where  is the standard chemical potential of a pure ideal gas species and P° is
the reference pressure (= 1 bar) at the given temperature (T).

The equation of state can be expressed as functions of P(V,T) or V(P,T). The
fugacity of a species in mixture phase can be calculated from:

(7.14)

(7.15)

Here, the former equation is suitable for EOS of type P(V,T, nk), while the latter is
suitable for V(P,T,nk). The most prominent use of an equation of state is to predict
the state of gases and liquids. As the ideal gas equation becomes increasingly
inaccurate at higher pressures and lower temperatures, it also fails e.g. to predict
condensation from a gas to a liquid. Therefore, a number of much more accurate
equations of state have been developed for gases and liquids (solids), typical
examples are van der Waals, Soave, Soave-Redlich-Kwong and Peng-Robinson
EOS (see e.g. Tester & Modell 1997). There is no single equation of state that
accurately predicts the properties of all substances under all conditions. Yet, by
using (7.11) in connection with either (7.12) or (7.13), the EOS-approach can be
incorporated into the Gibbs’ian model and combined with a multi-phase equilibrium
calculation.
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7.4 Overview of the Lagrange method for Gibbs energy
minimization

A number of methods can be used to minimise the Gibbs energy of the multi-
component thermochemical system (Eriksson 1971, Walas 1985, Smith & Missen
1991). The solution strategy can be based on independent chemical reactions in
mutual equilibria or on independent system components, the chemical potentials
of which must give the phase -independent values of the chemical potentials of the
reactants and products at equilibrium. The former, sometimes called as the stoi-
chiometric approach, results with group of nonlinear equations and requires a new
set of reaction equations to be described each time a new component is introduced
to the system. The latter (sometimes referred to as the ‘non-stoichiometric’ method) is
somewhat easier to systematize while introducing new components with the re-
spective new possible constituents. The equilibrium condition is then searched by
finding the minimum of the Gibbs free energy of the system, most often by apply-
ing the Lagrange method of undetermined multipliers. During the last few decades
the resulting non-linear equations have been successfully linearized for several com-
puter programs and thus the latter (‘non-stoichiometric’) method has become the most
widespread technique for computational free energy procedures.

In this chapter the basics of the Lagrange multiplier method is described in
terms of a simple system, which consists of pure condensed phases and ideal gas
phase. The treatment of such a simple system is but introductory as regards the
numerical minimization procedures; yet it serves to elucidate the mathematical
procedure of the Lagrange method by which the undetermined multipliers are
solved as the component potentials. This feature will then be essential while de-
veloping the aspects of the constrained Gibbs energy minimization for systems
including complementary immaterial conditions.

The following description of the pure solid phases – one gaseous mixture
phase system is essentially that of Eriksson (1971). A respective treatment for
systems with several mixture phases can be found in Eriksson (1975). See also
e.g. Smith & Missen 1991, Walas 1985, Hack 2008).

The system consists of s condensed substances and of a gaseous mixture
phase with m constituents. The amount of matter (in mol) of the gas phase are
denoted with  and the condensed with , respectively. The Gibbs energy of the
system may be written as
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The chemical elements present form the most obvious set of independent compo-
nents for the thermochemical system. Other stoichiometric combinations of the
elements may equally well be used as components, supposing that they can be
combined to form the appropriate constituents of the system. The number of com-
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ponents is denoted by NC. The mass balance constraints for the components of
the system then are:
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where

.,cg
kja  = number of atoms of the jth element in a molecule of the kth substance

in the system (superscripts g and c again refer to the gas and con-
densed phases, respectively)

bj = the amount of jth element in the system.

The mass balances are the necessary constraints for the minimization problem.
The amounts of substances and the chemical potentials of the standard state

can be expressed more concisely in the form of matrices:
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The Gibbs energy then is written as a function of the amounts of substances [mole
numbers] (nk):
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The mass-balance constraints may, respectively, be presented as a (m + s)  NC
matrix A:
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The total amount of each element can be presented in vector form as b:

),...,( 1 NCbbb (7.22)

The mass balance constraints then become defined with a single vector function (n):
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The Gibbs energy minimization is then equivalent to minimization of the function
F(n) in Equation (7.20) with the limiting condition of (n) = 0. The minimization can
be performed with the Lagrange method of undefined multipliers. With this meth-
od, the minimum of the Gibbs energy is subjected to the mass balance relations
(7.23), which are used as subsidiary conditions. The new objective function to be
minimised in terms of the amounts of matter nk is written as
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where  =  ( 1, …, NC) are the Lagrange undefined multipliers. The minimum of
L(n, ) gives the minimum of F while the mass balance condition (7.23) holds. The
respective partial derivatives in terms of the amounts (nk) and in terms of the La-
grange multipliers ( j) must be zero. Concisely, the equations to be solved are as
follows:
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Firstly, the derivatives of function F must be obtained. For the gaseous species, k
= 1,…,m and the derivative becomes:
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For the pure condensed phases, k = m + 1,…, m+ s, the derivation is more simple,
as there are only the terms due to the standard chemical potentials:
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If the total amount of moles in the gas phase is denoted by N =
m

k kn
1

, from

Equations (7.25), (7.27) and (7.28) together with (7.23) the following set of equa-
tions is received:
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The number of equations is m + s + NC, which also hold m + s + NC variables, viz.
nk with k = 1,…, m+s and j, with j = 1,…,NC.

Due to the thermochemical generality of the minimization problem, a wide va-
riety of equilibrium systems can be treated with the said equations. However,
though Equations 7.30 and 7.31 are linear, there are no efficient algorithms which
could be generally used for the non-linear equations (7.29). To ensure robust
computational solution, the problem can be linearized by using e.g. Taylor expan-
sion by using a value point nk(0) = yk as initial values. Then, an iterative solution
based on these initial estimates becomes viable, providing in general a well-
behaved numerical solution. The details of the linearization technique are presented
in Appendix D.

The Equations 7.29–7.31 form the mathematical basis for solving the equilibrium
amounts of constituents for a system of s condensed species (pure substances)
and an ideal gas phase with m constituents (see also D.10 and D.15 from Appen-
dix D). The method can be generalised for systems with a number of non-ideal
mixture phases. For these, of course, the contribution from their excess Gibbs
energies must be taken into account. This will increase the numerical complexity
of the problem but does not add conditions in terms of the system components
and constraints.

While the min(G) has been solved for any control volume, the standard thermo-
dynamic relations can be used to deduce the extensive and intensive state proper-
ties of the thus defined system (Figure 7.2). This feature is one of the main ad-
vantages of the use of Gibbs’ian technique in process simulation.

Figure 7.2. The block diagram for the Gibbs’ian thermochemical method. With the
Gibbs energy simulation all the thermodynamic state quantities can be systemati-
cally derived from the fundamental relations.
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From equation (7.30) it is noticed that the linear combination of the Lagrange m
multipliers           will always give the chemical potentials       of the pure substanc-
es (k > m+1). The result, in fact, is even more general as can be seen from equa-
tion (7.25), where the same linear combination of the stoichiometric factors and
Lagrange multipliers are connected with the partial molar Gibbs energies, i.e. the
chemical potentials of all system constituents. Thus the Lagrange multipliers of the
min(G) solution represent the chemical potentials of the independent system com-
ponents at equilibrium:
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Using the above relation in the definition of the Gibbs function by Equation (5.6)
together with the mass balance relations (7.31), the total Gibbs energy of the
system is received in terms of the Lagrange multipliers as
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These two important results will be extensively used, when additional, immaterial
constraints with the respective virtual components are introduced to the Gibbs’ian
system.
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8. Law of mass action for the chemical
equilibrium

The state of chemical equilibrium corresponds to the minimum of thermodynamic
potential with respect to the chemical composition of the system, ie. to the amount
of moles of different chemical substances. The proportions of the active masses of
the substances then arrange according to the equilibrium law of mass action. This
is usually presented by using the equilibrium constant, Ka.

It is customary to write for a single reaction between reactants (R) and products (P):

R   P (8.1)

Reactants

Products

ReactantsProducts

a
ln

a
RTGG rr

(8.2)

)(ln

Reactants

Products

a

a
QQRTGG aarr

(8.3)

where Qa is used for the reaction quotient, defined in terms of the activities of the
reactants and products during the course of the reaction. At equilibrium rG = 0,
and the reaction quotient then is equivalent with the equilibrium constant (Ka):

TR
GK r

aln (8.4)

The same will follow in general, as there exists a function G = G(T,P,nk). The function
G has a minimum at the chemical equilibrium.
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At the minimum dG =  0 (extremum point), in the thermal equilibrium dT =  0, me-
chanical equilibrium dP = 0. The chemical equilibrium requires the condition:
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when it is necessary to find the minimum of the function G = G(T,P,nk), in terms of
the amount of matter (nk-values). Equations (8.6) then stands for Equation (8.4) in
the general case (law of mass action, see example of Appendix C).

One may also describe the whole chemical change as a set of stoichiometric
reactions, each of which gains the advancement (extent of reaction) r. Then there
is dnk = r , ( kr being the stoichiometric coefficient of constituent k in the rth

chemical reaction) and the equilibrium condition is:
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From this, the two frequently used conditions for the chemical equilibrium are
deduced:

0
r

rrdAdG (T,P constant) (8.8)

and

0
,, sPTr

G
(8.9)

The above equations also define the thermodynamic affinity of a chemical reac-
tion. In general, affinity can be presented as
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with R here being the number of independent reactions in the system. Using the
chemical potentials the affinity is

ProductsReactants
kkrkkrrr GA (8.11)

If Ar >  0 the reaction will occur spontaneously. The concept of affinity is useful
when dealing with kinetically constrained systems, as it provides a thermodynami-
cally well-defined property for the development of computational tools consistent
with the Gibbs energy approach for global equilibrium.
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9. The minimization problem with immaterial
constraints

When additional energy or work terms affect the Gibbs free energy, [G = G(T,P,nk)]
it is customary to transform the total differential of the Gibbs function to read as
follows:

(9.1)

The two last terms now refer to additional energy effects, expressed instead of the
generalized work terms (Li and li factors) by their specific symbols, which in this
case are electrochemical potential ( k) and surface energy ( ),with F being the
Faraday constant, and zk the charge number, and Ak the partial molar surface area
of species k. As the Gibbs energy is an additive extensive function, further terms
due to either systemic or external force fields can be entered, respectively.

As presented in Chapter 7.4 Gibbs energy minimization involves optimization of
the non-linear G-function with linear constraints and can be performed by the
Lagrange method of undetermined multipliers. In the conventional method the
amounts of matter (mass balances) appear as necessary constraints. To incorpo-
rate the additional phenomena, a method with analogous immaterial constraints is
needed (see e.g. Koukkari and Pajarre 20061, 2011, Koukkari et al. 2007). The
Gibbs energy is again calculated as the sum of all molar Gibbs energies, weighted
by the respective amount of matter. The sum then contains all constituents as they
may be chemical species in different phases, including e.g. molecular adsorption
and surface layers, organic isomer groups, transformed biochemical metabolites
or even such virtual species, which have only been introduced to adapt the calcu-
lation procedure to solve a certain physical problem.

N

k
kknG

(9.2)

The summation covers all species and phases and thus (9.2) is equivalent with
(5.6). It was already stressed in Chapter 7 that the objective function of the mini-
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mization problem is nonlinear because the chemical potentials are complex func-
tions of the amounts of matter. The detailed mathematical form for the chemical
potentials/molar Gibbs energies depend on the applied phase models. The linear
constraints denote the balance equations set on the components forming the
constituents of the system. Using matrix notation, these limitations are expressed
as follows:

b=nAT (9.3)

As already presented in in Chapter 7.4 A is the conservation matrix, n the molar
amount vector for the constituents and b is the vector for the amount of the com-
ponents (in moles) of the Gibbs’ian system.

