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List of abbreviations

In the following, the abbreviations used in this report are listed.

ALM
CAD
CAN
DXL
FMECA
FTA
GUI
HAZOP
MEWP
OHA
PHA

PL

PLC
PLM
SDO
SEAModel
SIL
SME
SRP/CS
SysML

Application Life cycle Management
Computer Aided Design

Controller Area Network

DOORS Extension Language

Failure Mode, Effects and Criticality Analysis
Fault Tree Analysis

Graphical User Interface

Hazard and Operability Study

Mobile Elevating Work Platform
Operating Hazard Analysis

Preliminary Hazard Analysis
Performance Level

Programmable Logic Controller
Product Life cycle Management
Service Data Object (a CANopen term)
Systems Engineering Artefacts Model
Safety Integrity Level

Small and Medium-sized Enterprise
Safety-related part of a control system

Systems Modeling Language



TIM Traceability Information Model

UCSA Use Case Safety Analysis (a VTT defined method based on OHA)
UML Unified Modeling Language

URL Uniform Resource Locator

V&V Verification and Validation

XML eXtensible Markup Language

XSD XML Schema Definition



1. Introduction

The key success factors in development of complex systems are among the fol-
lowing:
1. systematic processes and life cycle model (such as ISO/IEC/IEEE 15288

[2008] and its daughter standards)

2. asystematic model for the engineering artefacts and their relations (such
as specifications, CAD-models, pieces of information, and so forth)
3. an effective organisation model

» well-defined roles and responsibilities (like systems engineer, re-
quirements engineer, and so forth)

» well-defined collaboration model (to facilitate consistent view in all
involved organisations of the goal, data and state of the develop-
ment)

4. well-planned use of project management and systems engineering tools

* agood selection of engineering tools (model based tools advocated)

» aflexible tool integration model (to allow integration of various tools
used by the collaboration partners)

5. atool to orchestrate all of the above (such as a PLM tool).

This report addresses the second success factor, systematic model for the engi-
neering artefacts. The particular focus of the research the results of which are
reported in this report is on the traceability of the engineering artefacts in simula-
tion oriented systems development.

Engineering artefacts include, among others, requirements specifications, sys-
tem functions specifications, system architecture descriptions and verification and
validation artefacts, and simulation related artefacts being a part of the verification
and validation artefacts. In complex systems, arrangements for traceability and
impact analysis play an important role in managing the iterative systems develop-
ment. To provide the traceability of engineering artefacts, the following factors
need to be provided by the organisation carrying out the systems engineering of
the system:

e Traceability Information Model (TIM)



e atool to store and trace the engineering artefacts according to the TIM.
The tool shall provide an integration model to facilitate integration of dif-
ferent kinds of engineering tools.

Another important factor is the motivation of the engineering personnel to create
and store engineering artefacts systematically according to the information model.
This is more of a psychological factor, but resistance can be alleviated by engi-
neering tools with good usability. This holds true especially in case of a traceability
management tool: Traceability management is a tedious and time consuming task,
which leads to neglects and failures in creating and maintaining artefacts traces.

Yet another relevant factor is the cost of the tools: Development of complex
system requires involvement of several organisations, including small and medi-
um-sized industrial enterprises that cannot afford to buy and maintain tools that
cost tens of thousands per year.



2. Objectives of the work

In this work, our objective is to provide an easily implementable data model for
engineering artefacts (i.e. work products). We call the model Systems Engineering
Artefacts Model (SEAModel). The artefacts model defines the core engineering
artefact types and their relations. The artefacts model is easy to convert to a
traceability information model due to the fact that most of the artefacts relations
can be considered as trace relations.

Furthermore, our goal is to provide a demonstration of the usage of SEAModel
in simulation oriented case example.

We do not study the existing data models, such as 1SO 10303-233 (2012),
a.k.a. AP233, due to the fact that this work is a continuation of our earlier publica-
tion (Alanen et al. 2011), which discusses ISO 10303-233 and other systems
engineering data models.

Our focus is in machinery with mechanics and programmable electronic control
systems.
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3. Systems engineering artefacts model

3.1 Introduction

The main motivation for the systems engineering artefacts model, i.e. SEAModel,
is the need to provide traceability between different artefacts, especially from
requirements to design and implementation, from implementation to test execu-
tion, and from test execution to verification and validation reporting. Another moti-
vation is to provide a model that can easily be implemented onto a relational data-
base, onto a Product Lifecycle Management (PLM) tool or onto an Application
Lifecycle Management (ALM) tool or whichever tool that provides management of
structured and relational data.

SEAModel consists — at the time of writing — of the following packages (see

Figure 1).

System

Behaviour

Requirement and V&V

System context

Structure

Specialty Engineering

Properties

Risk assessment ‘

Dependability ‘

Product type

Security

Human Factors

Figure 1. SEAModel packages.
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For some of the artefact types, it is not easy or possible to define, which package,
system or system context the artefact type belongs to. Furthermore, some arte-
facts apply to several sections of the project data repository. Examples of such
artefacts are requirements, constraints, hazards and verification and validation
artefacts. Hence the artefacts are packaged according to the kind of knowledge
they represent. This is visualised in Figure 1 by the fact that, besides the three
packages mentioned above, two additional packages are defined, namely Re-
quirements and V&V, and Specialty Engineering. The packages in Figure 1 import
elements from each other.

The System package includes nested packages for behaviour, structure, prop-
erties’ and product type. The specialty engineering package includes nested
packages for risk assessment (safety), security, dependability and human factors
engineering; currently only the Risk assessment package is defined in more detail.
The Speciality Engineering package can, of course, later include models from
other fields, like environmental sustainability.

Due to limited resources, in this work, we did not model project artefacts, like
project processes, activities and task, or modification requests, impact analysis
reports and the like.

The packages are described in more detail starting from Section 3.3. The nota-
tion for the models follows the SysML block definition diagram notation. A short
guide for the notation is provided below (Figure 2).

! Behaviour and structure are also properties of a system, but instead of using a phrase
‘other properties’ or ‘physical and other properties’, we simply use the phrase ‘properties’.

12



The order of reading is defined by putting
the association keyword closer to the target

Each Artefact 3 is associated to exactly one artefact
Artefact 1 (empty cardinality denotes ’'1’)
Artefact 1 relates to zero or more Artefact 3
\ ("*’ denotes many)
«block»
= Artefact 1 +
Relates to | 0..*
Artefact 2 is a spetial case of
Artefact 1 {or Artefact 1isa K;?el?::;)s
generalization of Artefact 2)
Artefact 1 consists o?eight Artefact 4
objects; Artefact 4 objects 8
«block» are destroyed if Artefact 1 is
Artefact 2 destroyed «block»
Artefact 1 consists of two to many Artefact 4
Artefact 5 objects; Artefact 5 objects
are not destroyed if Artefact 1is
destroyed
Italic font style denotes an \ 2%
abstract block
[ «blocks «block»
Artefact 6 Artefact 5

Figure 2. SysML block definition diagram notation guide.

Each block in the block definition diagrams introduced in Sections 3.3 to 3.6 rep-
resent an artefact type that can be implemented as a database table or similar
structured set of data elements in a data repository tool. The specialised artefact
type (like Artefact 2 in Figure 2) can be implemented in two different ways, as a
separate database table (or similar) or by using an attribute in a single table to
denote the specialisation type. The abstract artefact types (like Artefact 6 in Figure
2), however, need not to be implemented; they are only provided to help under-
stand the models.

Before we present the actual SEAModel packages starting from Section 3.3, the
structure of the anticipated data repository to store the actual model elements is
presented in the following section (Section 3.2). The notation is the same (see
Figure 2) as for the actual SEAModel packages.

3.2 Datarepository model

SEAModel classifies the engineering artefacts that populate a project data reposi-
tory. In other words, we don't speak about a particular system model but define
the kinds of knowledge fragments (i.e. artefact types) that can be used to imple-
ment a structured data repository with (traceability) relations between various
engineering artefacts. We describe here the structure of a data repository that
manages artefacts and their relationships according to SEAModel.
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Figure 3 shows the structure of the engineering data repository. The repository
consists of engineering artefacts, all of them being pieces of data authored by
designers or generated by their tools. Each engineering artefact is considered to
contain at least the following attributes: Identification code (a prefix and an ID
number), Name of the artefact, Description, Workflow state, Modification date,
Modification person, Version number? and External links. In most of the cases,
additional attributes are needed, e.g. the Requirement artefact could own attrib-
utes such as Source, Type, Priority and Status. However, attributes of the artefact
types are not provided in this report.

We advocate here the model-based design paradigm as the future alternative to
current document-oriented practices. However, documents can’t be avoided. So,
model elements and black box artefacts are the two main classes of engineering
artefacts. Correspondingly, the data repository shall contain both a structured
system model and an archive for black box artefacts. The black box artefacts are
called here ‘black box’ due to the fact that the internal structure of such artefacts is
not modelled, or if it is, it is not known from the point of view of the data repository
model. The main types of black box artefacts are documents (like international
standards) and foreign models (like a CAD-model managed by the CAD-tool, and
exported to the project data repository as a model file or files).

A system model consists of a large number of model elements® and must there-
fore be managed and shown to various users in suitable ways. The model part of
the repository consists of one or more hierarchically organised models that are
containers for the actual model elements and their relations. For example, the
repository might include one model for the system and another one for the system
context. Models can be used to encapsulate related model elements and their
relationships into logical units. However, a model can share elements with other
models. Note here that the model elements can be textual, like requirement sen-
tences and system function specifications. What makes our approach model-
based engineering lies in the fact that the textual artefacts are not stored within a
free flow text in a word processing document, but in a structured way in a data-
base or similar data repository.

Views are used to define, which relevant parts of the models and black box ar-
tefacts are combined and shown to the users for specific purposes like risk as-
sessment and formal approvals. A single document or model can exist in several
views. Version management of the shared artefacts needs to be carefully planned
to ensure correct versions of the model elements for each of the models or views
sharing the model elements; models or views may want to include different ver-
sions of the same model element.

% The actual implementation of the version control may be such that the actual version infor-
mation is in a separate table, and there is a relationship between the engineering artefact
and the version info table. Full configuration management with baselines and other fea-
tures is not elaborated in this report. It is assumed that the implementation platform pro-
vides basic version control of the engineering artefacts.

3 Only some of them are depicted in Figure 3, namely Requirement, System element and
System function; the sections starting from Section 3.3 present the rest of the model ele-
ments.
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Artefact repository
sblocks
Wiew
[L."]
Embeds [0.*] LT Any relationship possible
Eng g artefact
Embeds [0, *

(0.7

Embeds [g,*]|Name: String -
| Description: RichText
Embeds [0."] workflow state: Wistate
Embeds [0.] Modf:::g:: data:qa;a
persan; Persan I
Version: String s
Identification code: String R

Model element
«enumerations 1
Document kind whlocks
e i «blocks «blocks «hlocks
Description Requirement System model Foreign system model
Instruction
Log «blocks sblocke «blocks
;\an . sblack «blocks System element Context model Foreign context madel
R::E‘ast Document Foreign model A
Spech «blocka wblocks
pecification properties
Standard Kind: Document kind stem function Project madel
The abave Foreign human model

The above

three are three are

just few just few ublocks

examples examples Foreign environment model

“blocks
Reusable fragment
1

«blocka
1 | 1 |
wblocks wblocks eblockn wblocks wblocks Foreign domain knowledge model
Rich document file Spreadsheet file Audiofile Wideofile

NETEE “blocks “blocks
[0 Diagram Drawing Wiki page

10.71 [u‘.']l 10.] [0.7]

Presentation file

=hlocks «blocks
Phatograph Data file

«hlocks
Model file

Figure 3. Data repository model.
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The black box artefact is elaborated further in Figure 3. The key elements in the
artefacts model are the Document artefact type and the Foreign model artefact
type. Nevertheless, more black box artefact types can be added if needed.

As can be seen in Figure 3, any engineering artefact can be linked to a Docu-
ment or Foreign Model artefact by applying a relationship between the two engi-
neering artefacts; for example, a requirement can be linked to a requirements
specification document. For conciseness, such links are not depicted in subse-
guent models starting from Section 3.3, except in some rare cases, like the link
between a requirement and requirements specification document that is depicted
in the Requirements and V&V model in Section 3.5.1.

The Document artefact is considered to be a multi-file document. E.g. a docu-
ment can include the main word processing file plus several file attachments. Its
most natural implementation is a folder, but the problem with a conventional folder
structure is that the folders own the files inside them. Very often, it should be pos-
sible to share a file with several documents. Hence it is encouraged to consider
other types of implementations. However, version management becomes a chal-
lenge in the shared files scheme: two documents sharing a file may want to in-
clude different versions of the shared file.

A set of Document kinds is suggested in Figure 3. These document kinds (ex-
cept document kind Standard) are specified by IEC 61508-1 (2010), excluding
document kind Diagram due to the fact that Diagram represents content type, not
document kind*. More advanced guidelines for the classification of documents are
given in IEC 61355 (2008).

The File artefact type supports a suitable set of content types, some of which
are illustrated in Figure 3. The Word processing file, Wiki page, Diagram, Drawing
and Spreadsheet artefact types possess a special property to include artefacts
(e.g. requirement objects, system use cases and other engineering artefacts de-
fined in the subsequent models) within the free-flow text. This facilitates automatic
or semi-automatic document generation®.

The concept of Reusable fragment supports reuse of pieces of documents, e.g.
a piece of reusable text can be included into a word processing file.

A foreign model can include one or more files of any type. The Foreign model
artefact can have several special cases; Figure 3 includes some examples of such
foreign model specialisations.

The package structure depicted in Figure 1 does not represent the structure of
the data repository. Instead, the package structure is created to help the reader
understand the SEAModel contents.

In the subsequent sections starting from Section 3.3, the SEAModel packages
are described in more detail. The artefact types (i.e. the ‘blocks’) presented in the
subsequent sections (and above in Figure 3) are described in Appendix A.

*In other words, specifications, instructions and other document kinds can have content in
the form of diagram, text, and so forth.

® One could call such generated documents ‘grey box artefacts’ instead of black box arte-
facts due to the fact that such documents embed known model elements from the project
data repository.

16



3.3 System package

A system is characterised by its behaviour, structure and other properties. The
system integrates product types from other vendors or the system developer itself,
and finally the ready system is launched as a product type to be used by its ac-
quirer. Hence, as depicted in Figure 1, the System package consists of the Sys-
tem artefacts model and four sub-packages, Behaviour, Structure, Properties and
Product type. These five models are described as block definition diagrams in the
following sub-sections (Sections 3.3.1 to 3.3.5).

