)

~

Road traffic incident risk
assessment

Accident data pilot on Ring | of the Helsinki
Metropolitan Area

Satu Innamaa | llkka Norros | Pirkko Kuusela |
Riikka Rajamaki | Eetu Pilli-Sihvola






VTT TECHNOLOGY 172

Road traffic incident risk
assessment

Accident data pilot on Ring | of the
Helsinki Metropolitan Area

Satu Innamaa, llkka Norros, Pirkko Kuusela, Riikka Rajamaki

& Eetu Pilli-Sihvola



ISBN 978-951-38-8257-0 (URL: http://www.vtt.fi/publications/index.jsp)
VTT Technology 172

ISSN-L 2242-1211
ISSN 2242-122X (Online)

Copyright © VTT 2014

JULKAISIJA - UTGIVARE - PUBLISHER

VTT

PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT

Puh. 020 722 111, faksi 020 722 7001

VTT

PB 1000 (Teknikvégen 4 A, Esbo)

FI-02044 VTT

Tfn +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland

Tel. +358 20 722 111, fax +358 20 722 7001



Road traffic incident risk assessment
Accident data pilot on Ring | of the Helsinki Metropolitan Area

Tieliikenteen héairidriskin arviointi. Pilotti Kehé I:n onnettomuusaineistolla.
Satu Innamaa, llkka Norros, Pirkko Kuusela, Riikka Rajamé&ki & Eetu Pilli-Sihvola.
Espoo 2014. VTT Technology 172. 49 p. + app. 8 p.

Abstract

The purpose of this project was to apply the Palm distribution to the analysis of
riskiness of different traffic and road weather conditions introduced in a previous
project (Innamaa et al. 2013), develop the method further, and find factors that
statistically significantly affect traffic incident risk.

The method was piloted using data from Ring-road | of the Helsinki Metropoli-
tan Area. The study was based on registered accidents that occurred on Ring-
road | in 2008-2012, totalling 1120. In addition to accident data, traffic data from
eight automatic traffic measurement stations (inductive loops) and road weather
data were also used.

The basic methodological idea was to compare the traffic and weather circum-
stances just before an accident with the Palm probability of the same circum-
stances. The notion of Palm probability comes from the theory of random point
processes, and means the probability distribution "seen" by a randomly selected
point of the point process, i.e. the driver in this case (in contrast to the stationary
probability, which is the probability distribution seen at a random time point). If
each car driver had a constant stochastic intensity of causing an accident, then the
accident circumstances would follow the Palm distribution. The idea of the method
applied here is to assess the influence of circumstances on incidents by compar-
ing the incident circumstance distribution with the Palm distribution of circum-
stances: differences between these distributions hint at effects of circumstances
on accidents.

The results showed that there were several specific weather conditions that
were more common among drivers who were involved in an accident than among
drivers in general. These conditions included air temperature from —6 degrees
Celcius down, snowfall or heavy rain, limited visibility, and snowy or wet road
surface. The results further showed that the probability of an accident is higher in
conditions when a weather alarm is issued by the Transport Agency (the road
operator) than in general.

In addition, in weekday afternoon traffic (15—17 o’clock) the risk of accident was
found to be 50% higher than generally. In night time traffic (2-5 o’clock) the risk
was even higher. The results indicated that the traffic situation correlated poorly
with accident risk. However, the results related to the traffic situation can be con-
sidered only indicative due to inaccuracies in the accident location information and
sparseness of the traffic detector network.



In conclusion, the findings suggest that the proposed method for identifying
conditions where accident risk is elevated by comparing the traffic and weather
circumstances just before the accident with the “Palm probability” of the same
circumstances indeed works. Not all results were statistically significant due to
some circumstances being rare. However, with the calculation of risk levels and
Kullback-Leibler divergence, it was possible to assess the findings.

Keywords traffic incident risk, Palm probability, driving conditions



Tieliikenteen hairioriskin arviointi
Pilotti Keha I:n onnettomuusaineistolla

Road traffic incident risk assessment. Accident data pilot on Ring | of the Helsinki Metropolitan
Area. Satu Innamaa, llkka Norros, Pirkko Kuusela, Riikka Rajaméaki & Eetu Pilli-Sihvola.
Espoo 2014. VTT Technology 172. 49 s. + liitt. 8 s.

Tiivistelméa

Taman hankkeen tavoitteena oli soveltaa Palm-jakaumaan perustuvaa aikaisem-
massa hankkeessa (Innamaa ym. 2013) kehitettyd menetelméé analysoida erilai-
siin liikenne- ja keliolosuhteisiin liittyvaa liikenteen hairididen riskig, kehittdéd mene-
telmaa eteenpdin ja I0ytéa tekijoita, jotka vaikuttavat liikenteen hairididen riskiin
tilastollisesti merkitsevasti.

Menetelméé kokeiltiin Keh& [I:lla kootulla aineistolla. Tutkimus perustui Keha
I:l& vuosina 2008-2012 tapahtuneisiin, rekisterdityihin onnettomuuksiin, joita oli
yhteensad 1120. Tutkimuksessa kaytettiin onnettomuusaineiston liséksi likennetie-
toja kahdeksasta liikenteen automaattisesta mittauspisteestéd (induktioilmaisimia)
ja tiesddaseman tuottamaa tietoa.

Menetelmallinen perusajatus oli verrata liikenne- ja séa-/keliolosuhteita hetkea
ennen onnettomuutta samojen olosuhteiden Palm-todennékoéisyyksiin. Palm-
todennékoisyyden kasite tulee satunnaisen pisteen prosessoinnin teoriasta ja
tarkoittaa satunnaisesti valitun prosessointipisteen, téssa tapauksessa autoili-
jan, "nakemad” todennakoisyysjakaumaa (vastakohtana stationaariselle todenna-
koisyydelle, joka kuvaa todennakdisyysjakaumaa satunnaisella ajanhetkelld). Jos
jokaisella autoilijalla on vakiosuuruinen stokastinen intensiteetti aiheuttaa onnet-
tomuus, onnettomuusolosuhteet noudattavat Palm-jakaumaa. Menetelméssa on
sovellettu ideaa arvioida olosuhteiden vaikutus liikenteen hairidihin vertaamalla
hairididen olosuhdejakaumaa olosuhteiden Palm-jakaumaan: Naiden jakaumien
valiset erot viittaavat olosuhteiden onnettomuusvaikutukseen.

Tulokset osoittavat useita séé- ja keliolosuhteita, jotka olivat yleisempi& onnet-
tomuuksiin joutuneiden ajoneuvojen kohdalla kuin yleensa. Téllaisia olosuhteita
olivat korkeintaan —6° C ilman lampoétilan lumisade tai rankka vesisade, huono
nakyvyys ja luminen tai marka tienpinta. Liséksi tulokset osoittivat, ettd onnetto-
muuden todennékdisyys on korkeampi olosuhteissa, jolloin Liikennevirasto antaa
kelivaroituksen, kuin muuten.

Lisaksi arki-iltapaivien (klo 15-17) likenteessa onnettomuusriski oli 50 % kor-
keampi kuin yleensd. Yoaikaan (klo 2-5) riski oli viel& korkeampi. Tulokset osoitti-
vat, etté liilkennetilanne korreloi huonosti onnettomuusriskin kanssa. Liikennetilan-
teeseen liittyvia tuloksia voi kuitenkin pitd& vain suuntaa-antavina onnettomuuden
paikkatiedon epéluotettavuuden ja harvan liikkenneilmaisimien verkon takia.

Yhteenvetona voidaan todeta tulosten viittaavan siihen, etté ehdotettu menetelméa
toimii eli ettd menetelma tunnistaa olosuhteet, jolloin onnettomuusriski on kohon-
nut vertaamalla liikenne- ja séa-/keliolosuhteita hetki ennen onnettomuutta samo-



jen onnettomuuksien Palm-jakaumaan. Kaikki tulokset eivat olleet tilastollisesti
merkitsevid olosuhteiden harvinaisuuden takia. Tulokset voitiin kuitenkin arvioida
laskemalla riskitasoja ja Kullback-Leibnerin divergenssi.

Avainsanat traffic incident risk, Palm probability, driving condition



Preface

A research project funded by the Finnish Transport Agency launched the develop-
ment of a method for identifying conditions in which the risk of a traffic incident is
elevated. VTT Technical Research Centre of Finland aimed to develop the method
further and validate the proposed method by testing it with a wider dataset.

Satu Innamaa led the project, and with Riikka Rajaméaki provided the transport
engineering perspective. She structured the deliverable and wrote the Introduction
and Discussion. Riikka Rajaméki provided raw data for the study and wrote the
Data chapter. Mikko Kallio processed the raw data for analysis. llkka Norros and
Pirkko Kuusela were in charge of developing and applying the mathematical
method (Chapters Mathematical Method, Results and Appendix A). Eetu Pilli-
Sihvola was responsible for searching the literature for the review.
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List of symbols

D Traffic density (passenger cars / km)

p Probability of the value vector

Q Traffic volume (passenger cars / 5 min)
STD Standard deviation

\Y, Speed (km/h)
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1. Introduction

1.1 Introduction

Traffic incidents cause secondary accidents and congestion, which at the societal
level leads to massive loss of time and increased carbon emissions in addition to
fatalities and injuries. Current traffic monitoring systems are reactive and incident
management focuses on minimising consequences of incidents rather than trying
to proactively prevent incidents from taking place.