Together, Equations (9.2) and (9.3) constitute the problem for the Non-Linear
Programming (NLP) to be solved:

knG k 0;.t.s)(min b=nAn T (9.4)

The global minimum represents the equilibrium state with the lowest energy
reachable with the given set of constraints. The constraints typically refer to ele-
mental amounts of a closed thermodynamic system, but, as stipulated above, they
can also include conservation of various attributes or entities. The solution may
also be referred to as a constrained equilibrium. While the constraints are always
linear, the NLP min(G) problem can then be linearized with the same procedure,
which was described in Chapter 7.4.

The Lagrangian objective function to be minimized then becomes as follows

jk
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kj
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j
j bnaGL - (9.5)

where j are the undetermined Lagrange multipliers used to include the con-
straints into the objective function L, and NC is the number of components in the
system. [cf Equation (9.5). Here and henceforth the j ( = RT.

j ) are used for the
Lagrange multipliers to emphasize their role as thermodynamic potentials of the
system components]. As shown above, the solution of the variational problem then
provides both the Lagrange multipliers and the equilibrium amounts of constitu-
ents. The summation includes all system components, whether elemental abun-
dances or immaterial or even virtual entities. Using (5.5) and the extremum condi-

tion 0
kn

L for (9.5) it follows that the chemical potential of each chemical spe-

cies remains the linear combination of the Lagrange multipliers as defined by the
elements of the conservation matrix:
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Deducing the total Gibbs energy in terms of the Lagrange multipliers and the total
amounts of the components becomes respectively

(9.7)

These equations correspond the formerly deduced (7.32) and (7.33) in the simple
Gibbs’ian system. However, by taking into account such non-material entities which
may be interpreted as system components, a more general utilization of the same
relations becomes viable. Then (9.7) can be divided in two parts as follows

(9.8)

The ‘stoichiometric part’ (j NC’) of the conservation matrix A defines entirely the
amounts of elements and electrons (mass balance) of the given system. The addi-
tional components (NC’ < j NC) descend from various immaterial sources affect-
ing the Gibbs free energy of the system. To be applicable in the minimization
problem, a conservation sentence, which is analogous with the mass balance
must be written for such immaterial entities. For example, conservation of charge,
surface area and partial volumes can be expressed in this way, and thus their
contribution to the minimization procedure is straightforward. The respective con-
jugate potentials become electrochemical potential, surface energy (surface tension)
and osmotic pressure. The physical meaning of the Lagrange multipliers is then
evident as the equilibrium potentials of the components of the system, irrespective to
their ‘material content’. In the conventional Gibbs energy minimization method they
give the chemical potentials of the elements or other stoichiometrically defined
components of the equilibrium system. More generally they represent the energy
contribution of any appropriate property to the molar Gibbs energy of a constituent.

The introduction of immaterial constraints into the minimization problem then
reduces to finding the appropriate form for the conservation matrix A when the
additional terms affect the chemical composition of the system. In general, A is of
the following form (cf. Chapter 7.4, Equation 7.21)
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In the conventional minimization technique, the components represent elemental
building blocks of the constituents and the matrix elements akj are the respective
stoichiometric coefficients. In Equation (9.9) the matrix elements for the material
phase constituents remain equivalent with the conventional approach, and as
stated above the Lagrange multipliers ( j) then represent the chemical potentials
of the independent (material) components at min(G)

The additional column with subscript NC’+1 gives a new conservation equation.
The respective matrix element ak,NC+1 = 0 for all those constituents k which are not
affected by the additional constraint, whereas it is not zero for those constituents
which are affected by this constraint. The mass balance of the total system re-
mains unaltered if the molecular mass of the additional component, Mm+1, is cho-
sen to be zero. Thus, by using immaterial components, additional conservation
conditions can be included into the minimization of the objective function. Each
immaterial component also brings a new potential into the solution in the form of
the corresponding Lagrange multiplier.

In Table 9.1, characteristic examples of the immaterial constraints with their
conjugate potentials applicable in min(G) problems have been collected. The con-
straints have been written in terms of the conserved quantity and the conjugate
potential is given as the respective derivative. The table also lists some practical
conditions, where the immaterial constraining becomes useful. Characteristic
calculation examples of thermodynamically meaningful systems with immaterial
components will be presented in the following chapters.
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Table 9.1. Immaterial constraints and their conjugate potentials used in CFE models.
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Ak =  molar surface area of constituent k
A0 = unit area
A = total area of system (symbol A is often used also for the thermodynamic affinity, in

this table Aff = affinity)
= surface energy

Vk = molar surface area of constituent k
V0 = unit volume
V = total volume of a phase or subvolume within the system

= volume constraining osmotic or other pressure
zk = charge number of species k
Q = total charge of a subvolume or a phase
F = Faraday constant

= electric potential difference in a phase
uk = constant amount fraction of species k

iM  = molar Gibbs energy change due to magnetization

B = magnetic flux density
M0 = unit magnetization
vkr(i) = stoichiometric coefficient for species k in reaction r(i)

i = advancement of reaction i

Affi = affinity of reaction i
R = gas constant
T = temperature
I = ionic strength of aqueous solution
mk = molality of solute k

, B = constants related to aqueous electrolyte activity theories
k = activity coefficient of solute k
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10. Surface energies of mixtures

In Equation (9.1) the last term shown on the right hand side includes the surface
energy ( ) and the surface area (A) of the thermodynamic system. The surface
energy, often also named as surface tension is known to be a function of tempera-
ture, pressure and composition = (T,P,nk). The composition of the surface layer
in general differs from that of the bulk, due to molecular rearrangement in the
vicinity of the interface. In classical thermodynamics, the surface layer is then
conventionally treated as a separate phase, for which e.g. the chemical potentials
of the surface species are well defined (Guggenheim 1977, Butler 1932). It is then
easy to follow this convention while introducing a simple example of the use of
immaterial (work term related) constraints in Gibbs energy minimization. The
Gibbs’ian method for surface energies was first outlined by Pajarre et al. in 2006.
In this text the notation by Koukkari et al. (2007) is mainly followed.

A surface monolayer in equilibrium with the bulk mixture is assumed, the sur-
face curvature effects are omitted. Separating the contributions of the bulk (b) and
surface (s) compositions, the Gibbs energy at constant temperature and pressure
can be written as follows:

(10.1)

The same species (constituents) are assumed to be present in the bulk and sur-
face phases, the subscripts then denoting the same chemical species irrespective
of the phase considered. The surface tension is a function of temperature and
composition,  = (T,xk). Each constituent of the surface phase occupies a charac-
teristic molar surface area Ak. The equilibrium condition for the surface system is
that of a constant surface area (A), which in terms of the partial molar areas and
amounts of constituents is:
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Taking formally into account the bulk phase contributions and by using unit area A0

with dimensions m2.mol-1 as a normalisation constant, a condition analogous to
Equations (7.23.) and (9.3) can be written (summation is but formal over all spe-
cies and phases):

0
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A (10.3)

The molar surface area for any bulk species is zero (N = Ns+Nb). This equation
gives the condition for the constant surface area which then is applied in the ex-
change matrix of the surface system, the surface area being the additional system
component. The respective Lagrange function of the surface system becomes:
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where j is used for the ‘generalised’ constraints and the number of system com-
ponents NC’ = NC + l, including the surface area component. For NC’ one obtains:

NC’=NC+1 = As A0 , and 0
ss

1, AAa kNCk for each of the surface species. To pre-

serve the mass balance of the system, the additional surface area component
needs to be immaterial, i.e. it needs to have zero molecular mass. Using the par-
tial derivatives of L and the condition that the equilibrium chemical potential of a
species is a quantity independent of the phase (

kkk
sb ), the surface

tension of the mixture is obtained with the additional Lagrange multiplier:

1'0 NCNCA (10.5)

To perform the calculations within the framework of a standard Gibbs energy min-
imising program, such as ChemApp, the input data must be arranged in terms of
the standard state and the excess Gibbs energy data of chemical potentials of the
system constituents. For this purpose, the chemical potentials of species k in the
bulk and surface phases can be written in terms of their activities as follows

bb ln kkk aRT (10.6)

sss,s ln kkkk AaRT (10.7)

where the superscript o refers to the standard state, b
ka  is the activity of the con-

stituent k in the bulk phase and s
ka , respectively, in the surface phase. By applying
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Eqs. (10.6) and (10.7) for the case of a pure one component system, a relation-
ship between the standard states of the bulk and surface phase can be derived.

kkkk Ass, (10.8)

This approach for surface systems was outlined already by Butler in 1932. Equa-
tions (10.6) (10.8) then indicate that the necessary input for a Gibbsian surface
energy model must include not only standard state and activity (excess Gibbs
energy) data for the constituents of the bulk and surface phases, but also the data
for surface tensions of the pure substances ( k) as well as their molar surface

areas ( s
kA ). The surface tensions of pure substances, especially liquids at ambi-

ent temperatures, are usually well known and can be easily adapted as input data
for the calculations. For high temperature systems the data is well available for
pure metals as liquids, but for molecular components, such as oxides and salts,
the available data is much less extensive. The value of the normalisation constant
A0 can be chosen arbitrarily, but for practical reasons it is advantageous if the ratio

0
s AAk  is a value close to unity, being of the same order of magnitude as the

stoichiometric coefficients appearing in the conservation matrix.
A simple binary alloy system (liquid Ag Pb) is given as a calculation example in

Figure 10.1. (see details in Koukkari and Pajarre, 2011) Thermodynamic and
thermophysical data required to do the calculations, as well as the change to the
stoichiometry matrix used for the surface phase are also presented in the Figure.
The model result is compared to measured data from Joud et al. (1973) and Metzger
(1959).

Normal standard state values can be used for the bulk phase (although for the
purpose of just calculating surface tension and surface equilibrium composition
they could also be set to zero), while the standard state values for the surface
phase need to be adjusted using Eq. (10.8). The excess Gibbs energy for the bulk
is calculated with a standard Gibbs energy model (here the Redlich Kister poly-
nomial) the data for which are also given in Figure 10.1. The excess Gibbs energy
for the surface phase is derived from that of the bulk phase by using a correction
as follows: ExcessExcess

surface GG . The scaling factor is used to for the effect which

the reduced coordination number of metal atoms in the surface has on the excess
Gibbs energy; following Tanaka et al. (1996) the value 0.83 for has been used.
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Extended conservation matrix of the
Ag-Pb-surface system

Ag Pb Surface

Bulk Ag(l) 1 0 0

Pb(l) 0 1 0

Surface Ag(surf) 1 0 4.7329

Pb(surf) 0 1 7.0215

Thermodynamic properties of the
Ag-Pb-surface system

Properties
and units

Value at T=1273 K

Ak (m2mol-1) (Pb) 70214.8

Ak (m2mol-1) (Ag) 47328.7

A0 (m2mol-1) 104

k (Nm-1) (Pb) 0.388

k (Nm-1) (Ag) 0.916

GEXCESS (J mol-1) XAg XPg (14665.8-7.92409 T) (XAg XPg)0

+ (-1350.24-0.11456 T) (XAg XPg)1

+ (-2670.89+0.69283998 T) (XAg XPg)2

Figure 10.1. Calculation of the surface tension of a non-ideal binary system. The
excess Gibbs energy (GE ) is included as the Redlich-Kister polynomial (RK-
model) and the GE(surface) = 0.83GE(bulk) as deduced from the reduced coorination
number between atoms in the surface region (Tanaka et. al. 1996). Experimental
values are from Joud et al. (1973) and Metzger (1959).