To better understand the sub-sequent models, it is necessary to understand the
hierarchical structure of the systems. The system hierarchy model according to
ISO/IEC/IEEE 15288 (2008) is illustrated in Figure 4. The system structure is
modelled by two artefact types: System (system-of-interest being its special case)
and System element, in which a system element can be a subsystem or an atomic
element, i.e. a component.

Interest

|
I |

System Seyesmteemm System eSlyesmteemm Seyesmtegmm System
l I I

System System System System | [ System
System | | glement Al System | [ element | [ element

I | |
Syst Syst Syst
| [ Em
Figure 4. System-of-interest structure model (ISO/IEC/IEEE 15288 2008).

The model in Figure 4 is partially redrawn in Figure 5 to better illustrate the fact
that a system only consists of system elements, and that a system element can be
a subsystem or an atomic element, and that a subsystem does not have a special
modelling element, but is a system (in fact a system-of-interest) from the point of
view of the developer of the subsystem.

17



System(-of-interest)

[
System System
element element

Application

(Sub-)System

[ |
System System
element element

Figure 5. ISO/IEC/IEEE 15288:2008 partially redrawn.

In case of SEAModel, we enhance this model by distinguishing a development
time system and a published system. For the purpose of published system, a new
modelling element is introduced: Product type. The Product type modelling ele-
ment stores the information necessary to apply the particular product type by an
acquirer of the system to his or her specific purposes. It does not store all the
development time information, which can partly be confidential, but the develop-
ment time information is stored in the System (or its special case: System-of-
interest) modelling element and its relating artefacts. In other words, the revised
structure model provides three aspects of a system: development time information
in the System model element, the published information in the Product type
model element and the role of the published system as a sub-system or compo-
nent in the System element model element®. Figure 6 illustrates the revised sys-
tem-of-interest structure model with the distinguished model element for published
systems.

® Or one can think the System element artefact as a logical presentation of the physical
architecture element, and the Product type artefact as the representation of the physical
implementation of the physical architecture element.

18



Product type

N
Delivery for commissioning
|

System(-of-interest)

System System
element element
A A
Applic‘:ation Application
|
Product type Product type
A
Publi‘shing
(Sub-)System

System System
element element

Figure 6. ISO/IEC/IEEE 15288 (2008) structure model customised by adding a
new model element: Product type.

There is yet another aspect of a system: a system individual. When a published
system is incorporated into the design, it gets its application specific role in the
System element model element, but when several instances of a system-of-
interest and its constituent sub-elements are produced, each produced system or
applied system element has got its instance specific data, such as serial number
and operating hours. Hence yet another modelling element is introduced: Individ-
ual. The supplier of the system and the acquirer of the system (and maybe some
other stakeholders) may collect and store different kinds of information about the
system and system element individuals. The completed system-of-interest struc-
ture model with the Individual model element is depicted in Figure 7.
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Individual H

Product type

Delivery for commissioning

System(-of-interest)

Individual H

Inslanlialingj]\

Individual H

Instantiatin
/h - System System 9
Instantiating:
element element
Application Application

Instantiating.

Product type Product type

Instantiating

Iy
Publi‘shing

Record kept by the supplier of the

(Sub-)System
system-of-interest

[
[ |
System System
element element

Record kept by the supplier of the
. system element

Figure 7. System-of-interest model with model elements for the system element
individual and product type individual.

SEAModel is applied to each system, whether a system-of-interest or a subsystem
developed in-house. For off-the-shelf sub-systems and components, SEAModel
may or may not have been used; it does not matter for the systems engineer of
the system-of-interest as long as he or she receives the necessary data from the
sub-system or part manufacturer to be stored into the Product type artefact. In
case SEAModel is not used by the system element developer, it is difficult to ar-
range seamless traceability of requirements from the main system to the farthest
system element, and traceability of verification artefacts from the system element
to the main system.

20



3.3.1  System artefacts model

Exhibits =blocks
[1..%] Behaviour
ablocks Satisfies Exhibits ablocks
Regquirement w ﬁ Structure
zblocks
System [e.11
ablocks M | Has sblocks
Risk assessment | [1..*] [0.1] [0.*]] System property
Is released as «blocks
[0.#] Product type

Figure 8. System artefacts model diagram.

The System artefacts model (Figure 8) is the main and top level model to define
the artefacts relating to the system under development. The parts of the system
model (besides the System artefact type) are Requirement, Structure, Behaviour,
Risk assessment, System property and Product type artefact types. A separate
model for each of these is provided in later sections.

The main contents of the System artefact are the title and a short description of
the system (i.e. system identification) to help all developers understand, what the
system under development is.

3.3.2  Structure package

The Structure sub-package provides models for the physical architecture of the
system. The Structure package includes two models, the System structure arte-
facts model (Section 3.3.2.1) and a draft version of the Network artefacts model
(Section 3.3.2.2) to define artefacts and their relations of communications net-
works; currently, only the CANopen network type is covered.

3.3.2.1  System structure artefacts model

The System structure artefacts model is based on the AP233 system structure
concept model presented in Figure 9.
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(14)
Structure

o

(19) (17) {15)

Interface )
Specification | described by Port < Part

Interconnection (18)

(18)
Link

Figure 9. System structure concept model of AP233 (ISO/DIS 10303-233 2009).

The main idea in SEAModel is that the physical structure of a system is defined by
its system elements (Parts in the AP233 model above) and their interfaces. The
Structure artefacts model is depicted by two diagrams, system decomposition
artefacts diagram (Figure 10) and system interfaces artefacts diagram (Figure 11).

The system decomposition diagram in Figure 10 formalises the System-of-
interest model outlined in Section 3.2 in Figure 7 with the addition of the concept
of External system element.
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[0.1])
whlocks Exhibits «blocks
System [1..*] Structure [0..%]
AN «hlocks sblocks
«blocks Js xiccomer by Systern element 3 External system element
element individual {1°- " [0.4]
System element individual A [0..4] Is released as
6 Is allocated ko [0..1]
«hlocks
shloclks «blocks [0..*] Is aninstance of [1..*] Bt
Individual ! Product individual Y RN e
Is released as |[0..*]
ehinck shincks whincky =hiogke
[0..1]
System-of-interest External system Subsystem Component
1 1 1 1 1 1
«block= «blocks «blocks «pblocks «block= «hblocks
Information item Structural element SW element Joint element Device Role

Figure 10. System decomposition artefacts diagram.
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The hierarchical decomposition diagram depicts the physical structure of the sys-
tem: Structure consists of system elements that can be atomic, i.e. components,
or non-atomic, i.e. subsystems. Subsystem and System-of-interest are both spe-
cialisations of System. Furthermore, a subsystem is a system-of-interest from the
point of view of the subsystem provider. Besides the system-of-interest and its
subsystems and components, there normally are one or more external systems
the system-of-interest interacts with. Now again, an external system is a system-
of-interest from the point of view of its provider.

Any system, and hence a sub-system or an external system, can be discipline
specific, e.g. a programmable control system or mechanical system. In other
words, the model does not exclude hydraulic systems and the like, although the
focus in this report is in programmable electronic control systems and mechanical
system. This applies to all of the models presented in this chapter. However, some
special artefact types might be needed to be added to the models presented in
this report if comprehensive coverage of hydraulic and other specific systems is
required.

Each system element of a system is allocated to a product type. A product type
can be a system or a component type. When the supplier of a subsystem releases
his system(-of-interest) as a product type, the engineer of the (main) system-of-
interest can incorporate the particular subsystem via the Product type artefact into
his system-of-interest to implement a particular system element.

System elements that belong to the system-of-interest are distinguished from
the system elements of an external system. The external systems can have inter-
faces (i.e. ports) that connect to the system-of-interest. This fact is depicted later
in the system interfaces diagram (Figure 11).

The atomic components can be devices (like instruments), joint components
(like cables or mechanical links), software components (like function blocks),
structural elements (like cabinets), person roles (like operators) or information
items (like messages on a fieldbus).

The artefact types (i.e. the blocks in Figure 10), the title of which is written in
Italics typeface, are abstract, i.e. it is assumed that in the implementation platform
of SEAModel, such artefact types do not have any dedicated representation. Such
artefact types are System-of-interest, Subsystem, Component and External sys-
tem. The reason is that System-of-interest, Subsystem and External system de-
pend on the point of view; i.e. in the implementation platform, it cannot be fixedly
defined whether a system is a system-of-interest, subsystem or an external sys-
tem, because the system can be any of these depending on the viewpoint; fur-
thermore, Subsystem and Component are manifested as System element or Sys-
tem and thus do not need a dedicated representation in the data repository im-
plementation.
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Figure 11. System interfaces artefacts diagram.

The System interfaces diagram is supplied in Figure 11. The interfaces are mod-
elled by Ports specified by Flows that flow through the ports. Port has one or more
sub-ports, e.g. a connector port can have several electrical pin ports. Ports can be
connected together with Joint. A joint is a logical entity that may manifest itself in
the architecture model as Joint components (specialisations of System element),
e.g. as a mechanical rod or as a cable assembly with cable splices that are de-
fined during the electrical CAD work. There may be cases in which a joint is not
manifested as a joint component, such as in case of software elements.

In principle, the association from Structure to Port seems unnecessary, be-
cause a Structure artefact consists of all the Port artefacts under the System ele-
ment artefacts anyway. In the model, however, a port, the joints between the ports
and the flows can be directly associated with a Structure artefact if necessary.
This association is in fact useful in the case of the behaviour model (see Section
3.3.3); a system function can be allocated to a structure of its own such that the
system elements, ports, joints and flows that are used and needed by the particu-
lar system function are pointed out. Without the direct relation, a system function
specific physical structure would be impossible to present, because a system
element inherits all its ports and a port inherits all its sub-ports, not only the ports
and sub-ports that are relevant to the particular system function. Such a system
function specific structure is a partial structure of the whole system structure and is
required e.g. by the safety analyst. It is also helpful for the maintenance persons to
see, which system elements, ports, joints (and the corresponding joint elements)
and flows need to be faultless for a specific function to work correctly.

There are two types of Flows: Non-composite flow and Composite flow. The
concept of a composite flow is needed in cases in which the actual flow is com-
posed of two or more non-composite flows. Such an example is a quadrature
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encoder sensor in which the position signal flow is composed of two primitive
flows, channel A pulses and channel B pulses.

Flow is mapped to Joint. This mapping can be used during the risk analyses:
During signal-based HAZOP, the cause of a deviation can be pointed out in the
model, e.g. it can be shown that a possible cause of a deviation ‘no signal’ is a
break in the joint between two ports. If, however, a more detailed estimation about
the probability of the connection break is needed for the safety analysis, the Joint
element artefact is consulted. In the case that the joint element has not yet been
designed, the analysis may provide requirements for the structure and quality of
the joint components. It is of course suggested that the risk analyses of system
functions are carried out before implementation of the joint elements.

A system element is allocated to a product type, and a port is allocated to a port
type of the relating product type. Both system elements and ports may use appli-
cation specific properties to apply the product types and port types to the specific
application. The Property artefact is not depicted in Figure 10 nor in Figure 11; see
Section 3.3.4 instead.

A structure can be described and illustrated in one or more documents, models
and diagrams, like a block definition diagram and internal block diagram according
to SysML. The documents, foreign models and diagrams are linked to the corre-
sponding artefacts as black box artefacts (see Section 3.2).

3.3.2.2  Network artefacts model (CANopen case)

The Network artefacts model in Figure 12 defines artefacts and their relations of
communications networks.
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Figure 12. Network artefacts model diagram (draft).
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The model in Figure 12 only supports CANopen networks. However, the main
artefacts, Network, Node, Message, Networked signal flow and Network system
parameter are supposed to be applicable to other communication protocols as
well.

Network consists of nodes and sub-networks. A node is a special case of Port
(see description of Ports in Section 3.3.2). A network is specified by a protocol
specification and by a message specification’ that is occupied by Message arte-
facts. Messages are owned by nodes. A message can carry one or more Net-
worked signal flows. A networked signal is a special case of Flow (see description
of Flows in Section 3.3.2). A networked signal flow is mapped to a CANopen ob-
ject (in the case of CANopen networks). A CANopen object is an instance of
CANopen object type owned by Product type.

Furthermore, some of the system parameters reside on remote nodes. Hence
to make them accessible, Networked system parameters are defined as a special
case of System properties. In the case of CANopen, access to such parameters is
accomplished through its SDO-service.

Note that this model is not complete and has neither been tested nor demon-
strated. The model above was created to ensure that the Structure artefacts model
can be linked with the Network artefacts model.

3.3.3  Behaviour package

The Behaviour sub-package contains the models relating to the functionality of a
system. The package currently consists of one model, the Behaviour artefacts
model, the diagram of which is provided in Figure 13. It encompasses the descrip-
tion of the functionality of the system. Its core artefacts are the System use case,
System task and System function artefacts. Interface model for the behaviour
artefacts is not provided in this report.

" The protocol specification and message specification together constitute the communica-
tions specification. The communications specifications should also present the network
architecture.
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Figure 13. Behaviour artefacts model diagram.

29

Behaviour «hlocks «blocks
Life cycle phase Operating position
« 3 ibi L*
| black EXlihiE [ Is executed during f[1,,+] 1s operated from| [1..*]
System [1.%]
«blocks
Has | [1.*] SRS I _— <blocks
shlocks Is executed in (.4 [1.%] [o : Scenario
1.
Opersting mode (1.4 b | blocks [0.%] "
Is executed in [1.%] W Exemplifies [o
Is executed in " I System activity "
) - block 9 [0.4 [0--*]| =blocks L5
shlocks sblocks 2
L Has it [0.*1} Triggers [t System use case [0."]
S [1.*] Operational state System task Includss or extends
: 0. *]
id Eia(“tEd n Iz participated by | [0..*]
[1.%] Causes | [0..*]
«blocks
[0..%] ablocks [0..%]
— o External system element _l
VEn Is supplemented by | [0..1
[ [0..1]
t " blotke xblocks wblocks
whlocks
Brtion System action Systern use case supplement
Instantaneous action 10.%]
[0..*] <blocks Is participated by
By i [0..*] | Person on duty [0.4]
Continucus action 4w : sblacks Indicates safety concern to
Uses 10,47 [0.. ]l Is participated by Hurman actor |Persen in vicinity
s [0..%] .
Gl 2y zblocks 0.4
Temporal action stemn function -
5 l Is allocated to «blacks
Triggers [0.""]' [L.*]I [1.-*]| .4 Structure



The Behaviour artefacts model in Figure 13 starts with the Behaviour artefact,
which is exhibited by the system-of-interest from the functional point of view. The
Behaviour artefact only gives a basic description of the system functionality in
verbal format as captured from the stakeholders, i.e., a description of the work to
be performed by the machine (the ‘intended use’ of the system, but it also stores
the initial description of the reasonably foreseeable misuse that must be consid-
ered during the risk assessment according to ISO 12100 [2010]). However, the
main artefact type in the model is the System activity artefact. System activity is
specialised by System process, System task and System use case®. Action is
specialised by System action and Actor action. System action, Actor action and
System activity are abstract types, i.e. they do not have a representation in the
project data repository. Processes, system task and system use cases can be
nested, i.e. they can have sub-processes, sub use cases and sub system tasks
respectively, but actions are atomic.

