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Preface

This report presents the Nordic electricity market model VTT-EMM, developed at
VTT Technical Research Centre of Finland. All aspects of the model are discussed:
the objectives of the development work, the mathematical approach, the overall
structure, the detailed representation of the different sectors of the production sys-
tem, approximations applied, generation of price forecasts and other results, the
computer system, and applications of the model.

The original development work was done in 20002004, and the model has since
been used in a large number of studies and analyses. The development work has
previously only been documented in a few research reports and memoranda. This is
the first comprehensive presentation of the model.

The original development of the model was financed by VTT Technical Research
Centre of Finland, Tekes — the Finnish Funding Agency for Innovation, SVK-Pooli
(the Development Pool for Electric Power Technology of the Finnish Energy Indus-
tries), Helsingin Energia and Turku Energia.



Contents

Preface......uuueeieieieiiiiii 3

LI 131 e T 11T o o N 7

1.1 Objectives of the development of the VTT electricity market model............. 7

1.2 The Nordic power system and market...............ccci, 7

1.3 Related researCh ... 8

1.4 Overview of the model and the solution method..............ccccceiieiiiiiiinenn. 10

2. Mathematical structure of the model...........cccceiiiiiiiiiiiiiiiiniic, 12

2.1 Stochastic deCiSiON PrOCESSES. ........uuuviiiieeiiiiiiiiiie e e et 12

2.1.1 State variables, stochastic variables and decision variables........... 12

2.1.2 Evolution of the system and the dynamic equation ........................ 12

2.1.3 Information and decision structure of the process..............ccccceeenn. 13

2.1.4 Probability distribution of the stochastic control ...............ccccceeeen. 14

2,15 CONSIraINS ... 15

2.1.6 The COSt FUNCHON .....viiiiiiiiiieiei e 15

2.1.7 The stochastic decision problem..........cccccoi 16

2.1.8 Solution to the problem: an optimal decision palicy..............cc....... 16

2.2 Solving the stochastic decision problem by dynamic programming........... 17

2.2.1 Solving the optimal decision PoliCY..........cccoviiiiiiiiiiieiniiiiiieeeeeen, 17

2.2.2 Generating optimal realisations of the stochastic decision process.18

2.3 Model of the electricity market and the production system........................ 19

2.3.1 The overall model and the weekly optimisation subtask................. 19

3. The overall model.........ccooii e ———— 20
3.1 VariabIEs ...

3.2 The dynamiC eqUatioN.......ccoooiie s
3.3 The probability distributions
3.4 Constraints
3.5 The objective function and the market equilibrium (production optimisation)

problem for the overall model ............coooiiiiiiiiiiiiieeeeeeeeeeeeee e 22
3.6 Solution to the market equilibrium problem through dynamic programming24
3.7 Estimation of the water value function..............cccccciii e, 25



. The weekly optimisation subtask............ccooriiiiiiiiiiiiiniiin, 27

N [0 (o T U e (o] o N UUPUUPTR SR 27
4.2 Time steps and iNdiCES .......coooiiiiiiiiiii 27
421 Weeks and hOUrS.........cooiiiiiiiiiiiii e 27
4.2.2 Indices of the segments of the piecewise linear approximations of
cost and value funCtions..............coiiiiiiiiiiii 28
4.3 Variables in the weekly optimisation task..................euvviiiiiiiiiiiiiiiiiiiiiiens 30
4.3.1 Production (decision) variables for each week..................oovvveenne. 30
4.3.2 State variables for each week..............ccoiiiiiiiiiiiii 31
4.4 CONSHrAINS.....eeiiiiii e e 32
4.4.1 Constraints containing only production variables............................ 32
4.4.2 Constraints that also contain state variables...................cccccceee. 33
4.5 The objective function and the optimisation sub-problem......................... 34
. Hydropower ... ————————— 35
5.1 The basic model of hydro production ............ccooooeoieieieiiee e 35
5.2 Water flow data.........oiiiiiiiiii 36
5.3 Modelling correlation between successive water inflow terms................... 38
. TRErMaAl POWET ... e e e e s e e e e e e e nmmmm e e e e eees 40
6.1 Modelling thermal power in the electricity market simulation model........... 40
6.2 Computation of the available capacity and optimal production costs of a
thermal power system on the basis of plant data.....................on. 41
6.3 Direct computation of the probability distributions of the available capacity
and production COSES.........ooiiiiiiiiiiii 42
6.4 Computation of expected production costs through dynamic programming
onthebasis of plant data...........ccc 43
6.5 Computation of expected costs for a power system on the basis of
production Class data ..o 45
6.5.1 Basic data for homogenous production classes.............cccuvveeeeeennn. 45
6.5.2 Computation of expected costs for a single production class ......... 46
6.5.3 Expected costs for a system consisting of several production classes
46
. Wind power and co-production POWET..........ccceeueeiiirriimmmmeeee e eeemmeeeeeeeees 49
A I C 1= =T = | PO P PP PP PPPPPPPPPPPRIR 49
7.2 Models for wind power in the market model .............cccoviieiiiiiniiiiiiienee, 49
7.2.1 Stochastic models of wind power production..............cccceeeeernnnnnne 49
7.2.2 Use of stochastic wind power models in the market model ............ 51
7.3 Modelling wind power as a production class in thermal power .................. 51
7.4 CO-ProOdUCION POWET ... uuueeiiieiiriiiiiiteeeeeesaeeeseeessseseesesseesessseeseesennseennnnnnnes 52
. Demand, export and import of electricity ..........ccoovrriiiiiiiiiiiiiiiie 53
8.1 Short- and long-term variations in the demand for electricity..................... 53

8.2 A stochastic model of the long-term development of demand for electricity53



8.3 Estimation of the parameters of the demand model...............cccceeeiiiinnnnn. 55

8.4 Modelling price elasticity of the demand.............cccccoviiiiiiiiinii, 55
8.5 Export and import of electriCity .........ccooeiiiiii e 56
9. Piecewise linear approximations to convex cost functions of a production
£33 = 3 o 57
9.1 Piecewise linear convex cost functions and computational efficiency in
OPMISAtION ... 57
9.2 Piecewise linear approximations to convex cost functions: an example.....58
9.3 An algorithm for the generation of piecewise linear approximations to
CONVEX FUNCHIONS ....eiiiiiiiiiiii e 59
10. Price fOreCasts .........uuuummimmimimmmmiiiiiinininrssrnee e 62
10.1 Market price for €leCtriCity ..........ccouiiiiiiiiiiiiiiiie e 62
10.2 Generating price forecasts with the model ..........................l. 63
11. Computer system, basic data and the use of the model ............ccccccuneeens 64
11.1 COMPULET SYSTEIM .eiiiiiiiiiiiieie e 64
T1.21INpUt data ... 65
T1.2.1 GENETAI ..ttt 65
11.2.2 Thermal power production ClasSes..............uuuuuemuirimieiiieiiiiiieiiiienans 66
11.2.3 Special treatment of the combined heat and power classes........... 67
11.2.4 Availability of thermal power capacity..........ccccccviiviiieiieenniiiiiinnnn. 67
T1.2.5 FUEI data ... 67
11.2.6 HYATOPOWET ...ttt eeeeeeennnes 68
11.2.7 Foreign trade (trade in electricity with neighbouring areas) ............ 69
11.2.8 Demand for lectriCity ..........ccuuveeiiieiiiiiiiee e 69
11.3 CoNtrol PAramMELerS .......coi it 70
11.4 Output from the model ... 70
12. Results and applications..............eeeveeeeemmimimmimiennni . 71
12,1 MOdEl QUEPUL ... 71
12.2 A price forecast generated with the model .............ccccoviiiiiiii, 72
12.3 Applications of the model in market and policy analyses ......................... 74
13. Discussions and CONCIUSIONS..........eeeeeeemmmmmmmmmmmemmrnnrersesrnresreserrsssssssssssssanne 77
Acknowledgements...........cooommeciiiiiiiiiieeer e nenan 80
[ =Y =Y =Y T 81
Appendices

Appendix A: Computer model inputs and outputs



1. Introduction

1.1 Objectives of the development of the VTT electricity
market model

This report presents the aggregated Electricity Market Model of VTT Technical
Research Centre of Finland, VTT-EMM. The model is a mathematical representa-
tion of the dynamics of the demand, production and market price of electricity in
the power system of the Nordic countries, co-ordinated by the Nord Pool electricity
market. The objective of the work was to develop a robust, agile, transparent and
fast mathematical model of the stochastic development of the spot price of elec-
tricity on the Nord Pool market in the medium to long term. The model was intend-
ed for electricity price estimation, market analyses and energy policy studies. In
policy studies, the model is required to be able to analyse the sensitivity of the
price level to different policy measures in a time horizon that extends from the
present time to 20-30 years into the future. Short-term (days to weeks) questions
are outside the scope of this model.

1.2 The Nordic power system and market

The Nordic electricity system consists of Finland, Sweden, Norway, and Denmark,
which have a common market place. The system is versatile and dominated by
hydropower. The large share of hydropower is a most important property of the
Nordic power system. Hydropower accounts for more than half of the total produc-
tion of electricity in the system. The capacity of water reservoirs is large, about
60% of the yearly average hydropower production. The optimal use of hydro re-
serves over time is a central dynamic decision problem in the operative planning
of the power producers.

Most of the electricity produced and consumed goes through the Nord Pool
Spot exchange. The Nord Pool Spot is a day-ahead market on which the system
spot price for each hour is determined by the intersection of all the demand and
supply bids (Nord Pool 2013). There are about 360 buyers and sellers in the mar-
ket in 2013, forming a sufficient basis for a well-working open electricity market.
Internal bottlenecks can split the Nordic market into pre-defined market areas with
individual prices, but this study focuses on the system spot price, which is always



formed and is the basis of all power market derivatives. Cross-border transmission
lines within the market are implicitly in Nord Pool market use. Cross-border con-
nections to Russia, Poland, Germany, Estonia and the Netherlands allow for im-
ports and exports to and from the Nordic market. Nord Pool Spot has also ex-
panded in recent years to the Baltic market, Estonia (2010) and Lithuania (2012).

1.3 Related research

The theory and praxis of mathematical optimisation underwent rapid development
in the decades following the Second World War. New results were obtained, new
approaches to optimisation problems were developed, and the emerging computers
made it possible to apply the new methods in practice in many industrial sectors.

In the electric power sector, production optimisation models based on linear,
non-linear and non-convex programming, control theory and the Pontryagin maxi-
mum principle, and dynamic programming (DP, the Bellman principle of optimality)
were developed in co-operation between power producers, universities and re-
search institutes. Valuable results were obtained, and the methods developed
were implemented by the producers.

However, some of the most interesting problems proved too extensive for a di-
rect integrated solution at that time. This was especially the case for the problem
of optimal dynamic operation of large hydropower systems over medium-long
(typically months to a year) time periods, when the essential stochastic nature of
the inflow of water into the system, and of the demand, was taken into account.
The problem can be formulated as an optimisation problem for a stochastic deci-
sion process and solved, in principle, by applying stochastic dynamic program-
ming (SDP). In practice, the solution time was much too long for these dynamic
and stochastic problems for large production systems. This was, and to a certain
extent still is, the curse of dimensionality in the context of DP.

As the capacity of computers grew, more extensive applications became feasi-
ble. The experiences and results were mainly documented in laboratory reports
and working papers. For surveys of this work, see Yakowitz (1982), Yeh (1985)
and Stedinger (1998). After the creation of electricity markets, the same ap-
proaches and models were applied in price forecasting, and, in this context, they
are called fundamental models.

The time-consuming task in DP is the construction of the value functions. A
straightforward solution via the principle of optimality constructs the value func-
tions state by state and time step by time step. New algorithmic approaches to the
problem were developed; see Archibald et al. (1999). The stochastic dual dynamic
programming (SDDP) algorithm of Pereira and Pinto (1991) has proven successful
and has been applied to a variety of SDP problems. For applications in the Nordic
power system, see Gjelsvik et al. (2010).

In Scandinavia, perhaps the most active institution in the power planning area
has been the Norwegian Electric Power Research Institute, EFI. EFI developed
methods and models systematically for short-, medium- and long-term optimisa-



tion of large power systems with water reservoirs. The EFI power planning model
Samkjoringsmodellen is widely used. After a reorganisation in the Norwegian
research field, these models and methods were further developed and made
available by the Norwegian research organisation SINTEF. Today, the SINTEF
EMPS model computes the Nord Pool system price, applying stochastic dynamic
programming and a one-reservoir hydro model. It further considers several reser-
voirs and areas connected by transmission lines with limited capacity and uses a
heuristic iterative procedure in order to obtain an overall power balance and mar-
ket area prices. For information about the EMPS model, see the reference SINTEF
2014.

Compared with the earlier work, VTT-EMM does not contain any new mathe-
matical methods or new applications on power market and production problems.
VTT-EMM is a straightforward application of Bellman’s principle of optimality on a
stochastic decision process. The goal for the development work was to make this
powerful approach easily accessible to the user by constructing a simple, trans-
parent and fast model for Nord Pool systems price forecasting. To achieve this
goal the representation of hydropower and thermal power is as simple as possible,
approximations are made in the recurrent optimisation subtask, and fast programs
and efficient task organisation are applied in the execution of the optimisation
subtasks.

A short computing time is not a goal in itself. Fast execution of the dynamic
programming computations makes it possible to extend the model with an addi-
tional state variable or stochastic element, and allows extensive scenario anal-
yses. A simple model is also transparent, and this is a great benefit for the user.
For every model, the numerical output is only part of the results. The model should
also help the analyst to form a clear understanding of the structure and the logic of
the problem, i.e. to help to understand clearly and quantitatively how the results
depend on the elements and data of the problem. This latter result, if achieved,
may even be more important than the numerical results as such.

The recent interest in hedging against electricity price and volume risks has mo-
tivated industry and researchers to develop viable models on a broad scale de-
scribing electricity price behaviour. The reported approaches vary with respect to
application and in terms of the time horizon of price forecasting. Most of the exist-
ing literature focuses on developing realistic spot price models based on mathe-
matical finance. However, many statistical models have been created to character-
ise not only spot price dynamics but also electricity derivatives. During this centu-
ry, stochastic models for spot prices and power derivatives have been reviewed
and further developed by, for example, Skantze et al. (2000a), Lucia and Schwartz
(2002), Bunn and Karakatsani (2003), Fleten and Lemming (2003), Weron (2005),
Deng and Wenjiang (2005), Vehvildinen and Pyykkodnen (2005), and Benth and
Koekebakker (2008). These models usually require estimations of many parame-
ters, which may be difficult even with long time series available. The available data
on the Nordic electricity market are insufficient due to the strong seasonal and
yearly variations and because of several structural and political changes that have
influenced the price dynamics since the market opening in 1996. As statistical



models are not able to describe longer term dynamics of electricity prices, these
models should be used for short-term intervals. Medium- and long-term expecta-
tions of spot prices are often formed by fundamental models, as these models
usually include a detailed technical description of generation, transmission and
distribution, as well as extensive data sets of hydrological conditions, fuel prices,
outdoor temperatures, etc. The main drawback of the fundamental models is that
they do not capture the price of risk determined by the market forces. More infor-
mation on the fundamental models can be found in Fleten and Wallace (1998),
Skantze et al. (2000a, 2000b), and Tamminen and Kekkonen (2001a, 2001b). As
for the functioning of the Nordic market, Amundsen and Bergman (2006) present
an in-depth analysis of why it has worked so well.

1.4 Overview of the model and the solution method

The operation of the Nordic power production system is modelled as a stochastic
decision process, controlled by active production decisions made on the electricity
market and by exogenous stochastic processes, such as the inflow of water into
the hydro system and the demand. It is assumed that the bidding and decision
making process on the Nord Pool market leads to a cost-optimal allocation of
production to the total demand, where the marginal production cost at optimum is
the estimate for the spot price of electricity. The optimisation problem is solved
with the model, which, for any given initial state of the system and for any realisa-
tion of the input random process, computes the corresponding realisation of the
modelled price to serve as an estimate for the real market price in the actual case.
The structure of the model is completely general, and the model is easily adapted
and extended to represent also other production systems and markets, when the
technical and economic data required are available.

The problem set up and solved with the model was the minimisation of the total
expected production costs of the Nordic power system over the study period. The
length of a study period (a model run) is from one to a few years, divided into
weeks in the model. A week is the time step of the discrete model of the stochastic
decision process. The stochastic input processes are treated as weekly sequenc-
es, and the production allocation decisions proceed in weekly steps.

The principle of optimality of Bellman is applied, and the problem is solved
through stochastic dynamic programming. The solution is in the form of an optimal
production policy and the corresponding weekly dynamic programming (DP) value
functions for the whole period. The value functions essentially define the value of
water in the hydro reservoir of the model in future electricity production.

The decisions forming the optimal policy, and the value functions, are solved
recursively week by week for the whole study period, starting from the end of the
period. For each week the model sets up an optimisation problem representing the
balance between demand and production in the week. In every possible situation
the corresponding optimal weekly decision allocates the demand to the capacity
so that total expected production costs from the beginning of the actual week to
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the end of the study period are minimised. The expected value of the hydro re-
serves left over for future production, solved earlier during the recursion, is includ-
ed in the objective function. In order to obtain the overall solution, the weekly op-
timisation task is solved over and over again with different parameters. The ap-
plicability of the model is essentially determined by the efficiency of solving this task.

The weeks are further divided into hours in the model, but the weekly produc-
tion allocation problems do not have any genuine internal dynamic structure, and
the division into hours is only done in order to model the variation in demand,
production, production costs and price within the week. Other subdivisions of time
into load segments have also been applied in the weekly model.

The model is based on a highly aggregated representation of the power system.
The development of the total yearly demand in the system is defined as a discrete
stochastic process. The demand for each week and hour is computed from the
total demand with the help of statistical index series. All hydropower production in
the Nordic area is aggregated into one run-of-river hydro plant and one power
plant with a water reservoir. The total inflow of water into the system is defined
explicitly as a weekly stochastic sequence. The running production costs of hydro-
power are taken to be zero. All other production, i.e. thermal and wind power, is
also aggregated into a single plant called the thermal plant. The thermal plant is
represented by a total cost function defined as the expected minimum production
costs per time unit with the available capacity of the system as a function of power
produced. The available capacity is always dispatched optimally in the order of
rising production costs. The expected costs are computed over the probability
distributions of the available capacities of different plants and production classes
of the system. The cost functions are computed for each time interval by efficient
auxiliary programs on the basis of plant or production class data for the actual time.

