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Preface
Historically, research and development work concerned with intelligence has been anthropocentric. This is
an extreme form of speciesism, which involves human beings considering human beings as superior to all
other life. This can lead to erroneous assumptions about, for example, tiny brains being capable of only tiny
intelligence, or no brains equalling no intelligence. Yet, insects with tiny brains have complex behavioral
repertoires comparable to those of any mammal. For example, a honeybee's brain weighs only about one
milligram, but honeybees can count, differentiate, and categorise. Furthermore, plants do not have central-
ized brains, but they are capable of communication and other intelligent behaviours. Unlike human beings,
plants can survive and function even after losing 90% or more of their mass. Thus, plants have no centralized
brains because that would make them vulnerable – not because plants do not have intelligence. Moreover,
even tiny and brainless lifeforms can exhibit formidable problem solving capabilities as they compete with
human beings. For example, bacteria can exhibit formidable microbial intelligence as they adapt to survive
and prosper against the onslaught of human-made pesticides and pharmaceuticals intended to eradicate
them.

Anthropocentric perspectives have been of limited usefulness in research as they overlooked the capacity
of many different lifeforms to handle complex challenges through intelligent behaviours such as self-aware-
ness, association and anticipation, decision-making, and robust adaptation. Furthermore, anthropocentric
perspectives have been of limited usefulness in development as attempts to mimic human general intelli-
gence led to little progress in artificial intelligence for decades. By contrast, research and development that
has sought to go beyond anthropocentric perspectives has been much more fruitful. In particular, intelligence
research with post-anthropocentric perspectives has revealed formidable capabilities of microbial intelli-
gence and plant intelligence, as well as insect intelligence, avian intelligence, and the intelligence of many
other animals. At the same time, the development of AI has advanced rapidly through harnessing insights
from post-anthropocentric research, while seeking to introduce many AI applications that have their own
specific narrow focus – rather than general intelligence. As the range of natural intelligences becomes ap-
parent and the range of artificial intelligences increases, it is appropriate to consider how the many different
natural and artificial intelligences can be combined effectively in hybrid systems and hybrid beings. Accord-
ingly, multi-intelligence hybrid systems and hybrid beings is the topic of this report.
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1. Introduction

The topic of this report is multiple intelligence hybrid beings and hybrid systems. This goes beyond extant
research and practice in related fields such as, for example, swarm intelligence. The following types of intel-
ligences are considered: natural (human, canine, avian, insect, fish, plant, microbial) and artificial (self-
awareness, association and anticipation, decision-making, robust adaptation, problem solving). For pur-
poses of exposition, various examples are provided of historical, present, and potential multi-intelligence
hybrid systems and hybrid beings are provided as follows: natural intelligence + natural intelligence; natural
intelligence + AI; AI + AI. Subsequently, initial principles are set-out for research, development, and innova-
tion work focused on multi-intelligence. Then, directions are proposed for future research, development, and
innovation. These encompass metaphysics, socio-technical theory; semiotics; and systems engineering.
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2. Types of intelligences

First in this chapter, brief summaries are provided of the following different types of natural intelligence:
human, canine, avian, insect, fish, plant, and microbial. Clearly, these are not all the types of natural intelli-
gence. Rather, these brief summaries provide comparative examples of natural intelligence, which inform
later sections of this report. Second in this chapter, brief summaries are provided of different aspects of
artificial intelligence as follows: self-awareness, association and anticipation, decision-making, robust adap-
tation, and problem solving. Again, these are not the only possible ways of considering aspects of artificial
intelligence. Rather, the brief summaries provide examples to inform later sections of this report.

2.1 Natural intelligence

2.1.1 Human

Compared to other intelligences in nature, human intelligence is the most researched. This includes outputs,
processes. With regard to outputs, IQ (intelligence quotient) scores are derived from intelligence tests. Some
IQ tests aim to measure general intelligence (g), and encompass mathematical skill, verbal fluency, spatial
visualization, memory retrieval, and reasoning approaches. However, rather than measure general intelli-
gence, IQ tests may measure outcomes arising from access to relevant education and/or behavioural, mo-
tivational and social factors (Flynn, 1987; Bandura, 1993; Neisser, 1997; Seligman, 1992). Notably, as IQ
scores have risen over generations, creativity quotient (CQ) has fallen. This had led to claims of there being
a “creativity crisis” (Powers, 2015). These trends could be related to distinctions between processes in fluid
intelligence and crystallized intelligence. Fluid intelligence is the capacity to identify patterns, reason and
solve novel problems, independent of any knowledge from the past. By contrast, crystallized intelligence is
the ability to use skills, knowledge, and experience, drawing upon long-term memory. It is argued that these
can be separate neural and mental systems, but are correlated with each other (Cattell, 1963; Geary, 2005).