It is possible to define several Behaviour artefacts for a single system. This is
useful in cases in which the system or machine has clearly separate ways of work-
ing or separate functional features.

The system behaviour is described in a more systematic way in system pro-
cesses that can consist of sub-processes or system use cases or system tasks.
The behaviour can also be described directly with system use cases or system
tasks without defining system processes. Nevertheless, the system use cases and
system tasks are the core artefacts to describe the behaviour, the former present-
ing the human actor view and the latter the system view. The use cases describe
the sequence of actor actions to get the service, the added value, out of the sys-
tem. The System task artefact is the system realisation view of the behaviour. It
defines the sequence of system actions. It is especially useful in cases in which
human actors are not involved (like in case of automatic or autonomous systems),
but it is also used to identify system functions that cannot be identified from the
actor actions. System use cases and system tasks use system functions provided
by the (physical) system to provide the specified behaviour.

System use cases and system tasks are created to identify, analyse and de-
scribe the functional requirements stated by the stakeholders in a systematic way.
Therefore, the functional requirements shall be traced to the system processes,
system use cases or system tasks (see Figure 18 in which the System use case
artefact type is pointed out as an example artefact to be traced).

One possible way to work with system use cases and their actions is to write
the system use cases in a platform independent way (i.e. with no reference to the
underlying system elements) and the actor actions with platform dependent way.
In this scheme, the actor actions are written later than system use cases, i.e. after
the first release of the physical architecture of the system is available.

A system use case can include finer grained use cases or extend another sys-
tem use case. The sequence of actions of a system use case is stored in the Ac-

8 Action could also be defined to be a specialisation of Activity, but we do not do that here
because activities are non-atomic and action is atomic.
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tion artefacts. The reason for separating the Action artefact from the System use
case artefact is that during the Use Case Safety Analysis (UCSA) (Alanen &
Tiusanen 2010) we need to be able to link a single atomic action to an identified
hazard to provide traceability. It must be ensured, however, to extend traceability
such that if e.g. the set of Human actor artefacts is changed not only the related
Action artefacts are marked suspect, but also the related hazards.

A system function is specified exhaustively such that e.g. the software engi-
neers can implement the software for the system function based on the particular
system function artefact contents. The model allows for a system function to con-
sist of one or more sub-functions. A system function is allocated to a Structure
artefact of its own. Such a system function specific structure is a partial view of the
actual system structure to illustrate the part of the system structure that takes part
in executing the system function. Besides risk analysis, the function specific struc-
ture is useful for the maintenance personnel to understand, which components
and sub-systems shall be suspected if the particular system function does not
work correctly.

A system function is specified by a set of Requirement artefacts and configured
by System properties. This is not depicted in Figure 13, but can be seen (at least
implicitly) in Figure 18 and Figure 15 respectively.

System use cases, system tasks, actions and system functions can be speci-
fied, described and illustrated with any type of behaviour related documents, for-
eign models and diagrams, like activity diagram, sequence diagram, state ma-
chine diagram or use case diagram, or any other functionality related diagram.
The documents, foreign models and diagrams are linked to the corresponding
artefacts as black box artefacts (see Section 3.2).

3.3.3.1  Safety function artefacts model

The Safety function artefacts model (Figure 14) completes the behaviour model of
a system.
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Figure 14. Safety function artefacts model diagram.

The attributes of the Safety function artefact are selected such that the require-
ments for a safety function specification according to IEC 62061 (2005) are ful-
filled®. A safety function is a special case of a system function; it is not a sub-
function of a system function.

The model includes the artefact types needed to carry out the Performance
Level (PL) evaluation according to ISO 13849-1:2006. (Neither the IEC 62061 nor
the IEC 61508-1 [2010] safety integrity levels [SIL] are currently supported by the
model, although the System function specification is done according to IEC
62061.) Safety function must be represented for the PL evaluation in a manner
that cannot be fulfilled by the Structure artefacts model presented in Section 3.3.2.
Hence a special set of artefact types is attached to Safety function. A safety-
related block diagram needs to be drawn to define the logical structure of the
safety function. The diagram illustrates, which safety blocks (i.e., unities of system
elements) are logically connected in series and which in parallel in the fault toler-
ance sense. ISO 13849-1 (2006) (in its Appendix B) gives guidance on creating
such diagrams. Such a diagram is in theory drawn for each safety-related part of a

® The reason for adopting the IEC 62061 function specification format while otherwise refer-
encing 1ISO 13849-1 is that ISO 13849-1 does not provide such a systematic function specifi-
cation template as IEC 62061 does. The specification template is not presented in this re-
port.
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control system (SRP/CS)'°, but SEAModel requires a block diagram that com-
bines all the related SRP/CS:s of the safety function instead of a set of single
SRP/CS diagrams due to the fact that it is more common to present a combined
diagram that has its context in the safety function, not in individual SPR/CS:s. The
black box artefacts model presented in Section 3.2 allows linking of Document
artefacts to an SRP/CS artefact. Such a document can be a safety manual or a
technical manual of an off-the-shelf safety device, such as a safety PLC.

A safety-related part of a control system™ (SRP/CS) can be a one channel sys-
tem or a two channel system. Such channels are denoted Normal channels in the
model. Test channels may also be defined (only in Category 2 solutions according
to ISO 13849-1). The Normal channels and Test channels are special cases of the
Channel artefact. Each channel consists of blocks, and blocks consist of system
elements.

10 Very often a safety function is considered to consist of three SRP/CSs: input, logic and
output. PL is evaluated for each of them and the combined PL is calculated according to the
rules of ISO 13849-1.

! Note that the SISTEMA tool by IFA (Institut fur Arbeitsschutz der Deutschen Gesetzlichen
Unfallversicherung) calls these ‘subsystems’. As ISO 13849-1 does not use the term ‘sub-
system’, we simply call them SRP/CSs and, in fact, SISTEMA treats them as SRP/CSs
according to ISO 13849-1 even though it uses diverse terminology.
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What actually is a safety function?

ISO 13849-1 defines the concept of safety function as: “function of the ma-
chine whose failure can result in an immediate increase of the risk(s)”,
but in its body text the concept of safety function is not consistent with the
definition. In fact, the body text seems to define the safety function as IEC
62061 defines the concept of a safety related control function: “control func-
tion implemented by a SRECS [Safety Related Electrical Control System]
with a specified integrity level that is intended to maintain the safe condi-
tion of the machine or prevent an immediate increase of the risk(s)”.
(Note that the definition for ‘safety function’ in IEC 62061 is the same as in ISO
13849-1.) We would simply like to say: a function that is added for the safe-
ty reasons.

The concept of a safety function can thus be somewhat obscure to a machine
engineer, and it may be difficult to identify and specify a safety function. For
example, a boom movement is a normal operational function. When limiting its
speed to a safe level, the speed-limiting facility can be called a safety function,
but it may be difficult to point it out and show where it is because it may simply
be a line of application software and a parameter embedded in the application
software. Let us think of another safety function called ‘prevention of unex-
pected movement’: the boom movement is stopped when the joystick is re-
leased to its central position but, for safety reasons, an enabling switch (a
‘dead-man’s switch’) and a hydraulic enabling valve are added. Now the re-
quired performance level for the safety function ‘prevention of unexpected
movement’ could be, for example, PL d, which is typically achieved by Catego-
ry 3 (i.e. two channels) architecture according to ISO 13849-1. What are the
two channels? The first one is the normal centre position stop and the second
one is the enabling switch — enable valve — channel. Now this leads to the fact
that half of the safety function is allocated onto the normal channel and the rest
to the additional safety channel. In both of the examples, it is difficult to sepa-
rate the safety function from the operational function and hence the electrical
control system that executes the normal system functions easily becomes a
safety-related electrical control system as a whole. In some industry sectors,
the safety functions are strictly separated from normal operational functions.
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3.3.4  Properties package

The Properties sub-package currently provides only one model, the model for the
properties of the system. The Properties artefacts model is presented in Figure 15.

whlogks

Heopery [0..*] 1s derived From whlocks:

P net
Equation: EqType [0.."] I arometer

1
| |

«hlocks «hlocks «hlocke
Product property el System property Flag Individual property
[0.*] [0.4]
Has |[0..%]  Has | [0..%] Has |[0..*] Has J[0..*]Has |[0..*] Has | [0..*]  Has | [0..*]
[0..1] [o.1] [0.1] [0..1] [0..1]
«hlocks «hlocks «hlocks «hlocks «blocks
Product type System Flow Part System element individual
[0..1] [0..1]
ahlocks «hlocks ehlocks [0..1] «hlocks
[0..1] Port type System element System use case Product individual

The above five artefact
types are just examples

Figure 15. Properties artefacts model diagram.

The Property artefact facilitates the modelling of attributes, state and other varia-
bles, parameters and characteristics of a system and its constituents. The Proper-
ty artefact is categorised by fixed properties (Product property), configurable prop-
erties (System property) and Individual properties. Fixed properties are assigned
to Product type and Port type artefacts. The system properties are the parameters
related to the system type and the individual properties are operation time pa-
rameters (like operating hours) of a system type instance. An individual property of
a system element provides the system integrator view (record kept by the system
integrator, i.e. the provider of the system-of-interest), whereas a product individual
property provides the component or sub-system view (record kept by the compo-
nent or sub-system provider or by the system integrator).

Properties can be derived from other properties. For this purpose, the attributes
of the Property artefact include an attribute called Equation.

A property may need further elaboration. This is achieved by documents, mod-
els and diagrams, like a parametric diagram according to SysML. The documents,
foreign models and diagrams are linked to the corresponding artefacts as black
box artefacts (see Section 3.2).
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3.3.5 Product type package
The Product type sub-package only contains one model, the Product type arte-

facts model depicted in Figure 16. It covers the description of a released system or
component to be applied by a systems integrator or acquirers of a system.
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Both subsystem and component types are stored using the Product type artefact.
But it also provides the platform for the developer of the system-of-interest to
publish the system under development when it is ready.

The set of Product types and their ports (the port types) constitute a product
type library that contains all the generic information about the product types and
their interfaces (ports). A system element is allocated to a product type, and a port
is allocated to a port type (see Figure 11). In other words, a product type is the
physical implementation’? of a system element, which is a logical architecture
element.

Product type and its port types can be described by several product properties.
The idea is that the datasheet information of the product types is stored into a
structured data repository. However, it is also possible to attach a conventional
datasheet or a CAD-model with a product type if necessary as a black box artefact
as depicted in Section 3.2. The product properties of subsystems and components
cannot be changed by the system-of-interest developer, because they have been
defined by the subsystem or component supplier; e.g. a component can have
weight, dimensions, allowable temperature range, and so forth. as its product
properties. Such information is normally presented in an easily readable format in
conventional datasheets. But the provision of such a structured way of storing
product properties in the Product property artefact facilitates automatic embedding
of the specification parameters in the application specific documents or drawings
generated from the data repository. The Product property artefact has been moti-
vated by the MSRSYS specification (MSR Consortium 2002), in which it is called
specification parameter. The optimal workflow would be such that the component
manufacturers and sub-system suppliers provide the product type properties in
XML files that can easily be incorporated into the product type library.

The product individual artefact type provides storage for the product individual
data like serial number and maintenance and warranty information.

3.4 System context package

The System context package only includes the System context artefacts model in
Figure 17. It introduces artefact types for description of the context in which the
system will be used. The context includes both concrete (like environment and
human actors) and abstract issues (like past incidents and glossary).

The model in Figure 17 introduces Constraint artefact to encompass constraints
caused by the system context to the system-of-interest. An example is a case in
which the space of the operational environment sets requirements on the dimen-
sions of the system-of-interest. Note that, if a constraint is caused by an external
system, such constraints are directly derived from the properties of the external
system, i.e. they are presented in the Product property artefacts of that system.

12 ‘Physical’ does not mean that the subsystem or component is really manufactured; e.g. a
CAD-model can be considered to be a physical implementation.
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3.5 Requirement and V&V package

The Requirement package consists of one artefacts model, the Requirements and
V&YV artefacts model, which is presented in Section 3.5.1.

3.5.1 Requirements and V&V artefacts model

The core model for traceability from requirements to design and implementation,
from implementation to test execution, and from test execution to verification or
validation reporting is presented in Figure 18"%. We call this the ‘core loop of sys-
tems engineering’. This model is the starting point for SEAModel implementation.

%3 1t should be noted that the particular diagram is not a traceability information model (TIM)
as such. An example of TIM is provided in Chapter 5.
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The central point for the requirement artefacts model is the Requirement artefact
that stores both the stakeholder and system requirements. The Stakeholder re-
quirement is a special case of a requirement. It relates to one or more Stakehold-
ers. During the system validation at the end of the project or at project gate points,
the system design is compared to the stakeholder requirements to prove that the
system fulfils the expectations of the stakeholders. The system requirements re-
flect the engineers’ understanding of the stakeholder requirements. The top level
system requirements are derived from the stakeholder requirements™. A require-
ment can have child requirements that refine the parent requirements. In this case,
the relationship name is ‘Refine’, but other relationships can also be created. Dia-
grams, documents and models can be linked to the requirements where neces-
sary as described in Section 3.2.