The approach leads to a recurrent weekly optimisation problem with linear con-
straints and a convex objective function. In the model, the objective function is
approximated with a piecewise linear function, leading to a linear programming
(LP) problem. The efficient programs available for LP problems can then be used
for the solution of the recurring problem. The closeness of the approximation to
the original convex function can be chosen freely.
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2. Mathematical structure of the model

2.1 Stochastic decision processes

211 State variables, stochastic variables and decision variables

We examine dynamic stochastic decision processes with the following structure:
Time t is a discrete variable taking values (steps) t = 0,1,..., T. At every time step ¢
there are three vector variables associated with the process: the state variable, the
stochastic variable and the decision variable. The state variable x(t) expresses the
state of the system at time t (at the end of step t). The stochastic variable S(t) at ¢
is a random vector variable with possible values (realisations) s(f). The decision
(control) variable u(t) is the operative decision at time ¢ (during step t). The states
x(t), the values s(t) of the stochastic element S(t) and the decision variables u(t)
are vectors in finite dimensional real vector spaces.

The sequence of states x = {x(0), x(1),...,x(T)} is called the trajectory of the sys-
tem. The sequence of stochastic variables is a random process S = {S(1), S(2),...,
S(T)} with realisations s = {s(1), s(2),..., s(T)} called the stochastic control. The
sequence of decisions u = {u(1), u(2),..., u(T)} is the active operational control of
the process.

2.1.2  Evolution of the system and the dynamic equation

The evolution of the system over time is determined uniquely by the starting point
(initial state) of the trajectory, the realisation of the stochastic control, the chosen
operational control and the law of motion (the dynamic equation) of the system.
The initial state at t = 0 is usually given by x(0) = q. The state x(t-1) reached at the
end of step t-1 is the starting point for the continuation of the trajectory at step ¢. At
the beginning of step f, the random control element S(f) is realised first; let the
realisation be s(t). Then, an active control element u(t) is chosen. The process
moves from state x(t-1) to state x(f) at the end of step t given by the dynamic
equation (2.1).

x(t) = @, [x(t - 1),s(0),u(t)] forall t=1,..,T 2.1)

12



In the dynamic equation, @{.,.,.] is a given function between the appropriate spac-
es. For brevity, the possible dependence of t is often not explicitly indicated. To
emphasise the stochastic nature of the motion of the system, we also write the
dynamic equation (2.1) as X(t)= ®{X(t-1), S(t), u®)]], t=1,2,...,T with the random
variable S(t), instead of the realisation s(t), as one of the arguments. Consequent-
ly, state X(?) is also a random variable that depends on the previous state X{t-1) of
the stochastic control element S(f) and the active control u(f). The equation of
motion (2.1) gives the exact definition.

A triple {x,s,u}, consisting of a realisation s of the random process, a control u
and the corresponding trajectory x according to the dynamic equation (2.1), is
called a realisation of the decision process. Partial realisations of the process, i.e.
realisations restricted to some subinterval of time, are also frequently considered.

The state trajectory, the stochastic control, the active control and the equation
of motion form the basic structure of the stochastic decision process. Note again
that the state trajectory X of the decision process is a stochastic process that
depends on the process S and the control u. The definition of the process is com-
pleted by adding the probability distribution of the stochastic process S, con-
straints on the variables and an objective (cost) function. Minimisation of the objec-
tive function can then be applied as a criterion in making the operative decisions.

2.1.3 Information and decision structure of the process

The dynamic structure formed by the realisation of the stochastic control, unfolding
step by step, and the active controlling decisions made between the successive
stochastic elements is an essential characteristic of the process. An important
aspect is the accumulation of information about the development of the process
and the opportunity to utilise the accumulated information in forecasting future
development. At the beginning of step {, the history of the whole decision process
during the time interval [1, t-1] is known. This includes, especially, the partial reali-
sation {s(1), s(2),..., s(t-1)} of the random control process S and state x(t-1). The
probability distribution of the stochastic element S(t), which corresponds to the
‘information state’, is its conditional distribution assuming the history of the pro-
cess. Then, S(t) is realised; let the realisation be s(t). The state x(t-1), reached at
the end of step -1, and the realisation s(t) uniquely determine the set Q; of feasi-
ble (allowed) decision alternatives at step t; see Section 2.1.5. Then, a decision
u(t) € Q: is chosen, and the process moves to the state x(t) given by the dynamic
equation (2.1).

At any point t in the decision process, set Q; of allowed decision alternatives is
dependent on the history of the decision process, including the realisation s(t) of
the stochastic control element S(t). The objective applied in making the decision
u(t) is a minimisation of the expected costs during the remaining period [t, T]. This
optimisation problem again depends on both the feasible set (;, and the condi-
tional distribution of the stochastic process S during the period [t+17,T], assuming
its history up to and including s(t).

13



2.1.4  Probability distribution of the stochastic control

The model is used for studying the behaviour of the process through simulation.
As the realisations of the decision process are computed step by step, the proba-
bility distribution of the stochastic element S(t) is needed at each step t. It is as-
sumed that all these distributions are available. The mathematical structure of the
decision process does not set any special requirements for the probability distribu-
tion of the control process S. If the process is completely defined mathematically,
then the distributions are also given. If S is a model of some real-world process,
these distributions have to be estimated statistically.

At step t the partial realisation {s(71), s(2),...,s(t-1)} of the process S during the
time interval [1, t-1] is known. At that point of the process, the proper distribution of
S(t), which corresponds to the accumulated information, to be used in the compu-
tations is its conditional distribution, assuming the realisation {s(7), s(2),...,s(t-1)}.
However, it may be difficult to obtain the distributions. For example, the stochastic
control S can be a mathematical model of some economical or weather process.
For such phenomena, it is often the case that even if there is a correlation be-
tween the successive elements S(t), there is not enough theoretical knowledge or
statistical data available to allow the conditional distributions of the elements S(t)
to be constructed and estimated reliably.

Furthermore, in the dynamic programming iteration, all the information about
the history of the process used in the continuation of the process in step t has to
be contained in the state x(t-7). In other words, information about the correlation
between the stochastic elements S(1) and S(t) for r < t has to be carried by the
state x(t-1). Logically, this requirement could easily be satisfied by including the
whole history in the state. This again is impossible in practice due to the well-
known curse of dimensionality. For computational reasons, the state cannot have
too many dimensions.

For computational reasons, the probability distributions of the stochastic control
elements S(t) are also treated as discrete approximations in the applications. Note
that this is a purely numerical and computational approximation. We assume that
forevery t =1,2,...,T, the random vector S(t) has a discrete distribution:

S(t) = s(t,i) with the probabiliy n(t,i), wherei € I(t) = {1,...,1t} (2.2)

and for all ¢, the possible realisations s(t,i) and their probabilities 17(t,i) are available
when needed in the solution process. Furthermore,

Z_E](f)n(t,i) =1 (2.3)

As discussed above, if the correlation between successive stochastic control ele-
ments is modelled, then the probabilities m(t,i) depend on the state x(t-1). As we
cannot usually model this correlation and, in order to keep the notation simple, this
dependence is not explicitly indicated.
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21.5 Constraints

At each time step t, the decision variables u(t) are required to satisfy constraints
(2.4), where s(f) again is the realisation of the stochastic element S(f). The con-
straint set (O in (2.4) is usually defined through equalities and inequalities. After
the realisation of S(t), the constraint set Q is uniquely determined.

u(t) € Q [x(t =1),s(t)], for all t=1,...T (2.4)

In addition to the control constraints (2.4) that depend on the previous state x(t-1),
there may be control constraints (2.5) that depend on the next state x(t) and con-
straints (2.6) on the next state x(t) in the formulation of the process:

u(t) €, [x(0),s(t)], for all t=1,..,T (2.5)
and

x(t)eV¥Y,, for all t=1,...T (2.6)

where =; [x(1), s(f)] and W¥; are given constraint sets. The constraints of type (2.5)
and (2.6) are rewritten as control constraints of type (2.4) that depend on the pre-
vious state x(t-1) and the realisation s(t), by solving the state x(t) from the dynamic
equation (2.1). Through this transformation, constraints of type (2.5) and (2.6) are
included in the set (2.4) of control constraints.

2.1.6 The cost function

For the time period [1,t], for any trajectory x, any realisation s of the stochastic
control and any control u, the costs are given by the sum

ZT:c, [x(t),s(t),u(t)] (2.7

t=1

where for every {, c{.,.,.] is a given real function of its arguments. The expected
costs in the period of the trajectory x and the control u are given by

ESZC, [x(1),S(t),u(1)] o

The objective applied in choosing between the different controls u(t) for all t is
minimisation of the expected value (2.8) of the objective function. Note that the
expected value is determined when a trajectory x, a control u and the distribution
of the stochastic control S are given.
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2.1.7 The stochastic decision problem

We have now completed the mathematical definition of a stochastic decision pro-
cess. The tools are applied to modelling the electricity market decision process.
The following problem is a basic sequential optimisation problem for the stochastic
decision process under study:

min, Eg {ZT: c, [x(t),S(t),u(t)]} (2.9)

t=1

under the constraints:

x(t) = @, [x(t =1),S(0),u(t)], for all t=1,..,T (2.10)
x(0)=¢q (2.11)
u(t) e Q,[x(t=1),80)], for all t=1,..,T (2.12)

The objective is to minimise the expected costs (2.9). To indicate the stochastic
nature of the process, we have again written the random variable S(t), instead of
its realisation s(f), as an argument in the dynamic equation (2.10) and in the con-
straint set (2.12). Somewhat inconsequently, we have used, for the state trajecto-
ry, the symbol for its realisation x(t), but this corresponds exactly to the use of the
formulae (2.9)-(2.12) in computations. The stochastic control elements S(t) are
treated explicitly as random variables, but for the state trajectory X individual reali-
sations x are computed according to the law of motion (2.10) and the constraints
(2.11)-(2.12).

2.1.8  Solution to the problem: an optimal decision policy

Next, we take a closer look at the dynamics of the stochastic decision process
(2.9)-(2.12) and at the nature of the optimisation problem. The process starts from
the given initial point (2.11). Then, the first random element S(7) is realised as
s(1), which is inserted into the dynamic equation (2.10) and the constraint set
(2.12). Then, we choose some u(1) satisfying the constraints (2.12) and obtain the
next state x(7) from the dynamic equation (2.10). The first term of the cost function
in (2.9) is now determined and can be computed. The process is repeated for
every stept=2,...,T.

In the decision problem, the objective is minimisation of the expected costs
(2.9) over the whole time period, when every control element u(t) is fixed in turn in
the defined time order. The solution to this problem is not a control u = {u(1),
u(2),..., u(T)} fixed at t=0. The solution is an optimal decision policy, with the prop-
erty that every decision u(t) is made optimally at the actual situation reached,
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defined by the current state x(t-71) and the realisation of the stochastic control
process up to and including s(t). When choosing u(t), the objective is to minimise
the expected value of the costs over the remaining time period ff,...,T]. At this
decision point, only the immediate contribution cix(t), s(t), u(t)] can be computed
for every choice of u(t) by solving x(t) from the dynamic equation. For the costs
during the remaining steps t+17,..., T, we use the expected value. The choice of u(t)
has to be made so as to minimise the sum of the immediate contribution from step ¢
and the expected value for the remaining process. Information gained during the
period [0,...t] , i.e. the partial realisation [s(7),...,s(t)], can be used in the estimation
of the probability distribution of the continuation [S(t+1),...,S(T)] of the process S.

2.2 Solving the stochastic decision problem by dynamic
programming

2.21 Solving the optimal decision policy

We have formulated the stochastic decision problem associated with the model so
that Bellman’s principle of optimality and the dynamic programming method can
be applied to its solution. For the problem (2.9)-(2.12), Bellman’s principle can be
stated as follows:

An optimal decision policy has the property that whatever the initial state
and the initial decision, the remaining process (decision policy) is optimal
in the remaining problem starting from the state resulting from the first
decision.

We define the value functions G; for all time steps t and for all feasible states y at
the beginning of step t (at the end of step t-7), before the random vector S(?) is
realised and before the decision u(t) is taken as follows:

Gi(y) = Expected minimum costs from the beginning of step t to the end of
the horizon T (to the end of step T), when the initial state at the be-
ginning of step t (at the end of step t-7) is y.

Then, we start from state y at the beginning of step . First the random vector S()
is realised, S(t) = s(t,ij) with probability 7 (£,i). Then, whichever s(t,i) was realised,
u(t) is chosen, in every case, so as to minimise the expected (optimal) costs from
the beginning of step f to the end of the horizon T. If we choose u(t)=w, then at the
end of the step, the state x(t)=®: [y, s(t,i), w]. The contribution to the cost function
from step tis c: [®: [y, s(ti), w]s(ti),w], and the minimum expected contribution
from the steps (t+1) to T, according to the definition of the value function, is equal
to Gus [®:[y, s(t,i), w]]. Taking an optimal decision w in each case (for each s(t,i))
and forming the expected value over the distribution of S(t), we obtain the funda-
mental recursive relation for the stochastic decision problem (2.9)-2.12):
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(2.13)
G.(1) = m6Dmin, {e @ [y, s, whs@,i), w]+ G [@, [y, s, i), w]}

weQ,[y.s(t,0)] (2.14)

By applying the recursion (2.13)-(2.14), the value function G; can be computed, if
the function, one time step later, Gt+1 is known. The iteration can always be started
backwards in time from:

Gr (1=, (T,i)ymin,, le @, [y, s(T, i), w) s(T,i), w]} (2.15)
we Q. [y,s(T,1)]. (2.16)

Starting from (2.15)-(2.16), the iteration (2.13)-(2.14) is carried out for every t = T-
1, T-2,...,1. In this iteration, the optimisation subtask (2.17)-(2.18) is a fundamental
building block of the model.

min, {c,[®, [v,s(t,i), w|s(t,i), w]+ G, [®, [, s(2,0), w]]} (2.17)
weQ,[y,s(t,0)] (2.18)

The optimal solutions Wiy, s(t,i)] to this problem for all steps t, all possible states
x(t-1) = y and all possible realisations s(t,i) of S(t) constitute the complete solution,
the optimal policy for the problem. In the course of solving the overall problem by
dynamic programming, the optimisation subtask will be solved over and over again
with different parameters. The applicability of the model is essentially determined
by the effectiveness of solving this basic problem.

2.2.2 Generating optimal realisations of the stochastic decision process

The value functions G;for all t give a complete solution to the optimisation problem
(2.9)-(2.12). By using these, optimal realisations of the decision process can be
generated. We start from x(0) = g and take a realisation s = {s(1), s(2),..., s(T)} of
the stochastic control. The first optimal decision (1) is solved from problem
(2.17)-(2.18) with the parameters y=q, s(ti)=s(1) and t=1. Then, x(1)=® [q, s(1),
G(1)], and we proceed to the next step and generate the whole optimal realisation
of the decision process for the realisation s of the stochastic control. Repeating the
computation for a representative sample of realisations of the process S, a corre-
sponding sample of realisations of the overall process can be computed and esti-
mates of various expected values etc. obtained.
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2.3 Model of the electricity market and the production
system

2.31 The overall model and the weekly optimisation subtask

The stochastic dynamic programming approach to modelling decision processes,
presented in Sections 2.1-2.2, is now applied to the construction of a model of the
Nordic electricity production system, co-ordinated by the Nord Pool electricity
market. A large share (about 50%) of hydropower, stochastic inflow of water into
the reservoirs, and economically optimal use of water are essential characteristics
of the system to be modelled.

The model is used to determine operation policies for the production system
that minimise the expected total production costs by using the whole available
production capacity and the hydro reservoirs optimally. We assume that the elec-
tricity market realises this cost-optimal allocation of the demand for electricity to
the available production resources and use the model to simulate the behaviour of
the market.

The time steps t of the model are weeks, and for every week ¢ the minimum ex-
pected production costs over the remaining study period (from the beginning of
week t to the end of the study period) are computed with the model. The marginal
cost, i.e. the derivative of the expected remaining total costs with respect to the
demand for electricity during week t, gives the estimate of the spot market price of
electricity in the week. If the market is ideal, it will realise this price.

For clarity, we first present the basic structure of the model in Chapter 3, in ag-
gregated form, with all the essential properties of the detailed model used in appli-
cations. The aggregated form does not model the internal dynamics within the
weeks, i.e. its variables are time averages over the week.

The detailed model, presented in Chapter 4 is technically and computationally
more complicated. It has more decision variables and more detailed constraints.
The weeks are divided into hours and the internal dynamic development is mod-
elled approximately. The detailed model also makes use of many approximations
in the numerical computations. The value function iteration (2.13)-(2.14) always
proceeds in weekly steps however.
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3. The overall model

3.1 Variables

At every week t, the model contains the following vector variables:

The state variable x(t) has two components, x(t) = [x4(%), x2(t)], where
x1(t)= Amount of water in the aggregated hydro reservoir (in energy units) at
the end of week t, and
Xxo(t)= Relative level of total yearly demand for electricity reached at week t.

The stochastic element S(?) also has two components S(t) = [S+(t), Sa(t)], where
S1(t)= Inflow of water into the hydropower system during week ¢, and
So(t)= Additive change in the relative level of total yearly demand for electric-
ity from week t-1 to week t.

The decision (control) variable u(t) is a 3-vector u(t) = [us(t), ux(t) , us(t)], where
uy(t)= Production of hydropower (electricity) during week t,
uz(t)= Production of thermal power during week ¢, and
us(t)= Release of water from the reservoir past the turbines during week t.

The components of the state x(t Jand the control u(tf) are real variables, and the
components of the stochastic element S(t) are real random variables with given
distributions, which may depend on the state x(t-1). Sy(t) is the total inflow into the
hydro system; it contains both the storable inflow into the aggregated hydro reser-
voir and the run-of-the river inflow, which has to be used in power generation as it
flows into the rivers.

3.2 The dynamic equation

The difference equations (3.1)-(3.2) give the law of motion of the system:
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x,(6) = x, (= 1)+ 8, () — u, (1) — us (£) (3.1)
and
X, (1) = x, (1= 1)+ 8,(0) (3.2)

forallt=1, .., T.