The method applies to liquid mixtures, such as binary and ternary alloys, steel (Fe-
alloys) with its surface active trace components (oxygen, nitrogen, sulphur), silicon
(boron, oxygen etc.), molten salts and, organic mixtures as well as to water-
organic solutions (Tang et al. 2009, Heikkinen et al. 2010, Pajarre and Koukkari,
2009). The recently extended formalism, which allows for the calculation of inter-
facial energy and composition of two immiscible condensed phases (Pajarre et al.
2013) increases the applicability of the method and for example provides data of
interfacial properties for mesoscale and phasefield studies of alloy and steel mi-
crostructures.
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11. Electrochemical potential and Donnan
equilibria in multiphase systems

In Equation (9.1) the term including the electrochemical potential presents a fur-
ther condition which can be introduced to Gibbs’ian calculations by using appro-
priate immaterial constraints. The practical significance is apparent for aqueous
electrochemical solutions. The one including ion exchange phenomena in pulp
suspensions is discussed below.

When two aqueous solutions, in two separate compartments are at the same
temperature and pressure and separated by a semi-permeable interface which
allows transport of some ions but not others nor the solvent, the so-called Donnan
equilibrium is established in the system. This condition is most typical for mem-
brane-separated aqueous systems – yet it also approximates the chemical behav-
iour of aqueous pulp suspensions, in which the fibres absorb water from the exter-
nal filtrate solution and ion-exchange processes between the swelling ‘fibre phase’
and external solution take place (Lindgren et al. 2001; Koukkari et al. 2002, 2004).
The system contains two aqueous phases with water as solvent and mobile and
immobile ions as solute species. In a multi-phase system, gas as well as precipi-
tating solids may also be present. Both compartment systems containing the
aqueous solutions remain electrically neutral. The essential feature of the Donnan
equilibrium is that due to the macroscopic charge balance in the separate parts,
the immobility of some of the ions will cause an uneven distribution for the mobile
ions. This distribution strongly depends on pH of the system in cases, where dis-
sociating molecules in one of the compartments may release mobile hydrogen
ions (being fixed acidic groups typically present e.g. in the fibrils of cellulose fi-
bers), while their respective (large or bound) counter anions remain immobile due
to the separating membrane interface.

By applying the electroneutrality condition together with other physical condi-
tions of the membrane system, the constraint potential approach allows the calcu-
lation of multi-phase Donnan equilibria by way of Gibbs energy minimization.
Thus, the distribution of ions in the two compartments, together with formation of
possible precipitating phases can be calculated.

In Table 11.1 an extract of the exchange matrix for a two-compartment Donnan
system is presented. For the two solution phases present, the notation ´ and ´´ has
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been used. The constancy of the amount of water in the second compartment is
ascertained by setting the respective matrix element to unity. By assuming zero
molecular weight for this additional system component (H2O´´),  the  mass for  the
constituent H2O in the second solution volume (solvent ´´) is obtained from the
respective system components O (for oxygen) and H (for hydrogen). The electronic
charge of aqueous ions is introduced to both aqueous phases in terms of the
negative charge numbers (column e-). An additional electroneutrality condition has
been set for the secondary aqueous phase ´´, denoted in the matrix as system
component q´´ and arbitrarily chosen with the opposite sign as compared with
aqueous electrons. Cations are represented as Mez+ and mobile anions as Xz-.
The immobile anion (Ac-) is a constituent for the secondary aqueous phase ´´ and
it is related to the additional neutral system component Ac.

Table 11.1. Sub-matrix showing the Donnan equilibrium system with two aqueous
solution phases. Gas and solid species are omitted for brevity.

H O Me X e- H2O´´ q´´ Ac

1st

so
lu

tio
n

(‘)

H2O 2 1 0 0 0 0 0 0

H+ 1 0 0 0 -1 0 0 0

Mez+ 0 0 1 0 -z 0 0 0

Xz- 0 0 0 1 z 0 0 0

2nd

so
lu

tio
n

(‘’
)

H2O 2 1 0 0 0 1 0 0

H+ 1 0 0 0 -1 0 1 0

Mez+ 0 0 1 0 -z 0 z 0

Xz- 0 0 0 1 z 0 -z 0

Ac- 0 0 0 0 1 0 -1 1

HAc 1 0 0 0 0 0 0 1

With the given matrix conditions, by using (7.8) and (9.6) for the chemical poten-
tials of charged species at equilibrium

''
,'

''
,,,'',, lnln qkkkqkkkkk zaRTzaRT (11.1)

where the standard state potentials '
k  and ''

k  are equal while the respective

activities ( ,
ka  and ,,

ka ) are different. The additional term (zk q’’ ) deduced from Eq.

(9.6) is due to the supplementary electroneutrality constraint that holds for the
secondary aqueous phase. Eq. (11.1) can then be compared with the general
electrochemical equilibrium of charged species
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FzaRTaRT kkkkk
,',,'' lnln (11.2)

indicating that the Gibbs energy minimization, when solving the j-values, gives
the electrochemical potential difference between the two phases as

''
,,, )( qFF (11.3)

For the ion-exchanging membrane system as described above  is  often
called the Donnan potential.

Furthermore, the additional constraint set for the incompressible solvent water

gives in terms of its molar volume m
OH2

V :

,
OH

,,
OHm

OH'O'H
2

2
22

ln)'''(
a

a
RTVpp (11.4)

in which the difference (p’-p’’) is the osmotic pressure difference between the two
liquid parts of the system.

From (11.2) and (11.3), one may solve for the activities of the mobile ions:

RT
F

RTa
a qz

k

k k expexp ''1

'

''
(11.5)

where the symbol  has been introduced for the Donnan distribution coefficient,
which is used to describe the uneven distribution of the mobile ions in solvent
systems separated by a membrane. The Gibbs’ian multicomponent approach can
thus be applied to determine the difference in water activity between the two
aqueous phases and thus to define the expected pressure difference in membrane
systems, as well as to calculate the distribution coefficient for such mobile ions, for
which the non-selective Donnan equilibrium assumption is valid.

Gibbs energy data for calculations can be obtained from conventional sources
for standard phase constituents. However, the standard chemical potentials for the
acid group species HAc and Ac- must be deduced from dissociation constants (Ka)
-data by using the relation RTGK a /ln . As only the dissociation inside the

secondary compartment is considered, the reference chemical potential of ''
Ac )

is then obtained from the Ka-value. For the aqueous system, molalities are typical-
ly used and the activity coefficients for the solution species are calculated e.g. from
an extended Debye ckel model or by using Pitzer interaction parameters.



11. Electrochemical potential and Donnan equilibria in multiphase systems

63

Figure 11.1. A schematic presentation of the pulp suspension as a typical Donnan
equilibrium system. The large anions in the compartment of right hand side are
immobile.

In Figure 11.1 typical pulp suspension is schematically presented in terms of the
main species occurring in the ion-exchange (Donnan) model. The per weight con-
sistency of the pulp suspension at the wet end of contemporary paper machines is
typically 1–2 per cent of fibre, the rest being water. The water content of the fibre
is ca 1:1 on weight basis and thus 1–2 wt-% of water is present in the fibre phase.
This amount can be measured for different pulps by standard methods as the
water retention value (wrv) and forms the basis for the pulp suspension model.
According to the Donnan theory, pH will be different in the external aqueous solu-
tion and in the internal (fibre) solution; yet it can be only measured for the external
solution. Instead, through sampling, the cations can be quantitatively detected for
both the external solution and for the fibre phase, the latter then also containing
the possible precipitated salts.
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The advantage of the multi-phase Gibbsian approach is in its ability to take into
account not only the multi-component ion exchange equilibria but also other chemical
and phase changes in the system. In Figure 11.2, this is illustrated by showing the
distribution of Ca2+ -ions in an aqueous suspension of typical thermomechanical
pulp. Thus, effects of precipitating phases and that of gaseous components can be
included, as well as possible reactive solute effects, such as chelants. The method
has been extensively used for practical studies and process simulations of various
unit processes in pulp- and paper-making.

Figure 11.2. The solute concentrations in the two aqueous phases for Ca2+-ions in
thermomechanical pulp as calculated with the Gibbs’ian model (s = external solution,
f = fibre phase, containing also the contribution of the solid precipitates within pH-range
9–10). The experimental data is from Mäenpää (2001).
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12. ‘Resistances to change‘ in systems with
metastable equilibria

To introduce further applications of the constrained Gibbs energy method with
reaction kinetics, first a simple system is considered, where equilibrium is con-
strained by a passive kinetic inhibition. This example was presented already by
J.W. Gibbs in his publication “On the Equilibrium of Heterogeneous Substances”.
To contrast with free equilibrium, “which does not depend upon possible re-
sistances to change” Gibbs also considers kinetic restrictions present in a system,
stating as an example the system consisting of the components of water, i.e. Saq,
SH and SO (note the notation in mass units). “In respect to a mixture of vapour of
water and free hydrogen and oxygen (at ordinary temperatures) we may not write

OHaq 819 SSS (12.1)

but water is to be treated as an independent substance, and no necessary relation
will subsist between the potential for water and the potentials for hydrogen and
oxygen” (The Scientific Papers of J. Willard Gibbs, 1993). In other words normally
the equation

22
1

22 OHOH (12.2)

holds together with the equation received from Eq. (9..6):

OHOH 2
2 (12.3)

but in the case of passive kinetic inhibitions it does not: H2O, H2 and O2 can coexist
in a metastable state in which H2 does not react with O2 to give additional H2O, and
the chemical potential of water is an independent quantity. For such a case, one
may include the restriction as an additional ‘passive resistant’ component into the
stoichiometric matrix, as presented in Table 12.1 a–b.
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Table 12.1a-c. Setting passive resistance and reaction rate constraints into the
H2/O2/H2O reactive system.

Table 12.1a Table 12.1b  Table 12.1c
Free equilibrium Passive resistance  Reaction constraints

H O H O H2O* H O H2O*
H2O 2 1 H2O 0 0 1 H2O 2  1 1
H2 2 0 H2 2 0 0 H2 2  0 0
O2 0 2 O2 0 2 0 O2 0  2 0
H2O(l) 2 1 H2O(l) 0 0 1 H2O(l) 2  1 1

+ 0  0 1
- 0  0 -1

Whereas Table 12.1a represents the free equilibrium situation, Table 12.1b gives
H2O as an independent component, its chemical potential being used for example
in Eq. (9.6) as OH2

.

In Figure 12.1, the passive resistance (H2/O2/H2O-system as described in Table
12.1b) has been used in Gibbs energy minimization to calculate the water evapo-
ration as function of temperature (20–65 C, total pressure 101 kPa). As no reac-
tion [other than H2O(l) H2O(g)] is allowed, the partial pressure of H2 only slightly
decreases with raising temperature due to the respectively increasing water va-
pour in the gas phase. This simple example merely shows the utilisation of Gibbs’s
‘passive resistance’ concept, i.e. the extension of the stoichiometric matrix of the
system with an additional constraint, for the calculation of metastable phase equilibria.
In what follows, the matrix extension method with rate-controlled chemical reactions is
then introduced as a useful method in multi-phase reactor calculations.

Figure 12.1. Use of the ‘passive resistance’ in Gibbs energy minimization. Input:
0.55 mol  H2O, 0.25 mol  O2 and 0.175 mol  H2, 101 kPa total pressure (see Hack
2008, pp. 359–367).
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13. Immaterial constraints related to extents
of reaction

In Table 12.1c, the constrained H2/O2/H2O -system is introduced in a somewhat
different form. The H2O species have been actually connected with components H
and O; it is thus assumed that their stoichiometry is defined in terms of hydrogen
(2) and oxygen (1) and one H2O* component. While having done so, the additional
H2O* component must be assumed immaterial, i.e. its molecular mass is regarded
as zero. The chemical potential from (9.6) for the water species then becomes:

*OH2OHOH 2
2 (13.1)

As regards the ‘passive resistance’ concept, this formulation leads to equivalent
results while doing the min(G) calculation. What makes a difference in Table 12.1c
is its 3×6 structure, where two additional rows indicated by and are intro-
duced as virtual constituents into the system. By using the virtual species together
with immaterial components the extent of kinetically controlled reactions (and thus
incremental reaction rate effects) can be incorporated into the multi-component,
multi-phase Gibbs energy minimization calculation.