The engineering artefacts'™ that are claimed to satisfy the requirements are ver-
ified or validated during the development work. A special set of artefact types are
provided for this purpose: V&V requirement, V&V plan, V&V case specification,
V&V model parameter, V&V execution parameter, V&V execution report, V&V
execution interpreter and V&V success report. A V&V case specifies tests, anal-
yses, simulations or any other methods to evidence fulfilling the requirements for
the design or project processes™. A V&V execution report must be traced to the
artefact under verification or validation to prompt for a test (or analysis or any
other method) re-execution if the artefact under test is updated. The V&V execu-
tion interpreter provides a means to relate a V&V success report with instructions
or tools to interpret the V&V execution results, like measurement files. The result
of the test or analysis is stored in the V&V execution report artefact, and the verifi-
cation or validation result is recorded in the V&V success report artefact. It may be
necessary to execute more than one test or analysis case for the evidence of a
successful result of the validation. Hence the V&V success report artefact has a
zero-to-many relation to the V&V execution report artefact.

Based on the results of the execution of a test or an analysis, an issue can be
raised to call for corrective actions. The issue is managed according to the modifi-
cation procedure of the project.

V&YV plan collects a set of V&V case specification to form a specific sequence of
tests for a specific purpose, such as for Factory Acceptance Test (FAT).

The validation model is designed to work with the ISO 13849-2 (2012) valida-
tion procedure. For example, when validating the category of a safety function,

 The rule is that there should be a trace from each stakeholder requirement to at least one

system requirement (to ensure full coverage of stakeholder requirements), and that there

should be a trace from each system requirement to at least one stakeholder requirement

either directly or through parent system requirements (to disallow not required system re-

quirements).

Engineering artefacts can include various types of artefacts presented in the artefacts

models, such as System use case, System task, System function, System element, Port,

Flow, Joint and Product type. Figure 18 depicts only some of such.

1 Project process artefacts are not modelled in this report. Nevertheless, artefact types like
Project process, Project activity and Project task can easily be incorporated into SEA-
Model.
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according to ISO 13849-2, observance of the basic safety principles must be in-
spected. The basic safety principles of electrical systems are listed in Appendix D
of ISO 13849-2. Let us consider the following basic safety principle: Proper selec-
tion, combination, arrangements, assembly and installation of compo-
nents/system. The particular issue is written into the V&V case specification arte-
fact, e.g. as: Inspect that components/systems are properly selected, combined,
arranged, assembled and installed. In ISO 13849-2, there are several such tasks,
not only the basic and well-tried safety principles that can be presented as test or
analysis cases. The fault modes to be considered can also be presented as test or
analysis cases, but SEAModel provides dedicated artefact types for fault mode
types and for the actual fault modes (see Figure 19).

3.5.2  Modelling and simulation artefacts in SEAModel

In this section, a short discussion is provided on management of modelling and
simulation artefacts by SEAModel.

The design and simulation models are typically created by CAD tools, SysML
tools, FEM analysis tools, simulation tools and the like. Such models are stored as
foreign models in the SEAModel data repository, i.e. they are not stored as struc-
tured model elements, but as separate files.

The Foreign model artefact can be linked to several artefacts, such as System,
Requirement, System use case, System task, System function, System element
and Product type. It is not defined here, which type of models can be incorporated
into a Foreign model artefact, but it is assumed that non-structured text and ad-
hoc (informal) diagrammatic representations are not considered here as models.
For those purposes, two artefact types are defined, Document and Diagram.

In general, the simulation artefacts constitute of the following:

e simulation requirements: the requirements, which state that simulation
has to be carried out; more detailed requirements about the simulation ex-
ecution; the requirements can include rationale for the simulations

e simulation plans: the plans for the simulation process, what is the pur-
pose (the rationale) of the simulations, what are the items under simulation,
simulation strategy, list of simulation cases, simulation schedule, simulation
personnel

e simulation case specifications: the rationale for the simulation case, the
exact specifications of the simulation steps, list of tools to perform the
simulation case, environment of the simulation, expected results

e simulation model: an executable, purpose driven, view of the item (like a
CAD model) under verification; note that a special simulation model is not
needed if the actual model supports simulation of the characteristics under
verification

e simulation model parameters: the parameters that configure the simula-
tion model element under verification for the simulation; normally, the pa-
rameters of the design under analysis are changed first, and thereupon the
simulation model parameters are updated accordingly, but in cases in
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which the actual model does not support simulation, like a physical proto-
type, the simulation model parameters are changed during the simulation,
and the parameters of the physical model may be updated according to the
simulation results

e simulation execution parameters: the parameters relating to the execu-
tion of the simulation, like the number of simulation runs

e simulation results: the simulation results can include virtual measurement
data, animation videos, pictures or sound files

e simulation results interpreter: an instruction document or a program that
provides the means for interpreting the simulation results, like a program
that plots a graph of the virtual measurement data.

Besides the artefacts above, the common artefacts like requirements and design
artefacts are relevant during the simulation process. The design artefacts are the
ones that are verified or validated by the simulation cases, and the requirements
are the ones against which the justification of correct design, based on the simula-
tion results, is done.

The following table outlines, how the simulation artefacts above are mapped on-
to SEAModel. The relevant model in SEAModel is the requirement artefacts model
presented in Section 3.5.1.

Table 1. Mapping of simulation related artefacts onto SEAModel.

Simulation artefact Corresponding artefact type in
SEAModel

Simulation requirement V&V requirement

Simulation plan V&V plan

Simulation case specification V&V case specification

Simulation model Foreign model (in most cases)

Simulation model parameters V&V model parameter

Simulation execution parameters V&YV execution parameter

Simulation results V&V execution report

Simulation results interpreter V&YV execution interpreter
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3.6 Specialty engineering package

In principle, the Specialty engineering package contains the models for different
disciplines such as risk assessment (human safety), security, sustainability engi-
neering, human factors engineering (ergonomics), dependability and logistics.
Currently, only artefacts model for risk assessment has been designed (see Sec-
tion 3.6.1).

3.6.1 Risk Assessment package
The Risk assessment sub-package only contains the risk assessment artefacts

model presented in Figure 19. It is based on the 1ISO 12100 (2010) risk assess-
ment model depicted in Figure 20.
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identification and risk estimation; Risk estimation = defining likely severity of harm
and probability of its occurrence; Risk evaluation = judgment, on the basis of risk
analysis, of whether the risk reduction objectives have been achieved; definitions
from 1SO 12100).

The generic information concerning the risk assessment is stored in the Risk as-
sessment artefact. It specifies e.g. the type of risk analysis used for the particular
assessment; currently the following analysis types are supported: Preliminary
Hazard Analysis (PHA), Use Case Safety Analysis (UCSA), Failure Mode Effects
and Criticality Analysis (FMECA), Fault Tree Analysis (FTA), Hazard and operabil-
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ity study (HAZOP), message safety analysis and network safety analysis. FMECA
is supported by two additional artefact types, Fault mode’’ and Fault mode type.

A risk assessment is performed in several analysis sessions the minutes of
which are recorded in the Session artefacts. During the PHA-, UCSA- and other
sessions, Hazards are identified based on the analysis type specific methods. The
source information (the items under analysis) for the analyses is typically found
among the following set of design artefacts:

e  System-of-interest (typically for PHA)

e  System context related artefacts (typically for PHA)

e System use case (typically for PHA and UCSA [the supplemented use
case))

e  System task (typically for PHA and HAZOP)

e Action (typically for UCSA and HAZOP)

e  System function (typically for FMECA, FTA and HAZOP)

e Flow (typically for HAZOP)

e  System element (typically for FMECA)

e Port (typically for FMECA, but only for rare cases if any)

e Joint ([or in practice Joint component, i.e. a system element] typically for
FMECA)

e Message (for message safety analysis only)

e Network (for network safety analysis only)

e any other artefact type, including Document and Foreign model.

The analysis will result in different types of Hazards. In the model, they are cate-
gorised according to the analysis method that revealed the hazard. Hence there
are seven special cases of the Hazard artefact:

¢ PHA Hazard

e UCSA Hazard

¢ FMECA Hazard

e HAZOP Hazard

e FTA Hazard

e Message Hazard

e Network Hazard.

After a hazard has been identified, its risk level will be estimated and recorded in
the Risk estimation artefact. The model enables several alternatives for the risk
estimation method; currently the risk estimation methods of IEC 61508, IEC 62061
and 1SO 13849-1 are supported. The risk estimation method is determined by an
attribute in the Risk assessment artefact; this attribute is set by the systems engi-
neer or safety engineer.

Corrective actions will be recommended if the existing protective measures are
not sufficient to reduce the risks caused by the identified hazard. The existing
protective measures must be evidenced in the form of existing safety requirements

7 Often an alternative phrase, Failure mode, is used.
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and linked to the particular hazard. For example, during analysis sessions, a per-
son may point out that there is an overload limiting device in the system and thus
claims that the risk of the identified hazard is negligible. The analyst must not
simply write down the claimed protective measure, but he or she must browse the
Requirement artefacts (a database or similar storage in practice) and pick up the
requirement for the overload limiter and link the requirement to the hazard. This
ensures that if a change is made to the specifications, e.g. the requirement for the
overload limiter is removed, the particular hazard automatically becomes suspect,
and an update to the particular analysis of the hazard is promptly requested.

Recommendations for corrective actions will be handed over to a team of eval-
uators who will judge upon the adequacy of the suggested protective measures
and decide upon the final implementation of the protective measures against the
identified hazard. The judgement is recorded in the Risk evaluation artefact, but
the actual result of the risk evaluation is one or more new safety requirements (if
needed). The resulting safety requirements are not necessarily a direct copy of the
corrective action recommendations by the risk analysis team, but may be modifi-
cations of the corrective action recommendations. Hence the Risk evaluation
artefact includes rationale on the modifications or direct acceptance of the correc-
tive action recommendations. The resulting safety requirements are linked to the
Risk evaluation artefact to provide a trace to the hazard causing the particular
safety requirements. In the end, the particular safety requirements are validated
according to the requirements model in Section 3.5.1.

However, there are cases in which risk evaluation may lead to a change in the
original specifications instead of creating new safety requirements; e.g., the risk
analysis team may recommend equipping the machine with a collision avoidance
system, but the risk evaluation team may find it too expensive to be implemented,
and thus creates an issue to change the original specifications, e.g. to strip off
features that are difficult to implement cost-efficiently with an acceptably low safety
risk. The raised issue is handed over to the modification procedure of the project.

The evaluator team together with the safety engineer can redo the risk estima-
tion to ensure that the acceptable risk level has been reached with the stated new
safety requirements.

The communications analysis is performed in two parts: a message safety
analysis and a network safety analysis. The former is performed according to the
model of IEC 61784-3 (2007) and the latter according to the network validation
questions by the Swedish Palbus-project (Hedberg and Wang 2001) with VTT
modifications.

Besides the well-structured input artefacts, one or more Documents may be
provided for the analysis team as input to the analysis. Such documents include
e.g. the relevant safety standards. Also a safety plan is a typical document to
guide the analysis team in carrying out the analysis requested by the Risk as-
sessment artefact.

The results of the risk assessment are recorded in a Document artefact, e.g. in
a collective Risk Assessment Report.
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4. Platforms to provide traceability management

Practical implementations of SEAModel require a software tool with the following

features:

structured artefact repository in which relations between the artefacts can
be created and maintained

artefacts traceability with impact analysis

Version control of artefacts and of a set of artefacts (with “baselines” fea-
ture)

modification control

automatic or semi-automatic document generation

document management (or seamless integration to an existing document
management system)

integration possibility with systems engineering tools like requirements
management tools, CAD-tools, SW programming tools and the like.
concurrent engineering capabilities

collaboration features including wiki-pages, task lists, discussion boards,
announcements and the like.

metrics of various systems engineering issues, e.g. how many of the sys-
tem requirements are covered by the design artefacts.

Besides the above features, the following issues need to be considered when
selecting the tool:

cost

responsiveness (especially important when playing with the traceability
features)

usability, user experience.

In SME:s, cost of the licenses becomes one of the most dominant factors in se-
lecting the systems engineering platform. Another critical factor is the possibility to
integrate software tools that are already applied in the company. Such tools in-
clude requirements management tools, modelling tools, CAD-tools and simulation
tools. And yet another important factor is how well the systems engineering plat-
form product (like a PLM tool) fits into the company context including IT infrastruc-
ture and competence of the personnel. One of the biggest hurdles is, however,
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psychological resistance of engineers to move from document based engineering
to a way of working in which information is input via graphical model elements or
by using forms. Engineers do not feel relaxed if they forfeit their freedom and are
forced to work systematically. Hence excellent usability and user experience of the
systems engineering platform is a prerequisite for overcoming the hurdle of psy-
chological resistance.

4.1 Product and application life cycle management tools

Typical tools to support at least the core set of the features above are among PLM
(Product Lifecycle Management) tools and ALM (Application Lifecycle Manage-
ment) tools. The main difference between these tool is that PLM tools are CAD-
oriented, whereas ALM tools are software development oriented. Examples of
PLM tools are ARAS PLM, Dassault Enovia (CATIA V6), Eurostep Share-A-
Space, PTC Windchill and Siemens Teamcenter. Examples of ALM tools are IBM
RELM™ (Rational Engineering Lifecycle Management) with other Rational tools,
Polarion ALM and Microsoft TFS (Team Foundation Server).

Some of the PLM tools may use fixed underlying data model thus hindering full
implementation of SEAModel, but in most cases the data model according to
SEAModel can be implemented. There also are a lot of variations as to how trace-
ability with impact analysis is implemented; in some cases the traceability and
impact analysis is displayed with sophisticated graphical diagrams, whereas in
some other cases tailoring is needed to provide decent user interface for the
traceability and impact analysis.

4.2 ModelBus and Traceino

ModelBus is a platform intended for integrating various systems engineering tools
to enable interoperability of tools and automation of engineering processes. It is
the server side for many of the systems engineering related products being devel-
oped at the System Quality Center of Fraunhofer FOKUS. On the client side, Me-
trino provides model validation and quality assurance, Traceino provides traceabil-
ity between different models and other artefacts, and Requino provides require-
ments engineering. Furthermore, ModelBus TeamProvider feature is available for
using ModelBus services from Eclipse.

The adapter architecture of ModelBus is specified and supported to allow inte-
gration of third party tools by implementing plug-ins for the tool that bridge be-
tween the tools’ internal data representation and that of ModelBus (see Figure 21).
The ModelBus web site describes adapters for IBM Rational DOORS and Rational
Rhapsody, Eclipse and Papyrus, Sparx Enterprise Architect, Microsoft Office, and
Matlab Simulink. It is notable that no CAD tool adapters are available but one

¥ RELM is actually a Systems Engineering lifecycle management tool.
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would have to be custom developed should ModelBus be selected as the integra-
tion platform for engineering mechatronic products.