The equations are of the simplest possible type, linear with coefficients constant
in time. The development of the demand x2(t) depends only on the second com-
ponent Sy(t) of the stochastic control. The equations (3.1)-(3.2) can be written as a
single linear vector equation (3.3), corresponding the dynamic equation (2.10),
x(1)=@: [x(t-1), S(t), u®)], t=1, 2,..., T, for the system.

x(@t)=x(t -1+ S@)+ Hu(t), for all t=1,..,T

(3.3)
where the constant matrix
-1 0 -1
H= ' (3.4)
0 0 0
The initial state is given by:
x(0)=[x,(0).x,(0)]= ¢ =[g,.4,] (35)

where g7 is the initial level of the hydro reservoir and q,=1, and the initial relative
level of the total yearly demand is defined to be 1.

3.3 The probability distributions

The distribution of the stochastic control vector S(t) is defined as discussed in
Section 2.1.4, S(t) =s(t,i), with probability m(t,i), where i € I(t)={1,...,I}. The two
components of the control process S, the scalar stochastic processes Sy and Sy,
are statistically independent. Their distributions may, in principle, depend on the
state x(t-1). In the basic formulation of the model, the inflow random variables S(t)
for different weeks t are statistically independent, and their distributions depend
only on the week t. The additions to the demand Sx(f) may be correlated, as the
demand is the second component x»(.) of the state, i.e. the distribution of Sx(t)
may depend on the level of demand x»(t-1) reached at the end of step t-1. For
simplicity, in this presentation we assume that the distribution of each Sx(t) is a
function of week t only.
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3.4 Constraints
In the aggregated model, the variables satisfy the following constraints (3.6)-(3.9):

All state and control variables are nonnegative by definition (3.6). This is assumed
and usually not repeated when discussing the constraints of the model.

0<x,(t),x,(t),u,(t),u,(t),u;(t), for all t=1,..,T (3.6)

The contents of the aggregated water reservoir satisfy the given time-dependent
lower and upper bounds (3.7).

a(t) <x,(@) <b(), for all t=1,.,T (3.7)

The production of hydropower is limited by lower and upper bounds (3.8), which
may depend on the state and the realisation of the inflow. The total weekly de-
mand d(t) for electricity has to be covered (3.9).

g®)<u,(t)<h(t), for all t=1,..,T (3.8)

d@)<u,(t)+u,(t), for all t=1,..,T (3.9)
The weekly demand is given by:

d(t)=Dgmn,x,(t), for all t=1,.,T (3.10)

where Dy is the initial level of the yearly demand, and {n} is the weekly index
series for the variation in the demand; see Chapter 9.

We insert (3.1) into (3.7), and (3.2) and (3.10) into (3.9) and obtain these con-
straints in the standard form corresponding to the definition (2.12):

X, (t=1)+S,() = b() Su, () +us () < x,(t = 1)+ S,() — a(t), for all t=1,..,T
(3.11)

Dy [x, (6 =1+ S,(0)] < u, () +uy (), for all t=1,..,T (3.12)

3.5 The objective function and the market equilibrium
(production optimisation) problem for the overall model

The objective function is the total operative production costs over the study period.

Hydropower production costs are taken to be zero. For thermal power, we define
the cost functions for each time step:
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¢,(f) = operative thermal production costs in week t as a function of to-

tal thermal production f during the week. (3.13)

It is assumed that the costs c; (f) are convex functions of production f, for all t.

They are uniquely determined by the properties of the thermal capacity available
for production during week t.

Now, we can state for the aggregated model the basic market equilibrium (pro-

duction optimisation) problem in the form corresponding to the general sequential

problem (2.9)-(2.12) for stochastic decision processes defined in Chapter 2.
The objective (2.9) has the form

min, E, {z o lu, (z)]} (3.14)

The dynamic vector equation (2.10), x(t)=®: [x(t-1), S(t), u@t)], t=1, 2,...,T, is given
by the difference equations (3.15)-(3.16) forall t =1, ..., T,

X, () =x,(t=1)+ S, () — 1, (1) — 5 (¥) (3.15)

X, (1) =x,(t—1)+8,(t) (3.16)
The initial conditions (2.11) at the time t = 0, x(0) = g are

x,(0)=g,,and x,(0) =g, =1 (3.17)

and the constraints (2.12), u(t) € Q: [x(t-1), S(t)], t= 1,...,T, are given by (3.18)-
(3.21)forallt=1,..., T.

g(t) <u (1) < h(1) (3.18)
X, (1 =1)+8,(6) = b(t) <u, (1) + uy (1) < x, (£ = 1) + S, (1) —a(r)  (3.19)
Dy, [, (6 =1) + 8, (O] < u, (6) + u, (1) (3.20)
0 < X, (£), %, (), 14, (1), 1, (£), 145 () (3.21)

The recurring minimisation sub-problem, (2.17)-(2.18) in the general formulation,
now reads, for the aggregated model with parameters t, x(t-1)=y=(y1,y2) and
S(t)=s(t,i)=(s1(t,i),Sz(t,i)), as follows:
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min {c, (w,)+G,., [CD, b/, s(t,i), w]]} , where (3.22)
@[y, w]= [y, +5, (L) = w = w3, +5,(00)]

and the following constraints are satisfied:

g(t)<w, <h(t) (3.23)
V5,80 =b(t) S w +wy <y +5,(t,0)—a(t) (3.24)
Donn[y2 + sz(t,i)] <Sw, +w, (3.25)
0<w,w,,w, (3.26)

The sub-problem (3.22)-(3.26) has simple linear constraints and a convex objec-
tive function, which will be approximated with a piecewise linear function in numer-
ical applications. The problem can be solved very fast. The optimal solutions (W,
W2, W3) = (us(t), uz(t), us(t)) to the sub-problems (3.22)-(3.26) constitute the optimal
policy for the overall problem (3.14)-(3.21).

3.6 Solution to the market equilibrium problem through
dynamic programming

The solution to the basic optimisation problem (3.14)-(3.21) is now obtained by
applying the dynamic programming recursion (2.13)-(2.14), which leads to the
following procedure: For every t=1,...,T,

G(»)=2 ., ®i)min, fe(w)+G,, [, [y, s, w]} (327
we Q,[y,s(t,i)] (3.28)

The state transformation @ in (3.27) and the feasible set Q in (3.28) were defined
in Section 3.5. The recurring minimisation sub-problem (3.22)-(3.26) in the short-
hand notation reads:

Z >X<t [y,s(t,i)] = min w{ct(wz) + Gt+1[q)t[yas(tai)’ W]]} (3'29)
we Q,[y,s(t,i)] (3.30)

As usual in the treatment of the dynamic programming recursion, we have used
the letters y and w for the vectors x(t) and u(t) in their roles as general variables in

24



optimisation tasks. The optimal value in (3.29)-(3.30) at time ¢, for x(t-1)=y, and
S(t)= s(t,i) is denoted by Z* [y, s(t,i)].

If the objective is to minimise the production costs strictly within the period un-
der study, then nothing that happens after the period has any weight in the deci-
sion problem. The recursion is started at {=T, and Gr+1[®r1 [y, s(ti), w]] = 0, in
(3.27). This gives an optimal solution, which uses as much of the hydro reserves
as possible. If the constraints allow, it is optimal to use them all. This does not
usually correspond to the real decision situation. In order to avoid excessive use of
hydro reserves within the period, the value of water in storage at the end T of the
period has to be credited in the objective function.

Let the value of water stored at the end of week T be Vr+1 (y), where y =(y1, y2),
and yy is the amount of water stored and yz is the demand. Then, the recursion is
started at {=T from:

Gr(9) =2y F (T, Dymin {e, (w,) Vool®, [y, s(T, i), w]l} (3.31)
we, [y,s(T,i)] (3.32)

As soon as the function V7.1 (y) is known, the recursion can actually be started
from (3.31)-(3.32). In applications, the function V is usually unknown, and it has to
be estimated before the recursive computations can begin.

3.7 Estimation of the water value function

The water value function V needed to start the dynamic programming iteration
(3.31)-(3.32) was defined as Vr+1 ()= Vr+1(y1, ¥2) = value of water stored in reser-
voirs as a function of the amount y;, stored and of the level of demand y», both at
the end of week T (at the beginning of week T+17). The value of water Vr.4(y) thus
depends only of what happens after time T, and it is not determined by data on the
study period [0, T]. Conceptually, the water value function V is an additional, inde-
pendent element in the problem, which has to be estimated and given by the plan-
ner.

The dynamic programming model can be used to generate water value func-
tions however. When the model is used for this purpose, the basic assumptions of
the analyses with the model are also made by the analyst.

The following approach can be applied: (1) extend the optimisation problem be-
yond time T to T, (2) collect data and generate forecasts for the stochastic ele-
ments for the extension [T,T’ ], (3) estimate the value of water at T’ +1, and (4)
solve the optimisation problem for the whole period [0,7’]. The solution also gives
the value of water at time T+1. If the extended period is long enough, and if the
water value function at 7’ +1 is reasonable, then the value at T+1 is not very sensi-
tive to the choice of the value at T’ +1, and the former may be used in further stud-
ies where the value V1.1 (y) is needed.
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Another possibility is to assume that the planning situation remains stationary
after T. Suppose T = 1 year. Then, we proceed as follows: (1) construct a station-
ary model for the stochastic demand where the demand remains at the level
reached at T; (2) make an initial estimate for the water value function V’r.1 (y); (3)
use the constructed stationary demand, the original water inflow model, and the
initial estimate for the water value to solve the optimisation problem for the period;
(4) on the basis of the results, compute the water value function V’; (y); (5) repeat
(3) using this value function as the value of water at 7+1; and (6) iterate until the
sequence of water value functions converges.

In practice, both quantitative analyses and practical experience are used in the
choice of a suitable water value function. Finally, we note the relation (3.33) be-
tween the water value function V and the cost value function G for the problem,
based directly on the definitions of these functions (ys is the amount of water and
y2 the level of demand):

Vt(yl’yz) = Gt(oﬁyz)_Gt(ylayz)’ for all yZ andt (3.33)
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4. The weekly optimisation subtask

4.1 Introduction

The weekly optimisation subtask (3.22)-(3.26) consists of allocating the weekly
demand of electricity optimally to the available thermal and hydro capacity, taking
into account the possibilities of storing water in hydro reservoirs. In general, it is a
non-linear and possibly non-convex optimisation problem. In the present work, we
have approximated the problem with a linear programming (LP) problem so that
we can benefit from the efficiency with which LP problems can be solved. In this
chapter, we present the weekly allocation problem in detail and its linear pro-
gramming approximation applied in the model.

4.2 Time steps and indices

4.21 Weeks and hours

The time period under study is typically one or a few years. It is divided into weeks
t=1,...,T and further into hours h =1,...,H. Weeks are the time steps of the sto-
chastic decision process and the dynamic programming model. Hours are internal
details in the weekly minimisation sub-problem (2.17)-(2.18) and (3.22)-(3.26). In
our formulation, the detailed weekly sub-problems do not have any genuine dy-
namic structure. The hours h are different loading situations, the order of which
has no bearing on the results. This formulation includes the case in which the
variation in power demand within a week is represented by a step function approx-
imation of the duration function for the demand, and the index h labels its steps.
The lengths of the hours (time steps within a week) h are denoted by I(h).

As before, we make the notational convention that the state vector at the right
end point of week t is given index t and denoted by x(t). The state at the beginning
and the end of the year are thus denoted by x(0) and x(T), respectively. The deci-
sion in week t is u(t). These definitions are illustrated in Figure 4.1.
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states I x(0) x(1) X(t-1) X(t) x(t+1) L x(T-1) x(T)
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steps 1,..h,., H eee |Mih, o H[t.ho H ... [1,.,h..,H

Figure 4.1. States x(t), decisions u(t), weeks t and hours h of the process.

4.2.2 Indices of the segments of the piecewise linear approximations of
cost and value functions

Convex cost and value functions are approximated with piecewise linear functions
in the model; see Figure 4.2 and Figure 4.3. Their segments are indexed as fol-
lows:

y=1,..,T An additive component of thermal power production cor-
responding to a linear segment of the piecewise linear
approximation of thermal production costs as a function
of power produced. Typically '=5...10...

A=1L A Linear segment of the piecewise linear approximation of

the water value function and of the total cost function of
the problem. Typically A =10...
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- additive components u,(t,h.v) of the thermal effect u,(t.h), and their upper bounds fit.y).
- costs coefficient c(t.7) =tan c(t) for the components u,(t.h,7).

Figure 4.2. Piecewise linear approximation of the thermal production cost function.
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« additive components x,(t,».) of the contents x, (t) of hydro reservoirs, and their upper
bounds k(t,%.).
«costs coefficients g(t,~.) = tan B, (t) for the components x,(t ).

Figure 4.3. Piecewise linear approximation of the water value function and the
total cost function.

4.3 Variables in the weekly optimisation task
4.3.1  Production (decision) variables for each week

For each week t, the control or decision vector, denoted by u(f) cf. 2.1.1 and 3.1,
has the following components:
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us(th) Hydropower effect in hour (sub-step) h of week ¢,

us(t) Total hydro energy production in week t,

us(t) Total bypass discharge of water from reservoirs in week t,
measured in energy units,

uz(t.h) Thermal effect in hour h of week t,

uz(th,y) Component y of thermal effect in hour h, week t, and

uz(t) Total thermal energy production in week t.

Here, h=1,...,.Hand y =1,....I". If required, the constants H and I" are allowed to
depend on week t.

The basic weekly decision variables are the hydro effect u4(t,h) and the thermal
effect uy(t,h) in each hour h of week t, and the total bypass discharge of water us(t)
in week t. The components of thermal power uy(t,h,y) are auxiliary variables re-
quired to model the piecewise linear approximation of the thermal production
costs; see Figure 4.2. The total weekly hydro and thermal energy production vari-
ables uy(t) and uy(t) are computed as sums over hourly values, taking into account
the lengths of the hours (sub-steps) h. (In principle, they may be of unequal
length.)

4.3.2 State variables for each week

For each week t, the state vector of the decision process, denoted by x(t), cf. 2.1.1
and 3.1, has the following two components:

x1(t) Amount of water in reservoirs at the end of week t, measured
in energy units, and

Xo(t) Relative level of total yearly electricity demand at the end of
week t.

These entities enter the detailed (lower level) optimisation model, the former as a
variable determined by the production decisions and the latter as a constant in the
optimisation problem.

The optimisation model also contains the following auxiliary variables:

x1(t,A) Additive component A = 1,..., A of the state of the water res-
ervoir, corresponding to a segment of the piecewise linear
approximation to the value function G 1[x1(f), x2(t)] for a con-
stant xo(t).
Unit: energy.

The real variables xs(t) and x(t) are thus the state variables in the dynamic pro-
gramming recursion. Only x4(f) is a variable in the optimisation sub-problem. The
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dynamic equation for the second component of the state, the relative level of the
demand xu(f), reads xo(t) = xo(t-1) + sa(t,i). Consequently, x»(t) is determined by the
previous state and the random decision and it is constant in the optimisation sub-
problem; cf. Section 3.4. The components xs(t, A) of the contents of the water
storage are auxiliary variables in energy units required to represent the piecewise
linear approximation of the value function; see Figure 4.3.

4.4 Constraints
4.41 Constraints containing only production variables
Lower and upper bounds:
For each week t and each hour h, the hydro effect has a given lower bound and
upper bound. The bounds may depend on the week, the hour, the contents of the
hydro reservoir and the realisation of the stochastic element s(t).

a(t)<u,(t,h) <b(¢t), for all h=1,..,H 4.1)
The components of thermal power have upper bounds (4.2) determined by the
piecewise linear approximation to the cost function (the bound is the length of the
corresponding linear segment of the approximation). The component with the
highest cost, ux(t,h,I"), is unbounded, so that the optimisation problem always has
a feasible solution.

u,(t,h,y) < f(t,y), for h=1,...,H and y =1,....,I' -1 (4.2)

Functional constraints:

The production covers the demand for electricity every hour:
u,(t,h)+u,(t,h)=>d(t,h), for h=1,...H (4.3)

where d(t,h) is the hourly demand. It is a constant parameter in the optimisation
problem, determined by the level of the yearly demand reached in week t.
Weekly hydro energy production is the sum of its components:

u ()= i:l(h)u1 (t,h) (4.4)
h=1

where I(h) is the length of hour h.

Hourly thermal power is the sum of its components,
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u,(t,h) =Y u(t,h,y), for h=1,..H (4.5)

7=l

and the weekly thermal energy production is computed as the sum

u,y(t) = il(h)uz(t,h) (4.6)

h=1
4.4.2 Constraints that also contain state variables
Lower and upper bounds:

The contents of the hydro reservoir at the end of week t have a lower and an up-
per bound:

A(t)<x,(t) < B(t), for all t=1,..,T (4.7

These bounds can be physical, and they can also be used to control the develop-
ment of the solution.
The components of the state have upper bounds, the lengths of the segments
of the piecewise linear approximation of the value function:
x, (6, )<kt A), for A=1,..,A-1 (4.8)
Functional constraints:

The dynamic equation for the development of the state of the water reservoir:

x, () =x,(t = 1) —u,(t) — uy(t) + 5,(t,7) , or by arranging the terms
X (O +u, () +u, () =x,(t =) +5,(t,0), for all t=1,..,T (4.9)

where s;(t,i) is the realisation of the total inflow of water into the reservoirs in week
t. Note that in the latter form, the variables in the dynamic programming optimisa-
tion problem for week t are on the left-hand side of (4.9), and the right-hand side is
constant in the optimisation task.

The state is the sum of its components:

A
X ()= x(t,A) (4.10)
A=1
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4.5 The objective function and the optimisation sub-problem

The objective of the optimisation sub-problem to be solved in the dynamic pro-
gramming iteration for every week t, for every feasible starting state x(t-1) at the
beginning of the week and for every realisation s(t,i) of the random vector associ-
ated with week t is a piecewise linear approximation of the convex objective func-
tion (3.21) and reads:

min{il(h)ic(t, Y, (L,h,y)+ Gy — ﬁ:g(t,)p)x1 (t,l)} (4.11)
y=1 A=l

h=1

where c(t,y) and g(t,A) are cost coefficients. The coefficients c(t,y) are determined
by the piecewise linear approximation to the thermal production cost function
cdux(t h)] for week t, which again is determined by the thermal capacity available in
that week; see Figure 4.2. The cost coefficients g(f,A) are the coefficients of the
piecewise linear approximation to the water value function at the beginning of the
next week, Vi+1[x4(t)]; see Figure 4.3. The coefficients are determined when the
optimal cost function for the week t+1 has been computed. The function Vi1[x(f)]
and the coefficients g(t,A) depend on the level of the demand at the end of the
week, x(f).