More generally, there are numerous opinions about what measures of human intelligence should encom-
pass. For example, it has been argued that intelligence involves processes that are linguistic, logical, spatial,
musical, bodily-kinesthetic, interpersonal, intrapersonal (Gardner, 1993). Others have argued that different
types of different people’s intelligence can be categorized more simply in terms such as realistic, investiga-
tive, artistic (Ackerman, 1996) or analytical, creative, and practical (Sternberg, 1985). With regard to pro-
cesses, it has been argued (Das, 2002; Luria, 1966) that human intelligence involves four processes (plan-
ning, attention, simultaneous, successive) related to brain areas (frontal lobe, lower cortex, occipital and the
parietal lobes frontal-temporal lobes). Others have argued that proposed that the biological basis of intelli-
gence stems from how well the frontal and parietal regions of the brain communicate and exchange infor-
mation with each other (Deary, Penke & Johnson, 2010; Jung & Haier, 2007). Fundamental studies across
species relate human intelligence to emergent behaviours related to self-awareness, association and antic-
ipation, decision-making, robust adaptation, and problem solving (Westerhoff, 2014).

2.1.2 Canine

Research into canine intelligence has included studies that use measures of human intelligence outputs
(Coren, 2009), and other studies investigating more fundamental aspects of intelligence such as self-aware-
ness (Ardena & Adams, 2016). Research findings indicate that dogs learn quickly from each other. For
example, puppies learn behaviors quickly by following examples set by experienced dogs. Domestic dogs
have more advanced social-cognitive abilities than dogs’ closest canine relatives, and indeed mammals such
as great apes. Rather, their social-cognitive abilities parallel some of the social-cognitive skills of human
children (Tomasello and Kaminski, 2009). The cognitive capacities of dogs have inevitably been shaped by
millennia of contact with humans (Hare, 2002). As a result of this physical and social evolution, many dogs
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readily respond to social cues common to humans and quickly learn the meaning of words (Kaminski et al,
2004).

However, domestic dogs may have lost some of their original cognitive abilities once they joined humans.
For example, dingos can outperform domestic dogs in non-social problem-solving experiments and, more
generally, domestic dogs can call upon human beings to solve difficult problems for them (Udell et al, 2010).
It has been argued that some breeds of domestic dogs, such as border collies, exhibit higher levels of intel-
ligence than others (Coren, 2009), and that there can be much variation of intelligence within one breed
(Coren, 2016). A study published in the scientific journal, Intelligence, indicates that domestic dogs have
overlapping cognitive abilities. This finding was derived from a study assessing individual differences in cog-
nitive abilities in 68 border collies to determine the structure of intelligence in dogs. It was found that dogs
quickly completing a detour tasks also tended to score highly on a choice tasks; and his could be explained
by a “g” (general intelligence) factor (Ardena & Adams, 2016).

2.1.3 Avian

Avian brains are separated from those of mammals by some 300 million years of independent evolution.
Hence, avian brains are structurally very different from the brains of mammals. Nonetheless, they have the
neural circuitry associated with higher-level consciousness (Butler et al, 2006; Butler et al. 2005). Not least,
research suggests that birds have the ability to attribute mental states to themselves and to others, while
understanding that others have different mental states (Watve et al, 2002). In practice, birds learn from each
other and are adept at making and using tools (Bugnyar & Kotrschal, 2002; Emery, 2006; Gentner et al,
2006).

Bird communication can be remarkably sophisticated. For example, some birds can use the perception
and learning capabilities of embryos to alter their offspring’s developmental trajectories. For example, zebra
finch parents can acoustically signal high ambient temperatures (specifically above 26°C) to their embryos.
Exposure of embryos to these acoustic cues alone adaptively alters subsequent growth in response to nest
temperature and influences individuals’ reproductive success and thermal preferences as adults (Mariette &
Buchanan, 2016).