The ModelBus server, TeamProvider and Papyrus adapters are freely available
for downloading at the web site. The server is available for Linux, Windows, and
OS X, and various releases of Eclipse. The client side software is installed within
Eclipse from update sites maintained by the ModelBus team.

Since ModelBus and the client tools would provide significant parts of an inte-
grated platform for systems engineering, we tested the software hoping to build
the demonstration described in Chapter 5 on it. The ModelBus DOORS adapter
requires Open Services for Lifecycle Collaboration interface of DOORS NG while
we use DOORS 9.5; therefore, the DOORS integration could not be tested. We
did not get a reply querying about the availability of Matlab Simulink adapter. ProR
was used for requirements engineering, Papyrus for SysML modelling, and
Traceino for traceability between requirements and SysML model. We tested
ModelBus server versions 1.9.8 and 1.9.9 and versions 1.0.0 and 1.1 of Traceino
on Eclipse Juno and Eclipse Luna releases, respectively.

While installing of the core ModelBus server is straight forward since it runs
simply as a Windows application, installing the client side software within Eclipse
required more effort. The Eclipse releases are not frozen but get regular updates
for the various components and the updates may break the dependencies of other
features unless the features are also updated to support the latest Eclipse compo-
nents. This is a common issue with Eclipse features which are not actively main-
tained, and investigating and solving the compatibility issues require some profi-
ciency in administering Eclipse installations. However, we had working installa-
tions after some effort.

ModelBus server can be configured and administered either with a web browser
based interface or with Eclipse. The administrator can configure users, groups,
and access rights to projects in the server. As such, ModelBus provides version
control functionality similar to Subversion and technically ModelBus is implement-
ed using Subversion repository as the internal database. ModelBus also provides
functionality for locking models for exclusive use by one user at a time.

Traceino supports traceability by allowing the creation of typed links between
elements of two or more models. Traceino is not a single application but a frame-
work and a set of views and wizards that can be integrated with third party model-
ing tools. An implementation of the framework for Eclipse is freely available for
download, the availability for other tools in not known.

Traceino framework does not come with a predefined traceability model but the
user is free to define and create the traceability meta model with the functionality
provided by Eclipse Modeling Framework. While this freedom to customize the
meta model to ones requirements is appreciated by experienced users, it comes
with the cost of requiring deep understanding of the model hierarchy of the Eclipse
Modeling Framework. Once the meta model has been created and committed to
ModelBus repository, Traceino can “discover” models of a particular meta model in
the repository.
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The combination of ModelBus and Traceino was tested by recreating the tutori-
al example from the Traceino user guide. The example is very similar to what
would be needed for the demonstration: A trace type is defined to link a ReqlF
SpecObject to an UML Class, and additional meta modelling properties such as
cardinalities, link direction, and constraints are defined in the traceability meta
model. The completed tracebility meta model must be committed to ModelBus
server to be available to other tools connected to ModelBus. Traceability links from
classes to requirements can be created and modified in Eclipse by opening the
Eclipse views introduced by the Traceino feature, clicking appropriate GUI buttons
and model elements. Since SysML is implemented in Eclipse as a specialization of
UML, the meta model created would be applicable also for SysML model of the
demonstration.

Both the tested ModelBus servers used as a version controlled repository and
the Traceino frameworks for Eclipse experienced software instability. The Model-
Bus server would throw an exception and require restarting. Sometimes the server
crash left the underlying database in an inconsistent state rendering it unusable. It
became quickly apparent that the underlying Subversion database must be
backed up frequently to avoid losing work. Another difficulty was that ModelBus
apparently uses the Subversion database for internal operations. At times, Model-
Bus server did one of the internal operations while the model was also being edit-
ed in Eclipse. This caused a conflict when attempting to commit the edited model
back to ModelBus server. Eclipse would require manual resolution of the conflict at
XML file level, which is of course highly undesirable from the user’s point of view.

The ModelBus manager web application enables management of the traceabil-
ity links directly at the ModelBus server. The manager provides a centralized point
of view of the models stored at the server and might be a tool for managing links
between models created with tools other than those based on Eclipse. The man-
ager is freely available for downloading but could not be tested since installation
failed due to lack of instructions.

While ModelBus concept is very attractive from the point of view of model
based systems engineering and the approach would fit very well with the goals of
the demonstration, the implementation level at the time of the evaluation was not
mature enough to support research work let alone commercial work. High level of
ICT proficiency would be needed to manage the installations and work around the
issues in the available software. Such skills would likely not be easily available in a
typical SME doing design and engineering of mechatronic products. Also, adapter
development would be necessary for tracing to CAD models.
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Figure 21. ModelBus and Traceino architecture. SolidWorks adapter is not availa-
ble at the time of the evaluation.

4.3 Simantics

Simantics is an integration platform for modelling and simulation software tools. Its
database architecture is an ontology based graph storage with a very fine data
granularity. Compared to a relational database, Simantics database does not
contain records with several fields, but each field is a data item of its own (a re-
source in the Simantics terminology or a node in the graph theory terminology).
The idea is to chop the models from a modelling or simulation tool to atomic piec-
es of data to facilitate sharing of the data between the tools. To integrate a model-
ling or simulation tool (or any other tool), adaptation work is needed. The form of
adaptation depends on the tool under integration and whether on-line or off-line
integration is selected.

Because of the fine grained data integration facility for the modelling and simu-
lation tools, Simulink is an interesting platform candidate for SEAModel implemen-
tation. The Simantics architecture allows for arranging traceability between e.g.
requirements and model elements. At the time of the SIMPRO project, however,
such a feature was not available. Furthermore, version control feature was under
work during our research. Hence we decided to restrict our evaluation to integrate
a requirement management tool with Simantics. In fact, the general requirements
management file format ReqlF was selected as the data source for the integration
to serve a number of requirements management tools, not only a single tool.
ReqlF data could be imported to Simantics after a moderate integration software
programming; the ReqlF import mechanism was made generic to accept any kinds
of XML files that are specified by XSD schemas. However, to provide full require-
ments roundtrip, new features (such as version control) for Simantics are required
(Matésniemi & Alanen 2015). A special research report on the ReqlF trial was
written (Matasniemi & Alanen 2015).
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4.4 Others

Some of the needed features can be achieved by a requirement management
software or with database oriented content management systems (CMS) like MS
SharePoint. Both of these provide a relational database such that data items (i.e.
engineering artefacts) can be linked to another to provide traceability. CMS tools,
however, do not intrinsically provide impact analysis, i.e. suspect flagging in case
one of the engineering artefacts at the one end of a trace link is edited; profes-
sional requirements management tools provide this feature. The advantage of
CMS tools lies in the fact that such are often already in place in a company, and
hence the investments to licenses are minimal if not zero. But the amount of work
to tailor the CMS application to support systems engineering is remarkable.

In both cases, i.e. with requirements management tools and CMS, there is prac-
tically no ready provision for mechanical CAD and simulation tool integration. With
a normal URL-linking, CAD and simulation files can be linked to other artefacts
such as requirements and test case specifications. With programming, such links
can be enhanced to provide impact analysis. We demonstrated such method
between SolidWorks CAD tool and Rational DOORS requirements management
tool (see Section 5.3.5). The trick was to create surrogate objects at DOORS of
each of the CAD model files; when a CAD model element is updated (and hence
its file is updated) the programmed script compares the date and time of the sur-
rogate object and model file, and copies the new timestamp to the surrogate ob-
ject if the timestamps are different. The corresponding surrogate object is thus
touched causing the suspect flag of a trace link to be raised, if e.g. a requirement
is linked to the surrogate object that represents the model file of the changed CAD
model element.

In principle, any relational database can be used to create a systems engineer-
ing data repository according to SEAModel. We have demonstrated such with a
MySQL database (with MS Access user interface). The demonstration is reported
in Alanen et al. (2011). Such a raw database implementation requires a lot of work
to reach the level of CMS tools in regards to collaboration features and document
management support. Hence a pure relational database as a starting point is not
recommended.
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5. Traceability demonstration

5.1 Traceability information model

Traceability makes it possible to find out how and why certain design solutions
have been derived. It requires some additional information to be created and
maintained as part of the design data. Engineering tools should show the depend-
encies and indicate potential impacts of the changes made to one artefact. Trace-
ability information models (TIM) depict how different engineering artefacts trace to
one another. Such models can easily be derived from the artefacts models in
Chapter 3. The differences between the traceability information diagrams and
artefacts model diagrams are as follows:

e not all the relations in the artefacts model diagrams need to be trace
links;

e the direction of a trace link is from the younger information to the older; in
artefacts model diagrams the link directions (shown in the context of the
relation name) do not necessarily reflect the trace direction;

e relation names are changed to their reciprocal (inverse) versions in some
cases to provide reading order from the source to target direction.

Below in Figure 22, an example traceability information model derived from the
Requirement and V&V artefacts model (see Section 3.5.1) is provided.
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The relationship names in Figure 18 are updated to their reciprocal versions in
Figure 22 in some cases to provide reading order from the source to target direc-
tion. The arrowed trace links point in each case from the younger information to
the older information. If the artefact in the target end is changed the source arte-
fact becomes suspect, and possibly needs to be updated consequently. If the
artefact in the source end is changed, it has to be checked that it still is consistent
with its unchanged target. As can be seen in Figure 22 compared to Figure 18, all
the other relations except the relation between Stakeholder and Stakeholder re-
quirement® manifest themselves as trace links.

In a similar fashion, all the other concept diagrams in Chapter 3 can be con-
verted to traceability diagrams. In the following demonstration case (see Section
5.2), however, mainly the TIM in Figure 22 is applied.

The TIM is applied to each system, whether a system-of-interest or a subsys-
tem developed in-house. For off-the-shelf subsystems and components, the par-
ticular TIM may or may not have been used; it does not matter for the systems
engineer of the system-of-interest as long as he or she receives the necessary
data from the subsystem or part manufacturer to be stored into the Product type
artefact. In the case the system developer's TIM is not used by the system ele-
ment developer, it is difficult to arrange seamless traceability of requirements from
the main system to the system elements, and traceability of verification artefacts
from the system elements to the main system.

To implement the traceability information model, the data repository platform
has to support traceability management including impact analysis.

¥ tis possible to make the relation between Stakeholder and Stakeholder requirement a
trace link as well, but it is assumed here that if the information about a stakeholder
changes, the stakeholder requirements do not change. If a stakeholder role is occupied
by a new person or organisation, the stakeholder requirements might be updated conse-
guently. However, updating the stakeholder requirements in that case is not initiated by
the trace analysis (i.e. impact analysis), but by more powerful project procedures.
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5.2 Definition of the demonstration

To demonstrate traceability according to the models in Chapter 3 and especially
the TIM in Section 5.1, the following systems engineering work flow scenario was
defined:

Overall description of the scenario

A company is manufacturing mobile elevating !
work platforms (MEWP) of scissors type. One of "7
its customers requests a new feature to be able
to move the platform of the machine horizontally
(sideways) in order to be able to reach closer to
a wall in case the chassis of the machine cannot ZTZi

R

be parked close to the wall. The systems engi- - > The new
neer and the safety engineer of the MEWP refzztel;:;
company analyses the request and create sys- W

tem requirements (including safety require- -

ments) accordingly. The systems engineer > B

sketches the architecture of the updated me-

chanical design of the platform. A mechanical

engineer of the MEWP company creates a CAD

model to implement the architecture design. The 4
CAD model is simulated according to a simula-
tion case specification set by the systems engi-
neer or the mechanical engineer. To do that, a = %
simulation model is created by the mechanical 45
designer or a test engineer out of the CAD mod- &
el. The results of the simulation execution are
compared to the requirements, and judgment

about the conformity of the CAD model with the
requirements is issued. (See Figure 35, Figure 36 and Figure 37 in Appendix B.)

Actors (see Figure 38 in Appendix B)
e  Customer
e  Systems Engineer
e Safety Engineer
e  Mechanical Engineer
e Test Engineer

Tools (see Figure 38 in Appendix B)
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Engineering artefacts (see Figure 39 in Appendix B)

Stakeholder requirements
System requirements
PHA Hazards

Risk evaluations

Use cases

Architecture model

CAD model

Verification requirements
Simulation case specification
Simulation model
Simulation results
Requirements trace
Verification report.

Detailed scenario steps
Requirements acquisition (see Figure 40 in Appendix B)

1.

1.1.

1.2.

The Systems Engineer captures the Stakeholder requirements from the
Customer and stores them to the

The Systems Engineer analyses the Stakeholder requlrements The
Safety Engineer performs a Preliminary Hazard Analysis (PHA) and re-
ports the PHA Hazards and their Risk evaluations. The Systems Engi-
neer creates corresponding System requirements (including the safety
requirements) and stores them to the

The Use cases are created based upon the functional requirements (that
are among the System requirements).

Architecture design (see Figure 41 in Appendix B)

2.1

2.2.

The Systems Engineer designs the Architecture model of the system us-
ing the and traces with the the Architecture model ele-
ments to the System requirements where relevant.

The Systems Engineer issues the System requirements and the Archi-
tecture model.

Detailed design (see Figure 42 in Appendix B)

3.1

3.2.

The Mechanical Engineer creates, using the , the CAD model
according to the Architecture model and the System requirements
and traces with the the CAD model elements to the Architecture
model elements and to the relevant System requirements.

The Mechanical Engineer issues the CAD model.

Verification (See Figure 43 in Appendix B)

4.1.

Verification specification (See Figure 44 in Appendix B)
4.1.1. The Systems Engineer creates the Verification requirements to
verify the CAD model, and traces with the the Verification re-
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quirements to the corresponding System requirements and Archi-
tecture model elements.
4.1.2. The Systems Engineer issues the Verification requirements.
4.1.3. Simulation case specification (See Figure 45 in Appendix B)
4.1.3.1. The Mechanical Engineer or Systems Engineer creates The
Simulation case specification according to the Verification
requirements and stores them to the and traces
with the the Simulation case specification to the Verifica-
tion requirements and to the CAD model elements under
simulation.
4.1.3.2. The Mechanical Engineer or Systems Engineer issues the
Simulation case specification.
4.2. Verification execution (See Figure 46 in Appendix B)
4.2.1. Create and run simulation (See Figure 47 in Appendix B)
4.2.1.1. The Mechanical Engineer or Test Engineer creates the Sim-
ulation model of the CAD model, using the ,
such that the simulation according to the Simulation case
specification can be executed, and traces with the the
Simulation model to the CAD model and to the Simulation
case specification, which the Simulation model was created

for.