Go is the value of G{x+(t), xo(f)] at the point x4(f) = 0, i.e. Go equals the minimum
of the partial objective function, from the beginning of period t+1 to the end of the
period, if the initial hydro reserve is empty. It is constant in the optimisation, and it
depends on the demand x(f).

The optimisation sub-problem is a linear programming problem with (4.11) as
the objective function and the constraints (4.1)-(4.10).
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5. Hydropower

5.1 The basic model of hydro production

The treatment of hydropower was presented in Chapter 3 as part of the overall
market model. In this chapter, the modelling of hydropower is looked at in more
detail. For clarity, the straightforward model structure required to represent the
subdivision of weeks into hours is omitted in the presentation.

All of the hydro production in the Nord Pool area is aggregated into a single
system with the following variables (all in energy units):

x1(t) = Amount of water in the aggregated hydro reservoir at the end of
week f,

Si(t) = Inflow of water into the hydropower system during week ¢,

us(t) = Production of hydropower (electricity) during week t, and

us(t) = Release of water from the reservoir past turbines during week t.

The level of the reservoirs xs(t) is a state variable in the dynamic programming
iteration. S¢(t) is a stochastic control variable, the total inflow of water into the
hydro system, i.e. it contains both the storable inflow into the aggregated hydro
reservoir and the run-of-the-river inflow, which has to be used in power generation
as it flows into the rivers or is released past the turbines. The production decision
variables uy(t) and us(t) form the active control of the hydro system.

The dynamic development of the system is governed by the difference equation
(5.1)

x () =x,(t=1)+S,(t) —u,(t) —us(¢), forall t=1,..., T (5.1)

The inflow random variables form a stochastic process S; = {Sy(t), t =1, ... ,T}. In
the basic formulation of the model, the successive inflow random variables Sy(t),
for different weeks t, are statistically independent, and their distributions depend
only on time t. In principle, the distribution of Ss(f) may depend of the state x(t-1).

The variables satisfy a number of constraints. The initial state of the reservoir is
given, and all the variables are non-negative. The contents of the aggregated
water reservoir satisfy the lower and upper bounds (5.2).
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a(t) <x,(t) <b(t), for all t=1,..,T (5.2)
The production of hydropower has an upper bound (5.3),
u,(t) <r(t), for all t=1,..,T (5.3)

and the total flow in the aggregated hydro system has a lower bound (5.4),

d(t)<u,(t)+us(t), for all t=1,..,T (5.4)

In principle, the upper and lower bounds in (5.2)-(5.4) depend on the time ¢ of the
state x4(t) and the realisation s(f) of the stochastic element Sy(t). These bounds
and the distribution of the inflow process S; constitute the most important basic
data for the system. Owing to the high level of aggregation, the estimation of the
distribution of inflow and the upper and lower bounds in (5.2)-(5.4), and the valida-
tion of the model constitute extensive research tasks. For example, the lower level
d(t) of the total flow in the system is determined by the run-of-the-river flow and
hydrological regulations within the whole production system.

5.2 Water flow data

The numerical parameters of the aggregated model of the Nordic hydro system
are based on the integrated behaviour and properties of a large number of partially
interconnected individual systems and components: power plants, water reservoirs
and rivers. The structural properties and interconnections of the component sys-
tems, the capacities of the power plants and reservoirs, regulations on water lev-
els in the reservoirs and water flows in the rivers determine the operational proper-
ties of the subsystems and the aggregated system. For a relatively small hydro
system, the overall operational parameters, such as total available power capacity
or minimum flow, are closely based on the technical and operational characteris-
tics of the system components. For the aggregated Nordic system, the parameters
have to be estimated on the basis of production statistics.

In principle, the input data on the flow of water used in the model are the proba-
bility distribution of the discrete stochastic inflow process Sy = {Sy(t), t = 1,...,T =
52} formed by the sequence of total weekly inflow random variables S(t) over a
year. One possibility, which we have frequently used, is to define the distribution
approximately through a representative sample of N equally probable realisations
of the yearly flow process:

{s,(m,0),t=1,...,T=52}n=1,..,N (5.5)

i.e. the input is N weekly inflow time series {s¢(n,t), t = 1, ... ,52}, each with the
probability 1/N.
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However, this is only one very straightforward definition of the inflow process. In
the following, we examine briefly the problem of estimation and the use of inflow
data in the model.

In the optimisation phase (computing the value functions), for each week t, the
input data used is the following discrete approximation of the probability distribu-
tion of total water inflow into the system during the week:

Si(t) = s1(i,t) with probability m(ijt), fori=1,...,I, and forallt=1,....,T  (5.6)

i.e. the input data consist of the flow values s4(j,t) and the probabilities m(jt) for all i
=1,..,l, and for all t = 1,...,T. Clearly, the distributions of the weekly flows formed
directly from the sample (5.5) are a special case of (5.6).

In the simulation phase, realisations of the market price are generated, and
these simulations are based on a representative sample of the realisations of the
inflow process. Here, we can use the sample (5.5), a modification or subset of the
sample (e.g. corresponding to a wet or a dry year), or we can use a sample gen-
erated with a mathematical model of the inflow process.

It is an important research task to collect information about the weekly distribu-
tion of the inflow of water into the Nordic system to form the discrete approxima-
tions and to generate representative samples of the yearly random inflow process.
In the present version of the model, the correlation between the inflows of water in
successive weeks t is not represented in the optimisation phase, and the weekly
inflows are statistically independent of each other. However, the realisations (5.5)
based on the actual flow data used in the simulation phase show proper correla-
tion in time between the realisations of the weekly inflow variables.

As stated earlier, for the weekly distributions (5.6), we can use the distribution
contained in the sample directly or apply the following approach:

1. Analyse the available national and regional weekly inflow data. For the statisti-
cal region under study, for every week t of the year, compute the mean values
ms(t) and the variances os(t) in the weekly inflows and the mean value M; of the
yearly inflow. The subscript s indicates that these parameters are computed on the
basis of a statistical sample. A closer analysis shows that the distribution of the
weekly inflow can often be approximated with a log-normal distribution. Approxi-
mation with a normal distribution is usually also possible.

2. Form the index series

a ()y=m(t)/M, t=1,..T (5.7)

B.O)=c. )/ m(t),t=1,.,T (5.8)
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The index series as(t), t = 1,...,T gives the ratio of the expected weekly and the
expected yearly inflow. The index series Bs(t), t = 1,...,T gives the ratio between
the variance and the mean value of the weekly inflow.

3. The index series based on a sample shows random fluctuations. Smooth out
the index series as(t) and Bs(t) in an appropriate way and obtain smoothed index
series a(t) and B(t). In smoothing out the series, the condition 5 ;" a(t) = 1 must
always be satisfied.

4. Estimate the mean (expected) value M of the total yearly inflow of water into the
aggregated Nordic system. Assume that the total Nordic inflow has the same
statistical distribution as the sample. The inflow Sy(f) in week t is assumed to have
a normal or, alternatively, a log-normal distribution with mean a(t)M and standard
deviation B(t)a(t)M. Finally, generate an appropriate discrete approximation of the
distribution of the flow to be used in the model.

We have also tested various mathematical models of the stochastic inflow process
in the construction of samples of realisations of the inflow. A completely satisfacto-
ry solution has not been found.

5.3 Modelling correlation between successive water inflow
terms

One of the restrictions of the aggregated model in Section 5.1 is the fact that the
correlation between successive weekly inflows Sy(t) cannot be taken into account
in the model with only one state variable associated with hydropower. However, it
has to be remembered that this does not mean that the model would be based on
incorrect data about the distribution of inflow. The distribution of every inflow vari-
able is correct, but the model does not use additional information about the simu-
lated partial realisation of the stochastic inflow process to update and modify the
distribution in the dynamic programming iteration. The results are not incorrect but
they can be characterised as more average than what the actual state of infor-
mation would allow. What is said above concerns the stochastic dynamic optimisa-
tion (computation of the value functions) phase only. When the model and the
computed value functions are used in the simulation mode to generate realisations
of the price of electricity, then these can be based on realisations of the inflow
process with proper correlation between the successive terms. The development,
estimation and validation of such a model for the aggregated inflow are an inde-
pendent research task.

The correlation between successive weekly inflow values can be modelled as
follows. We augment the system with additional storage consisting of snow and
water on the way to the hydro system and define additional variables:
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Xs(t) = Amount of snow and water in storage and on the way to the hydro-
power system at the end of week t, measured as net electrical en-
ergy in production, and

Ss(t) = Precipitation of water and snow into the reserve xs(f) during week ¢,
in the same units.

The amount xs(t) is a state variable and Ss(f) is a stochastic control variable.
Ss ={Ss(t), t =1, ..., T} is a stochastic process with statistically independent terms
Ss(t). The dynamic development of the snow and water storage is now governed
by the state equation:

x, () =x,(t-1)+8,(t)-S,(1), for all t=1,..,T (5.9)

The inflow of water into the hydro system Sy(%) is no longer an independent com-
ponent of the stochastic control vector. It is a dependent variable determined by
the previous state and time t. It will be assumed that a time-dependent portion of
the snow and water storage will be converted into flow of water into the hydro
system:

S,()=y(@O)x,(t-1), for all t=1,.,T (5.10)

This simple augmented model can be motivated on physical grounds. It generates
correlated inflows into the hydro system. The estimation of the coefficients
y(t), t=1,...,T and the distribution of the process Ss ={Ss(t), t=1, ..., T} are the
essential difficulty in applying the model to the aggregated Nordic hydro system,
due to the limited availability of relevant data. It would be easier to validate such a
model first for a small hydro system with uniform weather conditions in the precipi-
tation area and good weather and water inflow statistics.
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6. Thermal power

6.1 Modelling thermal power in the electricity market
simulation model

We consider the operation of thermal power in the system during the weeks. The
thermal power system consists of a large number of plants that may be grouped
into production classes consisting of similar plants. In the model of the electricity
market it is always assumed that the production of the available thermal power
plants is offered to the market at given, plant-dependent prices and that the mar-
ket leads to cost-optimal load dispatching in the system. Note that the cost param-
eters can be freely chosen, plant by plant and week by week, if needed. In fact,
the cost parameters may, in principle, also vary within the week. That gives the
analyst considerable freedom in modelling the market behaviour of different pro-
ducers.

We start with complete lists of power plants for each week, giving all the plants
in the system that are manned and ready for operation during the week. These
data are based on the production plans of the plants, which are assumed to be
known. The operation of the plants is subject to random disturbances and, as a
result of these, all plants that have planned to be ready for operation are not actu-
ally available for production during the week. The total available capacity of the
system is a random variable, and the minimal production costs with the available
plants as a function of power produced is a random function. The collection of
available plants is determined by random choice, according to the availabilities of
the plants, from the set of plants ready for production during the week. Once this
choice has been made, the total available capacity (a real scalar) and minimal
production costs as a function of power produced (a real-valued function) can be
computed for this realisation of available plants in the system.

The probability distributions of the available capacity and minimal production
cost function constitute a complete aggregated stochastic production model of the
power system. The most central characteristics of the model are expected minimal
production costs G(y) and marginal expected production costs F(y) = G'(y) for the
system, as functions of power produced y. The present version of the market
simulation model is based on these expected cost functions.

40



In Sections 6.2—6.3, we first derive the probability distributions of the available
capacity and optimal production costs on the basis of plant data. In Section 6.4,
the expected optimal production costs for a system of plants are computed recur-
sively, applying dynamic programming. In Section 6.5, we compute expected
optimal cost functions for a production system consisting of production classes,
where each class is characterised by a common production cost and the probabil-
ity distribution of its available capacity.

6.2 Computation of the available capacity and optimal
production costs of a thermal power system on the basis
of plant data

The system consists of a number N of plants. Each plant is either available for
production or out of production during the whole time step. Partial unavailability is
thus not considered. The probability p, of outage of the plant n is called the forced
outage rate, and the complementary probability 7 - p, is called availability. The
installed capacity of the plant is K, and the production cost of each plant is a
linear function of power produced with a cost coefficient c.

The available capacity of plant n is a random variable X, taking the values 0
and K, with probabilities p, and 1 - p,. The expected capacity of the plant n is
E{Xy} = (1-pn)K,. The total available capacity X of the system is the sum of the
available capacities X,, and without any further assumptions it follows that the
expected value of X'is

EX)=3 EWX,)=3 0 pK, (6.1)

n=1 n=1

The probability distribution of the total capacity X is determined by the joint distri-
bution of the available capacities X, of the individual plants n. If the outages of the
plants n are causally independent, then the random variables X, are statistically
independent. The distribution of X is in this case a modified binomial distribution,
and it can often be approximated with a normal distribution. In case of statistical
independence, the variance of the total capacity is the sum of the variances in the
plant capacities (6.2).

()= Y 0 (X,) = Y py(1- pK, (6.2)

It is assumed that each plant n, available for production, can be operated during
the whole time step at any power level between 0 and the plant capacity K. In the
optimal operation of the system, most of the plants either produce at full capacity
or are shut down, and only one plant is operated at an intermediate power level
between its minimum and maximum capacity. Thus, the approximation, that the
minimum power levels of the plants equal zero, is acceptable.
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The set-up of the computational problem is thus as follows: each plant is avail-
able for production during the time interval considered with a given probability.
First, random choice, according to these probabilities, determines which plants in
the system are actually available for production during the time step. These plants
form the collection (configuration) E of available plants. Then, the demand vy is
allocated optimally to these plants, and optimal (minimal) production costs are
computed for the collection E as a function of the demand y. By repeating the
analysis for all possible configurations E, or for a statistically representative sam-
ple of configurations, and considering their probabilities of realisation, the probabil-
ity distributions of the available capacity and minimal production costs as a func-
tion of demand are obtained.

6.3 Direct computation of the probability distributions of the
available capacity and production costs

The probability Pe of the realisation of the configuration E, where plants a, b, c, ...
are available, the plants u, v, w, ... are not, and the outages of the plants are not
correlated, is given by

P.=(1-p)1-p)d=p.)...0,P,D, - (6.3)

The available capacity of the configuration E, Ke =Ka+ Ky, + Kc + ..., and the
probability distribution of the available capacity of the system are determined
completely by the probabilities Pe and the corresponding available capacities Ke
for all the configurations E. A good approximation can be generated fast with a
simple stochastic simulation system. The expected value and the variance in the
available capacity are given by (6.1) and (6.2), respectively.

Minimal production costs for the configuration E and for any demand y are de-
termined by loading the available plants of the configuration in the order of rising
production costs c¢. The minimal costs as a function of the demand y are thus
given by a piecewise linear convex function. These functions for all the configura-
tions E, together with their probabilities P, completely determine the distribution of
the production costs of the power system for any demand.

The expected minimal cost function G(y) for the whole system is the weighted
average of the cost functions of the different configurations E with the weights Pk,
(6.3). As the number of different configurations for a system of N plants is it
follows that direct computation is only possible for relatively small production sys-
tems. Approximations with a desired accuracy can be generated through random
sampling.

The fact that the load y can exceed the available capacity requires special at-
tention. In that case, the load cannot be covered at any cost, i.e. the cost is infi-
nite. As there is a finite (usually small) probability that all the plants in the system
are out of production, the expected cost according to the straightforward computa-
tion would be infinite for every load y. Thus, at each load level y, we ought to con-
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sider separately the event of insufficient capacity to meet the load and the event
that capacity covers the load. Expected costs were only defined in the latter case.

However, these complications can technically be avoided if we augment each
production system with a back-up plant with infinite capacity, zero forced outage
rate and a unit production cost higher than the costs of all other plants in the sys-
tem. Note that the production cost of a plant with infinite capacity and zero outage
rate is always an upper limit of the marginal optimal production cost of the whole
system, as no plant with higher production costs ever contributes to an optimal
production programme of the system.

6.4 Computation of expected production costs through
dynamic programming on the basis of plant data

Applying Bellman’s principle of optimality (dynamic programming), the expected
total and marginal production costs as a function of the demand can be computed
exactly and fast for a production system. We examine the system defined above.
Data for the system are given in Table 6.1.

Table 6.1. Power plant data for a production system.

‘ Plant ‘ Prod. cost Max. capacity Forced outage rate
1 Cq 00 0
2 C2 Ko P2
N Cn Kn Pn
N CN Kn PN

When applying dynamic programming in the computation, the following two facts
are essential: (i) the plants are arranged in the order of decreasing (non-
increasing, to be exact) production costs, and (ii) the first plant, with the highest
production costs, has an infinite maximum capacity and zero forced outage rate. It
is also assumed that the lower bound of the production power of each plant is 0.
As discussed earlier, this approximation has only a small effect on the results. The
production cost parameters c; are defined as costs per power and time unit.

To start the iteration of expected minimal costs (value functions in the language
of dynamic programming), we thus assume that in the production system there is
always a source of supply that can deliver any amount of electric power, and this
source has a higher production cost than any other plant in the system. We ar-
range the loading of the plants and the computation of the expected minimal pro-
duction costs as follows: first we consider the subsystem consisting of only the first
most expensive plant, next the system consisting of the first two most expensive
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plants, etc. Plants are added to the system in the order of decreasing (non-
increasing) costs.

We define the expected cost functions G, and F, for any power level y in the infi-
nite interval [0,) as follows:

Gn(y)= expected minimal costs in the time unit for the production of a to-
tal effect y with the plants 1, ..., nin the system, and

Fn(y)= marginal expected minimal costs in the time unit at effect y when
that effect is covered optimally with the plants 1, ..., nin the sys-
tem.

Fn(y) is the derivative of G, at y if the latter is differentiable at that point. It can
easily be seen that there is only a finite but, in general, large number of points
where G, fails to be differentiable. It has left and right derivatives, however, at
points y where it is not differentiable. At such a point, F(y) is discontinuous, and it
has left and right limits equal to the left and right derivatives of G, at y.