2.1.4 Insect

Insects can navigate over long distances, find food, avoid predators, communicate, display courtship, care
for their young, and so on. Ants use a variety of cues to navigate including, such as sun position, polarized
light patterns, visual panoramas, gradient of odors, wind direction, slope, ground texture, and step-counting.
Overall, the list of cues ants can utilise for navigation is probably greater than for humans. However, ants do
not integrate all this information into a unified representation of the world, a so-called cognitive map. Instead
they possess different and distinct modules dedicated to different navigational tasks. These combine to allow
navigation. One module keeps track of distance and direction travelled, and continually updates an estimate
of the best “bee-line” home. A second module, dedicated to the learning of visual scenery, allows ants to
recognise and navigate rapidly along important routes as defined by familiar visual cues. Finally, ants pos-
sess an emergency plan for when both of these systems fail to indicate what to do: in other words, when the
ant is lost. In this case, they display a systematic search pattern.

Ants can keep track of the direction they have just been travelling, allowing them to backtrack if they
unexpectedly move from familiar to unfamiliar surroundings. Evolution has equipped ants with a distributed
system of specialised modules interacting together. In particular, the navigational intelligence of ants is not
in an ability to build a unified representation of the world, but in the way different strategies cleverly interact
to produce robust navigation (Chittka & Muller, 2009; Chittka & Niven, 2009; Chittka & Skorupski, 2011;
Wystrach, 2013).
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2.1.5 Fish

Fish have many of the cognitive powers associated with intelligence (Brown, 2004). Fish can learn different
skills in different ways, including through social learning (Reader et al, 2003). Fish can use tools (Pasko,
2010), build (Clark et al. 1998), hunt (Schuster, 2006), avoid capture, escape from nets (Czanyi & Doka,
1993), and avoid being killed (Foster, 1988), in some cases by feigning death (Tobler, 2005). When they are
not building, hunting, or avoiding harm, fish can past time by playing (Helfman & Collette, 2011).

For example, some types of wrasse use rocks to crush sea urchins in order to eat their softer insides,
while cichlids and catfish have been observed gluing their eggs to leaves and small rocks, which they carry
around when their nests are disrupted. (Brown, 2015; Gertz, 2014; Greenwood, 2014).

2.1.6 Plant

If intelligence is the ability to solve problems, then plants are highly intelligent. For example, many plants
turn to the sun to meet their energy needs. This can include plants growing through shady areas to locate
light, and turning their leaves during the day to capture the best light. More than 500 types of plants meet
their energy needs by preying on animals ranging from insects, rodents and even birds. To make this pos-
sible, plants have evolved complex lures and rapid reactions to catch, hold and devour animal prey. Plants
also harness animals in order to reproduce.

Many plants use complex trickery or provide snacks and advertisements (colours) to lure in pollinators,
communicating either through direct deception or rewards. Plants even distinguish between different polli-
nators and only germinate their pollen for the best. Conversely, plants have a wide variety of toxic com-
pounds to ward off predators. Notably, plants determine and apply the smallest quantity of resources that
will solve the problem by releasing the toxic compounds only in the leaf that is under attack. As was argued
by Charles Darwin, recent research indicates that the key to plant intelligence is in the radicle or root apex.
Individual root apexes are not particularly capable. However, most plants have millions of individual roots,
each with a single radicle. So, the destruction of one leaf or one root does not lead to the demise of the
plant.

While humans have five basic senses, plants have at least 20 different senses used to monitor complex
conditions in their environment. In addition that correspond approximately to the five human senses, plants
have additional ones that can do such things as measure humidity, detect gravity and sense electromagnetic
fields.

At the same time, plants are complex communicators, for example, through the use of chemical volatiles,
electrical signals, and vibrations. In these ways, plants share information with neighbouring plants, insects,
and/or other animals. For example, the scents of flowers when in bloom and when rotting are different mes-
sages for pollinators. Plants can even warn others of their species when danger is near. If attacked by an
insect, a plant will send a chemical warning signal to their fellows. Furthermore, plants differentiate in their
communications. This happens when they react differently to plants from the same parent as those from a
different parent (Baluška, Volkmann & Mancuso, 2006; Farmer & Ryan, 1990; Hance, 2015; Hutchings &
Dekroon, 1994; Mancuso & Viola, 2015; Trewavas, 2009).