Traffic incidents can be caused by a variety of single issues or, more often, by a
combination of issues (e.g. human error, adverse weather, large traffic volumes,
challenging road geometry). Consequently the analysis of factors that result in
increased incident risk requires expert knowledge both of traffic phenomena and of
analysis methods. Knowledge of such factors could facilitate the development of an
online incident risk assessment model that could be used in real-time operations
at traffic management centres. To our knowledge, such models do not exist as yet.

1.2 Literature review

1.2.1 Effect of traffic conditions on incident risk

Pajunen and Kulmala (1995) researched the effect of hourly traffic volumes on
traffic safety based on hourly traffic volume and speed data collected in 1991-
1993 from automatic traffic measurement stations, combined with accident data
from areas where traffic data was available. They found that on two-lane roads
and semi-motorways, accident rates generally fell as hourly traffic volume in-
creased. On four-lane roads, accident rates were highest at hourly traffic volumes
of 3600-4800 vehicles. However, on motorways, accident rates increased with
rising hourly traffic volume, and were highest at very low traffic volumes in both
directions. On all road types, accident rates were lower with high hourly traffic
volumes when the traffic was unevenly distributed in different directions.
Marchesini and Weijermars (2010) reviewed the literature on the relationship
between congestion and safety on motorways. They found that that the likelihood
of a crash seems to grow with speed variability, which is a common indicator of
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1. Introduction

unstable traffic conditions. Large differences in speeds between lanes and density
variations also appear to make crashes more likely.

When searching for evidence to support the general perception that crash fre-
quency increases with higher congestion levels, Marchesini and Weijermars
(2010) came across conflicting results. Some studies found that high volume-to-
capacity ratios led to higher crash rates; another study stated that crash rates
decreased at high traffic densities. Additionally, one of the studies they examined
did not find any relationship between congestion and crash frequency. None of the
studies they looked at explicitly provided evidence on the influence of congested
traffic conditions on crash rates.

Ishak and Alecsandru (2005) investigated the characteristics of pre-incident,
post-incident, and non-incident traffic conditions on freeways. The characteristics
were defined by second-order statistical measures derived from spatiotemporal
speed contour maps. Four performance measures were used to quantify proper-
ties such as smoothness, homogeneity, and randomness in traffic conditions in a
manner similar to texture characterization of digital images.

Their study was conducted using data collected from the freeway corridor 1-4 in
Orlando, Florida. The study corridor was nearly 40 miles long and six lanes wide.
The entire corridor was instrumented with 71 inductive dual-loop detectors or
stations, spaced approximately half a mile apart. Each detector station collected
three traffic parameters — traffic volume, lane occupancy, and speed — from each
of the six lanes. The system supported data resolution of 30 seconds. (Ishak and
Alecsandru 2005)

With real-world incident and traffic data sets, statistical analysis was conducted
to seek distinctive characteristics of three groups of traffic operating conditions:
pre-incident, post-incident, and non-incident. Incident data was also collected from
various sources, and a total of 116 accidents, reported on different days, were
selected for the analysis. Traffic conditions before and after the incident occur-
rence were separated into two groups: pre-incident conditions and post-incident
conditions. Pre-incident conditions were restricted to observations that took up to
10 minutes before the incident happened, whereas post-incident conditions were
collected from observations taken up to 10 minutes after the incident. The second-
order statistical measures outlined earlier were computed for each group by using
speed data collected from loop detectors. An arbitrarily selected time-space win-
dow of 5 minutes and three detector stations were used as the basis for calcula-
tion of each measure. In addition, non-incident traffic conditions were collected
from a total of 5 weekdays in 2001 and used for comparative analysis. (Ishak and
Alecsandru 2005)

The statistical analysis showed slight variations among the three groups (pre-,
post-, and non-incident conditions) in terms of each of the four measures used.
Although the nonparametric tests showed that the distribution of each measure
within each group is different, a consistent pattern was not detected within the
categories of each measure. Such inconsistency led to the conclusion that the
pre-, post-, and non-incident traffic conditions may not be readily discernible from
each other and that specific characteristics of precursory conditions to incidents
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1. Introduction

may not be clearly identifiable. Such a conclusion, however, is driven by limited
incident and traffic datasets and selected second-order traffic performance
measures. Additionally, environmental factors such as inclement weather condi-
tions were not accounted for in this study. (Ishak and Alecsandru 2005)

Ishak and Alecsandru (2005) suggested that further research should be con-
ducted to include a broader sample of data and possibly more sophisticated
measures, and to account for factors such as weather conditions and possible
inaccuracies in detector data.

1.2.2 Effect of weather conditions and other factors

Pajunen and Kulmala (1995) also examined the effect of time of year and daylight
on traffic safety. They found accident rates on two-lane roads to be generally
higher at times of darkness than during the day. On four-lane roads the personal
injury accident rate decreased at night when traffic volumes increased. On semi-
motorways accident rates in the dark were found to drop as hourly traffic volumes
increased, up to a point, after which the accident rates again started to rise.

Ziemann et al. (2013) examined the occurrence of multi-vehicle rear-end colli-
sions in 2012 in Finland at different times of the year. They examined road acci-
dent data from the Finnish Transport Agency’s database and found that the time of
year had no significant impact on the frequency of multi-vehicle rear-end colli-
sions. When looking at rear-end collisions where only two vehicles were involved,
the winter months had an observable increase in the occurrence of these kinds of
accidents. The three most common contributing causes to multi-vehicle collisions
were found to be driving speed, distance to the preceding vehicle and the focusing
on driving task. The use of a mobile phone just before becoming involved in an
accident was mentioned as a typical cause related to a lack of focus. The limita-
tions of this examination included a small sample size (one calendar year, 2012)
and not taking into account the actual weather and road conditions but only look-
ing at calendar months for the frequency of accidents. The study was performed in
co-operation with Liikenneturva, a Finnish association promoting road safety.

Salli et al. (2008) analysed the effects that different wintertime road conditions
have on the accident risk in passenger car traffic. They define accident risk as the
ratio of the number of accidents to vehicle mileage. Similarly, the accident risk for
a specific road condition is defined as the ratio of the number of accidents in those
conditions to vehicle mileage in the same conditions. The study consisted of a
literature review and statistical accident risk analysis that combined accident in-
formation from the Traffic Safety Committee of Insurance Companies (VALT) and
road condition data from the Finnish Road Administration. The literature study
focused on the effects that road condition, vehicle type, tyres, and driver behaviour
have on wintertime accident risk.

The literature study of the Nordic countries (Salli et al. 2008) showed that the
rarer specific winter road conditions are, the greater the risk of an accident is. This
points to the conclusion that drivers accustomed to driving in winter conditions can
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1. Introduction

better accommodate for them in their own driving behaviour. In addition, the risk of
accident was found to be higher in the beginning and end of the winter season.
Relating to specific conditions, the relative accident risk was found to be highest
on icy and slushy roads.

In the Salli et al. (2008) study, the accident risk in snowy or icy conditions was
calculated to be 4.1 times that of bare pavement road conditions. For fatal acci-
dents, the risk in conditions of loose snow or slush was estimated at 4.9 times that
of bare pavement conditions. These risk factors were found to correspond quite
well with the results of earlier studies on the subject. However, many potential
sources of error were identified in evaluating the accident risks for different road
conditions. Information about the road condition is often a subjective estimate, the
classifications of road conditions are not necessarily comparable, vehicle mileage
data in different road conditions is lacking, and the accident data is often small and
includes contingency.

Hranac et al. (2006) studied the impacts of weather on different macroscopic
traffic flow parameters, but did not look specifically into the effects of weather on
the risk of incidents or accidents. The study consisted of a literature review and an
analysis that combined archived macroscopic traffic data with historical weather
data. Hranac et al. looked at traffic and weather data from three North-American
cities: Minneapolis-St. Paul, Baltimore and Seattle. They did not find any impacts
on traffic jam density, but both rain and snow did have an impact on traffic free-
flow speed, speed at capacity and capacity. In addition, the parameters varied
depending on the precipitation intensity. Even though capacity did not vary with
show intensity, capacity reductions between 12% and 20% were found when con-
ditions were snowy.

One interesting finding of the Hranac et al. (2006) study was that Minneapolis-
St. Paul experienced more significant reductions in the traffic free-flow speed and
speed at capacity under snowy conditions than Baltimore (19% vs. 5%). As Min-
neapolis-St. Paul receives more snowfall annually, the authors posited that one
possible explanation for this was that drivers more accustomed to snow were
more aware of its dangers. This corresponds well with the findings of Salli et al.
(2008), where the authors examined the impact of weather on traffic in the Nordic
countries and came to similar conclusions.

1.2.3 Secondary incident risk estimation

Vlahogianni et al. (2012) introduced a neural network model approach to extract
useful information on variables that are associated with the likelihood of secondary
accidents. Specifically, traffic and weather conditions at the site of a primary inci-
dent were examined. To detect secondary incidents, a dynamic threshold method-
ology was used that considered real-time traffic information from loop detectors.
Two sensitivity measures to evaluate the significance of the variables were used
(mutual information and partial derivatives).

14



1. Introduction

As input to the model of Vlahogianni et al. (2012), 3500 incident records be-
tween 2007 and 2010 were used. The data was from the Attica Tollway, a 65-km
urban motorway connecting two major interurban motorways, Athens International
Airport, and Athens city centre in Greece. This incident information was supported
by traffic-related information including exact location, number of lanes blocked,
total duration of the incident, vehicle type, and number of vehicles involved. Fac-
tors such as prevailing traffic conditions (speed and volume) and weather condi-
tions (rainfall intensity) were also considered. As output the model estimated the
contribution of different variables to the likelihood of secondary incidents. In addi-
tion, the results showed that a multilayer perceptron with a supporting function
acting as a general Logit model performed best among the different models.