The functionality of the virtual species is to increase or decrease the amount of
a real species in the system according to a given reaction stoichiometry as defined
by the stoichiometric matrix. As the given mass of the immaterial component is
zero, adding the virtual species does not affect the mass balance of the system.
By defining th e standard chemical potential of the virtual species as zero at all
temperatures (which means that its enthalpy, entropy and heat capacity are also
zero) it can be ensured that the also energy balances remain unaffected while for
example calculating a non-isothermal system. In the case of the stoichiometry of
Table 12.1c, the controlled reaction is that of (12.2), i.e. formation or decomposi-
tion of water from oxygen and hydrogen. Addition of immaterial virtual species +
will increase the amount of water in the system. Respectively addition of the im-
material virtual species - will decompose water into hydrogen and oxygen. While
doing the Gibbs’ian calculation, all non-constrained reactions will reach equilibri-
um. In this simple case, the only other reaction allowed is the phase change H2O(l)

 H2O(g).
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From the matrix in Table 12.1c, by using again (9.6) in (8.2) the Gibbs energy of
the reaction ( rG) is received for the decomposition of water (12.2):

O*HO*HOHOH 22
)2(2Gr (13.2)

Keeping in mind that the j –values are solved in the min(G) procedure and that
they represent the chemical potentials of the independent components of the
thermodynamic system in the Gibbs energy minimum, it is interesting to note that
the H2O* gives the negative of rG of a non-equilibrium reaction. As stated above
in Chapter 8, this is the thermodynamic affinity of a chemical reaction, which be-
comes zero at equilibrium.

The incremental calculation of the progress of a kinetically constrained system
is then quite simple. The original input for the system is defined as for any thermo-
dynamic calculation in terms of the initial amounts of substances and the conditions
of the G = G(T,P,nk) system. The extent of a known chemical change is deduced
from the appropriate increment (typically by solving a reaction rate equation) and
then introduced to the sequential calculation as the value (mol) of the virtual spe-
cies. During the minimization procedure, the amounts of reactant and product
species of the constrained reactions will adjust according to the incremental
changes as obtained from the reaction rate equations and the rest of the system
will reach the constrained equilibrium.

The example of Figure 13.1 shows the result of the constrained min(G) calcula-
tion for the system of Table 12.1, supposing gradual H2O decomposition to O2 an
H2 at 25 C, 101 kPa total pressure. In this case, the total amount of water de-
creases in accordance with decomposition of liquid H2O (water is mainly liquid in
these conditions). The increase of the partial pressure of H2 is shown to indicate
the formation of gaseous reaction products. As the min(G) procedure solves the
chemical potentials of the system components as Lagrange multipliers, the Table
shows a listing of the respective computed H2O* from the program ChemSheet for
the 9 calculation steps, compared with the rG of reaction (12.2). The result also
verifies the meaning of Equation (8.2) in the Gibbs energy minimization.
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/H20
J/mol

rGdiss
kJ/mol

- 234164.434 234.2

- 234173.17 234.2

- 234182.652 234.2

- 234193.052 234.2

- 234204.62 234.2

- 234217.728 234.2

- 234232.978 234.2

- 234251.448 234.2

- 234275.422 234.2

- 234311.591 234.2

Figure 13.1. Use of the incremental reaction constraint in Gibbs energy minimization.
Input: 0.55 mol H2O, 0.25 mol O2 and 0.175 mol H2. The rate of H2O decomposition is
given as input of the virtual species - with the formula - = 0.055–0.055*log10(1-(t-10))
[mol]; t is dimensionless (time) parameter with increment of unity; 25 C, 101 kPa
(cf. Hack 2008).
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14. Use of actual reaction kinetics in
Gibbs’ian calculations

14.1 Rate controlled Gibbs energy methods

A few approaches to combine reaction kinetics with Gibbs energy minimization
have previously been published. Based on the early work of Keck and Gillespie
(1971), Keck (1990) presented the rate-controlled constrained equilibrium (RCCE)
method for use in fuel combustion calculations (Janbozorgi et al. 2009). All fast
reactions are assumed to reach equilibrium, while the kinetically ‘slow’ reactions
proceed according to their rate expressions. The rate equations are integrated so
that the time-evolution can be simulated and the solution is used as a set of ‘pas-
sive resistance’ constraints in the Gibbs energy calculation. The extents of reac-
tion are then introduced from an external group of differential equations into the
Gibbs’ian algorithm. To include the extent of reaction (and its related changes in
the thermodynamic properties) into the thermodynamic system, Koukkari (1993)
suggested the Ratemix algorithm, which provides a discretized change of the
reaction advancement within the Gibbs’ian calculation. The use of reaction rates
as constraints was then refined to a more general approach by Pajarre and Kouk-
kari (Pajarre 2001, Koukkari et al. 2001, Koukkari & Pajarre 20061-2) as one key
application of the Constrained Free Energy (CFE) method (see also e.g. Blomberg
& Koukkari 2011 and Koukkari et al. 2011). In what follows, the CFE approach of
introducing reaction rate constraints into Gibbs energy minimising programs is
described using three simple examples.

The introduction of reaction rate constraining into the Gibbs’ian thermochemical
calculation does not indicate for any deduction of kinetic data from thermodynamic
principles. The method merely makes it possible to calculate such ‘dynamic chem-
ical states’ for which it is possible to distinguish rate controlling reactions while the
rest of the system may reach partial equilibrium. For such systems the net reaction
rate(s) can be combined with the thermodynamic affinity, while the assumption of
the local or partial thermodynamic equilibrium is valid. This condition presumes
that irrespective of a given concentration of chemical species in the reacting sys-
tem at a given time, the thermodynamic intensive variables such as temperature
remain defined. Consequently the chemical potential may be deduced for each
species during the course of such chemical change. There are a large number of
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interesting phenomena in chemistry, physics and biology well within this assumption,
and it is thus of interest to have a method, by which the chemical potential can be
followed in a complex thermodynamic system during an arbitrary chemical change.

The simplest means of using reaction rates as constraints in the thermodynamic
system is to define the time-dependent input as a discrete increment of a given
reactant. Suggesting a chemical reaction

X  products (14.1)

The typical reaction rate (r) is given in terms of a reaction rate coefficient (k) and
concentration [X] as follows:

XXXX
X VntrFkr

dt
d (14.2)

The increment nX is then used as the mole number input of the virtual species -
in the Gibbs’ian system. During the course of the reaction the sequential incre-
ments nX(t) can be solved in succession from (14.2) until the final reactant con-
centration (or chemical equilibrium) has been reached. The sequential min(G)
calculation results with the respective constrained minima and their system prop-
erties, including amount of matter of other species in the system under the as-
sumption of the partial equilibrium.

As the thermodynamic min(G) calculation inherently uses the activities of spe-
cies, one may take advantage of the reaction quotients by using the net reaction
rates, which for elementary reactions are defined as follows (McQuarrie 1999):

K
Qakeakr

reactants
reactants

RTA

reactants
reactants

reactantsreactants 11 / (14.3)
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(14.4)

The affinity is denoted by A and the reaction quotient by Q as these are their es-
tablished symbols and there is seldom a context where they could be confused
with surface area and heat (see also Equations of Chapter 8 and Table 9.1). In
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applied process engineering the Equation (14.3) appears often as a useful approx-
imation even for non-elementary reactions, giving an appropriate method for which
the experimental (net) rate coefficient k can be adjusted with proper kinetic data.

In practical computation problems it is of course possible to use other than
thermodynamically deduced expressions for the reaction kinetics, such as concen-
tration-based, net or global reaction rate expressions deduced from mechanistic
models as well as purely empirical formulations. In the following chapters a few
simple examples are explained in more detail.

14.2 Example 1. A simple reaction kinetic system

The decomposition of dinitrogen tetroxide (N2O4) to nitrogen dioxide (NO2) is a gas
phase reaction occurring with a finite rate in close to ambient temperatures

N2O4  NO2 + NO2 (14.5)

The rate of N2O4 decomposition can be approximated as a first order reaction as
follows:

42
42 ON

ON
kr

dt
d

(14.6)

The extended conservation matrix of the simple system is presented in Table 14.1.
The matrix includes nitrogen as an inert gas (not participating in the reaction) and
the immaterial component R connected with either forward or reverse reaction via
the virtual invariant phases denoted by R+ and R-. The gaseous species have been
indicated as (g), the virtual constituents appear formally as separate (pure) con-
densed phases in the Gibbs energy minimization.

Table 14.1. The extended conservation matrix of the N2O4 dissociation system.

N O R

N2 (g) 2 0 0
N2O4 (g) 2 4 1
NO2 (g) 1 2 0
R+ 0 0 1
R- 0 0 -1

The incremental decomposition of N2O4 from Equation (14.6) is then given as input
of R- in a sequential calculation. The value of the first order reaction rate constant
k1 ( = A.exp[-Ea/(RT) ] is from the NIST database (http://kinetics.nist.gov/kinetics/);
the frequency factor A ~ 1.E06 s-1 and activation energy Ea ~ 40 kJ mol-1 T-range
270–320 K, P= 1 bar; N2 assumed to be the inert gas present).

http://kinetics.nist.gov/kinetics/
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The first mode (Figures 14.1 a–b) allows the virtual phase to be ‘formed’ when
the equilibrium composition has been reached and thus the calculated Gibbs en-
ergy remains at the equilibrium value. The alternative mode is to prevent the ‘for-
mation’ of virtual species in the calculation by using the DORMANT option (the
activity of a phase or a constituent is calculated but finally the phase or substance
is removed from the min(G) system) and thus the Gibbs energy curve G = G( ); 0 

 1 is received as the result (lower Figures 14.1 c and d). The energy and mass
of the virtual species are zero by definition and thus its presence remains but
virtual without any effect on the physical system.

Figure 14.1a–d. Use of the virtual invariant phase with reaction rate constraints in
Gibbs energy minimization in the N2/N2O4/NO2 –system, presented either in terms
of the relative extent of reaction ( ) or time scale. Model input: N2 2.0 mol (inert);
N2O4 1.0 mol; P = 101 kPa, T = 40 C. When the virtual species (R-) appears ‘En-
tered’ in the calculation, the system reaches equilibrium at 0.46 without further
change in composition or Gibbs energy (a-b). When R- is set ‘Dormant’ in the
calculation, the chemical change continues and the full G=G( ) and G=G(t) curves
are produced (c–d).
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14.3 Example 2.  Use of reaction quotient and/or affinity in the
reaction rate expression

The absorption of CO2 into water is described with the simple reaction

CO2(g)   CO2(aq) (14.7)

for which the reaction rate is r = -dnCO2(g)/dt. This can be expressed in terms of the
affinity (or reaction quotient) as follows:

RT
A

g eak
K
Qakakakr 11 (g)CO(g)CO(aq)CO1)(CO1 2222

(14.8)

where the affinity A is as in Equation (14.3). In Figure 14.2 a calculation result
together with measured values for a pH change in a simulated papermaking solu-
tion (a dilute aqueous solution consisting of dissolved CaSO4 and CaCO3 fines and
the respective solute species) is shown. The pH drop is due to absorption of CO2

from the ambient air to the clear solution. The net reaction rate coefficient k has
been ‘curve-fitted’ with the measured pH data. Thus the calculated curve only
shows the applicability of the supposed rate equation to the data used for the
fitting parameter. From the thermodynamic point of view the example however
shows the attainment of the thermodynamic absorption limit in terms of the pH of
the solution. (It may be needless to say that the thermodynamic calculation bears
the major advantage of giving all the measurable thermodynamic quantities,
among them pH itself, without additional elaboration in the kinetic model). The use
of the affinity, as received from the Gibbs’ian method can be used to recognize the
thermodynamic curb in the reaction rate calculation.