4.2.1.2. The Mechanical Engineer or Test Engineer issues the Simu-
lation model.

4.2.1.3. The Mechanical Engineer or Test Engineer executes the
simulation, using the , and records the Simu-
|ation results to the , and traces with the the

Simulation results to the Simulation case specification and to
the Simulation model under execution.

4.2.1.4. The Mechanical Engineer or Test Engineer issues the Simu-
lation results.

4.2.2. Judge conformity (See Figure 48 in Appendix B)

4.2.2.1. The Systems Engineer or Mechanical Engineer evaluates
the Simulation results and judges conformity of the CAD
model to the relevant System requirements, and records it
as 'pass' or 'no pass' into the Verification report in the

, and traces with the the Verification report to the

CAD model and to the relevant System requirements and to
the Simulation results that evidence the verdict.

4.2.2.2. The Systems Engineer or Mechanical Engineer issues the
Verification report.

The workflow scenario is depicted in a semi-formal way in Appendix B.

61



5.3 Implementation of the demonstration

The work activities presented in Section 5.2 and in Appendix B are presented in
more detalil in the following sub-sections. Further details about the implementation
of the demonstration can be found in (Tikka 2015).

5.3.1 Requirements in DOORS

The first step of the scenario concerns requirements acquisition. IBM Rational
DOORS is a requirements management platform for requirements specification
and requirements engineering collaboration. DOORS stores stakeholder require-
ments such as the new customer feature request about the platform horizontal
movement, but also the safety requirements that are resulted by the PHA. The
customer request is recorded as a stakeholder requirement of which a corre-
sponding system requirement is created after analysis. The safety requirements
are recorded among the other system requirements.

The created system requirements can be categorised for instance as functional,
performance, maintenance or safety requirements depending on their nature.

In addition to the mentioned customer requirement, a set of requirements for
the case study are derived from the Machinery Directive 2006/42/EY, from the
harmonised C-type standard EN 280 and from some other relevant standards for
machinery safety. An excerpt of the DOORS requirements module is provided in
Figure 23.
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[ip | i
SEFES- 1 Customer requirements

356
SPRO- | 1.1 Platform horizontal movement
RE’??’ It shall be possible to move the platform in horizontal direction
SPRO- 1.2 Platform horizontal movement reach %
RE’SQE; The horizontal movement of the platform should reach up to a near by

wall at a distance of less than 1 m
SPRO- 1.3 Platform horizontal movement direction

REQ- ' The horizontal movement should be sideways to the right of the main
359 driving direction
SEFES' 2 Functional requirements
360
SPRO- | 2.1 Platform sideways movement 5
RE’% It shall be possible to move the platform sideways
SEFES’ 3 Performance requirements
363
SPRO- | 3.1 Platform sideways movement reach g
Rggz_ The sideways harizontal reach should be should be in maximum -0 ... +75

cm more than with static platform (where + direction is to the right of the
main driving direction)
SFF:FE{S’ 4 Safety requirements

353

SPRO- | 4,15.1 Stability shall not be lost

REQ- |Movament of the platform to sideways direction shall not cause loosing of
305 the stability with the maximum platform load with the worst case load
location

Figure 23. An excerpt of the DOORS requirements module.

The original customer request is expanded to three customer requirements that
explain the feature request in detail: the platform shall move in horizontal direction,
the movement of the platform should reach a distance less than 1 m and the
movement direction should be to sideways the right of the main driving direction. A
matching functional requirement for the requested feature is: “It shall be possible
to move the platform sideways”, which emphasises the possibility to move the
platform. A technical request for the performance of the MEWP is the platform
sideways movement reach, which complements the previous functional require-
ment. An important aspect for the design and manufacturing of the MEWP is safe-
ty. The new feature should not jeopardise the structural stability while the platform
is moving horizontally. Therefore, the stability of the MEWP is simulated to in-
spect, whether the stated safety requirement is compromised and possible stabi-
lisers needs to be added to the chassis. The simulation model is introduced and
studied later in Section 5.3.4.
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5.3.2 Initial physical architecture —the logical model

The new physical architecture of the MEWP platform subsystem, based upon the
customer requirements and the consequent system requirements, is sketched by
creating a logical model of the physical architecture. The model is designed with
the modelling tool Papyrus, which is accessed through Eclipse Luna. Papyrus is
used because it offers support for modelling languages such as UML and SysML,
and is free of charge. The logical model introduces abstractions of the physical
system elements such that the required functions can be allocated onto them, but
the actual physical implementation is left for the CAD designer. The top level dia-
gram of the logical model is provided in Figure 24.

B2 Mobile Elevating Work Platform (MEWP) <

B3 Platform B3 Chassis B3 Scissors

Figure 24. The top level diagram of the logical model.
The main focus is on the Platform subsystem, which the new customer feature is

allocated to. The other two subsystems are Chassis and Scissors. The logical
architecture of the Platform is captured in Figure 25 by a block definition diagram.
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3 Platferm

[1]
P
«Block=
Platform
11] 2
11
«Blocks 1] [
MEWP Control System
[0.1] 1] 1
* 1 ehlocke «Blocka «Blocks
¢’ ¥-Axis Madule Scissors Platform Worksurface
[i] «Blocks
Emergency Stop ’
11 11 i i
[1]
[11 «Blocks
Motor Controller 1] [1]
«Blocks 11 11 Bl
[1] «Blocks Module Rails Module Plate i «Blocks
Scissor Actuator 111 i JeiningComponent 2
[0.1]
1] 11] [1] 1] 1
sBlacks il =Block» «Blocks «Block»
Module Contral System = ModuleThreadedHole_1 ModuleMountingHole_2 ScissorsPlatformThreadedHole
1
1] i |
[1]
[l W |
«Blocks 0.4] <Blocks 8] ) <Blocks 1
Linear Actuator JoiningComponent_1 WorksurfaceMountingHole [

Figure 25. Decomposition of the updated platform mechanics — The logical model of the platform architecture.
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The Platform block in Figure 25 is the top-level block and provides the context for
the new feature. Platform is composed of four main components, Y-Axis Module,
Scissors Platform, Work surface and MEWP Control System. The y-axis (i.e. hori-
zontal) movement feature of the platform is made possible by a modular solution:
The feature can be added according to a customer request to the structure of the
MEWP by including the y-axis module between the sub platform (Scissors Plat-
form), where the scissors are attached to, and the work surface. The y-axis mod-
ule includes a module plate that moves on the frame of the module rails. Actuation
of the module is carried out by a linear actuator, but the more specific method is
out of the scope of this report. Because the module is optional, multiplicity at the
part end of the composite association is 0...1. Also the associations regarding the
attachment of the module are marked as 0...1. Joining of the module is achieved
with joining components that will be mounted to the mounting holes and threaded
holes in the work surface and scissors platform. If the module is not used, the
scissors platform is directly connected to the work surface.

5.3.3 CAD model by SolidWorks

After the logical architecture is defined to satisfy the stakeholder requirements, a
physical implementation model is created. The physical model is created by a
mechanical engineer according to the logical model and the system requirements
provided by the systems engineer. The system requirements are acquired from
the requirements management tool, which was chosen to be Rational DOORS
(see Section 5.3.1). The goal of the CAD model is to satisfy with a physical repre-
sentation the specifications and demands set by the customer and systems engi-
neer. The model is produced with a CAD tool, which was chosen to be SolidWorks
for the demonstration. SolidWorks was chosen because of its integration possibili-
ties with Simulink modelling tool that was chosen for the simulation.
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Figure 26. The original MEWP CAD model and the added y-axis module.

The original platform (see Figure 26) was modified into two different sub platform
structures to enable the new y-axis (i.e. horizontal) movement add-on. The y-axis
module is a frame component (see Figure 26) that can be connected between the
two sub platforms. The updated version of the mechanical structure is depicted in
Figure 27.
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Figure 27. The updated CAD-model based upon the customer feature request.

5.34  Simulation by Simulink

The CAD model is verified according to the verification requirements that are de-
rived by the systems engineer from the corresponding system requirements (in-
cluding safety requirements) and architecture model elements. The verification
requirements are classified as process requirements. In this demonstration, as
loss of stability is identified as a potential hazard for the revised MEWP, a verifica-
tion requirement to check the stability of the structure with a simulation tool is
issued.

The issued verification requirements are used to create the simulation case
specifications that define the rationale for the simulation case, the exact specifica-
tions of the simulation steps, list of tools to perform the simulation case, environ-
ment of the simulation and the expected results for the simulation. These specifi-
cations are set to test the model in the environment or situation, in which the ob-
served hazard can manifest. The simulation case specification defines the height
and distance of the platform, general position of the MEWP and workload. Fur-
thermore, the standard EN 280 defines a set of wind conditions, manual forces
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and distributions of loads and forces that together create the conditions of mini-
mum stability and unfavourable stresses.

The simulation model is developed from the CAD model by a mechanical or a
test engineer; the model is done according to the simulation case specification.
The simulation software used for the model is Simulink SimMechanics 2nd gener-
ation version. SimMechanics offers a plug-in option to facilitate direct export of
SolidWorks CAD assemblies into SimMechanics. The plug-in enables one to use
within SimMechanics the body specifications like inertial properties, constraints
and coordinate systems defined in SolidwWorks.

The stability loss -hazard is simulated with a model in which the observed tip-
ping direction is the direction of the extended work platform. The simulation model
consists at the top level of three main subsystems, Chassis, Scissors and Plat-
form. Additionally, there are two subsystems for tools and personnel, which to-
gether make up for the maximum 900 kg workload set as a requirement. Figure 28
illustrates the top level of the simulation model with the before mentioned subsys-
tems.
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Figure 28. The simulation model for the scissors MEWP — The top level model.
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The MEWP is positioned according to the EN 280 standard in the most unfavour-
able position with the maximum allowed inclination of the chassis. The machine is
also under wind loads and side forces like manual force, which try to tip the struc-
ture. The tipping lines are determined to be at ¥4 of the tyre ground contact width
from the outside of the ground contact width. The wind forces are assumed to act
horizontally, and they are applied at the centre of area of each structural compo-
nent, person and equipment.

With the exception of Platform, all the subsystems are made rigid to measure
only the stability of the MEWP while the platform is moving and to keep the model
complexity as low as possible. Rigid components do not have joints or sensors,
and they merely support the integrity of the ensemble.

After being issued, the simulation model is executed and visualised (see Figure
29), and the results are recorded to the verification and validation tool within the
ITP.

Figure 29. The visualisation of the simulation model depicted in the full horizontal
extension.

5.3.5  Traceability by DOORS
The traceability was implemented using IBM Rational DOORS (version 9.5) as the

traceability platform. DOORS accommodates the requirements, but also the logi-
cal architecture model of the system under demonstration (i.e. a SysML tool is
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only used to provide the diagram of the logical architecture). Furthermore, DOORS
is used to trace the CAD model and simulation model artefacts by using the surro-
gate object method, in which the external model files are linked to the require-
ments (and to the logical architecture model elements) via surrogate objects (see
Figure 30). A surrogate object represents in the DOORS environment the actual
artefact of a foreign tool: The requirement objects are traced to the surrogate
objects, and the surrogate objects are linked by a URL to the external file the
surrogate objects represents. The impact analysis provided by DOORS does not
cover changes in external files. Hence a DOORS script in DXL language was
written that checks the date and time of the external files linked to the surrogate
objects, and updates a custom attribute (DateAndTime) if the date and time of the
external file has been changed. This provides the necessary feature that when an
externally linked file is touched, the surrogate object is also touched. Executing the
script assists thus in the impact analysis such that also changes in external files
are covered by the analysis.

External file

IBM® Rational® Doors® frOT a foreign
too

DXL script updates
DateAndTime custom attribute

A S/
‘90@ 4 N P —
% - RV
) Surr'égz te object
Requirements
module
Surrogate
module

Figure 30. The surrogate object method.

The foreign tools, like CAD, SysML and simulation tools often work only in a local
workspace, i.e. within a local hard drive. To make available the files produced by
the tools for all the relevant parties, as well as for the DOORS tool, the files are
committed to a version control system. In this case, Subversion (SVN) was select-
ed. DOORS and SVN together makes thus the ITP (presented in Section 5.2) for
the demonstration. The necessary files from the different software tools such as
SolidWorks, Papyrus and Simulink are brought together in SVN to enable the
tracing process within DOORS.
An example of the surrogate method usage is depicted in Figure 31.
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Surrogate modules (DOORS)
__________________________________________ l
|

Model module (Mechanical subsystem)

|
| 3] Last Changed Date [ Relative URL I
MECH- 1 Mechanical subsystem % 13.10.2015 8:49:06 Architecture/model.uml !
MDL- - i
5 logical model :
= 13 e
MECH- ' 2 Mechanics CAD model ~ 16.10.2015 15:43:52 SolidworksModel/MEWP_S |
MbL1 tructure SLDASM ~ ———
|
MECH- 2.1 Chassis ¥ 15.10.2015 10:08:46 SolidworksModel/Chassis.s |
MDL-4 Idasm
MECH- 2.2 Scissors ¥ 15.10.2015 10:09:28 SolidworksModel/Scissors. |
MDL-6 sldasm
¥ 16.10.2015 15:41:28 SolidworksModel/Platform.
MDL-7 SLDASM
MECH- | 3 Mechanics simulation ~ 14.10.2015 14:10:19 SimMechanicsModel/MEW

MDL-3

|
|
|
|
P_Structure.slx |
|
|
|
|
|

I
I
I
I
I
I
I
I
I
I
I
| MECH- ~ 2.3 Platform
I
I
I
I
I
I
I
I
I
I
I
I

model
Model module (Platform mechanical subsystem)
| ID ] El Last Changed Date ] Relative URL |
PLTF- | 1 Platform CAD model - 16.10.2015 15:31:15 SolidworksModel/Platform.
MDL-1 SLDASM ]
PLTF- 2 Platform Logical model ¥ 13.10.2015 8:49:06 Architecture/model.uml :
MDL-2
__________________________________________ |
DOORS

External tools

Eclipse

Mechanical subsystem logical model

Model files in SVN

Surrogate links

Surrogate links

|

l l l Surrogate link

Chassis

Solidworks Mech.cap | [MATLAB (SimMechanics)

Scissors _ Platform Mechanics simulation model

qu

Model files in SVN = :’Lr:ﬁ*r:hiﬂ

Model file in SVN

Figure 31. An example of the surrogate object method usage.