Assume that the function G,.s is known for all y. Then, we can construct the
function G, as follows: as the plant n is added to the system, the probability that
this plant is not available is p,. In that case, for every y, the expected optimal pro-
duction costs gn1(y) are the same as with the previous system consisting of the
plants 1, 2, ... n- 1 and given by

ga(»=G,,(») (6.4)

The probability that the nth plant is available is (1 — p, ). It can be operated at any
power between 0 and the capacity K,. As its costs are lower than (or equal to) the
costs of any plant in the previous system with expected optimal costs Gn.1(y), then
it is optimal to load plant n first, and the expected optimal costs gn (y) are as follows:

g, =cy, f0<y<Kk, (6.5)
=c, K, +G, ,(v-K,), ifK,<y

Further, directly from the definitions it follows that:
Gn(y):pngnl(y)+(1_pn)gn2(y) (66)
Inserting (6.4) and (6.5) into (6.6), we get

G,(»=p,G_ M+A=p,)c,y, fOsy<K, (67
=p, G, W+U-pe,K, +G, ,(v-K)], K, <y

By applying the recursion (6.7), the cost functions G, are computed for any
n=2,..,N.
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According to the definition of the problem, the first cost function G has the sim-
ple form, giving a starting point for the recursion:

G(y)=c,y, for all y (6.8)

The same argument can be repeated for the marginal cost functions F,, or we can
take the derivative of (6.7) on both sides and, for marginal cost functions, we ob-
tain the recursion formula:

E=pF. (+A=-p,)c,, fo0<ys<K, (6.9)
=p, b (M+1U-p)F (y-K,), ifK, <y

The iteration begins with the first marginal cost function F1 having the simple form:
F(y)=¢ (6.10)

The cost functions G, and F, computed by the recursive method of dynamic pro-
gramming are exact, i.e. no further approximations or assumptions in addition to
those explicitly stated above, and made in the derivation of the functions. Note that
the marginal cost functions F, are also called EIC functions in the literature (from
Expected Incremental Cost).

6.5 Computation of expected costs for a power system on
the basis of production class data

6.5.1 Basic data for homogenous production classes

In the computation of expected costs for a production system in the previous sec-
tion, every power plant was defined individually by its capacity, outage rate and
costs. In this chapter, we derive expected cost functions for more aggregated
production models consisting of production classes composed of similar plants
with common parameters such as coal-fired condensing power, gas turbines, etc.
Wind power can be modelled in a similar way.

We consider production classes (sources of electricity) n = 1,...,N. Each class n
has a total available capacity X,, which is a real-valued, non-negative random
variable with probability density function f,(x) and distribution function ®,(x) de-
fined on the non-negative real line [0, «). The production costs within a class are
homogenous, and the common unit production cost (i.e. cost per power and time
unit) for the class nis ¢,. Demand y is allocated to the production system. As ear-
lier, in the system there is a backup source with unlimited capacity and a unit
production cost that is higher than the cost of any other source in the system.
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6.5.2 Computation of expected costs for a single production class

First, we examine a production system consisting of a single production class and
a back-up source and drop the subscripts here. Data for the class are given by X,
f(x), @(x) and c. For any demand y, if the capacity of the class X = x and x <y,
then the amount x is produced by the production class, and the amount (y - x) by
the back-up source with unit cost h. The costs in time unit g in this case are

g=cx+h(y—x) (6.11)

If the demand is smaller than the capacity of the class, y < x, then the whole de-
mand y is produced by the class, and the costs per time are

g=cy (6.12)

Expected costs are

G() = [lex+h(y—x)f ()dx+ ey £ (x)dx

(6.13)
= (c= )| xf (¥)x+ hy| £ (x)dx +cy[ £ (x)dx
0 0 y
which gives, after some elaboration:
G(y) =y +(h =) D(x)dx (6.14)
0

The cost function G is convex as expected. The marginal costs F are given by the
derivative, which again is an increasing (non-decreasing) function:

F(y)=G(y)=c+(h-c)@(y) (6.15)

6.5.3 Expected costs for a system consisting of several production
classes

Now, we analyse a production system consisting of several production classes
n=1,.,N. As in the treatment in Section 6.4, the classes are arranged in the
order of decreasing production costs.

The problem is again to compute the expected production costs per time unit for
any demand y, when this demand is covered optimally by the production system.
The value functions are defined as in Section 6.4 with plants replaced by produc-
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tion classes. Now, suppose that the expected costs (the value function) Gp.1(x)
have already been computed.

Then, we augment the system with the production class n, having a lower or at
most equal unit production cost to that of the production classes already in the
system. The demand is y, and suppose that the capacity of the class n, X, = x. If
x £y, then the amount x is produced by the class n, and the amount y — x is pro-
duced optimally by the classes 1,...,n-1. Optimal costs for producing the amount y
when the available capacity of class nis x are

g (x,y)=¢c,x+G, (y—x) (6.16)
If y < x, then the whole demand y is produced by class n, and the costs are
g&,x)=c,y (6.17)

The expected optimal costs are

G ()= I[cnx +G, ,(y- x)lfn (x)dx + Icnyfn (x)dx
0 v (6.18)

=c, {y - J{‘Dn (X)dX} + f G, (y=x)f, (x)dx

This gives the recursion for the solution of the expected minimal cost function G,
on the basis of the previous cost function G,.1, and the distribution of the available
capacity of the production class n, i.e. the functions f, and @,. Assuming that the
first class has unlimited capacity and the unit production cost cs, the iteration is
started from

G (y)=cy, for all y (6.19)

Taking the derivatives of (6.18) and (6.19) with respect to y, and recalling that
G'n(x) = Fa(x), we obtain the recursion for the marginal cost functions Fj:

F,(n=c,[1-®,(]+ IF (v =)/, (x)dx (6.20)
0

and

EW)=c, for all y (6.21)
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The cost functions Gy and Fy give the results for the whole production system.
The recursion results (6.18)-(6.21) for the computation of the expected costs are
general, valid for any distributions @, ( x ) and f, ( x ). In practice, the distribution
can be a normal distribution, some modification of a normal distribution or a bino-
mial distribution. In the notation, we have assumed that the distributions are con-
tinuous. However, it is easily seen that the results are not dependent on this as-
sumption, and the distributions may be discontinuous. The recursive formulae
(6.18)-(6.19) and (6.20)-(6.21) are generalisations for production classes of the
corresponding results (6.7)-(6.8) and (6.9)-(6.10) respectively, for discrete power
plants.
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7. Wind power and co-production power

7.1 General

There are a large number of wind power plants in the Nord Pool market area, and
they are situated in different locations throughout the geographical area. Mathe-
matically, the production (power) of every wind power station in the system can be
modelled as a stochastic process determined by the capacity and other technical
characteristics of the plant, its availability for production and the local weather
conditions (wind). The total production of wind power in the system is the sum of
all the plants, a stochastic process completely determined by its components.
Neither the geographic distribution of production and consumption of electricity
nor the transmission capacities between different areas are represented in the
market model. Geographically, it is a point model. It cannot be used to study any
questions to which the answer depends essentially on the location of production
and consumption in the net (market) area. The treatment of wind power in the
market model is based on the total aggregated production from this source.

7.2 Models for wind power in the market model

7.21 Stochastic models of wind power production

We examine a time period of one year. The total production of wind power in the
system

0'=10'(s),s =1,..8}={0' . h)t =1,... T, h =1,..., H| (7.1)

is a stochastic process where Q'(s) = Q'(th) is production in hour s (hour (t,h)).
The index s labels the hours of the year consecutively, s = 1,...,8760 = S. In the
model, we apply two-level indexing, where t labels the weeks, t = 1,...,62 = T, and
h gives the hours within the week, h = 1,...,768 = H. The statistical distribution of
the stochastic process Q'is completely determined by the technical characteris-
tics of the wind power system and by overall weather conditions. The distribution
of Q" is given in principle.
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An hourly stochastic time series is too detailed a representation of wind power.
A practical alternative is to aggregate the production into weekly figures and to
compute the detailed distribution of production over the weeks using index series.
We define the sequence

0= {Qz(t) = in(t,h)},t =1,.,T (7.2)

The weekly wind power production Q%(t) for t = 1,...,T = 52 is a random variable,
and the time series @ is a stochastic process, weekly production of wind power
over the year. The process Q?is completely determined by the basic process Q'
For any realisation g°(t) of the production Q?(t) of week t, the hourly wind energy
production figures q’(t,h) are now computed as expected values:

q'(t,h) = B(t,h)q* (1) (7.3)

for h = 1,...,168, where the production index series S(t,h) is given for all t and h by

1 1 7.4
ﬂ(t’h):E{Q(t,h)} EQ .1} (7.4)

E0’ )] iE{Ql(t’h)}

The production index series defines the average distribution of wind power pro-
duction within the week in question. In the definition (7.4), we have written the
week t of the year and the hour h of the week as arguments. In practice, the index
series depend only on the season of the year and the hour of the day. These indi-
ces are, in principle, determined by wind power statistics. In practice, it may be
difficult to obtain the necessary data.

Aggregation of data may be carried one step further. The yearly energy produc-
tion @ is given by

Q3 =ZT:Q2(I‘) (7.5)

t=1
The yearly production is a random variable. If we choose Q° as the basic variable

for the representation of wind power, then the total energy production during week
tis computed from

7’ (t) = a()q’ (7.6)

for every week t = 1,...,T. In (7.6), q3 is a realisation of the total yearly energy pro-
duction Q°, ¢%(t) is the corresponding realisation of production in week t, and the
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weekly production index series, {a(t)}, completely defined by production statistics,
is given by:

aln) = EQ (0} EO (0 (7.7)
E{Q3} ZT:E{QZ(t)}

7.2.2  Use of stochastic wind power models in the market model

The weekly subtask (the weekly optimisation module) of the market model does
not contain any explicitly stochastic elements. In the weekly subtask, all stochastic
variables and processes are represented by realisations of the stochastic ele-
ments or by their expected values. The detailed hourly stochastic process Q'
defined in (7.1) cannot be used to represent wind power in the market model.

The production of wind energy can be represented in the market model by the
stochastic process Q? defined in (7.2). The production of wind power in week t is
then defined as a stochastic control variable S(t).

S, (H=0),t=1,.,T (7.8)

Note that this gives an additional stochastic control variable and increases the
computational work correspondingly. Successive elements Q(t) of the stochastic
process Q? are assumed to be statistically independent, and they are independent
of the other stochastic elements (inflow of water and change in demand). The
distribution of Q(t) is determined by production statistics, and in the market model
a discrete approximation of the distribution is applied. The hourly production of
wind power is computed from (7.3) and subtracted from the hourly demand. The
difference is covered by thermal power.

If we do not want to have an additional state variable in the model to represent
the stochastic variations in wind production, we choose the yearly production Q°
as the basic variable and compute the yearly production time series from

q'(t,h) = B(t,hya(t)g’, t=1,.,T and h=1,,H (7.9)
This time series is then subtracted from the demand.

7.3 Modelling wind power as a production class in thermal
power

The wind power models in Section 7.2.2 form an hourly production time series that
is subtracted from the demand for electricity before the loading of thermal power
plants. It is also possible to model wind power and other similar power production,
e.g. co-production power, as a production class in thermal power; see Section
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6.5.3. Wind power production in week t is represented by the probability distribu-
tion ®[Q°(t)], and the corresponding probability density function fiQ%(t)] of the
production of wind power Q?(t) in week t. Q%(t) is a random variable and its proba-
bility distribution ®[Q’(t)] is completely determined by the distribution of the sto-
chastic process {Q'(t,h), h = 1, ... H}; see (7.1). The production cost of wind power
is taken to be zero in the model. Note that in this case the same (average) distri-
bution of wind production is applied for all the hours of the week. If the distribution
of the hourly production is available, it is also possible to form and apply different
probability distributions for wind power production in different time segments of the
week.

7.4 Co-production power

Co-production power is produced in connection with industrial heat production and
district heating. The production of electricity is determined uniquely by the produc-
tion (demand) of heat, and all electricity produced is fed into the net. Thus, we can
apply exactly the same models as for wind power to co-production of electricity.
Industrial co-production is determined by the level of primary production, and the
production of district heating power by the heating demand, which again is influ-
enced by the weather.
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8. Demand, export and import of electricity

8.1 Short- and long-term variations in the demand for
electricity

The hourly demand for electricity is perhaps the single most important factor de-
termining the market price for electricity. The demand shows regular daily, weekly
and yearly variations, as well as short- and long-term stochastic variations. If the
market model is used to forecast the expected development and random varia-
tions in the price in the short term (some weeks), then a corresponding stochastic
model of short-term development of the demand is required. These short-term
variations are correlated with weather conditions. The model has mainly been
used in long-term (several months or longer) studies, and in these studies the
main source of uncertainty is the long-term development of the whole economy
determining the demand for electricity. The next chapter presents a simple sto-
chastic model for the long-term development of demand.

8.2 A stochastic model of the long-term development of
demand for electricity

The basic variables of the model are
d(t,h)  Demand for electricity in week t, hour h, and

D Total demand for electricity during the year.

In the case of stationary yearly demand D, the hourly demand is computed on the
basis of the demand D by applying weekly and hourly indices:

dt,h)=n,(Wn,@)D, t=1...T and h=1,.,H (8.1)
and the index series are defined as follows:

i), t=1,...,T} A set of weekly indices giving the distribution of
the yearly demand for the weeks t, satisfying Sis"
m(t)=1.
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{hah), h=1, ... ,H} For each week t a set of hourly indices giving the
distribution of the demand in week t to the hours h
of the week and satisfying 5 n=1"" n(t) = 1.

In principle, every week t may have its own series of hourly indices. In practice,
the same series applies for several weeks for the different seasons of the year.

Now, we redefine the yearly demand D in (8.1) by substituting for D a variable
demand D(t), defined as follows:

D), t=1,..,T} The level of yearly demand reached in week t.
This is an operative definition and means that the
development of the demand in week t is computed
from (8.1) after substituting D(t) for D in the formu-
la.

Then, we assume that {D(t), t = 1, ..., T} is a stochastic process (8.2):
t
D(t) = D{l + 25(1)} (8.2)
=1

where Dy is the (level of) yearly demand at t = 0, and for every {, (t) is a random
variable: the relative change in demand at the beginning of week t. We usually
choose the random variables (%) to be statistically independent and differ from 0
for some weeks t of the year only. Inserting (8.2) into (8.1) gives the model for the
demand (8.3) applied in the market model.

d(x,h)=n2,(h)nl(t)D{1+25(r)} t=1,.,T andh=1,,H (83

In the dynamic programming formulation, the relative level of demand
D()/Do = x2(t) is a state variable, which, corresponding to (8.2), satisfies the dy-
namic equation (8.4) with the initial value (8.5).

X, =x,(t-D+6@), t=1,..,T (8.4)
x,(0)=1 (8.5)

In dynamic programming applications, the relative additive terms &(t) are assumed
to be statistically independent and to have discrete distributions as follows:

o(t) =0, forte Qo (8.6)

o(t) = &i, with probability mmi ,i=1, ... ,I, forte Q4 (8.7)
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In (8.6)-(8.7), the sets Qo and Qs form a partition of the index set {7, ... , T}, and the
probabilities 17; satisfy 5'=;1; = 1. The nonzero terms (8.7) are usually assumed to
be identically distributed.

8.3 Estimation of the parameters of the demand model

The estimation of the weekly and hourly indices {ns(t),t=1,...,7} and
{nai(h), h=1, ... H}fort=1, ..., T, and the initial level of the yearly demand D, are
important tasks in validating the model. We assume that the required data are
available.

In applying the model (8.2) to the development of the level of demand during
the study period [0, T], the starting point and a basic assumption are frequently an
estimate of expected growth and standard deviation of growth during the whole
study period. The relative growth during the period is A = 5 T o(1) and it is as-
sumed that A has mean M and standard deviation 2. There is considerable free-
dom in the choice of the distributions of the additive nonzero terms (7). Let n be
the number of such nonzero terms, statistically independent and all equally dis-
tributed with mean value m and standard deviation 0. Then these parameters
always satisfy:

M =nm (8.8)
52 =no? (8.9)

Suppose that we have estimated M and 2. Then, the number n of nonzero terms
and their distribution, the parameters m and o are chosen so that (8.8)-(8.9) are
satisfied. If nothing specific is known about the distributions of the additive terms,
then it is natural to assume they are normally distributed. In the dynamic pro-
gramming model, a discrete approximation (8.2) of the normal distribution is ap-
plied. This approximation is chosen so that it also satisfies (8.8)-(8.9) and is as
near as possible to the normal distribution in a chosen sense.

8.4 Modelling price elasticity of the demand

For each hour h of the week, the demand for electricity d(t,h) is a given constant in
the weekly optimisation sub-problem. The demand for each hour has to be satis-
fied with production during the actual hour so that weekly production costs are
minimised. Modelling the price elasticity of the demand is technically straightfor-
ward. For a constant demand d, we substitute a price-sensitive demand and in-
stead of minimising the weekly production costs, the sum of the producers’ surplus
plus the consumers’ surplus is maximised. This is a standard modification of a
cost minimisation model, and we do not go into detail here. The extended problem
is also convex, and it is approximated with a piecewise linear problem as dis-
cussed in Section 4.2.2. Technically, the modification is easy, but it may be difficult
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to obtain reliable quantitative data on the elasticity of the demand, as the elasticity
is highly time dependent.

8.5 Export and import of electricity

The basic model covers production and demand of electricity within the Nord Pool
market area. The Nordic transmission net is connected to the Russian, Baltic,
Polish, German and Dutch nets with transmission lines for export and import of
electric energy. Including trade in electric energy with surrounding areas into the
model is technically easy. Imports can be included as an additional source of
electricity directly into the cost minimisation model. Exports are modelled in com-
plete analogy with a price-sensitive demand.

As with price elasticity, the real problem in modelling the trade of electricity with
the surrounding nets and markets is data. Trade based on long-term contracts
with clear agreements presents no problems. Short-term trade depends on market
conditions, i.e. on the supply and demand at different price levels in the areas
neighbouring the Nord Pool area and vary from hour to hour. In the model, we
have to be satisfied with expected average values.
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9. Piecewise linear approximations to convex
cost functions of a production system

9.1 Piecewise linear convex cost functions and
computational efficiency in optimisation

The expected minimal production cost functions G(y) for the thermal system are
convex functions of production y, and the marginal costs F(y) are increasing func-
tions. These functions were computed on the basis of plant data in Section 6.4
and on the basis of production class data in Section 6.5. Total cost functions com-
puted on the basis of plant data are piecewise linear and convex, and the corre-
sponding marginal costs are non-decreasing step functions.