Table 14.2. The extended conservation matrix of the CO2 absorption system.

O H C e- R

O2(g) 2
CO2(g) 2 1 1
H2O(g) 1 2
H2O 1 2
H+ (aq) 1 -1
OH- (aq) 1 1 1
CO2 (aq) 2 1
HCO3

- (aq) 3 1 1 1
CO3

2- (aq) 3 1 2
R+ 1
R- -1
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Figure 14.2. The extended conservation matrix of the CO2 dissolving system,
calculation performed by using the reaction quotient rate expression.

14.4 Example 3. Anatase-rutile transformation

This example presents the formation of titanium dioxide in a calciner, which is one
of the final stages of the industrial sulfate process producing titania pigment. To
simplify the treatment here, the feed is supposed to consist merely of titanium
oxyhydrate [without moisture including sulphuric acid and sulfate residues]. The
chemical composition of the oxyhydrate is approximated as TiO(OH)2*nH2O.  In  a
calcination process the temperature of the hydrate is raised to ca 1000 °C, the
slurry becomes dried and finally the hydrate decomposes, leaving titanium dioxide
as a solid product. From the oxy-hydrate, at relatively low temperatures (ca
200 °C) the less stable xenotime form anatase, TiO2(An), is formed first, and only
in the high temperature zone of the furnace end, the thermodynamically stable
tetragonal rutile TiO2(Ru) appears as the desired product. The reactions are as
follows:

TiO(OH)2*nH2O  TiO2(An) + (n+1)H2O(gas) (14.9)

TiO2(An)  TiO2(Ru) (14.10)

As rutile is the more stable form of the two titanium dioxide species Gibbs free
energy minimization would at all temperatures result in rutile and water. This
would lead to a 100 % rutilisation of the titania already at temperatures, where the
Ti-oxyhydrate is but calcined by reaction (14.9). It is however well-known from
practical experience, that the rutilisation reaction (14.10) is slow and only takes
place with a finite rate at elevated temperatures (above 850 °C). Any simulation of
the calcination process must take this feature into account.

The extended matrix of the calcination system is shown in Table 14.3. Note that
the system components do not need to be elements but can be freely chosen from



14. Use of actual reaction kinetics in Gibbs’ian calculations

76

appropriate stoichiometric combinations. The reaction constraints have been set to
control the formation of rutile, TiO2(Ru), affecting the reaction (14.10) above.

Table 14.3. The extended matrix of TiO(OH)2 calcination with three system com-
ponents.

TiO2 H2O R

H2O-gas 0 1 0
TiO(OH)2 1 1 0
TiO2(An) 1 0 0
TiO2(Ru) 1 0 1
R+ 0 0 1
R- 0 0 -1

The reaction rate can be presented in the form of rutile fraction x, which is meas-
ured as function of time at constant temperature and pressure. For example, the
following formula used:

3)1(1 tkx (14.11)

Here, x is the fraction of rutile in the reaction mixture, t is time (hours) and k is the
reaction rate constant (h-1). This formula was used in the multi-component system
to calculate the respective molar amount for R+, which determines the kinetic con-
version rate from anatase to rutile.

The input data of the calculation system have been collected to Table 14.4. The
parameters for the rate constant are again given in terms of the Arrhenius equation [k =
A.exp(-Ea/RT) ], with A as the frequency factor and Ea as the activation energy.

Table 14.4. Input data for the Ti(OH)2 calcination model.

TiO(OH)2 R+ Temperature Pressure A Ea

mol mol C atm h-1 kJ mol-1

1.0 Eqn(14.11) 995–1045 1 1.8E17 442

The thermodynamic (Gibbs energy) data for the species are received from stand-
ard sources or estimated from thermogravimetric studies for the amorphous oxy-
hydrate species. The calculation is then performed in 60 steps with 10 minute
intervals to match the experimental data of McKenzie (1975), which covers in total
10 hours at 995 °C. For each step, the Gibbs energy of the system is minimised
and as a result the composition as well as the Gibbs energy of the system be-
comes calculated.

Figure 14.3 (left) shows the anatase-rutile transformation curves for the
TiO(OH)2-O2-system at three different temperatures. The curves represent the
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degree of rutilisation (rising from zero to 1) and the total, decreasing Gibbs energy
of the system during the course of the reaction. At each temperature, the Gibbs
energy is a monotonically descending curve as a function of time, reaching its
minimum value at equilibrium. As the Gibbs energy model inherently calculates
other thermodynamic properties, such as heat capacities, enthalpies and entro-
pies, it is often advantageous to use Gibbs energy based modeling in process
calculations. As an example, the exotherm of the rutilisation reaction has been
deduced from the Gibbs energy model at the three reaction temperatures and is
presented in Figure 14.3 (right).

Figure 14.3. The kinetics of rutilisation in three temperatures. The time-dependent
Gibbs energy is shown as a monotonically descending curve G = G(t).

14.5 Features of the virtual species in kinetically constrained
calculations

In Table 14.5, the key properties of the chemical constituents of the unconstrained
system and virtual constituents have been listed. The chemical constituents are
those with a true stoichiometric formula, such as e.g. H2O consisting of one oxy-
gen and two hydrogen atoms, bearing a molecular mass in the respective ratio of
its elemental components. The virtual constituent in the conservation matrix ap-
pears with zero molecular mass and with zero standard chemical potential, having
a stoichiometric factor of +1 for the forward and -1 for the reverse reaction. These
properties (zero mass and zero energy) make the virtual species to appear as
mathematical aids in the thermochemical calculation, without affecting the energy
or mass balance of the thermodynamic system.
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Table 14.5. Properties of the virtual species in constrained Gibbs energy systems.

Type of
constituent

Stoichiometric
elements

Standard state
data Molecular mass

Chemical akj  in
j

jkj Xa
kkk Tsh

j
jkjk MaM

Virtual (forward) +1 0k 0kM

Virtual (reverse) -1 0k 0kM

The above treatment has been presented for a single reaction in a most simple
system. In the general case of several reactions, the following two equations can be
deduced from (8.2) and (9.6) for the chemical potentials of the constrained system:

0k
k

k                            (equilibrium reactions) (14.12)

k

NC

NCj
jkjkk

k
k a 0

1'

(constrained non-equilibrium reactions) (14.13)

Here, k is the stoichiometric number of a species k in a given reaction and the
summation goes over the reactant and product species. In (14.13), index j refers
as usual to the system components of the Gibbs’ian calculation, NC’ has been
used for actual chemical components, NC is the total number of components and
thus includes the virtual components present for the suggested kinetic constraints.

When compared with (8.10) it is evident that Equation (14.13) gives the affinity
of the kinetically constrained non-equilibrium reactions and may also be written as:

Rr
b
GA

N

k
rkrk

NC

j j

N

k
kr r

...,2,1
11 1

(14.14)

where the notation jkkjk rrr
a  has been adapted for brevity and to emphasize

that the two expressions (8.10) and (14.14) are equivalent.
While the minimization is performed, the physically reasonable solution requires

that all constituent amounts nk receive a non-negative value. This condition incor-
porates the inequality conditions

0;;0 k

NC

j
jkjk nka (14.15)
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NC

j
kjkjk nka 0;;0 (14.16)

Together with the conservation constraints (9.3), the conditions (14.15) and
(14.16) represent the Karusch-Kuhn-Tucker (KKT) conditions for the Gibbs energy
minimization problem (Smith and Missen 1991), here written for pure invariant
phases. (see Smith and Missen for the respective conditions written for mixture
phases) As the virtual constituents always appear as pure invariants, the simple
expressions (14.15) and (14.16) will yet be sufficient for the use of these condi-
tions while applying the kinetic constraints in the minimization algorithm.

While the Lagrange multiplier (chemical potential) for the constraint component
affecting reactant(s) is negative ( reactant < 0), based on Equations (8.2) and (14.3) it
follows that the corresponding affinity > 0 and the net reaction will proceed spon-
taneously. The inequality condition (14.16) then holds for the Gibbs’ian calculation.
When any of the constraint multipliers becomes zero, the respective constraint
entity becomes ineffective. When all of them are zero, also affinities of all reactions
are zero and the system has reached chemical equilibrium. Thus, the algorithm
provides inherently the thermodynamic equilibrium condition for the kinetically
constrained calculation.

It is typical for the Gibbs energy minimizing algorithms that metastability of a
phase can be taken into account by suppressing a more stable phase or a given
phase constituent from the final calculation, even though it might appear in the
given stoichiometric system. In those cases, the algorithms indicate the greater
activity of a certain phase, but provide the final calculation for the suppressed
metastable system. For example in the ChemApp program (Petersen and Hack 2007),
the respective identification is ‘Dormant’ for the suppressed phase (constituent)
and ‘Entered’ for the phases allowed to be formed. For the dormant species, how-
ever, the activities are calculated using the final (metastable) state as a reference.

Thus with the ‘dormancy’ of a phase, it is straightforward to follow and control
the affinity for the formation of metastability in the system. This feature is exten-
sively used in many conventional minimization algorithms. As was already indicated in
the above example 1 (Chapter 14.2.), it is also of practical advantage when performing
calculations with the virtual constituents in a constrained Gibbs energy system.

For an equilibrium system the Equation (14.15) can be considered defining a
value of the chemical potential also for a species that is not present in the system.
It follows that the virtual invariant phases, for which the standard term is zero, can
be used for the calculation of alternative reactivity options in systems which apply
reaction rate constraints. The chemical potential of a pure invariant equals zero,
when the pure phase appears as ‘Entered’ and (14.15) is valid for a stable phase
(the Lagrange multiplier j=R = 0, respectively). When (14.16) is valid, the phase is
not stable and chemical potential of the virtual phase is less than zero. If the calcu-
lation is performed in the ‘Dormant’ mode, the chemical potential of a virtual feed
phase may be less than zero and a forced calculation beyond the equilibrium point
becomes possible. This behaviour is presented in Figure 14.4.
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Figure 14.4. Affinity of the kinetically constrained reaction calculated as the La-
grange multiplier ( j=R, J.mol-1) of the virtual component. Virtual phase as ’Entered’
reveals the equilibrium point at 0.45 ( j=R = 0). The virtual phase as ’Dormant’
leads to a forced calculation beyond the equilibrium point ( j=R < 0).
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15. Non-equilibrium and parametric phase
diagrams

15.1 Uses of phase diagrams

Phase diagrams are extensively used in chemistry and materials science for de-
picting stability conditions for multi-component systems. Before the computational
era, voluminous books were dedicated to mere phase diagrams, while then one of
the leading motivations for computational thermodynamics has been the develop-
ment of automated methods to present the wanted equilibrium system as a phase
diagram. The phase diagrams in general are graphical projections of the multi-
component Gibbs energy surfaces, presented in terms of (generalised) potentials
and state variables. Typical examples are T-X (temperature-composition), H-X
(enthalpy-composition) and P-X (pressure-composition) diagrams. The elements of
the construction of such diagrams is well presented in standard textbooks, a more
advanced treatment is given e.g. by Hillert (2008).

The introduction of virtual components and constituents provides new aspects
to phase diagram calculations. As the virtual component can be used as an addi-
tional parameter in the Gibbs energy calculation, the result then becomes visible
directly in the respective phase diagrams. The CFE becomes helpful when specific
physical conditions, advancement of chemical reactions or e.g. external field ef-
fects will contribute to the phase stabilities.