A set of artefacts was created during the work phases described in Sections 5.3.1
to 5.3.4. The artefacts are (see Figure 37 and Figure 39 in Appendix B):

Stakeholder requirements
System requirements

PHA Hazards

Risk evaluations

Use cases

Architecture model

CAD model

Verification requirements
Simulation case specification
Simulation model
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e  Simulation results
e Requirements trace
e Verification report.

Figure 32 depicts the artefacts that were traced in the demonstration. Note that all
the artefacts are implemented as native DOORS objects, except the model arte-
facts, implementations of which are model files that are represented by surrogate
objects in DOORS. There were many more artefacts, which are not presented in
the simplified traceability diagram in Figure 32. The complete traceability diagram
can be found elsewhere (Tikka 2015).
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Figure 32. Simplified traceability diagram.
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The red freehand arc in Figure 32 points out the Systems Engineering core loop,
i.e. from a requirement to design artefacts, from design artefacts to the V&V exe-
cution report (in this case simulation results), from the V&V results to the V&V
success reports and from the V&V success reports back to the original require-
ment that is claimed to be fulfilled (or not fulfilled) by the design artefacts.

All the traces in Figure 32 are implemented as DOORS trace links. Hence the
impact analysis feature provided by DOORS works normally and covers the whole
SE core loop.

The DOORS implementation of the core traces of Figure 32 are depicted in

Figure 33 and Figure 34.

Reguirements module
SPRO'RE‘S{; 1 Customer requirements

SPRO-REQ- ' 1.1 Platform horizontal movement <~
=7 It shall be ible to move the platform in h | direction
SPRO-REQ- | 1,2 Platform horizontal movement reach % .
358 Tha hariznntal mavamant nf tha nlatfnrm chnold reach un tn a naar v wall at a digtanra of lace %
System use cases module -
SFRO- ~ 1.1.5 Brake
UCs-10
SPRO-  1.1.6 Positioning of the Platform (from Platform) o
ucs-11
£
SPRO-  1.1.6.1 Adjust height of the Platform =
ucs-12 2
PHA Hazard module :
mﬁ 1 Stability is lost —
SPR9. | 2 Unexpected movement te
Risk evaluation module :
- »
i";‘f‘i 1 Stability is lost —
It is not sure if the amount of displacement needed for the horizontal movement tilts the
machine. Hence the suggestive correction action about the stabilisers may not be necessary.
However, a safety requirement: ‘Stability shall not be lost’ is recorded. Simulation about the f
_stability shall be executed to check the need for stablilisers. £
570 | 2 Unexpected movement 3
Requirements module
SPRO-REQ- ~ 4.15 Requirements from risk assessements
364
y—

SPRO-REQ-  4,15.1 Stability shall not be lost
365 Movement of the platform to sideways direction shall not cause loosing of the stability with the
platform load with the worst case load location

SPRO'REQS' 5 Maintenance requirements

!Enllmu tha eafaty ralatad maintananra ranuiramante nf SES-EN TSN 13R4A0-1 SES-FM TSN

Figure 33. DOORS implementation of the trace chain from the ‘Stability is lost’
requirements to the original requirement at the whole machine level (see Figure

32).
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Figure 34. DOORS implementation of the Systems Engineering core loop at the
mechanical subsystem level in Figure 32.

Figure 34 also depicts an impact analysis case: The Model module and the Re-
quirements module of the mechanical subsystem display the suspect flags for the
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case in which the mechanics CAD model has been changed. The suspect flags
indicate that it has to be checked whether the CAD model still satisfies the Stability
shall not be lost -requirement (MECH-REQ-367) (and whether the CAD model still
corresponds to the Mechanical subsystem logical model; this link is beyond the SE
core loop); furthermore, it has to be checked that the mechanics simulation model
still corresponds to the CAD model.

5.4 Results of the demonstration

The demonstration indicates that SEAModel can be implemented satisfactorily
with a set of common mechanical engineering tools and a typical requirements
management tool.

In this case, the integration and traceability platform (ITP) consisted of the Sub-
version version control software and DOORS requirements management tool with
some additional scripting. Such an integration platform does not provide optimal
granularity of traceability due to the fact that the models (SysML, CAD and simula-
tion) can only be traced at the file level.

Furthermore, true integration of the tools data is not achieved. This means, for
example, that when the systems engineer sketches the physical architecture of a
mechanical subsystem with a SysML tool, the mechanical CAD engineer has to
manually input the data from the SysML model to create the CAD model. The
consequence is that there may be misprints and parameter errors in the created
CAD model, and the changes in the SysML model do not automatically reflect to
the CAD model. It may be, anyway, difficult to automatically reflect structural
changes from a SysML model to its corresponding CAD model, but at least the
model element names and parameter values should reflect from the father model
to the child model. Nevertheless, with the implementation concept used in our
demonstrations, changes in the father model mark the child model with a suspect
flag prompting the engineer of the child model to check, what needs to be
changed in the child model due to the changes in the father model.

The DXL script created in this work for DOORS to connect DOORS objects to
files in Subversion to facilitate the file level traceability was found to be a very
useful and an easy step forward from the current practices that do not apply any
kind of tracing of modelling artefacts. It is very probable that similar scripts can be
created to provide traceability connectivity between other than DOORS and Sub-
version software tools.

During the demonstration, there was a noticeable difficulty in deciding about
which artefacts should be traced to a particular artefact, even though the TIM and
SEAModel were available. The main reason for this was in the fact that the
demonstration included artefacts from three system levels, the whole system level,
the mechanical subsystem level and the platform level. So it was rather easy to
get confused with the system levels. This observation about the complexity sug-
gests that an optimal traceability tool shall be aware of the artefacts data model
(like SEAModel) of the company and guide the user in creating the trace links.
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6. Conclusions

With the Systems Engineering Artefacts Model (SEAModel) reported in this publi-
cation, requirements engineering can be extended to cover simulation artefacts.
SEAModel supports well at least the basic needs for simulation artefacts tracing.
SEAModel is implementable with different kinds of database oriented software
platforms, and thus it fits even for small- and medium-sized companies. However,
the implementation work varies greatly depending on the chosen platform. Optimal
solution is quite difficult to find. Traceability of artefacts from a set of heterogene-
ous modelling tools is difficult to arrange with the optimal granularity and full visibil-
ity of data. However, file level granularity of model elements may provide the satis-
factory solution for traceability, and is a step forward from neglected requirements
traceability.

The greatest obstacle in requirements aware simulation engineering is still in
the attitudes of the engineers. SEAModel tries to facilitate creation of data reposi-
tory and traceability tools such that simulation engineers feel more comfortable
with a well organised data repository for the artefacts they need as the input for
their work and for the artefacts they and their tools produce. As awareness of the
benefits and thus application of model-based systems engineering increases, such
a structured data repository is a more natural approach over a conventional doc-
ument based repository of systems engineering data.

The research work done in Task 3 of the VTT subproject pointed out the need
to promote the Model-Based Systems Engineering approach in Finland to better
manage requirements, design artefacts and V&V artefacts of complex systems.
There is a lot of work to do to make the heterogeneous systems engineering tools
to work on shared data instead of isolated snapshots of the same information on
each tool. Simantics provides one interesting platform for the purpose. With the
traceability information model according to SEAModel, Simantics would offer
SME:s with an affordable solution for integrated systems development.

Another future research topic is the collaboration model to improve the commu-
nications and data sharing between contractors and their sub-contractors. This is
especially important in the development of safety relevant systems to ensure con-
sistent and actual set of safety requirements from contractors to their sub-
contractors, and transfer of evidence of fulfiling the requirements from sub-
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contractors to the main contractors. SEAModel can be used as the basis for the
data sharing model.

Working with the SEAModel is quite complex without a Systems Engineering
background. Nevertheless, development of complex system causes complex
processes and complex artefacts models, as Niklas Luhmann said: “Only com-
plexity can reduce complexity.” The complexity can be alleviated by a good trace-
ability tool that is aware of the artefacts model (such as SEAModel) used in the
company.
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Appendix A: Descriptions of the artefact types

In the following, descriptions of the artefact types presented in the artefacts mod-
els in Chapter 3 are provided. Note that the descriptions are not concept defini-
tions, but they supply information about the purpose and usage of the artefact
types.

Action: An action is an atomic piece of a work task, i.e. it is not decomposed into
smaller behavioural elements. An action can be a system action or (human) actor
action depending on the behaviour modelling method, system task or system use
case modelling. System functions are often identified from the actions.

Actor action: A special case of Action. Actor action is an abstract artefact type;
the sequence of actor actions of a system use case is stored in the Action arte-
facts.

Artefact repository: A database or a XML storage for all systems engineering
artefacts.

Audio file: Audio file is a special case of File. An audio file can be of any format
(WAV, MP3, and so forth). The most important attribute is the link to the actual
audio file.

Behaviour. The Behaviour artefact is used to provide different perspectives to
system functional architecture. It can be used to provide views to categorised
sets of functionality or to completely different functionalities of machines with dual
Or more usage purposes.

Black box artefact: Contrary to Model element, a black box artefact is an engi-
neering artefact with no or limited knowledge about their internal structure, or
which do not have a well-defined structure. Such artefacts are conventional doc-
uments and foreign models.

CANopen object. CANopen object is an information item (an instance of a CAN-
open object type) carried by a communications message.

CANopen object type. CANopen object type according to CiA DS301 and DSP
311.
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Channel. A logical entity that encompasses the signal processing flow from input
to output through logic.

Component. A non-atomic system element, in some cases denoted as ‘part’. Is
often distinguished from a subsystem by the fact that a component has a part
number whereas subsystem does not. However, a component can have several
specialisations, such as information item, structural element, software compo-
nent, joint element, device and person.

Composite flow. A special case of a flow in which the flow consists of several
primitive flows. An example is a quadrature encoder the output of which consists
of the two pulse train channels, channel A and channel B, with 90 degrees phase
shift to each other; the sign of the phase shift reports the direction of the rotation
whereas the pulses report the rate of travel; hence the actual flow (the composite
flow), rotation travel with its sign (direction), is derived from the two channels.

Constraint. A special case of a requirement. In one sense, it is not a require-
ment, because it only states facts e.g. about the system’s environment (like the
dimensions of the space where the system will be installed); on the other hand,
its effect in the design is similar to that of a requirement.

Context description. The Context description artefact provides description of the
system-of-interest’'s general context including the following issues requested by
ISO 12100:2010: ergonomic principles, energy sources, space limits, life limit,
service intervals, other time limits, housekeeping policy, material properties, other
limits, external systems interaction and experience of use.

Context model: A special case of Model for modelling the abstract and concrete
life cycle environment of the system-of-interest. Context model includes artefacts
like Stakeholder, Human actor, Life cycle phase, Past incident, Constraint, Envi-
ronment, External system (element) and Glossary item.

Continuous action: A special case of Action. Action that continues over an in-
definite time, such as monitoring of a temperature.

Data file: A special case of File. A data file can be of any type and with any data
content. The most important attribute is the link to the actual data file.
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Device. A special case of Component, such as a sensor, actuator or controller.

Diagram. A special case of File. The Diagram artefact can accommodate dia-
grams, pictures and photographs of any kind. The most important attribute is the
link to the actual diagram file.

Document. The Document artefact defines any type of document or package of
documents (like the actual document and its attachments). The most important
attribute is the link to the actual document file.

Drawing: A special case of File. The Drawing artefact can accommodate dia-
grams, pictures and photographs of any kind. The most important attribute is the
link to the actual drawing file.

Electrical port type: The electrical case of the Port type artefact.

Engineering artefact: Engineering artefact is the generalisation of all the other
artefact types. An Engineering artefact is an abstract artefact type, i.e. there is no
special data item in the data repository called engineering artefact.

Environment. Description of the mechanical, climatic, chemical, ergonomic,
external system and other environment, especially in regard to their effect in the
system-of-interest. Domain knowledge can be described here, too. (Domain
knowledge model covers models about such real world entities and logic around
the system that are relevant to the development of the system-of-interest.)

Event: Event describes any type of event relevant to the system behavioural
modelling, like reaching a temperature limit and pressing a control button. It can
also be used to store information about past and potential accidents and inci-
dents. Potential accidents and incidents can be derived from Hazards (potential
accident or incident is a presentation of an event-based Hazard).

External port: A special case of Port; a port of an External system element that
interacts with the system-of-interest.

External system: A special case of System; a system that interacts with the
system-of-interest.

A3




External system element. A special case of System element; a system element
that does not belong to the system-of-interest, but that interacts with the system-
of-interest.

Fault mode: An identified fault or failure mode of a particular system element.

Fault mode type: A general fault or failure mode type.

File: A file is the typical resource provided practically by all computer systems. It
is expected that the project data repository provides a file system besides the
possible database storage.

Flow: Specifies the flow between ports. A flow can be electrical (signal), hydraulic
(fluid), mechanical (momentum), optical (light), and so forth. Flows specify the
ports (i.e. they inform, what type of flows the ports are able to transmit or re-
ceive).

FMECA hazard: A special case of Hazard. A hazard identified by the Failure
Modes, Effects and Criticality Analysis method.

Foreign context model: A special case of Foreign model for modelling the ab-
stract and concrete life cycle environment of the system-of-interest. E.g. a SysML
model or a CAD model.

Foreign domain knowledge model: A special case of Foreign model for model-
ling the domain knowledge of the system context.

Foreign environment model: A special case of Foreign model for modelling the
environment of the system.

Foreign human model: A special case of Foreign model for modelling humans
interacting with the system or who are part of the system.

Foreign model: Any kind of model, SysML model, virtual model, and the like that
are not stored as a structured set of artefacts and their relations, but as a ‘black
box’ model file.
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Foreign system model: A special case of Foreign model for modelling the re-
quirements, behaviour, architecture and other properties of the system-of-
interest. E.g. a SysML model or a CAD model.

FTA hazard: A special case of Hazard. A hazard identified by the Fault Tree
Analysis method.

Glossary item: Definitions, terms and abbreviations are presented in the Glossa-
ry item artefact.

Hazard: The Hazard artefact records the description of the hazards identified
during the analysis sessions, the existing protective measures and the corrective
actions recommendations.

HAZOP hazard: A special case of Hazard. A hazard identified by the Hazard and
operability study method.

Human actor: Any human actor that interacts with the system, whether an as-
sembly man, operator, maintenance man, cleaner and the like, or a bystander
who is situated in the hazard zone of the system.

Hydraulic port type: The hydraulic case of the Port type artefact.

Individual: Records information about the supplied system individual.