The likelihood of the proposed model yielding incorrect classification of sec-
ondary incidents varied between 6% and 7%. The results suggested that traffic
speed, duration of the primary accident, hourly volume, rainfall intensity, and the
number of vehicles involved in the primary accident are the top five factors associ-
ated with secondary accident likelihood. However, changes in traffic speed and
volume, number of vehicles involved, blocked lanes, and percentage of trucks and
upstream geometry also significantly influence the probability of having a second-
ary incident. (Vlahogianni et al. 2012)

Vlahogianni et al. (2012) assessed that the proposed neural network approach
is promising as a transport managerial tool for TMCs to support decision-making.
It could potentially be extended to other transport applications as well.

1.2.4 Summary of the literature review

From the current literature, it seems that there hasn't been much research on the
impact of traffic conditions on accident risk. Pajunen and Kulmala (1995) found
that on two-lane roads and semi-motorways, accident rates generally fell as hourly
traffic volume increased. On four-lane roads, accident rates were highest at hourly
traffic volumes of 3600-4800 vehicles. However, on motorways, accident rates
increased with rising hourly traffic volume, and were highest at very low traffic
volumes in both directions. Marchesini and Weijermars (2010) concluded based
on literature that that the likelihood of a crash grows with speed variability and that
large differences in speeds between lanes and density variations also appear to
make crashes more likely. None of the studies they looked at explicitly provided
evidence on the influence of congested traffic conditions on crash rates. The study
of Ishak and Alecsandru (2005) was based on limited incident and traffic datasets
and selected second-order traffic performance measures. Therefore, their conclu-
sion that the pre-, post-, and non-incident traffic conditions may not be readily
discernible from each other and that specific characteristics of precursory condi-
tions to incidents may not be clearly identifiable can not be considered final.

More information was found on the riskiness of different road weather condi-
tions. Specifically, Nordic winter conditions have been shown to be risky. Ziemann
et al. (2013) found that the winter months had an observable increase in the oc-
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1. Introduction

currence of rear-end collisions where only two vehicles were involved. In addition,
Salli et al. (2008) showed that the rarer specific winter road conditions are the
greater the risk of an accident is. They also found the risk of accident to be higher
at the beginning and end of the winter season. Relating to specific conditions, Salli
et al. found the relative accident risk to be highest on icy and slushy roads and the
accident risk in snowy or icy conditions was calculated to be 4.1 times that of bare
pavement road conditions. For fatal accidents, the risk in conditions of loose snow
or slush was estimated at 4.9 times that of bare pavement conditions.

In studies of the risk of a secondary accident, similar findings of rainfall intensity
affecting the risk have been found as for the overall accident risk. In addition,
some indication on the impact of traffic flow were found. Specifically, Vlahogianni
et al. (2012) found that traffic speed, duration of the primary accident, hourly vol-
ume, rainfall intensity, and the number of vehicles involved in the primary accident
were the top five factors associated with secondary accident likelihood. Changes
in traffic speed and volume, number of vehicles involved, blocked lanes, and per-
centage of trucks and upstream geometry also significantly influenced the probability
of having a secondary incident. However, the factors that are significant for sec-
ondary accident risk are not all necessarily the same for the general incident risk.

1.3 Purpose of the study

The literature review showed that more research should be done on identification
of risky driving conditions. Knowledge of such factors could facilitate the develop-
ment of an online incident risk assessment model that could be used in real-time
operations at traffic management centres.

The application of the Palm distribution in analysing different traffic and road
weather conditions under which the risk of incident is increased was a new re-
search idea piloted in a previous research project (Innamaa et al. 2013). The pur-
pose of this project was to apply the proposed method, develop it further and find
factors that affect traffic incident risk with statistical significance.

Road safety is regarded as a multiplication of three orthogonal factors of expo-
sure, risk of a collision taking place during a trip, and risk of a collision resulting in
injuries or death (Nilsson 2004, Figure 1). This study examines the risk of inci-
dents (crash risk). Whether or not a highly risky condition represents a high hum-
ber of accidents or fatalities is dependent on exposure to the condition and the
severity of accidents (risk of fatal injuries in a crash).

16
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Crashrisk R

Number of fatalities =F R E

Exposjure E

Figure 1. The dimensions of road safety (Nilsson 2004).
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2. Method

2.1 Data

The study was conducted on Ring-road | (Ring I) of the Helsinki Metropolitan Area.
This beltway has a total length of 24.2 kilometres, two carriageways, and at least two
lanes per direction for its entire length. Most of the road has grade-separated inter-
changes and an 80 km/h speed limit, but near both ends the speed limit is 60—70 km/h
and intersections are at-level and light-controlled. Ring | is the busiest road in Finland,
carrying 58,000 vehicles per day on average and 90,000 in the northernmost section.

The study was based on registered accidents (from the accident records of the
Finnish police) that occurred on Ring | in 2008-2012, totalling 1120 accidents or
an average of 0.61 accidents per day. Three of those accidents were fatal and 160
were non-fatal injury accidents. In some cases, accident time, location or condi-
tions were recorded incompletely, and those cases were excluded from this study.
The final study data consisted of 1051 accidents.

The most common accident types on this road were rear-end accidents (41%)
and accidents related to overtaking and changing lanes (26%). One third of the
accidents occurred on the easternmost 4 kilometres of the road. Twenty-six per
cent of the accidents occurred between 4 pm and 6 pm (afternoon peak hours).
Accidents were fairly evenly divided between the months of the year, only the
summer holiday months of June and July having remarkably lower accident num-
bers. Ten per cent of accidents occurred during snowfall and 11% during rain.

The accident location data lacked reliable information on the direction of travel.
Accident locations are based on GPS coordinates recorded by the police, and
their accuracy is approximately +30 metres. In the accident database, accidents
are linked to the nearest carriageway; this unreliable carriageway information was
used here as no more accurate or reliable source of information was available.

The accident times recorded by the police are mainly exact to within 10 minutes (i.e.
8:00, 8:10, 8:20, etc.). This suggests that accident time accuracy is around +5 minutes.

In addition to accident data, the following data were used (Figure 2):

i. Traffic data from eight automatic traffic measurement stations (inductive
loops) on Ring | in 20082012

ii. Road weather data from a station located on highway 3 in Pirkkola, close to
Ring I, in 2008-2012.
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2. Method

S

Road weather station

A Traffic measurement station|
Ring-road |
0 1 2 4 Kilometers
L v 0 1 Ay ]

Figure 2. Placement of automatic traffic measurement stations and a road weather
station.

Automatic traffic measurement stations are not evenly distributed along this 24 km
long road; the easternmost one is located 5.8 km from the eastern end of the road.
Therefore the distance between accident location and nearest measurement sta-
tion is rather long and the traffic situation may be different.

The traffic data consisted of traffic volume and mean speed measurements at
5-minute intervals and standard deviation for speed within that time window. From
volume Q (passenger cars/5 min) and speed V (km/h) an estimate of the traffic
density was calculated as D = 12Q/V passenger cars/km. Passenger cars and
heavy vehicles were counted separately, but in this study they were merged using
the passenger car equivalent of 1.5 for heavy vehicles (HCM 1995).

Road weather station data consisted of weather and road surface information at
10-15 minutes intervals. Six variables were used: Air temperature, rain consistency
(liquid/crystal) and intensity, visibility, road surface conditions, and warning level.
The warnings and alarms given by the system are as follows:

1. Ice warning: No ice on the road surface, but it is likely that there soon will be
2. Ice alarm: Ice or snow on the road surface

3. Frost warning: Frost present on the road surface or likely to appear

4

Rain warning: It is or has been precipitating, and there may be danger of
slipperiness (road temperature close to icing temperatures).

19
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Both automatic traffic measurement and road weather station data had some
gaps. For missing traffic measurement station records, the data was copied from a
neighbour station in the same direction (a later one if such was available, other-
wise an earlier), so that if any traffic measurement record existed for a given peri-
od, the data showed a set of eight records. The number of missing 5-minute peri-
ods was only 65, which is about 0.01% of the whole observation time. For all inci-
dents, there were traffic records for the preceding 5-minute period. However, for
about 47% of the registered periods at least some traffic measurement station pair
(both directions) was down, and for 9.5% at least two were down. For 111 inci-
dents the traffic data were at least partly inferred from some farther traffic meas-
urement station than the nearest one(s). However, for eight incidents no neigh-
bouring traffic measurement station was alive.

For 48 incidents, weather station information was unavailable at the incident
time. For all but one of these, the data could be completed using the weather
information provided in the accident record instead.

2.2 Mathematical method

2.2.1 Methodological idea

The basic methodological idea was to compare the traffic and weather circum-
stances just before the accident with the Palm probability of the same circum-
stances. The notion of Palm probability comes from the theory of random point
processes and means the probability distribution "seen" by a randomly selected
point of the point process, i.e. the driver in this case (in contrast to the stationary
probability, which is the probability distribution seen at a random time point; see
e.g., Baccelli and Brémaud (2003)). In our case, we applied the notion of Palm
probability as follows:
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Palm distribution of road traffic circumstances

Intuitive idea

Distribution of circumstances seen by a randomly selected driver

Computation
from data

1.

Estimate traffic information between automatic traffic measurement
stations from the pointwise measurement data (time resolution 5 min).
The interpolation rules are given in Appendix A.