15.2 Paraequilibrium diagrams

In steel and alloy solidification the driving forces for phase transformations are set
by thermodynamics, while the actual changes in phase composition are often
controlled by diffusion and convection. The different mobilities of species in the
solidifying structure will depend on temperature and composition and thus the
conditions lead to several different solidification patterns, which also are of practi-
cal interest. Typical cases involve the formation of carbides in steelmaking, as the
thermodynamically favoured reactions between interstitial carbon and substitu-
tional metals (e.g. chromium, nickel) in high quality steels would lead to presence
of a number of carbide compounds in the respective equilibrium phase diagrams.
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However, in a practical solidifying process (such as continuous casting) their
formation is often avoided by the chosen cooling rate, the physical reason being
that small interstitial atoms (carbon, oxygen, nitrogen) with their greater mobility
may equilibrate between the melt and solid fractions, while the substitutional metal
atoms remain immobile between these regions. Furthermore, the phase transfor-
mation from  may occur without any change in their mutual fractions between
the reactant (parent) phase and the product phase. In such conditions, a partition-
less transformation as defined by Hillert (p. 144) will occur. This leads to a condi-
tion, where the use of composition based constraints in the Lagrangian problem
will give the respective results in min(G) calculations for an arbitrary number of
restricted phases and constituents (Kozeschnik 2000) and can be used to produce
the respective paraequilibrium phase diagrams.

A simple example consisting of a BCC – FCC (body centered cubic – face cen-
tered cubic) Fe-Ni-C system is presented as an example in Table 15.1. A virtual
component *Ni-FCC has been introduced with matrix elements uNi and uFe as new
stoichiometric entities. Their meaning as the complementary constraints is to con-
trol the ratio of Ni and Fe as metallic elements during any phase transformation
and thus they are defined as follows:

= +
(15.1)

= +
(15.2)

i.e. the fractions of Fe and Ni in the parent phase, predestined to remain as con-
stant in both phases during any phase transformation.

By using these definitions for the molar balance of the virtual component *Ni-FCC:

= : | |

+ : | + |

(15.3)

_ = + = 0 (15.4)

as the amount of any such virtual component must be zero. It then follows that the ratio
of Fe and Ni in the FCC phase equals the by definition constant ratio of the u-fractions.
It is then evident from the matrix that the chemical potentials of Fe and Ni can be
expressed in terms of the uMe-coefficients as follows:

(15.5)

while instead, carbon is in equilibrium between the phases:

BCCNiNiBCCFeFeFCCNiNiFCCFeFe uuuu
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(15.6)

The weighted average of chemical potentials of iron and the alloying components
metals remains the same in all phases. With several metallic components and
several paraequilibrium phases, a new virtual component will be needed for each
combination. With known stoichiometry and composition of the parent phase, the
u-factors are, however, easily deduced and the extension of the matrix can be
performed algorithmically during the computational procedure. When the number of
phases (N) or the number of metallic components (M) is larger than two the number of
required constraint components is given by (N-1)*(M-1) (Pelton et al. 2014).

Table 15.1. Introduction of the virtual component into the Fe/Ni/C paraequilibrium system.

Phase Constituent Fe Ni C *Ni_FCC

FCC Fe:C 1 0 1 -uNi

Fe 1 0 0 -uNi

Ni:C 0 1 1 uFe

Ni 0 1 0 uFe

BCC Fe:C 1 0 3 0
Fe 1 0 0 0

Ni:C 0 1 3 0
Ni 0 1 0 0

The practical significance of paraequilibrium presentation becomes evident eg.
from Figure 15.1, as the number of possible phases in the given compositional
range becomes reduced to those, which also refer to experimental evidence in
e.g. steelmaking conditions (Kozeschnik 2000, Hillert 2008).

Figure 15.1. Phase diagram for Fe-Cr-C system. Left: no compositional constraints;
right:partitionless phase transformation (paraequilibrium) for Fe and Cr with free
mobility of carbon [Cr/((Cr+Fe+C) (g/g) = 0.0280, P = 1 atm, courtesy of Hack, 2012].

BCCCFCCC
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15.3 Partial equilibria in reactive systems (isoaffinity diagrams)

As already shown in Chapter 13 the immaterial constraining can be connected
with the advancement of selected chemical reactions, resulting with the non-zero
non-equilibrium affinity of the said reaction as one of the Lagrange multipliers. If
such kinetically constrained reaction occurs in phase  the immaterial constraining
can be connected with the advancement of selected chemical reactions, resulting
phase diagrams where the chemical change appears with a given (non-equilibrium)
extent of reaction, while the respective phase composition is at partial equilibrium.

Relative slowness of chemical reaction rates can often prevent equilibration in
chemically reactive fluid mixtures, particularly at low temperatures and in condi-
tions where the phase separation is to take place in a short residence time (e.g.
Maurer 1996). A typical case is reactive distillation, quite extensively utilised in the
chemical industry. The well-known ethanol-acetic acid, water - ethylacetate sys-
tem serves as a viable example (Toikka et al. 2009) and was chosen to illustrate
the respective calculation by using the constrained Gibbs energy technique. The
chemical reaction is

CH3CH2OH + CH3COOH  CH3CH2COOCH3 + H2O (15.7)

which may be abbreviated as follows:

EtOH + AA  EtOAc + H2O (15.8)

The extended matrix, including the virtual constituent for the extent of reaction is
presented in Table 15.2.

Table 15.2. Introduction of the virtual component into the ethanol-acetic acid va-
pour-liquid system.

H2O EtOH AA R

Vap Ethanol 1

Acetic acid 1

Acid dimer 2

Water 1

Ethyl acetate -1 1 1 1
Liq Ethanol 1

Acetic acid 1

Water 1

Ethyl acetate -1 1 1 1
Virtual + 1
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The virtual constituent ( +) will control the extent of the esterification reaction,
while the rest of the system consisting of vapour and liquid phases is otherwise
free to reach equilibrium; the dimerization in the gas phase alike is an equilibrium
reaction.

The partial equilibrium calculation can be performed e.g. for the dew and bubble
points by using the extent of reaction in the liquid phase as a parameter (Figure 15.2).

Figure 15.2. Calculated bubble and dew points of the two phase esterification
system with the reaction advancement as a parameter.

As physical components of the model system those corresponding to ethanol,
acetic acid, and water were selected. The same result can be obtained with the
elements (C, H and O) as physical components. Additional immaterial constraint
was applied to the ethyl acetate species allowing the control of the advancement
of the esterification reaction. The standard state chemical potentials from HSC (A.
Roine, Outokumpu, HSC Chemistry® for Windows, Version 4.1, (1999)) were
adjusted by using the vapour pressure data from several sources (for these see
references in Koukkari and Pajarre 2011). The vapour phase was regarded as an
ideal gas including the acetic acid dimer, while the liquid mixture is modelled using
the UNIFAC data (e.g. Poling, et al. 2001).

It may be more relevant to compare the vapor and liquid phase not with the
same reaction advancement of the esterification, but the two phases with equal
affinity for the reaction (Maurer 1996). The respective isoaffinity calculation is
straightforward in the CFE-method, as the Lagrange multiplier adjacent to the
extent of a kinetically constrained reaction provides directly the non-equilibrium
affinity (Koukkari et al. 2011). The technique then allows for construction of meta-
stability surfaces as ‘isoaffinity diagrams’ for various reactive separation process-
es. Even though such conditions may frequently appear in practical engineering
processes, there seems to be little confirming data for isoaffinity curves from con-
trolled experimental arrangements.
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15.4 Parametric diagrams for magnetic systems

The CFE method provides a practical approach to phase diagrams with additional
(immaterial) parameters. The effect of diameter onto the phase behaviour of alloy
nanoparticles has been discussed by Lee et al. (2005) while it has been shown
that the lowering of the melting point of small particles can be interpreted with the
increasing surface energy factor. As for macroscopic media, the immaterial effect
may be due to external fields (or more generally, external work). Quite recently
Ludtka et al. (2005) were considering the phase change between austenite and
ferrite, while the remains of austenitic constituent was removed by treatment of the
steels with high intensity magnetic field. They also presented the respective phase
diagram calculated by the Thermocalc program, for which the appropriate changes
in the standard Gibbs energy of the ferrite phase had been made.

From the point of view of the CFE method the magnetic field strength may be
included in terms of an immaterial component, which then may be used as a pa-
rameter in analogy with the extent of reaction in case of isoaffinity diagrams.

It is customary to write the chemical potential (Yamaguchi et al. 1997) of a two
component (X,Y) compound subject to magnetisation as follows :

MBYaRTYYbaY baba
B

ba XlnXXX )0( (15.9)

where B is the magnetic flux density and M is magnetisation(assumed independ-
ent of the magnetic field for simplicity). If the magnetic component is introduced to
the Lagrangian system as an additional constraint, the respective chemical poten-
tial solved by the minimization algorithm is *:

baba
B

MMba YXaRTYXYbXaYX ln* 0 (15.10)

It follows that

MBMM (15.11)

Then, introducing a normalisation factor in terms of the magnetization units M0 =
J/(mol.T)

0M
M

M (15.12)

and

0MB (15.13)
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Then the magnetic flux can be used directly as a parameter in the input of a
min(G) routine with a capability of using the virtual components.

The magnetic effect on chemical or phase transformations is often negligible
due to the high field intensities required to reach any substantial chemical effect.
However, for ferromagnetic materials the external field effects may be significant
and can be used e.g. in high-strength steelmaking for transformation of residual
austenite to ferrite. Even such transformations will require high field intensities, the
experimentally estimated effect on the Gibbs energy being relatively small. For the
austenite-ferrite transformation the G-value due to the magnetic field was esti-
mated to be 12.6 J/(mol.T) (Ludtka et al. 2005). The extended system with the
magnetic contribution introduced with a virtual component-constituent combination
is presented in Table 15.3.

Table 15.3. Introduction of the magnetization component into a simple austenite-
ferrite system.

Phase Species System component

Fe C M

BCC-Fer Fe:C 1 1 -12.6

Fe:Va 1 0 0

FCC-Aus Fe:C 1 1 0

Fe:Va 1 0 0

Fe3C Fe3C 3 1 0

M M 0 0 1

The G due to the external magnetic field can be set to positive value (for example
in ChemSheet calculations) with the magnetic flux intensity as a parameter. This
will directly affect the chemical potential of the ferritic iron (BCC/Fe:C). For example
with magnetic field of 20 T chemical potential of Fe:C is changed by 252 J.mol-1.
The respective parametric phase diagram is shown in Figure 15.3 below.



15. Non-equilibrium and parametric phase diagrams

88

Figure 15.3. The effect of external magnetic field on the ferrite-austenite phase
transformation (Pajarre 2014).The result is in fair agreement with those reported
by Ludtka et.al. (2005) and e.g. Choi et. al. (2000).
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16. Conventions used in biochemical
thermodynamics

A new emerging field for the Gibbs’ian applications exists in biochemical thermo-
dynamics. In biochemistry, with a multitude of metabolite species and correspond-
ingly a vast number of optional reaction mechanisms, the application of thermody-
namic feasibility analysis often offers a time-saving approach for computational
studies. Then, one may utilise the constrained Gibbs energy approach e.g. for
energetic studies of the operable pathways.

In biochemistry, the conventions regarding the expressions of species and
components are somewhat different from those used in traditional physical chem-
istry. The focus is on dilute aqueous solutions where reactants like ATP, com-
posed of ATP4

-, HATP3
-, H2ATP2

-, exist in a pH range varying from 5 to 9. The pH is
considered to be an independent variable controlled by a buffer solution. The
consumption or production of hydrogen ions is not included when writing biochem-
ical equations such as ATP + H2O  ADP + Pi. Biochemical equations do not bal-
ance hydrogen atoms or electric charges, but they balance atoms of other ele-
ments. When water is a reactant, its concentration is not used in the expression of
the apparent equilibrium constant, yet its standard Gibbs energy of formation is
used in the calculation of the apparent equilibrium constant.