2.1.7 Microbial

Microbial intelligence is shown by microorganisms. Microbes exhibit similar characteristics of intelligence as
humans, such as self-awareness, association and adaptation, decision making, robust adaptation, and prob-
lem solving capabilities. This includes complex adaptive behaviour shown by single cells; and altruistic or
cooperative behavior in populations of like or unlike cells. Microbial intelligence involves, for example, chem-
ical signalling that induces physiological or behavioral changes in cells and influences colony structures.
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Bacteria, which show primitive behavior as isolated cells, can display more sophisticated behavior as a
population. These behaviors occur in single species populations, or mixed species populations. It has been
suggested that a bacterial colony loosely mimics a biological neural network. The bacteria can take inputs
in form of chemical signals, process them and then produce output chemicals to signal other bacteria in the
colony.

The mechanisms that enable single celled organisms to coordinate in populations presumably carried
over in those lines that evolved multicellularity, and were co-opted as mechanisms to coordinate multicellular
organisms. Bacteria communication and self-organization in the context of network theory has been inves-
tigated. This has led to development of a fractal model of bacterial colony and identified linguistic and social
patterns in colony lifecycle (Ford, 2004; Nui & Wang, 2012; Westerhoff et al. 2014).

2.2 Artificial intelligence

Fundamental studies across species relate intelligence to emergent behaviours related to self-awareness,
robust adaptation, association and anticipation, decision-making, and problem solving (Westerhoff, 2014).
Accordingly, these are the categories used here in consideration of artificial intelligence.

2.2.1 Self-awareness

The notion of self-aware AI is well established. For example, visitors to the 1939 New York World’s Fair were
able to enter the miraculous World of Tomorrow. This was an artificial world where visitors could meet Elektro
the robot, and his pet robot dog Sparko (Jackson, 2011). Still in 2016, AI that has self-awareness and is at
least equal to the general intelligence of human beings (Turing, 1950), which is referred to a Strong AI, is
hypothetical. Strong AI is a topic of debate. It can be perceived as a miracle liberating human beings from
the drudgery of mundane activities or a monster that will put an end to humanity or at least bring chronic
mass unemployment.

For those who develop AI, exceeding human intelligence is a persistent mission involving efforts to mimic
human mind, behaviour and actions. On the other hand, the implementation and influence of Strong AI may
be moderated by many practical considerations. By contrast, Weak AI is not intended to mimic human be-
ings, and there is no intention that AI should be able to feel, perceive, or experience subjectively. Rather,
weak AI is focused upon the economic, reliable, fast execution of tasks within one narrow activity. This is
the AI that can be found in an increasing number of devices and apps (Fox, 2017). It has been proposed
that it is useful to define six levels of AI from 0 to 5 (SAE, 2016), of which Level 5 could involve something
close to AI self-awareness. These levels can be summarized in relation to driverless cars.

At Level 0 (No Automation), there is no AI so the human driver (human) controls the vehicle through
controlling steering, throttle, brakes, etc. At Level 1 (Driver Assistance), most functions are controlled by the
driver, but still controlled by the driver but a specific function, such as steering under certain road conditions,
can be done automatically by the car. At Level 2 (Partial Automation), at least one driver assistance system
of "both steering and acceleration/ deceleration using information about the driving environment" is auto-
mated. This could be cruise control and lane-centering. It means that the human driver is disengaged from
physically operating the vehicle by having his or her hands off the steering wheel AND foot off pedal at the
same time. However, the human driver must still always be ready to take control of the vehicle. At Level 3
(Conditional Automation), human drivers are still necessary, but are able to completely shift "safety-critical
functions" to the vehicle, under certain traffic or environmental conditions. It means that the human driver is
still present and will intervene if necessary, but is not required to monitor the situation in the same way it
does for the previous levels. At Level 4 (High Automation), vehicles are fully autonomous. Level 4 vehicles
are "designed to perform all safety-critical driving functions and monitor roadway conditions for an entire trip.
However, this full automation is limited to the "operational design domain (ODD)" of the vehicle—meaning it
does not cover every driving scenario. At Level 5 (Full Automation), a fully autonomous system should be at
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least equal to that of a human driver, in every driving scenario—including extreme environments like dirt
roads, which are unlikely to be navigated by driverless vehicles before 2020 (SAE, 2016).