. Estimate the traffic density in each road section from the volume Q

(passenger cars/5 min) and speed V (km/h) as D = 12Q/V passenger
cars/km. Add to each traffic record (per section) a weight computed as
D times the length of the road section.

. Add weather station data to the traffic records.

4. Discretize the numerical quantities with the following granularities:

o Traffic volume granularity 10 p.cars/5 min: values 5, 15, 25,...
o Traffic mean speed granularity 5 km/h: values 2.5, 7.5, 12.5,...

o Traffic speed standard deviation granularity 5 km/h: values 2.5,
7.5,125,...

o Air temperature granularity 3°C: values ..., -4.5, -1.5, +1.5, +4.5,....
o Free sight granularity: 200 m

e Time granularity: 20 min

o Date granularity: Monday, ..., Sunday

. Gather records with identical variable values together and let the

weight of a value combination be the sum of the weights of all original
records showing that value combination.

. Normalise the weights into a probability distribution.

Incident-time distribution of road traffic circumstances

Intuitive idea

Distribution of circumstances seen at time and place of a randomly se-
lected incident

Computation
from data

1.

Look at the date and time of the incident, take the preceding 5-minute
record for the road section where the incident took place, and pick its
traffic and weather circumstance values.

Give each incident the same weight and gather identical value combi-
nations together. Let the weight of a value combination be the sum of
the weights of all (incident) records showing that value combination.

3. Normalise the weights into a probability distribution.

The reason for using the preceding 5-minute record in computation of the incident-
time distribution of road traffic circumstances was to avoid the influence of the
incident itself on the traffic characteristics.

In the implementation with Mathematica™, the distributions were presented as
lists with elements {{xi,...,x«},p}, where the x;'s are values of observables and p is
the probability of the value vector. Below is the full list of observables considered

in this study:

¢ Weekday (Monday = 0)
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e Time (granularity 20 min)

e Direction (1 = eastward, 2 = westward)

¢ Road section (between automatic traffic measurement stations), nine values
¢ Traffic volume

e Mean speed

e Standard deviation (STD) of speed

e Air temperature

e Rain intensity and phase (liquid vs. crystal)
e Visibility (in km, 2 = perfect)

¢ Road surface condition

e Warning state

e Sunup (1=yes, 0=no).

The reason for coarse-graining of continuous quantities is that it allows meaningful
comparison of the two distributions (see Appendix A). Even with coarse-graining,
the total number of all observed combinations was so big that in order to speed-up
the computations, the Palm distributions were created separately for three groups
of quantities: (i) time and place attributes, (ii) traffic quantities, and (iii) information
items provided by the weather station.

If each car driver had a constant stochastic intensity of causing an accident,
then the accident circumstances would follow the Palm distribution. The idea of
the method applied here is to assess the influence of circumstances on incidents
by comparing the incident circumstance distribution with the Palm distribution of
circumstances; differences between these distributions hint at effects of circum-
stances on accidents.

For each quantity, the comparisons of their two distributions were made using
three techniques:

1. Plotting the density of the incident distribution with respect to the Palm dis-
tribution. A value higher than 1 indicates higher risk, value 2 can be inter-
preted as 100% higher risk than under Palm distribution, etc. This gives a
qualitative impression of the relation of the two distributions.

2. Assessment of the statistical significance of the difference of an incident-
time frequency of a particular value from its Palm frequency: What is the
probability that random sampling from the Palm distribution, with sample
size equal to the number of incidents (1051), would yield at least the fre-
guency observed in the incident distribution? More details are given below.

3. Comparison of the whole distributions in terms of the Kullback-Leibler di-
vergence (also known as relative entropy and by several other names; see
e.g. Cover and Thomas (2006)). If the relative entropy of the incident distri-
bution with respect to the Palm distribution is not significantly higher than
that of a random sample (of same size) from the Palm distribution itself, we
can conclude that the two distributions are essentially similar. For more de-
tails, see Appendix A.
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2.2.2 Graphical illustration of the results

In this report, most of the results are presented using two kinds of plots: (i) densi-
ties of accident-time distributions of various variables with respect to respective
Palm distributions, i.e. comparing the frequency of certain driving conditions at the
moments and places where an accident occurred with that for all drivers, and (i)
joint point probability plots of both distributions equipped with 95% confidence
intervals around the Palm values.

The first type of plot is illustrated in Figure 3. If the variable in question (in this
case the road section) is denoted by X, then for each point with coordinate x on
the horizontal axis, the value on the vertical axis is

Paccident (X:X) / Ppaim (X:X).

These density ratios are estimates of the relative risk increase/decrease when
variable X takes the value x, compared with the overall risk level. Thus a density
ratio 1 stands for the situation where the variable value (e.g. certain driving condi-
tion) has no impact on accident risk. Values below 1 represent conditions where
the risk of accident is lower than on the average, and values above 1 represent
conditions with elevated accident risk.

density ratio
20 ¢

15|

10 |

00 S S S S S road section
10

Figure 3. Example of risk levels illustration.

To understand the second type of plot, consider a simplified test outcome of three
values A, B and C as illustrated in Figure 4. The Palm distribution presents the
frequencies (i.e. probabilities, denoted by p) of these values obtained from a very
large population. This corresponds to the conditions seen by an arbitrary (random)
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vehicle on the road. In the statistical testing we assume that the Palm frequencies
are the "true" frequencies of the various values, illustrated by blue dots in the
figure. However, when a small sample with equal value frequencies is drawn and
examined, the estimate of frequencies varies. The vertical lines in the figure illus-
trate how much the small sample frequency estimate can vary on a given confi-
dence level. The vertical line is the (1 - a)% confidence interval [pip, pub] that is
calculated for a sample the size of the accident vehicle population (1051), where a
is the risk level of the statistical testing (0.05 in this case). The calculation of the
confidence interval is explained in Appendix A. Note that the blue dots in the figure
are always inside the confidence intervals, but the interval need not be symmetric
around the blue dot.

lllustration of test results
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Figure 4. A simple example of how the results of the statistical testing of condi-
tions are illustrated.

Figure 4 summarizes three independent statistical tests, one for each value A, B
and C. The vertical axis (p) shows point probabilities of distributions. For value A
(e.g. road condition, mean speed value etc.), the probability estimate (observed
frequency) calculated from the accident vehicle population and illustrated by the
red dot is within the confidence interval of the Palm frequency. Thus, it is conclud-
ed that value A is not significantly more prone to occur within accident vehicles
than within arbitrary vehicles.

For value B, the frequency estimate (red dot) from the accident vehicles is out-
side the confidence interval of Palm frequencies. It is concluded that at risk (or
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significance) level a the frequency of condition B differs statistically significantly
between arbitrary and accident vehicles. The frequency of value B is larger within
the accident vehicle population than in the population of arbitrary vehicles.

For condition C, there is also a statistically significant frequency difference, but
now the value C is less frequent among accident vehicles than in general. (Note
that because the sum of all probabilities in a distribution is always 1, a heightened
accident risk associated with some value must be balanced with lowered risk
associated with some other value.)
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The statistical tests in this section are performed with risk level a = 0.05. This
means that the probability of rejecting our null hypothesis (that the incident distri-
bution does not differ from the Palm distribution), even if it is true (i.e. by chance),
is at most 5%.

3.1 Location, timing and traffic flow conditions

3.1.1 Physical location of incident

First we studied how the incidents are spatially distributed along the whole road, at
the resolution of road sections between automatic traffic measurement stations.
Figure 5 shows the density of the incident distribution of the road section with
respect to the Palm distribution. The left sequence presents the eastward direc-
tion, and both start from the west end. Two interesting observations can be made:

i.  The eastward direction is more incident-prone than the westward-direction
in all nine road sections.

ii. The last (eastmost) section is much more incident-prone than any other
road section.

Note that these results tell more than would simple plotting of the incident places
along the road, as the varying quantity of traffic along the road is taken into
account. Regrettably, the road direction information is known to be unreliable, and
thus the direction part of the result is doubtful. If the information on direction were
partly uniformly random, this would only decrease the difference between
directions, but we cannot exclude the possibility of systematic bias.
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Figure 5. Density of the incident distribution of a road section with respect to the
Palm distribution. The left sequence shows the eastward direction, and both start
from the west end.

Comparing the parts while neglecting the direction gives the risk levels shown in
Figure 6. The result shows that the last road section has 80% higher risk than the
average. The Kullback-Leibler test confirms that the incident-time and Palm
distributions of the road parts are very different.

dersity ratio
20

00 Lo road section
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Figure 6. Risk levels of road sections when the direction is not considered.
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3.1.2 Incident timing

This subsection studies whether some days of the week or some times of day are
more accident-prone than others.

Figure 7 shows that in the statistical testing of the impact of weekday on acci-
dent frequency, no weekday indicated a statistically significant difference between
a typical vehicle and an accident vehicle. It is interesting to note, however, that on
working days the relative risk (seen here as the difference between a red and a
blue dot) increases monotonically, although the risks themselves are practically
negligible.

Weekday comparison
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Figure 7. Impact of weekday on road accidents.

Next we considered the impact of hour of the day. Hours range from 0 to 23, and
hour h refers to time interval (h,h+1). Figure 8 shows the risk level of each hour in
terms of the density ratio between incident-time distribution and Palm distribution.
Now the variation is remarkable. It is interesting to see that normal afternoon traffic
involves about 50% higher risk than the base level and at night time the risk is
even higher. The distributions are significantly different also by the Kullback-
Leibler criterion.
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Figure 8. Risk level estimates for hours of the day in terms of the density ratio
between incident-time distribution and Palm distribution.