Alberty (2001), and recently e.g. Fleming et al. (2009) have formulated the
thermodynamic conventions to be applicable in biochemistry. The transformed
Gibbs energy (G’) is introduced, for which in addition to temperature and pressure,
pH is used as an additional independent variable. The standard chemical poten-
tials of aqueous species are transformed taking into account the effect of hydro-
gen ions by a mathematical transform and by including a ‘standard activity’ assum-
ing constant ionic strength. In what follows, these features are interpreted by using
the concept of immaterial components of the system.

For a homogeneous system, from (5.8)

k
kk dndPVSdTdG (16.1)
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The amount of hydrogen component nc(H) in a biochemical reaction system is

N

k
knkNn

1
Hc )()H( (16.2)

where NH(k) is used for the number of hydrogen atoms in each constituent (k).
The transformed Gibbs energy that has the chemical potential of hydrogen ions

as a natural variable is defined by a Legendre transform (see Alberty 2001):

)(H(H)cnGG (16.3)

From which

(H))(H)(H(H) cc dndndGGd (16.4)

and further the fundamental equation for the transformed Gibbs energy becomes

)(H(H)
1

1
dndnVdPSdTGd k

N

k
k c

(16.5)

The transformed chemical potential for any species (k) is here given by

)(H)(H kNkk (16.6)

To derive the standard transformed chemical potentials, use (7.9) in the form

0lnln)(ln)()(
c
cRTRTTaRTTT k

k
o
kk

o
kk

(16.7)

Here, the concentration of species k and the reference concentration are given
with the symbols ck and c0, respectively. Combining (16.6) and (16.7) there is

0ln
c
c

RT k
kk (16.8)

Where the standard transformed chemical potential is

HH )(ln kNRT kkk (16.9)

The activity coefficients are calculated from the ionic strength of the solution (I)
using the Extended Debye-Hückel equation:
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RT
z

IB
Iz

k
k

k
I2

2

1
ln (16.10)

Following Alberty, the value of the constant B is  1.6 M-½ for ionic strengths less
than 0.35 M (mol.dm-3). The temperature dependent constant RT has the value
2.91482 kJ mol-1 M-½ at 25°C. The charge independent ionic strength contribution
is defined as a new constant:

IB
IRT

1
I (16.11)

The chemical potential contribution of the hydrogen component is fixed by the
chemical potential of the compound because the system contains a compound
that is made up of only hydrogen components and that compound is guaranteed to
exist in the biochemical system. The constant chemical potential of the hydrogen
component can thus be expanded as follows

apHRTaRT 10lnln HHHH (16.12)

The standard state chemical potential of the hydrogen ion is zero for all temperatures
and pressures at a one molar reference concentration, which enables labeling the
remaining as the activity based pH contribution as:

apHRT 10lnHa (16.13)

The definition of the transformed standard state chemical potential (Equation 16.9)
can be expressed in terms of the constant contributions defined by equations
(16.12) and (16.13). The signs of the contributions have been chosen such that
they are consistent with the equilibrium chemical potentials in Gibbs energy mini-
mization.

aI HH
2 )(kNzkkk (16.14)

Equations (16.11) and (16.13) represent constant contributions to the chemical poten-
tials of solutes in systems where pH and ionic strength can be assumed not to
change. Equation (16.14) captures the concept of transformed Gibbs energies
suitable for implementing appropriate Legendre transforms in any Gibbs energy
framework.

Biochemical reactions are subdued to both thermodynamic and kinetic con-
straints. Constrained Gibbs energy minimization pursues to embrace both re-
strictions. Applications range from conceptual investigation of physical phenomena
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like ion partitioning inside a nanopore in a cell membrane to pathway analysis in
relation to industrial bioconversion of lignocellulosic material.

Figures (16.1) and (16.2) present applications of Gibbs’ian thermodynamics in
biochemical systems. In Figure (16.1) a comparison of a ChemSheet calculation
with results reported by Alberty (1991) is shown. In Figure (16.2), the Constrained
Gibbs energy method has been used to study the thermodynamic feasibility of the
glycolysis metabolic pathway. The use of kinetic constraining together with Gibbs
energy minimization gives the consistent descending energy diagram.

Figure 16.1. Molar concentrations (mol.dm-3) of ATP hydrolysis species calculated
by ChemSheet. The comparison is with the early results of Alberty (1991).
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Figure 16.2. Energy diagrams of the ten reactions of glycolysis (the metabolic
pathway that converts glucose C6H12O6, into pyruvate, CH3COCOO  +  H+). The
energy curves are aligned vertically at reference node 5. The first two curves show
cumulative reaction energies for two alternative standard states, while the third
uses measured concentrations from Kümmel et al. (2006). The fourth curve repre-
sents the evolution of the local system as calculated by the constrained Gibbs
energy minimization (adapted from Blomberg in, Koukkari (2009), pp. 138–145).
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17. Concluding remark

Mutliphase thermodynamic methods deal with systems that undergo chemical
changes in processes which include several condensed phases in connection with
the gas or vapour phase. The systems characteristically comprise of saturated
solutions and mixtures, fibre containing suspensions or aqueous compartments
separated with membranes. In high temperatures, gas-solid-suspensions together
with melts with segregating deposits or inclusions may occur. Thus, the range of
practical applications is from chemistry and environmental issues of various pro-
cess and manufacturing industry to energy and power production. In all these
fields, different problems related to material properties and their functionality can
also be handled with multiphase methods. New areas for the usage of multicom-
ponent chemistry are emerging in biorefining and biochemistry.

Computational chemical thermodynamics thus provides an evolving methodol-
ogy for experts working in both research and industry while developing advanced
processes and materials. The Gibbs free energy is the key concept in this ap-
proach and the minimization of the Gibbs energy as the consequence of the first
and seconds laws of thermodynamics is the prevalent technology. For this reason
the focus of the text has been kept solely on Gibbs energy, the derivation of which
was presented shortly from the fundamental concepts.

The scope of applications of the Gibbs energy minimization technique can be
substantially widened by the adoption of the constrained Gibbs'ian method. The
CFE method allows for the use of the general Gibbs equation in terms of the La-
grange multipliers; thus providing a simple mathematical theory with an extensive
field of applications. The novel CFE technique is fully consistent with the traditional
min(G) methodology, quite often allowing for its implementation in the conventional
minimization programs. The examples given in the text appear simple, yet they
pursue to concisely illustrate the basic features of the method as well as its ap-
plicability within a diverse range of problems.

The advantage of the Gibbs’ian approach is its generic applicability with great
functional flexibility. It provides the combined and interdependent treatment of
chemical and energy changes and allows for deep insight into theoretical concepts
when necessary. Rich chemistry including major and minor species in process
simulation is available and their combination with the interrelated thermodynamic
state properties is often the key to gain control of the complex system as a whole.
A benefit not to be underrated in practical applications is the direct validation of
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calculation results by using thermodynamic relationships in connection with labora-
tory or process measurement. This is also supported by the inherent connection of
the thermodynamic method with well-defined state properties, which also makes it
straightforward to connect the thermodynamic concepts with other physical models.
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Appendix A: Notation for heterogenous and
open systems

The system, which is exchanging matter with its surroundings is called open.
When processes of practical importance are calculated by using thermochemical
theory, one often needs to define process streams in terms of open systems. In
addition, the description of the thermochemical changes in terms of their entropy
production requires some basic concepts of open thermodynamic systems. For
these reasons, a short review of the notation for open systems is given. For open
and heterogeneous systems the following notation can be used:

kekrk ndnddn (A.1)

kukake ndndnd (A.2)

r
rkrkr dvnd (A.3)

k
kk dnMdm (A.4)

QdQddQ ia (A.5)

QddQ a (A.6)

where

kend the infinitesimal increase amount nk of substance k due to ex-
change of matter either with neighboring regions or with the sur-
roundings of the entire system

krnd the infinitesimal increase of amount nk due to chemical reactions
within the region

krv stoichiometric coefficient of species k in reaction r

r extent of reaction r (mol)

m total mass of the system

kM molar mass of species k

kand mass exchange with the surroundings of the entire system



A2

Qda  heat exchange with the surroundings of entire system

kund mass transfer from other phases to the phase in question

Qdi heat transfer from other phases to the phase in question
(cf. krkuki ndndnd )
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Appendix B: The sources of entropy (relation
between entropy and heat)

The following equations describe the relation between the entropy change of an
arbitrary heterogeneous system and the heat supplied to the different individual
parts of the system from the surroundings. The most general case is the non-
isothermal change in the individual parts [phases] of the system and also between
the system and the outside world.

The increase of the amount kn  (substance k in phase ) is:

kukakrk ndndnddn (B.1)

with the notation as explained above in Appendix A:

krnd infinitesimal increase of amount nk due to chemical reactions
within the region

kand transport of matter due to mass exchange with the surroundings
of the entire system

kund transport of matter due to mass transfer to or from neighboring
phases to the phase in question

The heat supplied to phase [ ] during an infinitesimal state change was above
given by Equation (3.30)

i k
kekdissii ndHdWdlLdUdQ (B.2)

From (A.1) and (A.5):

(B.3)

QdQddQ ai (B.4)

The generalized Gibbs equation for the entropy differential is:

i k
kkii dndlLdUdST (B.5)

i k
kukakdissii ndndHdWdlLdUdQ
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B2

Combining (B.1), (B.2) and (B.3) with the relation kkk STH  [see Equa-
tions (5.7) and (5.8)] yields

k k
krkkuk

k
idisskaka ndndSTQddWndSTQddST (B.6)

Equation (B.6) identifies the entropy factors of an arbitrary state change in the
open heterogeneous system. Evidently, the entropy change is a combination due
to heat and material exchange between the individual parts [phases] of the system
and that exchange between the system and the surroundings. In addition, the
chemical reactions and the dissipative work contribute to the entropy state function.
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Appendix C: Example: Solution of CO/CO2/O2

equilibrium with the Lagrange-method

The minimum of the Gibbs energy of the ideal gas CO/CO2/O2 system is solved
with the Lagrange method of undetermined multipliers. The Lagrangian function to
be minimized is formed with the mass balances of carbon and oxygen as the addi-
tional conditions.

Stoichiometric matrix:

Constituent/System Component C O

CO 1 1

O2 0 2

CO2 1 2

Mass balances (CO=1, O2 = 2, CO2 = 3):

1  = n1 + n3 - b’  = 0 (carbon balance) (C.1)

2  = n1 + 2n2 + 2n3 - b’’  =  0 (oxygen balance) (C.2)

where b’ and b’’ indicate the total amounts of carbon and oxygen in the system.

Gibbs energy:

k
kknG (C.3)

where

kkk aRTTT ln)()( (C.4)

321; nnnn
n
na k

k
(C.5)
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C2

as the activity of each constituent is derived from its mole fraction in the ideal gas.

For brevity, the notation
RT
Gg

RT
g k

k ;  is adapted and for the thus modified

Gibbs energy there is

k

k
kk n

n
gng ln (C.6)

The Lagrangian:

The Lagrangian function ( ) is now received from g and from the mass balances
as given above for carbon and oxygen. The Lagrange undetermined multipliers
( 1, 2) are connected with the mass balance conditions:

2211ln
k

k
kk n

n
gn (C.7)

(C.8)

The minimum of the Lagrangian is now identical with the minimum of the function g.
By using the undetermined multipliers as additional variables the amount of matter
of the constituents at equilibrium can be solved. The minimum condition is:

0;0;0
21kn

(C.9)

0ln 21
1

1
1 n

n
g

n
(C.10)

02ln 2
2

2
2 n

n
g

n
(C.11)

which with three constituents k gives five equations for the five variables (n1, n2, n3,
1, 2).