All the cost functions in Chapter 6 are computed recursively in numerical form.
The cost functions enter the objective function of the optimisation subtask (4.1)-
(4.11) in the dynamic programming iteration. In our model, the subtask is an opti-
misation problem with linear constraints and a convex objective function. During
the iteration, this subtask is solved over and over again very many times. Minimis-
ing the solution time is essential.

One possibility is to develop and apply an optimisation algorithm for linearly
constrained convex minimisation problems with numerically defined objective
functions. Piecewise linear approximations of convex cost functions is another
possibility. The marginal cost function in that case is an increasing step function. A
piecewise linear convex approximation leads to a linear programming problem, and
the effective algorithms and computer programs for LP problems can then be used.

If we approximate an increasing marginal cost function with a step function, and
with tolerance o, then the cost steps of the approximating function should be cho-
sen to be at most the height 2 &. In order to cover a cost range A with this accura-
cy, A/20 steps are sufficient.

In the electricity market model, we apply this approximation. The exact total
cost functions G(y) are approximated with piecewise linear, convex functions with
a smaller number of linear segments and correspondingly fewer steps in the mar-
ginal costs.
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9.2 Piecewise linear approximations to convex cost
functions: an example

For clarity, we first examine the simple cost model G(y), see (6.14) in Section
6.5.2, based on the probability distribution ®(x) of the available capacity, and write
a piecewise linear approximation of the total optimal production costs G(y) ob-
tained by approximating the corresponding marginal cost function (6.15),
F(y) =c + (h - c)®(y) by a step function. Let us examine Figure 9.1, which gives an
example of the function F(y), and its approximation with a three-step function

Fa(y).

A
Marginal
cost
fty)
" d
h ’
3 v
| ()
g fa(y)
(o}
t t t »
a, a, a, Prod;:ction

Figure 9.1. Marginal cost F(y) and its step function approximation Fx(y).

The approximation is determined by the heights h;, and the locations a; of the three
steps i. These are to be chosen so as to minimise some measure of the closeness
of the approximation to the true cost function. Let us choose F;(0) = F(0) =c,
Fa(y) = F(y) = h for y — oo, and let us minimise the maximum absolute value of the
difference, max{|Fa(y) - F(y)|: y€(0,~)} under these constraints.

It is easily seen that for every continuous function F, the best approximation has
three equal steps of height (1/3)(h - ¢) located at points a; determined from the
equalities ®(as) = 1/6, ®(az) =1/2 and P(a3) = 5/6. The maximum absolute differ-
ence between the value of the exact marginal cost function F(y) and its approxi-
mation Fa(y) is (1/6)(h - c¢). In a cost minimisation model, the approximation leads
to the following representation of the approximate cost function Ga(y):

4
Ga(y):minzciyi (9.1)
=
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ys iyi (©.2)

0<y, <b,i=1..,4 (9.3)

The cost coefficients are
ci=c+[(i-1)/3](h-c)i=1,..,4 (9.4)

and the upper limits bs=ay, b = az - as, bz =asz - az and bs = », where the points
a; were solved above. It is also easy to see that if we have a cost function with
marginal costs starting from cost level ¢ and rising to h, then we can approximate
the marginal cost with a step function with r steps, chosen suitably, to give a max-
imum difference (1/2r)(h - c) between the true marginal cost and the approximation.

9.3 An algorithm for the generation of piecewise linear
approximations to convex functions

Let us generalise the previous result. The production is denoted by y. Any convex
(cost) function G(y) with derivative (marginal cost) G'(y) = F(y) can be approximat-
ed on the interval (0, K) with a piecewise linear function Ga(y). The derivative
G's(y) = Fa is a step function. The approximation is generated with an algorithm
with the following steps:

1. Choose a tolerance 6 and require that the maximum absolute difference
between the true marginal costs F(y) and marginal costs Fa(y) according

to the approximation is o.

2. Compute G'(0)=F(0) =c and G'K)=F(K) =h. Here, we choose
F2(0) = c and F4(K) = h (other choices are possible).

3. Choose the number of steps r to be the smallest integer satisfying
r>(h-c)/20.

4. Compute the cost coefficients
c,=c+[i-D/rfh-c), i=1..,r+l1 (9.5)
5. Determine the division points a; from the equalities

F(a)=c+1/2r)h=-c)2i-1), i=l,..,r+1 (9.6)
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6.

7.

Compute the upper bounds

b =a,,b,

i

=a,-a,, fori=

The approximation is given by

r+l

G,(»)=minY ¢y,

i=1

0<y, <b, i=l..r+l

1

2,...r, and b ,=K-a, (9.7)

(9.8)

(9.9)

(9.10)

A step function approximation with maximum error 5 (units)/MWh to the exact
marginal cost function of the system defined in Table 9.1 is given in Figure 9.2.

Table 9.1. A thermal production system.

Plants Production class
Number Nominal Availability Cost Coeffi- Expected Std.dev. o/M
of units capacity cient capacity M of availa- %
in the of a unit (€/MWh) (MW) ble ca-
class (MW) pacity o
(MW)
25 200 0.9 20 4500 300 6.7
25 200 0.95 50 4750 218 46
100 50 0.9 70 4500 150 3.3
100 50 0.95 90 4750 109 2.3
1 © 1.0 100 ©
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Figure 9.2. Expected marginal costs of the system in Table 9.1 and their step
function approximation with max error 5 €/ MWh.

Finally, let us note that the approximations used in applications need not be uni-
form with respect to the production. We can choose step approximations with
great detail where this is required and even generate such approximations dynam-
ically during the course of the iterations.
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10. Price forecasts

10.1 Market price for electricity

Now, suppose that the overall problem has been solved, i.e. the complete optimal
policy and the value functions have been computed, then, for every week ¢, and for
every possible market condition, the price of electricity is computed as the deriva-
tive of the optimal expected costs from the beginning of week t to the end of time
horizon T, with respect to the demand for electricity in week t. By definition, a
perfect market realises this price.

Let the initial state at week ¢, i.e. the state reached at the end of week (¢ - 1), be
y, and let the realisation of the stochastic control element S(t) be s(f). Then, we
define p[y,s(t),t] as the expected average market price of electricity during week t,
if the state of the process at the end of the week (t - 1), x(t - 1) =y, and the realisa-
tion of the stochastic control variable S(t) = s(t).

Here, the average denotes the weighted average over the hours of the week
with the hourly demand as weight for each hour. The expectation is taken with
respect to the distribution of the stochastic process S(1) for r >t. The statistical
expectation E{p[y,s(t),t]} of the time average market price in week t over the distri-
bution of the stochastic element s(t) gives a prognosis for the market price in week
t for initial state y.

The optimal costs from the beginning of week t to the end of the horizon for x(t -

1) =y and S(t) = s(t) are obtained as the optimal value Z*[y,s(t)] of the appropri-
ate time-point-wise optimisation problem, (3.29)-(3.30) in general notation or
(3.22)-(3.26) in more specific notation. Denote the demand for the week as a vari-
able in this problem by d and let the optimal demand be d*. Then

ply,s(@®),t]=0Z"[y,s(t)]/ od,d =d" (10.1)
In the basic formulation (3.22)-(3.26) of the optimisation problem giving the price
for electricity (10.1), the demand d for the week is given as a constant lower

bound, denoted by Don+fy2 + sz(t,i)] in the constraint (3.25), and the price (10.1) is
the so-called shadow price of this bound. The problem (3.22)-(3.26) is a convex
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optimisation problem with linear constraints. It follows from the duality theory of
convex optimisation that the derivative (10.1) is equal to the component of the
optimal dual solution that corresponds to the inequality (3.25).

If we examine the structure of the optimisation problem (3.22)-(3.26) in detall, it
can also be seen that in this problem

ply,s().t]=de (k) /dk, at k=u(t) (10.2)

where ci(k) gives the thermal production costs in week t as a function of the ther-
mal production k, and u*(t) is the optimal thermal production in the problem.

In the actual detailed model, the hourly variations in the demand and production
within the week are also represented. The realisations of the hourly spot prices are
obtained as derivatives of the optimal costs with respect to the hourly demands of
electricity.

10.2 Generating price forecasts with the model
Realisations of the stochastic price process are generated step by step as follows:

1. The computations start from the known, or assumed, initial state
x(0) = X°.

2. A realisation s" ={s'(1),...,s'(t),...,s'(T)} of the stochastic control S is gen-
erated.

3. The price of electricity during the first week p(1), corresponding to the real-
isation s, is computed from (10.1) by choosing y = x’, s(1) =s'(1) and t = 1.

4. The state at the end of time step 1 is determined from the dynamic equa-
tion of the system by inserting the stochastic control variable s(1) = s'(1)
into it and the optimal active control variable u*(7) determined from the
appropriate optimisation problem, problem (3.22)-(3.26) for the basic
model.

5. The procedure is repeated for all time steps t = 2,..., T, and the realisation
of the price p" = [p'(1),..., P'(t),..., p'(T)] is generated.

In creating price prognoses, a representative sample {s', r = 1,...,R} of realisations
of the stochastic control process is generated and a corresponding set
{p’, r=1,...,R} of price prognoses is computed. On the basis of the set, expected
values and standard deviations etc. can be formed. We note again that in this
simulation, we can use real, measured and scaled water inflow processes (realisa-
tions) in the sample. Such realisations show a proper correlation between the
successive weekly inflows.
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11. Computer system, basic data and the use of
the model

11.1 Computer system

The methods presented in earlier chapters have been programmed as C language
functions using text files for input and output of data. An APL language interface is
used to manage the functions and input and output files. An Excel macro-based
model is used as a help in creating the input files. These functions and interfaces
form a set of computer programs called VTT-EMM (VTT Energy Market Model).
With VTT-EMM, the user can set up model installations for different electricity
markets. The market of greatest interest to us is the Nordic electricity market cov-
ering Finland, Sweden, Norway and Denmark. We have also modelled markets
consisting of Finland only, Germany and the Baltic countries. VTT-EMM can flexi-
bly be used to simulate different market scenarios according to the interests of the
user.

With the user’s interface, it is straightforward to set up and run different compu-
tational cases for a market. The organisation of data files is shown in Figure 11.1.
There are a number of parameters to fine-tune the properties of the models and
the market conditions and to select the time horizon for a model run. The input
data on the market are presented separately from the program control and steer-
ing parameters.
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CO2_emissionsfile «——————

> Settingsfile

——> Qutput files

Figure 11.1. Schematic structure of VTT-EMM installations, cases and input files.

The running time of the model is determined by the solution time of the recurring
optimisation sub-problem in the dynamic programming iteration. In the model, this
problem is formulated as a linear programming problem and solved by the ex-
tremely fast MIPKIT library for LP problems developed at VTT. The approxima-
tions and accuracy of the results and the solution time can be controlled by the
analyst.

11.2 Input data

11.21 General

The main part of the input data is organised in separate text files for all given are-
as (e.g. countries) of a market. The boundaries of a market are drawn by the user.
For the Nordic market model, the areas are countries, as this corresponds to the
availability of data.

Every production class, except hydropower, is included in the category of ther-
mal power in the model and defined using the same input data format, e.g. wind
power is thus also defined as a production class within thermal power. The input
data for thermal power are organised in two data sets, one for the production
classes and the other for the fuels. Data are stored in text files and, in practice,
these data are semi-automatically derived from data stored in Excel files. The time
resolution of input data is a year or a week and is chosen by the user according to
the nature of the data. The weekly resolution is applied to the hydro inflow,
planned outages, CHP heat demand and fuel prices.
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11.2.2 Thermal power production classes

A thermal power production class in the model is identified by its market area and
class name. A production class has a given total capacity and class-specific power
plant characteristics. In the data set for thermal power production classes, see
Figure 11.2, the input data are given for each area, production class and year.

= e ; m—
| FIN2020.CAP - Notepad L, =Ei
File Edit Format View Help

IFIN 2020 >

' WFIN2020. CAP
'Tiedostosta C:"\WTT EMM Nordiccase_xx‘Kapasiteetit.x]s 31.12.2011

10:01:46

'NIMI TY POL TEHO LKM p mmk Hybtysuhteet
YDIN NUC NUC 2601 4 1,00 0,0 1,00

GAST GTU LOI 805 11 0,95 0,0 0,20

LHII CON COA 2019 14 0,95 3,6 0,35

LTUR CON PEA 275 3 0,92 =10 0,35

LMKA CON GAS 12 2l 0,95 0,5 0,50

KLHI CHP COQA 598 g 0,85 3.6 0,88 0,29 0,29
KLOL CHP HOI 16 1 0,90 0,0 0,90 0,30 0,30
KLME, CHP GAS 1141 ] 0,95 0,5 0,91 0,47 0,50
KLTU CHP PEA 576 14 0,80 4,0 0,85 0,25 0,25
KLJd CHP JAT 154 5 0,7 4,0 0,70 0,20 0,20
KLBI CHP BIl 838 28 0,85 4,0 0,85 0,25 0,25
THII CIP COA 127 8 0,50 3,6 0,88 0,22 0,22
TMKA CIP GAS 533 a 0,85 0,0 0,90 0,30 0,35
TTUR CIP PEA 216 9 0,50 4,0 0,88 0,20 0,20
TBIO CIP BIl 969 32 0,65 1,0 0,88 0,20 0,20
TS00 CIP LIQ 1072 24 0,60 0,0 0,85 0,20 0,20
Tmuu CIP JAT 131 9 0,70 2,0 0,70 0,15 0,15
WIND WIN WIN 2047 20 0,30 0,0 1,00

VESI HYD 3224 5,6 14,2

RUS EXP RUIM 1560 RUI RUEX 300 RUE
EST EXP ESIM 1000 BAI ESEX 1000 BAE
KULU DEM 932

Figure 11.2. Input file for the thermal production classes of an area, containing the
capacity, number of plants, availability, variable operation and maintenance costs,
and efficiencies for each class.

The identification data are the area and the name of the class. The capacity data
give the total net capacity of the class at the beginning of the year and the average
or typical size of the plants in the class or number of plants. Note that the model
treats the class as being formed of identical plants with the defined average or
typical size.

The power plant characteristics are production type, fuel, availability, variable
cost other than fuel and overall efficiency (fuel rate) (for CHP plants the efficiency
in CHP mode and in condensing power mode separately). Production types in-
clude condensing power (CON), district heating CHP (CHP), industrial CHP (CIP),
nuclear power (NUC), gas turbines (GTU) and wind power (WIN). The production
types (CHP and CIP) are given special treatment in the model. The output genera-
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tor of the model computes the distribution of production by the defined production
types. Fuels available in the model are given by the user and can also be very
specific. Data for the fuels are defined in the fuel data set.

Availability is measured during planned use, in other words it equals the com-
plement of the forced outage rate. Other variable costs include the costs for opera-
tion and maintenance and all running costs proportional to production other than
fuel costs. Other variable costs can also include a profit margin. The total efficien-
cy is the share of net power (and net heat, for CHP plants) output of fuel input. For
the CHP and CIP plant types: electricity efficiency in combined production mode
and in condensing production mode are defined separately.

11.2.3 Special treatment of the combined heat and power classes

The CHP production classes (production types CHP and CIP) are mainly run in
the economic combined heat and power mode. The available electric power ca-
pacity of these classes in combined production is determined by the heat load,
which varies over the year. In the model, we define a weekly utilisation factor
(£1.0), and the nominal weekly combined power capacity is given by the utilisation
factor times the total nominal capacity of the class. The weekly utilisation factors
are determined by the variations in the expected district heating and industrial heat
loads. The yearly variations for these two are markedly different. The remaining
capacity of the CHP and CIP type production classes (the capacity that cannot run
in combined mode) is available for condensing power production with a fuel con-
sumption rate higher than in combined mode production. Forced outages are
treated in the same way as in other thermal classes.

11.2.4 Availability of thermal power capacity

The total nominal net capacity for each thermal class is defined in the thermal
power data set. For each week of the year, only a share of this capacity is manned
and planned as available for production. The rest is scheduled to be closed down
for planned maintenance, lack of demand or other reasons. The planned share
(£1,0) of the net capacity of a class, scheduled to be available during each week
of the year, is given as input to the model.

The random availability (£1,0) of the class gives the actually available share of
the planned available capacity after random outages of plants.

11.2.5 Fuel data
Each thermal power production class (even wind formally) has an associated fuel.
The data for fuels are defined in the fuel data set. There are no restrictions on the

definition of fuels and, in principle, each production type could have its own fuel. In
practice, the fuels are more generic, e.g. coal or peat, but these fuels may be
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diversified by area, due to differing fuel prices. Gas prices in Norway, for example,
are often lower than elsewhere.

The data set for fuels contains the annual average price for each fuel and the
annual average price for CO, emissions. The annual prices defined are overridden
by weekly fuel and emissions prices, if the analyst defines weekly fuel and emis-
sion prices.

Emissions of carbon dioxide per unit of fuel consumed are defined as a model
level parameter for each fuel causing emissions. Carbon capture and storage-
(CCS) based production classes are modelled using an appropriate fuel definition.
For biomass-CCS, this leads to negative carbon dioxide emissions for the fuel.

11.2.6 Hydropower

The input data for the aggregated hydro system consist of capacity data and water
flow data. Capacity data and total yearly inflow are given by area and year. The
stochastic distribution of the flow of water during the year is defined by giving a
representative sample (usually 100) of equally probable realisations of the weekly
inflow process. The probability of each realisation is 1/N, if N is the number in the
sample. These realisations are normed as weekly index series that give the distri-
bution of inflow for the aggregated Nordic system as a whole. The analyst can
model different inflow scenarios by choosing the sample of index series and the
total average inflow accordingly. The physical inflow is measured in electric energy
produced. The logical structure of the processing of hydropower data for the mod-
el is shown in Figure 11.3.

Market weekly inflow

indexes Forced production

\\\ / (run-of-river)
Area annual + Market annual \w Market weekly vl Market
—|_ reservoir

inflows inflow inflows e

Areareservoir _— .
capacities Controlled

production

Figure 11.3. Logical structure of the preparation of hydropower data for the model.
For each area and year, the hydropower data contain the following items:
Total hydro production capacity (in power units, MW),

1.
2. Total hydro reservoir capacity (in energy units, TWh), and
3. Annual inflow (in energy units, TWh).
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In addition, the user may optionally give the share of run-of-river capacity of the
total hydro production capacity and the share of run-of-river inflow of the total
water inflow. If the user does not define these shares, default shares defined in the
model will be used. The difference between the total and run-of-the-river is stora-
ble and controllable. Excess water, either in the rivers or in the reservoirs, leads to
an overflow past the turbines in the model, and the feasibility of the solution is
always guaranteed.