Statistical testing of accident condition distributions indicated similarly significantly
differing accident frequencies for hours 3, 9, 13, 15, 16 and 19 (Figure 9). During
the evening peak period (15-17 o’clock) the probability of accident is higher than
otherwise. In addition, the hour after the morning peak (9-10 o’clock) would be
safe. The difference during night time is less interesting from e.g. the traffic man-
agement point of view although statistically significant because of very low traffic
volumes.
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Dav hour comparison
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Figure 9. Comparison of the impact of hour of the day on road accidents.

The length of daylight varies in the Helsinki region from less than 6 hours to al-
most 19 hours per day and, consequently, the hour of the day does not by itself
tell whether an accident occurred in daylight or in darkness (lighting by street
lights). Therefore we studied how the availability of daylight affects the accident
frequencies (Figure 10). The risk of accident turned out to be only slightly higher in
darkness than in daylight, but the difference is statistically significant.
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Comparison of daylight conditions
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Figure 10. Test of the impact of daylight on road accidents.

3.1.3 Traffic volume and density

In this study, with the data available originating from the sparse loop detector
network and including uncertainties in the direction information of the accident
database, the results on the traffic situation can be considered indicative. Never-
theless, the results (Figure 11) indicate that in general traffic volumes have no
impact on the frequency of road accidents. Only very low volumes (5 and 15
p.cars/5 min) and volume 135 p.cars./5 min were overrepresented in accident
vehicle data compared to those seen by an arbitrary vehicle on the ring road. The
smallest traffic volumes correlated with the night time result (hourly timing of inci-
dent and driving in darkness). The isolated volume value with significantly higher
probability of accident (135 p.cars/5 min) may be a coincidence without further
explanation. The Kullback-Leibler test confirms that the difference between the
two distributions is insignificant.
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Traffic volume comparison
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Figure 11. Test of the impact of traffic volumes on road accidents.

As regards traffic density, Figure 12 seems to suggest that high densities of 90—
100 passenger cars/km would increase the incident risk by 50-100%, whereas still
higher densities would reduce it below average. However, Figure 13 shows that
only densities of 5 and 25 p.cars/lkm show a statistically significant difference in
accident frequencies. Density 5 p.cars/km is seen to be over-represented for acci-
dent vehicles in comparison with random vehicles. This is most likely related to
night time traffic. On the other hand, the density of 25 p.cars/km was less common
among accident vehicles than generally. According to the Kullback-Leibler test, the
overall difference between the two distributions is borderline significant.
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Figure 12. Estimated risk levels in relation to traffic density.
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Figure 13. Test of the impact of traffic density on road accidents.
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3.1.4 Speed and speed variation

Measured vehicle speeds were grouped into a granularity of 5 km/h. The statistical
testing outlined in Figure 14 divides speed groups into two almost equally-sized
groups. Speed groups centred at 22.5, 37.5, 42.5, 47.5, 57.5, 67.5, 77.5, 82.5 and
87.5 km/h show a statistically significant difference in accident frequency. Normal,
fluent traffic with speed slightly above the limit (80 km/h) was seen to have statisti-
cally very significantly lower accident probability than otherwise. Higher speeds
are related to situations with low traffic volume and good driving conditions. Lower
speeds are thus related to circumstances where the driving is in some respect
inconvenient, and for them the accident risk is seen to be heightened, for many
speed intervals significantly. This pattern is quite strong as red is above blue 10
consecutive times.

Traffic speed comparison
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Figure 14. Test of the impact of vehicle speeds on road accidents. Speeds are
grouped into a granularity of 5 km/h.

Figure 15 plots actual risk levels (density ratios between incident-time and Palm
distributions), which are considerable when mean speeds below 70 km/h raise the
risk by 50-100%. Figure 16 shows that the incident time distribution of mean
speed is indeed stochastically smaller (except for some extreme values) than the
Palm distribution (that is, one cumulative distribution function is dominated by
another).
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Figure 15. Estimated risk levels at different speeds. Here density values equal to
0 represent speeds not present during accident times.
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Figure 16. Cumulative distribution functions of the Palm (lower, blue) and incident
(higher, red) distributions of mean speed.

It is natural to expect that a steady traffic flow would be safer than when the vehi-
cle speeds have considerable variation. Therefore also the standard deviations of
vehicle speeds were computed for each 5 minute interval. Figure 17 shows that
traffic speed variation groups centred at 12.5, 17.5, and 27.5 km/h indicate signifi-
cant difference in accident frequency. Variation group 12.5 km/h with the highest
Palm probability is significantly safer, whereas higher speed variations indicate
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higher accident frequency. According to the Kullback-Leibler criterion the two
distributions differ highly significantly.

Comparison of traffic speed variation
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Figure 17. Test of the impact of vehicle speed variation on road accidents. Speed
variations are grouped into a granularity of 5 km/h.

Figure 18 shows that the risk becomes monotonously higher with speed variation
above the typical level (represented here by 12.5 km/h). The actual risk levels are
not very high but not negligible either. For example, the standard deviation value
of 27.5 km/h, whose Palm frequency is about 10% (i.e. 10% of drivers drive in
such conditions), increases the incident risk by about 40%. Finally, Figure 19
shows that in fact the standard deviation of vehicle speeds at incident times domi-
nates stochastically those seen in the Palm distribution. The difference between
the whole distributions according to the Kullback-Leibler criterion is significant, but
not as pronounced as it was in the case of speed.
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Figure 18. Incident-time vs. Palm density ratios of the standard deviation of speed.
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Figure 19. Cumulative distribution functions of the Palm (higher, blue) and incident
(lower, red) distributions of standard deviation of speed.

3.2 Road and weather conditions

3.2.1 Air temperature

Air temperatures are grouped with a granularity of 3 degrees Celsius (Figure 20).
Only the temperature groups centred at -7.5 and 4.5 degrees show a statistically
significant difference in accident frequencies. The profile of risk levels (density
ratios) shown in Figure 21 shows that the risk increases at -7.5 by about 50% and
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suggests (observations are too few to be statistically significant) that temperatures
lower than -15 degrees Celsius may bring considerably heightened incident risk
(by more than 100%). On the other hand, it is somewhat surprising that the risk
does not increase at all when the temperature sinks below freezing. According to
the Kullback-Leibler criterion, the incidence-time distribution of temperature differs
significantly from the Palm distribution, but not as heavily as with some other ob-
servables.
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Figure 20. Test of the impact of air temperature on road accidents.
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Figure 21. Incident-time vs. Palm density ratios of the standard deviation of air
temperature.

3.2.2 Rain types

The findings on the effect of six different types of rain on incidents are summarised
in Table 1 and the Palm frequency results are shown also in Figure 22. It is notable
that weak and moderate liquid rain has no effect on incident risk and even weak
snowfall raises it only by 30%. However, heavy liquid rain as well as moderate and
heavy snowfall raise it, respectively, by 190%, 470% and 740%. The Kullback-Leibler
test shows a highly significant difference in whole distributions, but the heaviest
rain conditions are rare enough to make the significance test fail for these.

Table 1. Effect of different types of rain on incident risk.

Rain type
No Weak, |Moderate, | Heavy, | Weak, | Moderate, | Heavy,
rain water water water snow snow snow
Palm frequency | 84.29% | 6.82% 0.59% 0.1% 7.72% 0.25% | 0.05%
Significance of T F F F T T F

difference in
Palm frequency

Risk level 0.94 11 0.96 29 13 5.7 8.4
(density ratio)
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Rain phase and intensity comparison
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Figure 22. Test of the impact of rain phase on road accidents.

3.2.3 Visibility conditions

The weather station announced good visibility (at least 2 km) with Palm frequency
97% (i.e. 97% of vehicles driving when visibility is good). Figure 23 plots the risk
levels (density ratios) of impaired visibility values at resolution 200 m. Reduced
visibility (less than 2 km) seems to increase the risk, and the most extreme situa-
tions (visibility 600 m or less) increased it considerably. However, these conditions
are rare, and the incident numbers show a statistically significant difference from
the Palm distribution only in the visibility groups 1.2 and 1.6 km (Figure 24). The
distributions are, however, significantly different by the Kullback-Leibler criterion.
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Figure 23. Incident-time vs. Palm density ratios of visibility.

Visibility comparison (limited visibility)

p

0.012[ N =
¥
I -
0.008 [ g
[ » i
0.006 ! ! S
0.004] ¢ ? ¢ 5
! * $ * §
0.002¢ ! &

N 0.3 1.0 1.3

visibility (km)

Figure 24. Test of the impact of reduced visibility on road accidents. The last class,
2 km visibility, was dropped from the figure as it is the most typical case with prob-
ability around 0.95. The cases in the graph form the rest, i.e. 5% of the data.
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3.2.4 Road conditions and traffic warnings

Table 2 and Figure 25 summarise the findings on the effect of road surface condi-
tions. The high accident probability on snowy road (risk increase 130%, statistical-
ly significant difference from Palm) is related to the similar impact of snowfall. The
effect of ice is smaller (computed risk increase 70%, difference from Palm not
statistically significant, however). On the other hand, the risk increase of wet road
surface is rather low (30%), but this condition is quite common and the difference
from Palm is statistically significant. As a whole, the distributions differ very signifi-
cantly in terms of the Kullback-Leibler divergence.

Table 2. Effect of road surface conditions on incident risk.