From the partial derivatives 0
kn

, there is:

''22'ln 3212311 bnnnbnn
n

n
gn

k

k
kk
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02ln 21
3

3
3 n

n
g

n
(C.12)

by eliminating the undetermined multipliers the following relation can be solved:

n
n

n
n

n
n

ggg 213
213 ln5.0lnln5.0 (C.13)

which is the same as the formula of the equilibrium constant

aK
RT
G ln (C.14)

for the stoichiometric reaction CO + 0.5O2 CO2 (cf. equation 8.4).
The derivatives of the Lagrangian in terms of the multipliers ( 1, 2)  give  two

additional equations in terms of the mass balance conditions (b’, b’’). Using these
together with the above result the equilibrium amounts for n1, n2 and n3 can be
solved.
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Appendix D: Linearization of the Lagrangian
equations

The min(G) problem of Chapter 7.4 is solved e.g. in the programs Solgasmix and
ChemApp by linearizing the m non-linear Equations (7.29):

mka
N
n

P
RT j

NC

j
kj

k

k

,...,1,0lnln
1

(D.1)

The linearization can be done with the Taylor formula for the logarithmic function:

.1lnlnln
y
xy

y
yxyx (D.2)

Where y is the value point of the Taylor expression. In iterative methods, y is the
value of an initial guess from which a series of calculations towards a final conver-
gence point is commenced. From Equation (D.1) one gets

mkaNnP
RT j

NC

j
kjk

k

,...,1,0lnlnln
1

(D.3)

Now, applying the iterative Taylor approach, a set of initial guesses are set as nk(0)

= yk ,  k  = 1,…, m and with
m

k ky
1

= Y , where the vector y =  (y1,…,ym+s) is the

value of the initial guess and thus,

mka
Y
NY

y
nyP

RT j

NC

j
kj

k

k
k

k

,...,1,01ln1lnln
1

(D.4)

By combination of terms,

mka
Y
N

y
n

Y
yP

RT j

NC

j
kj

k

kk

k

,...,1,0lnln
1

(D.5)

Then, nk can be solved in terms of the yk’s:

mka
Y
N

Y
yP

RT
yn j

NC

j
kj

k

k
kk ,...,1,lnln

1
(D.6)

Adapting from Eriksson, the following notation may be used:
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mk
Y
y

P
RT

yf k

k
kk ,...,1,lnln (D.7)

This quantity (fk) is a function of temperature, pressure and the initial guess for
each yk. Then, with fk, the nk’s can be solved from

mkfa
Y
Nyn kj

NC

j
kjkk ,...,1,

1

(D.8)

where then, the term N/Y remains as an unknown variable, common for each
equation on nk. The number of unknowns then reduces to the amounts of con-
densed phases nk, k = m+1,…,m+s, the Lagrange multipliers j, j = 1,…NC and the
ratio N/Y. When these are solved, the amounts for the gaseous mixture phase can
be calculated by (D.8).

A summation over all the gaseous species gives from (D.8):

m

k
k

m

k
j

NC

j
kjk

m

k
k fa

Y
Nyn

11 11

(D.9)

which further gives

m

k
k

m

k
kkj

NC

j
j fya

111
(D.10)

With a new abbreviated notation

NCjbyaC
m

k
jkkjj ,...,1,

1

(D.11)

another calculable quantity Cj is derived to serve as a correction factor for cases
where the initial guess does not match the mass balance relations. The total
amounts of elements can be solved in terms of Cj’s and then solved from D.3 as
follows:

NCjyaCna
sm

k

m

k
kkjjkkj ,...,1,0

1 1

(D.12)

Here, replacing nk’s from Equation D.8:



Appendix D: Linearization of the Lagrangian equations

D3
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(D.13)

which may be rearranged to

NCjCnafaayaya
Y
N m

k
j

sm

mk
kij

NC

i

m

k
kkjiki

m

k
kkjkkj ,...,1,01

1 11 11 (D.14)

Note that while Equation (D14) is valid for all system components (j=1,…, NC), it
includes another summation over all system components, denoted by subscript i
for clarity. Further rearrangement gives

NCjCfanaya
Y
Nyaa

m

k
j

m

k
kkj

sm

mk
kijkkj

NC

i

m

k
kkikji ,...,1,1

1 111 1
(D.15)

and by combining the summation over akj’s and aki’s with the following notation
may also be used (see Eriksson, 1973):

),....,1,(
1

NCjiyaarr
m

k
kkjkiijji (D.16)

The coefficients rij are defined by the stoichiometry of the system and the initial
guess, and thus their values can be calculated for the iteration.

Equations 7.30, D.10 and D.15 then form a set of s+NC+1 linear equations, with
equal amounts of variables. The linear equations are as follows

smmka
RT j

NC

j
kj

k

,...,1,0
1

(7.30)

m

k
k

m
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kkj
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(D.10)

NCjCfanaya
Y
Nyaa
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kkj
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kijkkj
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k
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1 111 1
(D.15)

The solution can be reached by, e.g. the Gaussian elimination method. From the
solution of D.1-D.3 and D.15, the amounts of matter in the condensed phases nk, k
= m+1,…,m+s and the Lagrange multipliers j, j =  1,…l are calculated. The
amounts for the gaseous phases are received from D.9, and N/Y-1 is applied as
the convergence criterion.
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The Equations 7.30–7.32 and D.15 form the mathematical basis for solving the
equilibrium amounts of constituents for a system of s condensed species (pure
substances) and an ideal gas phase with m constituents. The reader is referred to
Eriksson (1975) and e.g. Smith & Missen for the generalization of the Lagrange
method for more complex systems.
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Nimeke Monifaasisysteemien laskenta rajoitettua Gibbsin
energian minimointia käyttäen

Tekijä(t) Pertti Koukkari

Tiivistelmä Laskennallisten menetelmien käyttö prosessi- ja materiaalitekniikassa on jatkunut
useiden vuosikymmenien ajan uusien numeeristen tekniikoiden käyttöönoton
seuratessa tietokoneiden laskentatehon kasvua. Etenkin reaktiokinetiikkaan, vir-
taustekniikkaan ja termodynamiikan tilanyhtälöihin perustuvat menetelmät ovat
saavuttaneet vahvan jalansijan myös näiden alojen teollisuudessa. Lisäksi kahden
viimeksi kuluneen vuosikymmenen aikana termodynaamiset monifaasimenetelmät,
jotka perustuvat tilanyhtälöiden asemesta systeemin vapaan energian (Gibbsin ener-
gian) minimointiin, ovat voittaneet alaa etenkin sellaisissa prosessi- ja materiaali-
tekniikan tasapainosovelluksissa, joissa perinteiset tilanyhtälömenetelmät ovat
osoittautuneet riittämättömiksi. Termodynaamisen tasapainolaskennan ohella on
kehitetty Gibbsin energiaan nojaavia algoritmeja, jotka mahdollistavat myös kineet-
tisesti rajoitettujen ajasta riippuvien monifaasisysteemien simuloinnin.

VTT:llä 1990-luvun puolivälistä jatkuneessa tutkimustyössä on kehitetty erityinen
rajoitetun vapaan energian laskentatekniikka osittaisten ja ajan suhteen rajoitettu-
jen kemiallis-termodynaamisten systeemien kvantitatiiviseen tarkasteluun. Mene-
telmä perustuu termodynaamisen vapaaenergiafunktion käyttöön, ja sen minimin
numeeriseen ratkaisuun systeemiä tai sen osaa kulloinkin rajoittavien ehtojen voi-
massaollessa. Uuden lähestymistavan ero perinteiseen Gibbsin energian mini-
mointiin nähden on menetelmän kyky käyttää ainetase-rajoittimien lisäksi fysikaali-
sesti perusteltuina rajoittimina systeemin aineettomia ehtoja.

Tässä julkaisussa monifaasisysteemeille soveltuva rajoitetun Gibbsin energian
menetelmä johdetaan termodynaamisista perussuureista. Vapaa energia minimoi-
daan soveltamalla Lagrangen määräämättömien kertoimien tekniikkaa yksinkertai-
selle monifaasisysteemille, jota rajoitetaan suljetun systeemin ainetaseella. Aineet-
tomien rajoitusten käyttö minimoinnissa on tämän jälkeen esitetty yleistettyjen
työkertoimien ja vastaavien työkoordinaattien avulla, jolloin Lagrange-kertoimet
antavat ratkaisuna aineettomien systeemikomponenttien kemialliset potentiaalit.
Tällä tavoin laajennetulla vapaaenergian laskentatekniikalla on havaittu olevan
runsaasti sovelluksia, joista yksinkertaisin esimerkein kuvataan rajoitetun vapaa-
energiatekniikan käyttö sähkökemiallisen Donnan-potentiaalin määräämiseen
kuitususpensioissa sekä edelleen sen soveltaminen reaktiokineettisesti rajoitettujen
monifaasisysteemien ja kemiallisten reaktorien laskentaan. Materiaalitekniikan
sovelluksista käsitellään monikomponenttisysteemien pintaenergialaskenta sekä
partiaalisten ja koostumusrajoitteisten faasitasapainojen laskeminen. Lopuksi
arvioidaan vielä lyhyesti mahdollisuuksia soveltaa termodynaamista laskentaa
biokemiallisille systeemeille.
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Introduction to constrained Gibbs energy methods 
in process and materials research  
 
It has become increasingly important to manage the complexity of multicomponent and 
multiphase chemical systems in both process and materials science. The development of 
clean, resource and energy efficient technologies entails sophisticated control of the chemical 
details, often during the time course of a dynamic process interacting with its surroundings. 
In materials research, exclusive structure-property relations of end products will require both 
accuracy of their molecular composition and understanding of the cross-functional interactions 
when their performance is activated with ambient conditions or even by external force fields.

The novel Constrained Gibbs Free energy (CFE) technique developed by VTT provides a 
quantitative methodology for such chemical or biochemical processes which are affected by 
specific physical functions deciphered as thermodynamic work. Based on computational 
multiphase thermodynamics, CFE deals with the complexity of matter in systems involving 
changes in energy and in chemical or phase composition. The salient feature of the method 
is its ability to incorporate the contribution from generalised work to a multiphase free energy 
computation, which facilitates quantifiable solutions of intricate chemical problems in systems 
affected by either internal or external forces due e.g. to surface tension, charge and electric-
magnetic factors. The same principle can also be applied to non-equilibrium processes, 
allowing for the inclusion of chemical reaction rates as affinity related constraints in the 
thermodynamic multiphase analysis. 

The scope of CFE applicability ranges from functional behaviour of nanosize particles to 
features of dynamic superequilibria in large scale industrial and environmental processes. Thus 
the method gives an exceptionally large array of potential uses in the fields of materials and 
process chemistry as well as in the development of sustainable technology. 

The present introductory text provides an overview of the basic principles of the constrained 
Gibbs free energy minimisation in the context of classical thermodynamics for both students 
and experts interested in problem solving in process or materials research. 

Related reports:

Koukkari, P. (ed.). Advanced Gibbs Energy Methods for Functional Materials and Processes 
– ChemSheet 1999–2009. Espoo, 2009. VTT Research Notes 2506. ISBN 978-951-38-7330-1. 
145 p. http://www.vtt.fi/inf/pdf/tiedotteet/2009/T2506.pdf.

Leppävuori, J. & Koukkari, P. (eds.). BIOSCEN. Modelling Biorefinery Scenarios. Espoo, 2012. VTT 
Technology 67. ISBN 978-951-38-7902-0. 159 p. http://www.vtt.fi/inf/pdf/technology/2012/T67.pdf.
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