The numerical parameters of the aggregated model of the Nordic hydro system
represent the integrated behaviour and properties of a large number of individual
and partially interconnected hydropower systems and components: power plants,
water reservoirs and rivers. The water levels in the reservoirs and water flows in
the rivers are regulated. The behaviour of the aggregated system is determined by
its components, but the system is so large and complicated that the parameters
are estimated on the bases of production statistics.

11.2.7 Foreign trade (trade in electricity with neighbouring areas)

Trade in electricity between the market and the neighbours is currently represent-
ed in the model in the simplest possible form. For every interconnection, transmis-
sion power capacity (MW) and energy price are given both for export and import of
electricity. The capacities are constant over the year and the prices may vary
weekly.

It would be interesting and, from the point of view of modelling, straightforward
to represent price-elastic trade with the neighbours in the model, if the price
curves of supply and demand of the neighbours at different hours and weeks of
the year were available. As they are not, the model uses the, to a certain degree,
simplistic representation of foreign trade. A user may control the trade by setting
artificial bounds on the power transmission. This also corresponds to the increas-
ingly common practice of using the transmission capacities for short-term system
balancing of, e.g., wind and solar power, and not for trade per se.

11.2.8 Demand for electricity

The annual demand for each area (TWh) is given as input. In addition, each area
has its own index series for the computation of the weekly and hourly demand.
The total demand for each hour has to be covered by the trade-adjusted supply in
the model.

Instead of dividing the week into 168 hours, a coarser subdivision of time within
the week is usually used, corresponding to a step function approximation of the
duration function of the demand chosen by the user. We have often used a very
simple subdivision into three demand steps: peak, medium and low demand with
chosen durations.
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11.3 Control parameters

The time span of a studied case can be one or several years, starting from a se-
lected week. In addition, the user may give the initial contents of the aggregated
hydro reservoir. Otherwise, an iterative procedure is used for the estimation of the
initial contents.

The user can also select the year to be normal, wet or dry. This parameter
changes the total average annual water inflow values with a user-defined scaling
factor, for example 0.8 for a dry year, 1.0 for a normal year and 1.2 for a wet year.
Weekly inflow indices can also be modified by specific snow and precipitation
correction parameters by the user.

The development of the annual demand over the study period is given as the
forecasted expected growth during the year and the variation in the growth. The
model generates a stochastic process with independent increments with a discrete
approximation of the normal distribution, which realises the forecasted growth.
Weekly demand indices can also be modified by temperature-dependent correc-
tion parameters by the user.

11.4 Output from the model

A complete study has two phases. First, the value function for the study year is
computed under the given assumptions. Then, as the main result, a number (e.g.
100) of realisations of the marginal production price for each week and each hour
(sub-period) is generated. On the basis of the sample, a number of results of the
study can be computed and printed out, e.g. the value function, the development
of the contents of the water reservoirs, production of hydro and thermal power,
water overflow, imports and exports of electricity and total costs (as defined in the
model). The value function is common for the whole sample, other results depend
on the realisation and can be printed as such or summarised as a statistical distri-
bution computed on the basis of the sample.

Further results can be derived and computed using a procedure that is a rever-
sal of the computation of the expected total and incremental costs for the whole
thermal system, that is, the reversed EIC method. For each simulated case, the
distribution of the aggregated thermal production among the different areas and
production classes can be computed on the basis of the simulated spot price and
the detailed class data (capacity, cost and availability data). For the whole sample
of realisations, the amount of such output data is very large and, usually, only
aggregated results such as mean values are read out.
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12. Results and applications

12.1 Model output

A complete solution to the central production optimisation problem of the model
consists of the dynamic programming value functions for all weeks of the study
period. During the computation of the value functions, the decisions forming the
complete optimal policy and the associated spot prices of electricity are also avail-
able. Owing to the large amount of solution data, only the value functions are
usually stored as output for an optimisation run.

The DP value functions also determine the illustrative water value function. The
value of water as a function of the time of the year and the contents of the reser-
voir is shown in Figure 12.1 for the stationary solution of a problem with a planning
horizon consisting of several identical years in succession.
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Figure 12.1. The water value function. G-value is the total value of water in the
reservoir in million euros as a function of time (week) and content of the reservoir
(x-level) from empty (x=0) to full (x=20).

Using the value functions, the model is used in simulation mode. The output of a
simulation run gives an optimal production plan and the associated spot price, i.e.
a realisation of the stochastic price process, for the whole period. The expectation
and distribution of the spot price can be computed on the basis of a representative
sample of simulated realisations of it.

A simulation run gives the optimal production of the aggregated hydro and of
the thermal plant of the model over the whole study period in the simulated case.
The allocation of the optimal thermal production among the production classes
that form the aggregated thermal plant is uniquely determined by the composition
and properties of the thermal capacity. This distribution is computed by a separate

program for every time step of the study period and forms an important part of the
results of the model.

12.2 A price forecast generated with the model

A forecast for the price of electricity on the Nord Pool electricity market, computed
with the model for the years 2007 to 2008, is presented in Figure 12.2. Both years
were wet, although relative reservoir levels started to drop towards the end of
2008. The forecast (the thick blue line in the figure) is the statistical expectation of
the system price computed on the basis of a representative sample of simulated
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realisations of the self-same price. The solid red line shows the actual develop-
ment of the Nord Pool Spot price and the dashed red line gives the Nord Pool
forward quotations as they were on 10 January 2007.

80+
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20070410 20070719 20071027 20080204 20080514 20080822 20081130

Days
| —— VTT-EMM estimate — — - NordPool forwards —— NordPool spot | 1/2007 - 12/2008

Figure 12.2. A price forecast computed with the VTT-EMM for the time span of
1/2007 to 12/2008 compared with the realised Nord Pool Spot prices and forward
quotations. The model estimates are aggregated to match the time steps of the
quotations for the electricity futures making it easier to compare them.

The forecast is computed for two years starting from the beginning of January
2007. The reported value is used for the contents of the aggregated water reser-
voir in the beginning of 2007. The probability distribution of the inflow of water in
the statistical sample of the model run is the same for both years, but the total
annual inflows are set to match the realised values. Realised fuel prices, including
the price of CO, emission rightsare used in the computation of the forecast. Fuel
prices rose sharply during 2007 and in the beginning of 2008. The price of CO»
emission rights for 2007 was very low; clearly less than 1 €/tco, most of the year.
The price for 2008 emission rights was much higher, which could be seen in the
forward prices already in January 2007, with an average of about 21 €/tco2 during
2007 and 2008.

The forecasted price of electricity in the figure is the time average of the statisti-
cal mean of the individual realisations in the sample. The time averages are taken
over periods of one week, four weeks and three months, corresponding to the
periods of the futures traded on the Nord Pool market. It can be seen that the
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forecast worsens the farther it goes, but also that it is on par with the best market
guess: the Nord Pool forward prices.

Figure 12.3 gives an idea of the spread of the simulated price distribution com-
pared with one realisation, the real observed system price. Typically, the observed
weekly average is a bit higher than the computed average. Sometimes the ob-
served peak prices pierce the high end of the simulated distribution due to, e.g.,
extreme cold weather
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Figure 12.3. Modelled 2009 Nordic system price distribution (black lines) com-
pared with the real observed system price (red lines). The bold black line is the
weekly average of 100 simulations, and the thinner black dashed lines are the
highest and lowest simulated one-hour values within a week. The middle red solid
line is the weekly average of the observed system price and the finer dashed red
lines are the highest and lowest hourly values for each week.

12.3 Applications of the model in market and policy analyses

VTT-EMM has been used in several market and policy studies and what-if anal-
yses. As a fast model, it is well suited to scenario analyses and ad hoc assess-
ments. Here is a brief non-inclusive list of analyses carried out with VTT-EMM:

e  Comparing VTT-EMM results with other electricity market models’ (Bal-
morel, ECON-Classic, PoMo) results to gain a better understanding of
how the Nordic market works and for which market issues a specific
model feature is a benefit and for which it is not. This analysis was part of
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the Nordic Energy Perspectives (NEP) project (Unger et al. 2010, Rydén
2006, NEP 2010).

Effects of alternative Finnish nuclear power construction plans on the
Nordic electricity market. The study was conducted in 2009 and 2010 for
the Energy Department of the Ministry of Employment and the Economy
of Finland and carried out by VTT in close co-operation with the Finnish
Government Institute for Economic Research (VATT) (Forsstrém et al.
2010). In this study the model was used to analyse the effects of a poten-
tial expansion of the Finnish nuclear production capacity on the Nordic
electricity market. The market price and structure of the supply of electric-
ity in the Nordic market area were computed for alternative Finnish nu-
clear power capacity expansion programmes for the years 2015, 2020,
2025, 2030 and 2040, and for the reference year 2007 for several alter-
native scenarios for the expansion of nuclear capacity in Finland.
Assessing the change in the overall CO;, emissions when converting se-
lected power plants to carbon capture and storage (CCS). Conversion to
CCS lowers the efficiencies and the power output of the units. This, to-
gether with the cost of emitting CO, and the cost of fuel, affects how the
units are operated in a market environment and what kind of power
plants are used to cover the power capacity reduction. (Rydén 2010)
Assessing how fuel and/or CO, emission prices affect the operation of
the power system and the system price. The impact of the emission trade
has been an important research task since the planning of the EU emis-
sions market started. (Koljonen and Savolainen 2004, Koljonen and Kek-
konen 2005, Rydén 2010)

Assessing the energy sector development and the electricity market de-
velopment by linking together, iteratively, VTT-EMM and TIMES Finland
(Kara et al. 2008, Loulou et al. 2005, Loulou and Labriet 2007). TIMES
Finland is a long-term, multi-period partial equilibrium model that covers
the whole energy production and consumption system of the national
economy. It determines a solution that minimises total costs, including in-
vestments, over the study horizon. Finnish power capacity and demand
for electricity are input data to VTT-EMM, which gives the market price.
The price is fed back to TIMES Finland, which gives a new capacity and
a new demand for VTT-EMM. This process converges after a few itera-
tions. The results of the TIMES model can further be used as input data
in estimating the effects on the Finnish national economy with a general
equilibrium model for the Finnish economy, VATTAGE (Honkatukia
2009). For results computed with EMM and the Finnish Times and
VATTAGE models, we refer to Forsstrom et al. (2010).

Assessing the reaction of the market price to changes in demand and
capacity (both power plants and cross-border transmission lines). The
studies have looked at, for example, what happens if nine nuclear power
plants in the Nordic system are shut down for one year, i.e. a loss of 66
TWh or 17% of the electricity production (Rydén 2010, NEP 2010); how
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the market power of actors changes with the introduction of new nuclear
power plants by different producers (Ruska and Koreneff 2009); the im-
pact of a new transmission line between Finland and Russia on the Finn-
ish and Nordic electricity markets (Kekkonen et al. 2006); the effects of
changes in demand on the Nordic market price (Koreneff et al. 2009);
what the EU target for renewable energy sources by 2020 might mean for
the Nordic electricity market (Rydén 2006, Rydén 2010, Unger 2010);
and how IEA fuel price scenarios reflect on Nordic power price estimates
(Koljonen et al. 2012).
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13. Discussions and conclusions

VTT-EMM estimates the power production and the market price of electricity using
the production structure, electricity demand, hydro inflow and fuel, and EU EUA
prices as inputs. We can, thus, simulate the market behaviour under different
conditions, which makes the model very usable, especially for scenario work.

The level of detail versus aggregation is a central question in modelling. Accu-
racy has to be weighed against the effort of data acquisition, computation time and
manageability of the model. VTT-EMM is a fast and easy-to-use power market
model. VTT-EMM has only one hydro reservoir with a hydropower plant and one
run-of-river hydropower plant, and other generation capacity is also aggregated.
Are the results good enough? This question is quite complicated as it leads to the
dilemma of how it should be measured.

First of all, a model of electricity production and the power market should repro-
duce, using realised inputs, the observed production mix by plant type and fuel
within an acceptable tolerance. Experiences of the VTT-EMM model show that
once calibrated, this requirement is satisfied even for new years on an annual
basis.

Secondly, the estimated market price levels should be close to those observed.
So, how close is good enough and is it a straightforward task to estimate the
goodness? For example, the results of a one-year model run and the correspond-
ing realised spot price are actually two different things. The analyses with the
model in retrospect are based on only one (and simplified as such) representation
of the decision processes and external factors determining the development of the
price, whereas the realised spot price for one year is based on at least 365 differ-
ent settings of external factors, as they change each day, and decision processes.
Of the actors on the Nordic market, hydro producers with water reservoirs are the
real price setters. Hydro producers make decisions based on their own estimates
of the value of water in storage according to their views of the future at the deci-
sion moment. The expectations concerning the development in time of the de-
mand, inflow of water and prices of fuels and emission rights change from day to
day. As a result of this discrepancy, the model gives a relatively stable price esti-
mate over the year, whereas the actual spot prices fluctuate more from week to
week. Even if we ran the model every day for a year, would the results match the
spot price? In principle, for the estimation of the hourly spot price, a model with an
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hourly time resolution would be required. In the model, the decision process pro-
ceeds with weekly steps, and a week is divided into a small number of load seg-
ments. The examples in Chapter 12 were computed with a version of the model
with only three intraweek time segments. Qualitative experience with this and
other corresponding models points to five to seven time segments maybe being a
suitable level of aggregation for the representation of intraweek power variations.

The best estimate of the quality of the model results is attained by comparing
them with the electricity forward prices. The forward prices are based on the best
knowledge of the market actors, which in turn use estimates from the best and
most detailed market models available (for example, EMPS for the Nordic market)
for reference. A statistically valid quantitative comparison between the model
results and the forward prices would require weekly run estimates continuously for
several years to represent all kinds of hydro years and forecast situations. It would
still be difficult to say which are better: the model results or the forward prices, as
they can only be compared with the realised spot prices, which in turn, as men-
tioned already, are based on a different set of external factors and on results from
the models used.

Overall, the differences between the forward market prices and the VTT-EMM
results are not big empirically, with the model results usually being more stable
and the forward prices varying more. The main reason for this is the structural
aggregation of both the decision process and the production capacities, especially
the fact that all hydro reservoirs are combined into a single storage, the use of
which is optimised as a whole. All thermal production is represented by a single
expected incremental cost function. This greatly simplifies the model and its data
requirements. Aggregated production class data are used instead of individual
production plant data. The lost features include start-up costs and behaviour of the
plants at partial load, internal fuel switching and the influence of the local weather.
However, these factors are more important for the daily market behaviour than the
long-term studies.

To sum up, structural simplifications (one reservoir, time aggregation) and data
input generalisations (index series for power and CHP heat demand, modelled
hydro inflow and capacity aggregation) in the VTT-EMM model both affect the
results. The shorter the time span under study, the more it affects the accuracy.
The data input generalisations can be replaced by accurate time series for each
desired model run, but this would require a huge additional effort by the user. As it
is, simplification and aggregation cut the computing time and data acquisition
effort required and improve the flexibility of the model. The results are considered
good enough empirically, especially on an annual level. Short-term spot price
fluctuations are not well captured, especially not price spikes. However, with addi-
tional effort with the inputs, the short-term spot price forecasts could be better and
more accurate.

Capacity development is exogenous in VTT-EMM, which is why it models the
power system behaviour, not its development. As investment models are more
complex and time dependent, the addition of capacity investment calculations
would make the model more rigid and less agile, but it could still retain its energy-
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only character. However, most investments in the Nordic countries are restricted:
nuclear needs a permit, hydropower needs a usable hydro source such as a river,
CHP needs a local heat load, and most renewables need feed-in tariffs or other
subsidies, which make endogenous investment decisions mostly unusable and not
worth the bother. Further model development could include methods to integrate
the short-term intermittency of wind power into the model and modelling of intra-
market price areas. There are several discussed solutions to stochastic wind pow-
er, but all solutions demand big changes to the programme. Intra-market price
areas are created due to transmission bottlenecks in the system, which means
that the simulation phase part of the solution would need to be rewritten.
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Appendix A: Computer model inputs and outputs

The mathematical model presented in this report has been programmed in the C
language. An APL-language-based user interface is used to control the pro-
gramme and manage input data and results, both in text files. This computer pro-
gramme is called VTT-EMM (Electricity Market Model, MH-malli in Finnish). For
different markets, we use different installations of the model, for example one for
the Nordic market and another for Germany. Input data are defined separately for
each market.

1 Input data

1.1 Thermal production classes’

For each class in each area’ and for every year
e Class name (ascii4)
e  Production type (ascii3)
e Fuel type (ascii3)
e Installed capacity (MW)
e  Average unit size (MW)
e Availability (%)
e  O&M-variable cost (€/MWh)
e  Fuel efficiency (MWhe/MWhiyelel) %for the production of electricity.
e Additional parameters for the calculation of conventional (condensing)
production in cogeneration plants:
o electric efficiency of the plant in cogeneration mode
(MWhe/MWheye)*
o electric efficiency of the plant in condensing mode
(MWhe/MWhyer)

" A thermal production class consists of identical thermal power plants. Thermal production
classes include nuclear power and wind power in the model. Hydro is not included.

% An area (e.g. Finland) is a sub-area of a market (here the Nordic market). Areas are used
in the management of input and output data. The model calculations are based on aggre-
gated market data.

® Fuels are allocated to power and heat production by applying the energy method, see, e.g.,
Energy Statistics Manual by IEA/OECD/EUStats OECD/IEA, 2005, thus fuel efficiency is
defined as electricity efficiency for conventional production and total efficiency for cogen-
eration production.