Road surface Palm Significance of differencein Density
condition frequency accident frequency ratio
lcy 0.9% F 1.7
Moist 13.8% F 0.9
Dry 51% F 0.99
Snowy 3.1% T 2.3
Wet 9.4% T 13
Wet and salted 3.7% F 1.3
Probably wet and salted 12.5% F 0.9
Comparison ofroad surface conditions
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Figure 25. Test of the impact of road surface conditions on road accidents.
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The final study object was to examine the impact of traffic warning status. Here,
‘warning’ means a situation where the road weather station gives the road mainte-
nance authority a warning that there may be frost or rain, or the surface is starting
to freeze and salting may be needed (see Chapter 2.1 for more detail).

The results are summarised in Table 3 and Figure 26. When the warning level
was ‘OK’, there were indeed (statistically significantly) slightly less accidents than
otherwise. The ‘Alarm’ and ‘Rain’ warning states were linked to 100% and 40%
rise of incident risk, respectively, both observations being statistically significant.
The warning for frost left the incident risk completely intact. The distributions dif-
fered significantly also in terms of the Kullback-Leibler divergence.

Table 3. Relation of traffic warnings to incident risk.

Warning level Palm frequency Significance of differencein Density ratio
accident frequency

Empty 5.6% F -
Alarm 0.7% T 2.0
Frost 3.3% F 1.0

OK 79.4% T 0.94
Rain 8.5% T 14
Warning 2.6% F 14
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Figure 26. Test of the impact of warning levels on road accidents.
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This study was designed to apply the method proposed by Innamaa et al. (2013)
to identify conditions when the risk of a traffic incident is elevated and develop the
method further. A further aim was to find factors that do indeed affect traffic inci-
dent risk with statistical significance by piloting the method on Ring road | in the
Helsinki Metropolitan Area.

The main results showed that with the proposed method the riskiness of
weather and traffic conditions could be assessed and risky conditions identified.
Specifically, there were several specific weather conditions that were more common
among drivers who were involved in an accident than among drivers in general.
These conditions included air temperature from —6 degrees Celsius down, snow-
fall or heavy rain, limited visibility, and snowy or wet road surface. Furthermore,
the results showed that the probability of an accident is higher in conditions when a
weather alarm is given by the Transport Agency (the road keeper) than in general.

Examples of risky weather conditions include the following specific findings:
With air temperature —6 — —9 degrees Celsius, the risk of an accident is about 50%
higher than generally, and even higher with air temperature below —15 degrees
Celsius. Even weak snowfall increases the risk by 30%. However, heavy rain and
moderate to heavy snowfall increase the accident risk substantially. These weath-
er conditions are related to the time at which the road is wet or snowy despite the
highest winter maintenance class. A snowy road increases the risk by 130%, icy
road by 70% and wet road by 30%. Poor visibility (less than 2 km) increases the
accident risk, but with visibility less than 300 metres the risk is very high. Such
risky weather conditions are somewhat rare in the Helsinki region. Nevertheless,
the high risk level is seen in a number of accidents, as e.g. 10% of accidents oc-
curred during snowfall and 11% during rain.

The results are in line with those of Salli et al. (2008), who showed that the rarer
specific winter road conditions are, the greater the risk of an accident. Relating to
specific conditions, Salli et al. found the relative accident risk to be highest on icy
and slushy roads, or 4.1 times that of bare pavement road conditions (a higher
estimate than in our results). For fatal accidents, Salli et al. (2008) estimated the
risk in conditions of loose snow or slush to be 4.9 times that of bare pavement
conditions.

In this study, factors other than weather were shown to be related to a higher
probability of an accident than in general. Although the day of the week was not
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4. Discussion

found to be relevant from an accident risk point of view, the time of day was. In
weekday afternoon traffic (15—17 o'clock) the risk of accident was 50% higher than
generally. In night time traffic (2-5 o’clock) the risk was even higher, but traffic
volumes are so low that night time accidents are still rather rare. The correlation of
night time, darkness and very low traffic explains the finding of elevated accident
risk for the two latter. The high accident rate at night when the traffic volume was
lowest was in agreement with the earlier results of Pajunen and Kulmala (1995).

Ishak and Alecsandru (2005) concluded that pre-, post-, and non-incident traffic
conditions may not be readily discernible from each other and that specific charac-
teristics of precursory conditions to incidents may not be clearly identifiable. Such a
conclusion, however, was (also) driven by limited incident and traffic datasets and
selected second-order traffic performance measures. Additionally, environmental
factors such as inclement weather conditions were not accounted for in this study.

The results of this study support the conclusion of Ishak and Alecsandru (2005)
that traffic situation correlated poorly with accident risk. However, also our results
related to the traffic situation can be considered only indicative. The accident data
available for this pilot did not include reliable information on the direction of traffic
where the accident took place, thus an unreliable estimate had to be used in defin-
ing the traffic situation prior to the accident. Nevertheless, traffic conditions identi-
fied as risky included traffic density 90-100 vehicles’lkm and speeds below the
limit (under 70 km/h). However, normal fluent traffic with speed slightly over the
limit (80 km/h) was seen to have a statistically very significantly lower accident
probability than otherwise. Higher speeds are related to situations with low traffic
volume and good driving conditions. Lower speeds are thus related to circum-
stances where driving is in some respect inconvenient, and here the accident risk
is seen to be heightened, for many speed intervals significantly. The result is not in
line with the finding of Pajunen and Kulmala (1995) that on four-lane roads, acci-
dent rates were highest at hourly traffic volumes of 3600—4800 vehicles; in our
results high traffic volume alone did not increase the relative accident risk when
traffic density is taken into account.

One would naturally expect a steady traffic flow to be safer than when vehicle
speeds have considerable variation, as shown by Marchesini and Weijermars
(2010). This was found to be the case also here; a standard deviation of speed
(among vehicles passing a certain point within a 5 min period) above 15 km/h was
related to a somewhat higher accident risk.

The most eastern section of Ring | was shown to have an 80% higher accident
risk than other parts of the road. That was seen also in the number of accidents,
as one third of them occurred on the easternmost 4 km of road. This part of the
road has at-level intersections with traffic lights and a significant proportion of
heavy traffic due to e.g. a harbour nearby.
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5. Conclusions

In conclusion, the findings suggest that the proposed method for identifying condi-
tions where accident risk is elevated, by comparing the traffic and weather circum-
stances just before an accident with the Palm probability of the same circum-
stances, indeed works. Not all the results were statistically significant due to some
circumstances being rare. However, with the calculation of risk levels and Kull-
back-Leibler divergence, it was possible to assess the findings.

Poor weather conditions including e.g. heavy rain, snowfall, unmaintained road
surface, poor visibility and lowered speed levels were shown to be related to ele-
vated accident risk. Also night time and afternoon peak hour were risky. The iden-
tification of specific conditions in which the traffic management centre should be
alerted could be applied in traffic status applications, especially in centres that are
monitoring traffic and conditions over a large area.

With the data available in this study, which originated from a sparse loop detec-
tor network and included uncertainties in direction information in the accident
database, the results regarding traffic situation can be considered indicative. The
question remains whether having more precise location information for accidents
and a denser traffic detector network would have made it possible to identify
(more) traffic conditions that are related to elevated accident risk. Now one third of
accidents occurred on the easternmost part of the road where the traffic monitor-
ing network is the sparsest. Consequently, a study on risky traffic flow characteris-
tics is left for future research.

A similar method based on Palm probabilities could be applied to identify road
sections where more accidents take place than statistically should, taking into
consideration e.g. traffic volumes and road maintenance class. By analysing the
resulting sections, physical road environment characteristics resulting in elevated
accident risk could be identified.

46



Acknowledgements

The authors would like to thank the Finnish Transport Agency for funding the early
stages of this research (Innamaa et al. 2013) and VTT for funding the further de-
velopment and testing of the method.

a7



References

Baccelli, M. & Brémaud, P. (2003). Elements of Queueing Theory. Springer-
Verlag.

Cover, T.M. & Thomas, J.A. (2006). Elements of Information Theory. 2™ edition.
John Wiley & Sons.

Hranac, R., Sterzin, E., Krechmer, D., Rakha, H. & Farzaneh, M. (2006). Empirical
studies on traffic flow in inclement weather. Federal Highway Administration,
Washington, D.C.

Innamaa, S., Pilli-Sihvola, E. & Norros, I. (2013). Travel time and incident risk
assessment. Research reports of the Finnish Transport Agency,
31/2013. Finnish Transport Agency, Finland. 74 p. + appendices 3 p.

Ishak, S. & Alecsandru, C. (2005). Analysis of freeway traffic incident conditions
by using second-order spatiotemporal traffic performance measures.
Transportation Research Board National Research Council, pp. 20-28.

Marchesini, P. & Weijermars, W. (2010). The relationship between road safety and
congestion on motorways: a literature review of potential effects. R-2010-12.
SWOV Institute for Road Safety Research, Leidschendam. 28 p.

Nilsson, G. (2004). Traffic Safety Dimensions and the Power Model to describe
the effect of speed and safety. Bulletin 221. Department of Technology
and Society. Lund University. Sweden.

Pajunen, K. & Kulmala, R. (1995). Tuntiliikenteen vaikutus liikkenneturvallisuuteen
[The effect of hourly traffic volumes on traffic safety]. Research reports of
the Finnish National Road Administration, 37/1995. Finnish National
Road Administration, Helsinki. 42 p. + app. 23 p.

Salli, R., Lintusaari, M., Tiikkaja, H. & Pollanen, M (2008). Keliolosuhteet ja hen-
kildautoliikenteen riskit [Wintertime road conditions and accident risks in
passenger car traffic]. 28 April 2008, Tampere University of Technology,
Department of Business Information Management and Logistics.