Individual property: Besides the information provided by the Individual artefact
and its attributes, a set of individual parameters (colour, existence of options, and
so forth) can be assigned to a product individual. Such information can include
static (e.g. serial number) and dynamic information (e.g. operation hours), and
configurable information (e.g. hydraulic control ramp parameters).

Information item: A special case of Component; a piece of information, like a
message on a fieldbus.

Instantaneous action: A special case of Action. A ‘zero’ length action, like event
or pushing on/off button.
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Issue: Any kind of issue prompting actions by the development organisation, e.g.
to change specifications or to do redesign. Issue is managed by the modification
procedure of the organisation.

Joint: The logical connection between ports. It does not specify the actual physi-
cal implementation of the connection. E.g. in case of an electrical connection, it
represents the joint galvanic point that connects two or more electrical pins, but it
does not specify the wires and cables used to implement the galvanic connection.

Joint element: A special case of a system element. Joint element is finally real-
ised as a mechanical link, optical guide, cable and the like.

Life cycle phase: The life cycle model is recorded in the Life cycle phase arte-
fact, e.g. Concept, Development, Production, Utilisation, Support and Retirement
according to ISO/IEC TR 24748-1:2010.

Mechanical port type: The mechanical case of the Port type artefact.

Message: Specifies a communications message.

Message hazard: A special case of Hazard. A hazard identified by message
safety analysis.

Model. A structured set of modelling elements (i.e. a set of engineering artefacts)
and their relationships representing an aspect of the system for the purposes of
the system development, operation and maintenance.

Model element: Most of the engineering artefacts, like Requirement, System
function, System element are regarded as model elements. A model element is,
contrary to Black box artefact, an engineering artefact with known structure and
relations with other engineering artefacts according to the artefact model dia-
grams.

Model file: A special case of File. A model file can be of any type including the
file types of commercial and open source modelling tools. The most important
attribute is the link to the actual model file or files.
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Network: A communication network segment with dedicated physical layer and
data link layer parameters.

Network hazard: A special case of Hazard. A hazard identified by network safety
analysis.

Networked signal flow: A signal flow that goes through at least one network
segment.

Networked system parameter: A system parameter that can be accessed
through a communication network.

Node: Node is a port to a communications network.

Non-composite flow. A flow that does not constitute of several primitive flows. A
normal flow.

Normal channel: A normal functional channel (contrary to test channel) from
input (like sensors) to output (like hydraulic actuators) through logic (like pro-
grammable logic controller).

Operating mode. Description of different types of control or operating modes
that can include e.g. the following modes: automatic, manual; remote, local; diag-
nostics; ‘limp home'.

Operating position. Descriptions of the positions at which the system is con-
trolled and operated.

Operational state: Placeholder for the descriptions of the states of the system,
like power down state, power up state, operating state and emergency stop state.

Optical port type: The optical case of the Port type artefact.

Past incident. A record of accidents and incidents history, including near misses,
of this type of systems or similar system types. Past incident is a special case of
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Event.

PHA hazard: A special case of Hazard. A hazard identified by the Preliminary
Hazard Analysis method.

Photograph: Photograph is a special case of File. A photograph can be of any
format. The most important attribute is the link to the actual photograph file.

Pneumatic port type: The pneumatic case of the Port type artefact.

Port: The interfaces are modelled by the Port artefacts. Port is a logical interface
entity that is specified in detail by the flows it can carry.

Port type. The port type specifies (with its properties) the interfaces of a product
type. A port type may consist of sub-ports. A typical case is a connector with
several pins.

Presentation file: Presentation file is a special case of File. A presentation file
can be of any type including the file types of commercial and open source
presentation tools. The most important attribute is the link to the actual presenta-
tion file.

Product individual: Stores information about the product type instances, i.e.
product individuals. Product individual artefact is a specialisation of the Individual
artefact with no additional attributes.

Product property: Provides a way to present specification parameters, normally
found in datasheets and technical manuals, in a structured way. Such properties
include physical properties, like weight, dimensions and power consumption, but
also more abstract parameters, like safety integrity level or functional capabilities,
can be presented as product property.

Product type: Contains the overall identification and description of the library
component or sub-system, or of the published system-of-interest.

Product type library: Collects all the data of the product types used to integrate
the system-of-interest or of all the systems of the organisation, but it can also
collect product type data of product types that have potential for application, alt-
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hough not currently used in any of the organisation’s system.

Project model: A special case of Model for the purpose of modelling the project
work, management, resources, schedules and financial matters. Project model
collects thus engineering artefacts, especially project artefacts, such as Project,
Engineering process, Project activity, Project task, Issue, Modification request,
Impact analysis report, Modification authorisation, Modification log item, Re-
source and Role.

Property: The Property artefacts represent any kind of properties, included re-
quired properties, specified properties and realised properties. Behaviour and
Structure are in principal properties of the system, but in this model they are not
modelled as special cases of property. However, behaviour and structure proper-
ties can be described by Product property artefacts; Product property is a special
case of Property.

Relationship: An association artefact, i.e. it defines a relation type between two
engineering artefacts. Most of these relationships are depicted in the artefacts
model diagrams, but in principle, any types of relations can be added. The
implementation of a relationship can be the same as that of an engineering
artefact, e.g. a database table (i.e. a many-to-many relationship table) with
appropriate attributes, like suspect flag (for impact analysis), relationship type
and rationale for the relation.

Requirement: The Requirement artefact defines a requirement and its attributes,
like type and source. A requirement can be a stakeholder requirement, system
requirement or constraint.

Reusable fragment: A special case of a file. A reusable fragment is not a
complete model or document as such, but is embedded into one or more
documents or foreign models to compose a document or model.

Rich document file: A special case of File. A document file that supports
formatting of text and inclusion of tables and drawings and other means of
information presentation.

Risk assessment: Works as an assignment to carry out a risk assessment task.
It, however, also contains a short description of the results of the risk assessment
(the actual results are reported in comprehensive analysis reports).

Risk estimation: Stores the risk estimation parameters and the resulting risk
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level.

Risk estimation IEC 61508: Risk estimation parameters and risk level according
to IEC 61508-5:2010.

Risk estimation IEC 62061: Risk estimation parameters and risk level according
to IEC 62061:2006.

Risk estimation 1SO 13849: Risk estimation parameters and risk level according
to 1SO 13849-1:2006.

Risk evaluation: Stores the judgment and conclusions, on the basis of the risk
analysis, of whether the risk reduction objectives have been achieved.

Role: A special case of Component; any person role relevant to system-of-
interest. The persons that carry out engineering processes, project activities and
project task are tagged by the Role artefact. It is better to use roles instead of
person hames when assigning project work to persons. This is due to the fact
that persons may change. Hence a separate list of person is needed (not pre-
sented in this report).

Safety block: A set of system elements that constitute a specific portion of the
overall safety related part of the control system.

Safety function: A special case of System function specified to provide a func-
tional safety measure, such as safety related stop, prevention of unexpected
start-up and hold-to-run function.

Safety-related block diagram: A special case of diagram that illustrates the
logical structure of the safety related part of the control system according to An-
nex B of ISO 13849-1:2008.

Safety requirement. A special case of Requirement. Safety requirements can be
distinguished from normal requirements by a True/False flag or by a Requirement
type attribute.

Safety-related part of control system: “Part of a control system that responds
to safety-related input signals and generates safety-related output signals” (ISO
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13849-1:2008). It can be electrical, electronic, programmable electronic, mechan-
ical, pneumatic, hydraulic, and so forth.

Scenario: Scenario is an example flow of actions of a system use case. i.e. it
may involve only some of the human actors of the system use case, and it goes
through only single path of the possible sequence of actions of the system use
case. Scenarios can be used e.g. in software testing and in safety analyses. A
Scenario artefact includes the example action flow as a story or in a more struc-
tured way by well-defined attributes.

Session: The session meeting minutes are recorded in the Session artefact. If
wished, this artefact type can be divided into two types, Minutes and Session.

Spreadsheet file: A special case of File. A spreadsheet can be of any type in-
cluding the file types of commercial and open source spreadsheet tools. The
most important attribute is the link to the actual spreadsheet file.

Stakeholder: Stakeholder artefacts define the stakeholders that may state re-
quirements for the system (i.e. that have interest in the system). Stakeholders
can include e.g. system users, domain experts, principals, investors, board of
directors, corporate management, authorities, laws, standards, customers,
maintenance staff, training staff, system engineer, buyers of the system and
marketing and sales.

Stakeholder requirement: A special case of Requirement: requirement set by a
stakeholder.

Structural element: A special case of Component; a hardware element, like rod,
wall and the like.

Structure: Structure provides a means to present the system'’s physical architec-
ture. The structure artefact can represent a partial view of the whole system
structure or different viewpoints of the whole system structure, like development
time view and manufacturing time view.

Subsystem: A special case of System and System element; a subsystem is a
system from its own point of view and a system element from the parent system
point of view.
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SW element: A special case of Component; a reusable, encapsulated, piece of
software, a software component.

System: The central node in the artefacts data model. It only includes a small
number of attributes, mainly title and a short description of the system, i.e. the
system identification. System-of-interest, Subsystem and External system are
special cases of System.

System action: A special case of Action. System action is an abstract artefact
type; the sequence of system actions of a system task is stored in the Action
artefacts.

System activity: System activities are used to describe the intended behaviour
of goal-oriented agents, such as humans or technical systems. System activity is
an abstract artefact type and has two specialisations, System task and System
use case.

System element: The logical representation of the physical component or sub-
system that finally is selected or designed and manufactured to implement the
system element. System elements together constitute the system-of-interest.
System elements include, besides the physical components and subsystems,
more abstract elements, like information items and SW elements.

System element individual: Provides information about a system element indi-
vidual that may have different contents for different system-of-interest instances
the system element belongs to. The System element individual artefact is a spe-
cialisation of the Individual artefact with no additional attributes.

System function: A system level function (contrary to SW function), e.g. boom
movement.

System model: A special case of Model for modelling the requirements, behav-
iour, architecture and other properties of the system-of-interest.

System-of-interest: The System-of-interest artefact defines the system under
development and during all the life cycle phases. It is a special case of System. It
is an abstract artefact type, i.e. there is no special representation for system-of-
interest, but the system-of-interest is implemented as a System artefact.
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System process: A special case of a system use case or system task. Describes
the sequence of system use cases or system tasks in an explicit way (contrary to
the implicit way in which the sequence of system use cases or system tasks can
be concluded from the post conditions of one use case or system task and pre-
conditions of another use case or system task).

System property: A required or specified property of a system (the realised
properties are stored in Product property artefacts and the properties of the in-
stances of the Product are stored in Individual property artefact). System proper-
ties include system parameters to configure e.g. a system function, system ele-
ment or port.

System task: The System task artefact is the system realisation view of the be-
haviour. It defines the flow of system functions. It is especially useful in cases in
which human actors are not involved, but it is also used to identify system func-
tions that cannot be identified from system use cases or use case acts.

System use case: A system level use case (contrary to SW use cases). Use
cases can be specified according to SysML.

System use case supplement: A safety related supplement that adds attributes
such as ‘actor qualification’, ‘list of operator instructions’, ‘expected misuse’, ‘acti-
vation frequency’, ‘preliminary accident scenario’ to the system use case.

Temporal action: A special case of Action. An action carried out in finite time;
i.e. is not instantaneous (‘zero length’) neither continuous (‘infinite’).

Test channel: A special case of Channel that performs monitoring of the normal
channel.

UCSA hazard: A special case of Hazard. A hazard identified by the Use Case
Safety Analysis method.

V&V case specification: Specifies a test, analysis, inspection, calculation, de-
sign document review, demonstration, calculation, simulation, comparison, sam-
pling, measurement and the like to verify or validate that the artefacts under V&V
comply with the expectations. V&V case specification includes, among others,
description of the V&V case and its detailed steps, a list of proposed or obliged
tools, a description of the expected environment and infrastructure for the V&V
case, e.g. required space and temperature, vibration and other parameters. It
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also includes a description of the expected results. Issues such as schedule and
persons or roles whom this V&V case is as-signed to are not included; this is
because the V&V case may be re-used in different phases of the project. Such
issues are defined in the V&V plans.

V&YV execution interpreter: An instruction document or a program that provides
means for interpreting the verification results, like a program that plots a graph of
the virtual measurement data.

V&YV execution parameter: The parameters relating to the execution of the veri-
fication (or validation), like the number of simulation runs.

V&V execution report: Records the results of the test, analysis, demonstration,
review and other case executions.

V&V model parameter: The parameters that configure the model item under
verification or validation for the verification or validation execution.

V&V plan: Collects a set of test, analysis, demonstration, review and other cases
to form a specific sequence of tests for a specific purpose, such as for Factory
Acceptance Test (FAT).

V&V requirement: A special case of Requirement. In many cases, the require-
ments specification or safety standards set requirements as to how the design
shall be verified or validated.

V&V success report: The result of verification or validation. The main contents
are the pass/no-pass verdict and the argumentation of the verdict. This artefact
type can also be called V&V claim.

Video file: Video file is a special case of File. A video file can be of any format.
The most important attribute is the link to the actual video file.

View: View provides the possibility to pick a set of engineering artefacts and their
relationships for specific project process concerns.

Wiki page: A special case of a document for the purpose of editing and browsing
the document directly via the web browser interface. Not necessarily edited using
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the Wiki syntax.
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Appendix B: Semiformal presentation of the
demonstration workflow

In the following figures, the demonstration workflow introduced in Section 5.2 is
presented in a semiformal way using the UML and SysML use case and activity
diagram notations. See figures from Figure 35 to Figure 48.
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Figure 35. The main use case.
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Figure 36. The overall workflow.

B3



3 act Engineering of a feature request

!

Requirements acquisition and analysis

Stakeholder requirements
System requirements

PHA Hazards

Risk evaluations
Use cases

System requirements «datastores

Use cases
Architecture model

System requirements

Architecture model

Detailed design

CAD model

System requirements

|
e Archi model
=5 CAD model I s
= TR i Traceability Platform
=, Verification requirements ty
-
Verification = Simulation case specification
-,
M Simulation model
! - z
- Simulation result
:II Verification report
-,

'y

Figure 37. The overall workflow with detailed analysis of storing and using of engineering artefacts in the Integration and Traceability
Platform (<<datastore>> in the SysML notation).
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Figure 39. Engineering artefacts created during the workflow.
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Figure 43. Verification workflow (overall) (see details of Verification specification in Figure 44 and Verification execution in Figure 46).
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