* The CHP power capacity is not the same as the power capacity of the plant in condensing
mode. The electricity efficiency of the cogeneration mode is only used to calculate the
fuel capacity of the plant, which is then used with the electricity efficiency in condensing
mode to calculate the power capacity of the plant in condensing mode.
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For each cogeneration production type5 in each area
e  Weekly capacity index (%)

For each wind production type6 in the market (to be added in the future)
e  Weekly capacity index (%) (outer index)
e Capacity index for time segments within each week (inner index)

For class, area, year and week
e Planned outages (unavailable capacity) (MW or %)

Per market
e Market power (positive or negative excess capacity) (+%)

1.2 Hydropower

Per market
e Inflow statistics (indexes for 100 years x 52 weeks each)
e Type of hydrological year (e.g. factor for wet, normal or dry conditions)
e  Share of river inflow (%)
e  Share of river production capacity (%)

For each area and year
e Annual inflow energy (TWh)
e Total installed hydro production capacity (MW)
e Reservoir capacity (TWh)

For year and week
e  Deviation from normal snow conditions (%), default 0%
e  Deviation from normal precipitation conditions (+TWh), default 0 TWh

1.3 Fuel prices

Per market, for each fuel causing CO2 emissions
e Fuel-related emissions of CO2 (tco2/MWhiyel)

Per market for each fuel, year and week
e  Price of fuel (€/MWhgyel)
e Price of CO; allowance (€/tco2)

° Cogeneration production types are district heating CHP (CHP) and industrial CHP (CIP)
*WINis a special production type reserved for wind power
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1.4 Demand

Per market
e  Deviation from normal outdoor temperature per week (+ °C )
e Annual growth (£TWh)
e Range of stochastic weekly variation given as estimated deviation of an-
nual growth (£TWh)
e Price elasticity given as price-elasticity steps

For area and year
e Annual demand including transmission and distribution losses (TWh)
e  Weekly index (outer index)
e Index for time segments within each week (inner index)

1.5 Export and import of electricity

For each area, year, adjoining market and direction
e  Capacity (MW)
e Price (€/MWh) (can be assigned to each year, week and time segment
within each week)

1.6 Other parameters

Per market
e  Other parameters for approximations, tolerances, accuracy and control

Per market and calculation’
e  Starting week and year
e Number of years
e  Parameters for calculation control

1.7 Verification and comparison data, not obligatory

Per market
e Historic spot prices (system price in Nord Pool)
e Historic forward prices

For area, year and week
. . .8
e Historical level of reservoir “(TWh)

” A calculation set is a single model run performed via the user interface.

&t is possible to fix the weekly hydro reservoir levels for a calculation. This is especially
helpful in the calibration and assessment of the model using historical years as a compar-
ison.
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1.8 Input data management

Power generation capacity is defined for production classes consisting of similar
(identical in the model) plants. Input text files, see Figure A1, are not easy to man-
age in a concentrated and synchronous fashion. Thus, an additional input data
management file has been introduced. This file is based on Excel with multiple
input data sheets and macros able to write the data to text files; see Figure A2.
Studies with the model usually comprise several cases. A case is an instance of
the market and it differs from other cases, for example, in respect of capacities or
fuel prices. Each case has its own input files including the Excel-based input man-

agement file.
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Figure A1. An example of an input text file for a given area and year.
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Figure A2. An example of production class capacity data in the Excel file, showing
also two macro buttons, one for writing the data to annual text input files and the
other to open these. The capacity volume data are in the xxxCap-sheets, while the
capacity efficiencies, availabilities, operating costs etc. are given in the xxxPar-
sheets, where xxx stands for the selected area.

The Cap Excel sheet shown in Figure A2 is also a handy place to store annual
demand (TWh), total installed hydro production capacity (MW), annual hydro in-
flow energy (TWh) and the total reservoir capacity (TWh) for an area. It also con-
tains all the interconnection capacities between the area and countries outside the
market; see Figure A3.
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Figure A3. Input data based on area and year for hydropower and non-production
class-related items such as demand, and import and export capacities in a Cap

Excel sheet.
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The FuelPri sheet in the Excel file contains annual prices for fuels, including CO;
emission rights, and for imports/exports. The annual fuel prices are written into
input text files using a macro. Annual fuel price input files are overridden by even-
tual weekly fuel price files. These files, in turn, are either managed by VTT-EMM'’s
user interface or they may, for example, be automatically delivered from an out-
side source.

1.9 Input examples
Weekly capacity index of cogeneration

The CHP capacity utilisation depends on the week of the year and is different for
district heating CHP and industrial CHP; see Figure A4.

CHP utilization

0.94

0.84

0.74

0.64

0.54

0.44

0.34

0.24

0.14

T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55

week
—— DH - -- Industrial
16.6.2011 14:36:26

Figure A4. The share of CHP capacity that can be used each week at most in
cogeneration production (weekly capacity indices for cogeneration). ‘DH’ stands
for municipal district heating power plants and ‘Industrial’ for industrial CHP power
plants.

The demand for heat is low, especially in the summer, and correspondingly only a
relatively small part of the installed CHP capacity can be run in cogeneration
mode. The rest of the installed CHP capacity can be used in condensing mode®
with considerably lower efficiency. The total efficiency is typically 80%...90% for
Scandinavian CHP plants in pure cogeneration mode'®, whereas electricity-only
efficiencies are, at best, still below 50%...55%.

® For back-pressure CHP, this requires additional condensing ends or auxiliary coolers,
which in reality is not always the case.

% Annual total efficiencies for many central Danish CHP power plants are below 70%, which
means that they are more or less frequently run in condensing mode.
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Hydro inflow indices

The stochastic water inflow is represented by a set of 100 index series, each for a
different year. The average of the index series corresponds to 100% of the annual
inflow, with some years above it and some below. However, when using the mod-
el, the user can select the hydrological year from three predefined types: normal,
dry or wet. A wet year is defined as a year with a total inflow of 115% of a normal
year and a dry year as having 85% of a normal inflow. A given percentage of the
inflow can be stored in the reservoirs to wait for the optimal time to be used, while
the rest has to be used immediately in so-called run-of-river generation. Abnormal
snow and precipitation situations can be entered per week. Figure A5 shows the
average, maximum and minimum inflow for each week of the year and two realisa-
tions of the 100 index series sample, as well as the maximum hydro production
potential, taking into account the run-of-river potential’s dependency on the inflow.

FIN SWE NOR DEN 2010 Tulovirtaamajakauma
oo Virtaamastokastiikka

140000
120000
100000
80000
60000
40000

20000

0

T T T T T T T T T T
201010 201015 201020 201025 201030 201035 201040 201045 201050 201103
Viikot

min —— kael —— kae2 max kap.
g0.6.2011 13:30:20 DEMuser

max e ka

Figure A5. Total inflow scaled to 2010 Nordic level. ‘max’, ‘ka’ and ‘min’ are the
weekly maximum, average and minimum inflows, respectively, in the sample.
‘kae1’ and ‘kae2’ are two realisations, and ‘max kap’ gives the maximal weekly
generation potential.

Area demand for electricity

The annual demand is user given for each area. The variation in the demand over
the year is given as a weekly index series. The variation in the demand within the
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weeks is given by another set of indices for the time segments within the weeks;
see Figure A6.

FIN SWE NOR DEN 2007 Stokastinen kysyntd
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MW,

70000

60000

50000

40000

30000

20000

10000

T T T T T T T T T T
200705 200710 200715 200720 200725 200730 200735 200740 200745 200750
Viikot
—— max === ka —— min —— kael —— kae2
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Figure A6. Stochastic demand. The weekly average (‘ka’), maximum and minimum
demand, and two random realisations ‘kae1’ and ‘kae2’ for the stochastic average
demand in each week. The figure is based on a significant annual demand growth
with a high deviation.

The dynamics of the weekly demand include a positive or negative growth trend.
In addition, each week can experience a stochastic, normally distributed deviation.
It is also possible for the user to give a weekly outdoor temperature deviation
compared with the normal, which will affect winter heating and summer cooling
loads.

With suitable time segment selection within the week, the calculation time for a
year can be kept at 30 seconds while retaining a reasonably accurate overall
result level.

2. Results

The output of a market model run includes the following data:
e  Market price distributions
e Development of the hydro reservoirs
e Hydropower production, overflows and thermal production
e  Exports and imports to and from the market
e Costs, and value of water in the reservoirs
e Expost calculations
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Logs and debugging information are also available for the user.

2.1 Market price distributions

The key result is the market price and its distribution. It is derived from the set of
realisations of the price computed with the model. For every realisation of the
stochastic input process, the corresponding realisation of the market price is com-
puted. Figure A7 (left) shows the average of the weekly average as well as the
maximum and minimum hourly prices occurring within the week in the whole sam-
ple. Figure A7 (right) shows the quartiles of the sample distribution of the highest
hourly market price within a week for each week of the year. These and the follow-
ing figures are from a model run for the Nordic market in 2010.

FIN SWE NOR DEN 2010 Markkinahintajakauma Kalleiman tunnin  kvartiilit
100, Vuosipdivitys2009

EURMWh

Hinta, EURMWh

0 M 40
30, %.

»
»
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22.6.2011 14:46:58 DEMuser 22.6.2011 14:47:32 DEMuser
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Figure A7. On the left: distribution of the weekly market price. ‘ka’ is the statistical
mean of the prices within a week, and ‘max’ and ‘min’ are maximum and minimum
hourly prices occurring in the sample during the week. (A model run for the Nordic
market in 2010.) On the right: for each week of the year, the quartiles of the high-
est hourly market price. ‘viikkokeskiarvo’ = the average weekly price.

The price distributions can also be studied in more detail for a selected time frame.

Figure A8 shows the statistical distribution of the lowest hourly market price occur-
ring in a selected week: here week one in year 2010.
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Figure A8. Probability distribution of the lowest hourly price of electricity occurring
during a chosen week (first week of 2010), based on a sample of 100 simulated
cases. The price of electricity is in euro/MWh on the horizontal axis, with the cu-
mulative distribution on the vertical axis.

The distribution of the annual price is also part of the computed results. Figure A9
shows the histogram of the annual price.
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Figure A9. Histogram of the average annual price (€/MWh) of electricity based on
a sample of 100 simulations

2.2 Development of the hydro reservoirs

The content of the aggregated hydro reservoir is the single most important varia-
ble of the model. Figure A10 illustrates the development of the water reserves in a
set of simulations.
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Figure A10. Development of the aggregated hydro reservoir in a set of simula-
tions. The bold red line (‘ka’) is the average storage, and the thin blue lines show
the biggest and smallest contents of the reservoir occurring in the sample. In the
left figure, the initial contents are user given and, thus, the same in all simulated
cases. The right hand figure shows a case in which the initial state has been left
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open, and its probability distribution is found by simulation. The left-hand case
corresponds to the situation of estimating the near future starting from today,
whereas the right-hand case corresponds to the simulation problem for a general
year, e.g. in the future, when the starting point is not known.

2.3 Hydropower production, overflows and thermal production

Power production is aggregated into two production categories in the model: hy-
dropower and thermal power. The latter category includes all production other
than hydropower. Production of hydropower and thermal power are decision vari-
ables in the model; see Figure A11 and Figure A12.
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Figure A11. Average hydropower production during each week of the year. The
figure shows the results of a set of simulations. The bold red line is the statistical
mean of the weekly (time) average power, and the thin blue lines give the mini-
mum and maximum average weekly power levels in the sample.

Overflow, that is bypass of water past the turbines, affects the production potential
of hydropower; see Figure A13.
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Figure A12. Weekly average thermal power production over a year. The bold red
line is the statistical mean of the weekly averages and the thin blue lines show the
maximum and minimum weekly production levels in a set of simulations.
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Figure A13. Weekly overflows — bypass of water past the turbines — over a year,
measured as the corresponding average weekly power. The black lines show the
water bypassing run-of-river power plants and the red lines water bypassing power
plants with reservoirs. The bold lines are the statistical means, and the thin lines
are the maximum and minimum values, respectively, in a set of simulations.
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2.4 Exports and imports to and from the market

The balance between supply and demand of power also includes exports and
imports of electricity; see Figure A14. Detailed results of exports and imports be-
tween specific areas inside and outside the market are also available.
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Figure A14. Imports and exports of electricity presented as average weekly power.
The red lines represent exports and the black lines imports. The bold lines give the
mean values and the thin lines show the maximum and minimum values in a sam-
ple.

2.5 Costs and the value of water in the reservoirs
The cost function includes thermal production costs, costs for imports and reve-

nues from exports, and terms to represent the price elasticity of the demand. Fig-
ure A15 gives an example of the development of weekly costs.
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Figure A15. Weekly thermal production costs including import costs and export
revenues. ‘ka’ is the statistical average, and ‘max’ and ‘min’ the highest and lowest
value, respectively, in the set of simulations. At times of low demand and high
hydro potential, export revenues can be bigger than the low thermal (mostly indus-
trial CHP) production costs.

Figure A16 (left) shows the total cost function G as a function of time and hydro
reservoir level. Note that the reservoir level on the y-axis starts at value 1 from a
full reservoir and goes to an empty reservoir at value 20. The value of the water
function V on the left is uniquely determined by the dynamic programming cost
function.
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Figure A16. The dynamic programming value function G on the left, and the value
of water in the reservoir V (right). Time on the x-axis and contents of the reservoir
on the y-axis. N.B.: The reservoir level scale on the left (1=full) is the reverse of
the one on the right (1=empty).

The value function G in Figure A16 represents the cost that will cumulate for the
production system from any selected point to the end of the horizon using an op-
timal route. The costs of imports and the revenues from exports and the value of
water remaining in the reservoir at the end of the horizon are included in the value
function.

2.6 Ex post calculations

In order to obtain more useful information, the model results can be processed
further. As the model uses an aggregated thermal cost function, the results have
to be reverse engineered to estimate the production by individual production clas-
ses. For any time segment, the expected production of the different thermal pro-
duction classes is reconstructed by reversing the construction of the expected
incremental (marginal) cost function. Figure A17 shows how the expected incre-
mental cost function is formed for the thermal system defined in Table 9.1 and
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Figure 9.2. The system has five production classes with costs of 20, 50, 75, 90
and 100 €/MWh, respectively, and infinite backup capacity at a price level of 120
€/MWh.
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Figure A17. Expected incremental (marginal) cost (EIC) function of a thermal
system. The black line gives the nominal capacity and corresponding marginal
production costs of the system. The blue line gives the same data, but the total
capacity of the classes is reduced to the expected available capacity. The red line
is a step function approximation of the expected incremental cost for the system
when the loading is done in merit order and the unit size of the plants is taken into
account.

Figure A18 shows an example of the results for a production class.
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Figure A18. Expected average weekly power production (MW) in gas-fired com-
bined district heat and power plants in Finland

The report generator of the model computes summaries of the results. Figure A19
shows a yearly summary report that gives the production of electricity by plant
type and fuel for each area. It also reports the imports and exports of electricity,
hydro reservoir levels, bypass of hydro energy, CO, emissions and, as a central
result, the annual market price.
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Figure A19. Summary report for a year: production of electricity by production
class and by fuel, exports and imports by connections, change in hydro reservoir
level, overflows and average market price.

Emissions of carbon dioxide are computed for each production class on the basis
of the following data: fuel consumption rate in the production of electricity and
emissions of CO2 per unit of fuel consumed (for each fuel). The share of renewa-
bles in each fuel is also given so that the share of electricity production based on
renewables can be calculated and reported.

In the following figure (Figure A20), the merit order of the production classes for
a given week illustrates the overall balance between supply (blue line) and de-
mand (red line) of electricity. The supply includes all production classes and import
sources in order of rising costs. The demand includes the given demand in the
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market and export possibilities. Price elasticity of the domestic (e.g. Nordic) de-
mand is not included in the figure.
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Figure A20. Merit order of production classes for a given week. Power on the x-
axis, marginal production cost on the y-axis. The red line represents the market
demand and export possibilities and the blue line the market supply and import
possibilities (weekly average values).

3. Execution and control of the computations

The user interface (Figure A21) is used for case management, management of
control and input data, execution of computations with the model and to present
the results. The APL interpreter can also be automated to perform recurrent calcu-
lations with varying user-defined input scenarios, thus enabling mass calculations
of scenarios.

The basic computational case covers one year or, more precisely, 52 weeks.
The starting point can be chosen freely. Several consecutive years can also be
combined into one computational task. An analysis with the model has two steps.
The first is the optimisation step, in which the value function G is solved by dynam-
ic programming. In the second step, the simulation, the model is used to generate
realisations of the stochastic output processes, such as production and price.
These simulated realisations form the basic output.

Within the dynamic programming procedure, the sub-problem of optimal weekly
load dispatching is solved with different parameters over and over again, very
many times. In the model, this sub-problem is approximated with a linear pro-
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gramming (LP) problem and solved with extremely efficient LP code. The structure
of the coefficient matrix of this LP problem is shown in Figure A22.

The VTT-EMM model uses the MIPKIT library for the solution of the weekly LP
sub-problems. The solver is extremely fast, especially in this kind of repetitive
computation.
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Figure A21. The main user interface of VTT-EMM (Finnish version) showing the
Calculations tab (‘Laskenta’). It is used for the management of different input cas-
es for a market, for the execution of computational tasks and for looking at the
results. There are separate tabs for year level parameters (‘Vuositason para-
metrit’), fuel prices on a weekly scale (‘Polttoainehinnat’), weather parameters
(‘Saaparametrit’) and maintenance (‘Yllapito’).

A21



W00Z'90L OB UBUIEIYONSNEI R UO ~ oprogere u[ ] ()5 +(1-) 1x=nm
X7 %esd) snuum uowisyeyes uny@ U0 ¥N3. M Bukshgum=y—g
UB3S3UENEAT] _UN0SO_ ANSWIL USUIE SIS UBWIRYO-0 U0 440 .xvo”aD U LY UTD<ayyuo
0= mnns eful .,w..ﬁk.ED
| e [T | [ |
[ 052 onyed] B |
| i BEXC | y wxa| 4w wd| yu o 1xe|
o = - 1 i i wns|x1se| dJ
ML w = i 1 E):LIX 11X ds
0 = e SX3
0 = i- sM
0 = - (@ sHL
0 = 2 () AH

[

3 = - 1 "
o . I 1 (20151
M y¥a < i §= L i 3 (G, (yywwo,) (yyuo,)
ETE] 0 = = = I N N I O
Ee- 13
N3N W ~ = ~
wg SHe 03 GA T Ix X wi ¢gn zn in X ww] | uz ] dwoxe] eqww]  woa] 3
Tdoyx"doxa dowi dogn dozn dondo| §y X8 00 4§ Wi 00 Y gnao 4 (NGO 4 W X2 00 4 W wi 00 W QUX 0920 30 |2 GOZ &0 dz1e

s LA 4 ' N

Figure A22. The linear programming structure of the weekly load-dispatching sub-
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