Vlahogianni, E., Karlaftis, M. & Orfanou, F. (2012). Modeling the Effects of Weath-
er and Traffic on the Risk of Secondary Incidents. Journal of Intelligent
Transportation Systems, 16, pp. 109-117.

48



Ziemann, M., Salminen, J. & Tebest, T. (2013). Liian kovaa, liian lahella ja keskit-
tymatta — taalla tapahtuivat Suomen ketjukolarit vuonna 2012 [Too fast,
too close and without concentration — multi-vehicle rear-end pile-ups in
Finland in 2012]. 25 October 2013, Yle — Finnish Broadcasting Company.
Available at: http://yle.fi/uutiset/lian kovaa liian lahella ja keskittymatta

taalla tapahtuivat suomen ketjukolarit vuonna 2012/6899588 [ac-
cessed 11 February 2014].

49


http://yle.fi/uutiset/liian_kovaa_liian_lahella_ja_keskittymatta__taalla_tapahtuivat_suomen_ketjukolarit_vuonna_2012/6899588
http://yle.fi/uutiset/liian_kovaa_liian_lahella_ja_keskittymatta__taalla_tapahtuivat_suomen_ketjukolarit_vuonna_2012/6899588




Appendix A: Mathematical methods

APPENDIX

Mathematical methods for
Road traffic incident risk assessment

I[lkka Norros and Pirkko Kuusela
VTT, Technical Research Centre of Finland
ilkka.norros@vtt.fi, pirkko.kuusela@vtt.fi

1 Introduction

This Appendix to VI'T’s report Road traffic incident risk assessment presents
the mathematical notions and methods applied therein. The central notion is the
“Palm distribution” of road traffic conditions, whose definition and practical compu-
tation are discussed in Section 2. Statistical testing of the significance of differences
between the Palm distribution of conditions and the distribution of conditions seen
at the time and place of an incident is considered in Section 3. Finally, we study
the comparison of entire distributions in terms of the Kullback-Leibler divergence
in Section 4.

2  “Palm distribution” of road traffic conditions

2.1 Palm probability

We first recall some basic notions and relations of the Palm theory of stationary point
processes, following the presentation and notation of Baccelli and Brémaud [1].

A counting measure on R is a measure taking finite integer values on compact
sets, and a random counting measure N is called a point process. For any Borel
set C C R, N(C) is a random variable presenting the number of points in C. We
assume all our point processes to be simple, i.e. N({z}) € {0,1} for all z € R.
Denote the epochs of N by random variables T,,, numbered as

e < T i <Ty <0<TI <,

so that N(C) =", ., Li1,ecy for any Borel set C' C R.

Let N be a point process defined on the probability space (2, F, P), and let
(0:)ier be a flow, i.e. a group of measurable applications from (€2, F) to itself such
that 05 0 6, = 65,,. The process N is said to be compatible with the flow (6,), if
(N 08,)(C)= N(C+t) for any Borel set C. If Po 6, = P for all ¢, then N is said
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to be stationary, and the probability P is called a stationary probability of N. If N
is stationary, the quantity
Av = E{N((0,1])}

is called its intensity.
The Palm probability measure associated with N is the probability measure Py
on (€2, F) defined by

t

POA) = p {/ (140 GS)N(ds)} CAerF (1)
)\Nt 0

where ¢ > 0 is arbitrary. Intuitively, the Palm measure shows €2 from the viewpoint

of an arbitrary point of the point process N, placing that point to the origin. In

particular, since Ty o 07, = 0 a.s. for any n, we always have Py (T, =0) = 1.

Conversely, the stationary probability P can be expressed in terms of the Palm

probability through Ryll-Nardzewski’s inversion formula:

E{f}:)\NE?V{/OTI(foet)dt}. (2)

Choosing f =1 yields Ay = 1/E% {T1}.

It is important to note that the stationary stochastic model (€, F, P, ) may
contain many more characteristics than just the points of N. The Palm probability
associated with N gives the distribution of all these characteristics from the point
of view of an arbitrary (typical, “randomly chosen” (although there is no uniform
distribution on the infinite set of integers)) point of N.

2.2 Definition and computation of road traffic Palm distri-
bution

For the purposes of the present study on the effect of road traffic conditions on traffic

incidents, we adopt the idea of Palm probability to obtain a usable notion of road

and traffic conditions seen by an arbitrary vehicle. To understand the need of such

a notion, consider for example the fact that most incidents happen in daytime —

can we infer from this that daytime is more dangerous for driving than nighttime?
Our data on daily traffic conditions is composed as follows:

e The traffic data originate from 8 LAM stations along the road Ring 1, denoted
as LAM(i,d), where ¢ = 1,...,8 is the number of the station and d = 1,2 the
direction.

e Each 5-minute period of the raw LAM measurement data is summarized in a
record with the following fields:



Ni(i,d, L) amount of light vehicles at LAM(4, d) in time slot ¢
(1,d, H) amount of heavy vehicles at LAM(4, d) in time slot ¢
Si(i,d, L)  mean speed of light vehicles at LAM(7, d) in time slot ¢
Si(i,d, H) mean speed of heavy vehicles at LAM(i, d) in time slot ¢
Vi(i,d, L)  Standard deviation (STD) of speed of light vehicles at LAM(i,d) in tir
Vi(i,d, H) STD of speed of heavy vehicles at LAM(i,d) in time slot ¢

e The weather and road condition data originate from a measurement station
near Ring 1 and provide certain characteristics

Wi(1),...,Wi(k)
at the same 5 minute resolution as the traffic data.

e The data cover 5 years (2008-2012).

Although the classical Palm theory focuses on the relations between the station-
ary view and the view from an arbitrary point, stationarity plays no role in the
approach developed here. Road traffic is not a stationary process, nor do we need to
model it by a stationary process. In a finite setting, the counterpart of Palm prob-
ability is just the mean over all points of their “viewpoints”. The spatio-temporal
“points” in our case are individual vehicles on the road. Since we observe them
spatially just at 8x2 LAM stations and temporally as aggregates over time slots of
length 5 minutes, we can only estimate our Palm probability from the data described
above. This estimation proceeds in five stages:

e for each time slot, the traffic density (unit: vehicles/km) is estimated on each
of the 9x2 road sections into which the LAM stations split the road;

e each of these densities is multiplied by the length of the respective road section
(unit: (vehicles/km)xkm = vehicles);

e localised traffic quantitites on each road section are estimated using simple
interpolation formulae (Subsection 2.3);

e numerical values are quantized (discretized to take relatively few values) to
make their resolution comparable to that “seen” by incidents (Subsection 2.4);

e finally, the “Palm distribution” (we drop the quotes from now on) is built by
weighing the quantized value vector of each pair (time slot, road section) by
its estimated amount of vehicles.

2.3 Synthesis and interpolation formulae

In this study, we do not distinguish between vehicles of different weight but syn-
thetize them using the equivalent “1 heavy vehicle = 1.5 x light vehicle”, i.e.

N,(i,d) == Ny(i,d, L) + 1.5N,(i, d, H). (3)
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The mean speed and the standard deviation of speeds are synthetized using the
following heuristic formulae, derived by thinking vehicle speeds as independent and
identically distributed random variables:

) N(i,d, L) , . 15N (i,d, H) , ,.
SRLANE At St a —_— 7 H 4
S, (i, d) NMA)&@¢LM— N d) Si(i,d, H), (4)
‘ N(i,d, L) 0. 1.5Ny(i,d, H) ) .
= 7 L L AN R Ry ) H) — 2
W(Z,d) \/ Nt(i’ d) Et (Z7 d7 )+ Nt(i, d) t(27d7 ) St(Z,d) ) (5)
where

EX(i,d, L) = Vi(i,d, L)* + Sy(i,d,L)*, E(i,d, H) = V,(i,d, H)* + S;(i,d, H)*.

Using the same principle of independent speeds, the traffic volume, mean speed
and standard deviation of speeds on road section 7 + 1, limited by LAM stations ¢
and 7 4 1, are estimated by the following interpolation formulae:

Nii+1,d) = ;M@®+NM+L®L (6)

- N S, d) + Ny(i + 1, d)S,(i + 1, d)

Si+1.d) = NG, d) + No(i + 1, d) ’ (@)

Vili+1,d) = ¢M@®&$£5fﬁgr?$@+L®—&u+mm4&
where

E2(i,d) = Vi(i,d)?* + S,(i, d)*.

The first and last road section are limited by a single LAM station each, so for them
we choose simply

Ni(1,d) = Ny(1,d), Si(
V d) = Nt<87d>7

1
Nt<97
Finally, our traffic density estimate D;(i,d) on road section i and direction d in
time slot ¢ is

_ 12N, (i, d
D(t7 1, d) = ﬁ,

(Here the factor 12 is the number of 5 minute slots in an hour.)

i=1,...,9, d=1,2. (9)

2.4 Palm probability with quantization

For each index triple (¢, 4, d) (where i now refers to road section, not to LAM station)
we now have a vector of traffic and weather characteristic values

X(t,i,d) = (X1(t,i,d),..., Xn(t,i,d)),



with m = 13 and the meanings as listed on page 22 of the main report, and its weight,
the traffic density estimate (9). Let the domain of variable X; be X;, i = 1,...,m.
Our Palm distribution is initially defined on X = [[;~, &; through

Z D(tu 8 d) 1{X1 (t,i,d)EAL,... Xm (t,i,d)EAm}

ti,d
> D(t,i.d)

ti,d

P)O('(XleAlv)X’meAm):

Although finite, this object is much too big for practical computation, and it is also
too fine-grained to be reasonably compared with our distribution of conditions at
incident times. Therefore we make the quantization described in the table on page
21 of the main report. Formally, this means that we select appropriately sparse
subsets (); C A; and quantization functions ¢; : X; — €;, ¢ =1,...,m, and consider
the coarser-grained variables Y; = ¢;(X;) instead of the original data. Our final
Palm probability on Q =[]\, €, is defined, similarly as above, by

Z D(t,4,d)1 vy (11.d)€By ... Yon (11:d) B}

ti,d

PY(Y, € By,...,Y,, € By) = ;

> Dit.i,d)

ti,d

but the atoms of PY(-) are much fewer than the those of PJ(-).

3 Statistical testing of a single traffic condition

The Palm distribution expresses various traffic environmental conditions or states
from the perspective of an arbitrary vehicle on the road. Although there is extensive
traffic data available only a few vehicles get into an accident. In accident cases also
the traffic environment conditions have been recorded as accurately as possible. Our
research question is: Are some traffic environmental conditions more prone to cause
accidents? This calls for statistical comparison of observed environmental conditions
from the arbitrary vehicle and accident vehicle point of view.

The derivation of the Palm and accident distributions has been described earlier
in this appendix. The challenge in comparing Palm and accident vehicle conditions
lies in the fact that the Palm distribution is estimated from a huge population
whereas there are few accidents. Several traffic conditions have no recorded accidents
and even if accidents exist, there are very few of them.

Traffic conditions can be seen as binomially distributed; we observe that a cer-
tain number of accident vehicles falls in a given traffic condition class. This gives the
probability (frequency) of the class. In addition to the point estimate for the proba-
bility, namely the number of accident vehicles in the class divided by the population
size, we wish to build a confidence interval around our estimate. Typically this is
done by making a normal distribution approximation of the binomial distribution.



However, in our case such an approximation would be poor, as the probability of
falling into the same traffic condition, p, can be very small. A typical rule of thumb
suggests that np > 5 or n(1 — p) > 5, where n is the population size and p is the
occurrence probability of the inspected outcome. In addition, estimation is poor
around p = 0 and p = 1. Unfortunately, this is the case in this data and we need to
build a so-called “exact” confidence interval |2].

In our statistical testing of accident condition frequencies we take our Hy hy-
pothesis to be that the occurance probabilities of traffic environment conditions are
the same with an arbitrary or an accident vehicle point of view. This means that
the "true" occurrence probabilities in traffc accident cases would be given by the
Palm distribution, which is calculated from a very large sample. However, the acci-
dent vehicle sample is very small. We ask what is the acceptable range of observed
probabilities if we draw a small random sample from the Palm distribution. For this
we derive the exact binomial confidence interval described next.

Assume that we have an observation of size n and k vehicles fall into a given
traffic condition (i.e. "success"). The exact binomial (1 — «) confidence interval for
p is an interval [py, pp] such that

— (n k(1 _ n—k _ &
Z(k>pub(1 )" =3
k=0
and .
n . «
;(k%fb(l_pl”) )

These two expressions define the lower and the upper tails of the binomial prob-
ability density function (PDF), and with risk level o we have required those tails
to have probabilities «/2, as illustrated in Figure 1 of this appendix. The lower tail
sets a condition to p,, whereas the upper tail sets a condition for py,.

The upper and lower tails can be expressed by the cumulative distribution func-
tion (CDF'). With binomial distribution CDFs can be calculated using so-called beta
functions. When x is an integer then

Z (Z)pk(l —p)" % = BetaReg(1 — p,n — 2,1 + ),
k=0

where

_ B.(a,b)

BetaReg(z, a, b) Brla.b)
1\a,

with B
Bz(a,b):/ 711 — ).
0

InvBetaReg is the inverse of the regularized betafunction BetaReg, i.e., InvBetaReg[s, a, b]
is a solution for z in s = BetaReg|[z, a, b]. Thus

BetaReg(l — pup,n — k, 1 + k) = %
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Figure 1: Illustration of the PDF of binary distribution. Upper and lower tails
are illustrated by shaded areas. A shaded area corresponds to the risk level of the
statistical test.

and expressing the upper tail using the cumulative distribution function (i.e., chang-
ing the summation to run from 0 to k& — 1 instead of from k to n) gives rise to

BetaReg(l —pp,n —k+1,k) =1— %.

Using InvBetaReg to solve for p;, and p,; yields to expressions

Pup = 1 — InVBetaReg(%, n—=kk+1)
o (10)
piw = 1 — InvBetaReg(1 — 5 k+1,k).

Thus given a traffic condition and its Palm probability, we calculate according to
the null hypothesis our estimate for vehicles in this class (i.e., number of expected
successes, k) when we draw a random sample of size n. Here n is the size of the
accident vehicle population. From this we estimate the 95% confidence interval
(i.e. a = 0.05) [pw, pu), where py and p,, are given by (10). If the probability
obtained from the accident data falls outside this confidence interval, we reject
our null hypothesis and conclude that accident conditions differ significantly from
conditions faced by an arbitrary vehicle.



4 Kullback-Leibler divergence (relative entropy)

The Kullback-Leibler divergence, alias relative entropy, of a probability measure @)

on a measurable space (€, F) with respect to another probability measure P on
(Q, F) is defined as

log d—Q(w)Q( dw),  if @Q is absolutely continuous w.r.t. P

D(Q[|P) = /Q dpP

0, otherwise,

where d@Q/dP denotes the density of @) with respect to P. Intuitively, the number
D(Q||P) tells how much information (in bits) one obtains when learning that the
true distribution is @), having so far believed that it is P. The quantity D(Q||P) is
not symmetric w.r.t. P and @), and in particular it is not a metric.

In our study, we compare the accident probability () with the Palm probability
PO for different characteristics separately. The relative entropy is simple to compute,
but what is less obvious is what the relative entropy value tells us. Here we used a
pragmatic approach: we generate 20 samples from P° that each has the size of our
set of incidents, and compute for each sample the relative entropy D(P||P°), where
P denotes the empirical distribution given by the sample. If these numbers are all
smaller than D(Q||P°), we infer that @ differs significantly (confidence level 95%)
from PP, since the randomness of incident times does not explain why @ differs this
much from P°.
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vuosina 2008-2012 tapahtuneisiin, rekistergityihin onnettomuuksiin, joita oli yh-
teensd 1120. Tutkimuksessa kéaytettiin onnettomuusaineiston liséksi liikennetietoja
kahdeksasta liikenteen automaattisesta mittauspisteesta (induktioilmaisimia) ja
tiesddaseman tuottamaa tietoa.

Menetelméllinen perusajatus oli verrata liikenne- ja séa-/keliolosuhteita hetkeéa
ennen onnettomuutta samojen olosuhteiden Palm-todennékdisyyksiin. Palm-toden-
nakoisyyden késite tulee satunnaisen pisteen prosessoinnin teoriasta ja tarkoittaa
satunnaisesti valitun prosessointipisteen, tassa tapauksessa autoilijan, "ndkemag”
todennékoisyysjakaumaa (vastakohtana stationaariselle todennékdisyydelle, joka
kuvaa todennékdisyysjakaumaa satunnaisella ajanhetkelld). Jos jokaisella autoili-
jalla on vakiosuuruinen stokastinen intensiteetti aiheuttaa onnettomuus, onnetto-
muusolosuhteet noudattavat Palm-jakaumaa. Menetelméasséa on sovellettu ideaa
arvioida olosuhteiden vaikutus liikenteen héiridihin vertaamalla héiriiden olosuhde-
jakaumaa olosuhteiden Palm-jakaumaan: Néiden jakaumien véliset erot viittaavat
olosuhteiden onnettomuusvaikutukseen.

Tulokset osoittavat useita sdé- ja keliolosuhteita, jotka olivat yleisempid onnet-
tomuuksiin joutuneiden ajoneuvojen kohdalla kuin yleensd. Téllaisia olosuhteita
olivat korkeintaan —6° C ilman lampétilan lumisade tai rankka vesisade, huono
nakyvyys ja luminen tai méarka tienpinta. Liséksi tulokset osoittivat, etté onnetto-
muuden todenn&kodisyys on korkeampi olosuhteissa, jolloin Liikennevirasto antaa
kelivaroituksen, kuin muuten.

Lisaksi arki-iltapaivien (klo 15-17) liikenteessa onnettomuusriski oli 50 % kor-
keampi kuin yleensd. Yoaikaan (klo 2-5) riski oli viela korkeampi. Tulokset osoitti-
vat, etta likennetilanne korreloi huonosti onnettomuusriskin kanssa. Liikennetilan-
teeseen liittyvié tuloksia voi kuitenkin pitdéd vain suuntaa-antavina onnettomuuden
paikkatiedon epéluotettavuuden ja harvan liikenneilmaisimien verkon takia.

Yhteenvetona voidaan todeta tulosten viittaavan siihen, etté ehdotettu menetelméa
toimii eli ettd menetelma tunnistaa olosuhteet, jolloin onnettomuusriski on kohonnut
vertaamalla liikenne- ja s&é-/keliolosuhteita hetki ennen onnettomuutta samojen
onnettomuuksien Palm-jakaumaan. Kaikki tulokset eivét olleet tilastollisesti merkit-
sevid olosuhteiden harvinaisuuden takia. Tulokset voitiin kuitenkin arvioida laske-
malla riskitasoja ja Kullback-Leibnerin divergenssi.
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