2.2.2 Robust adaptation

An important feature of intelligence is robust adaptation to changes in status and environment. This can
require self-awareness beyond the capabilities of AI in 2016. However, there is some research, develop-
ment, and innovation work aiming to improve the adaptation potential of AI. Such work encompasses, for
example, neural networks, individual robots, and robot swarms (Wang et al., 2016). For example, having
robots learn appropriate behaviours in response to damage with trial-and-error algorithm. This allows robots
to adapt to damage in less than two minutes without requiring self-diagnosis or pre-specified contingency
plans. Experiments revealed successful adaptations for a legged robot injured in five different ways, includ-
ing damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways (Cully
et al., 2015).

Also, there is research into the potential for adaptation among swarms of robots, such as adaptive collec-
tive foraging. This involves a swarm of robots searching and retrieving food-items. Robots have to switch
between foraging and resting in order to maximise the net energy income to the swarm. The challenge is to
achieve this with no centralised control and robots with only minimal local sensing and communication ability.
Individual robots have interaction rules inspired from the widely observed self-organisation phenomenon in
biological system, so as improve the energy efficiency at the group level.

There are three cues: internal cues, social cues and environmental cues. The combination of these cues
could result in two interesting phenomena at the group level: positive feedback and negative feedback, which
are believed to be important components in the emergence of self-organised behaviour in social insects or
animals colonies. Experiment results show that the robot swarm with these strategies seems to be able to
guide itself towards energy optimisation collectively (Liu and Winfield, 2010).

2.2.3 Association and anticipation

Associative learning involves linking together pieces of knowledge which, in turn, can enable anticipation of
what will follow. Within AI, knowledge can be structured in ontologies, which encompass the constructs
within a domain and the inter-relationships between them. Among the things that AI needs to have
knowledge of are properties, categories, and relations between objects; events, states, and time in situa-
tions; as well as relationships between causes and effects.

Whereas natural intelligence can proceed on the basis of working assumptions based on recollections of
past experiences, AI needs precise definitions of exact objects, situations, etc., to work with. This involves
trying to establish objective definitions for things that involve dynamic complexity, such as a position in a
situation being a vulnerable position. This involves computational semantics: in other words, the computation
of meaning. As exactly the same thing have very different meanings in different settings, the computation of
meaning is a profound challenge. Hence, establishing AI knowledge bases can be a massive undertaking
until AI can understand enough concepts to be able to learn by reading from sources like the Internet, and
thus be able to add to its own ontology.

There are many different types of learning in AI including: artificial neural network learning; association
rule learning; Bayesian network; cluster analysis; decision tree learning; deep learning; inductive logic pro-
gramming; reinforcement learning; similarity learning; and support vector machines. In particular, association
rule learning involves discovering interesting relations between variables in large databases, such as certain
types of purchases being related to each other and indicating a change in the status of a shopper: e.g. from
single to married etc. Association rule learning can include: multi-relation association rules and context
based association rules (Reza et al., 2014; Shaheen et al., 2013).
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2.2.4 Decision-making

The fundamental decision for AI is what to do next: i.e. action selection. There can be different levels of
abstraction for specifying an act ranging from micro to macro. For any one action-selection mechanism, the
set of possible actions is predefined and fixed. The difficulty of decision-making increases as the number of
potential tasks, need for speed, and complexity of environments increases. The mechanism for action se-
lection can be highly distributed, as it is with distributed natural organisms such as social insects, or it may
be centralised. The action selection mechanism affects the AI’s impact, directs its perceptual attention, and
updates its memory.

When there is machine learning, actions can lead to modifications of AI capabilities. Artificial action se-
lection mechanisms can be divided into several categories including: symbol-based systems, distributed
solutions, and dynamic planning. Symbol-based systems are based on foundational thinking about AI, and
have been found to bring slow action speeds. Distributed systems can be inspired by neural networks re-
search, and involve many modules running in parallel to determine the best action. However, distributed
systems can also have executive decision systems to determine which module deserves the most attention.

Dynamic planning can involve computing individual next actions every instant based on plans and con-
texts. This can limit combinatorial explosion but limit flexibility if there is too much reliance on pre-coded
plans. Accordingly, hybrid techniques can sometimes be used. These can involve automated updating of
plans when better plans are found through search. Some dynamic planning models have been inspired by
ethology research into instinctive behaviours, which can be considered to be fixed action patterns that are
common among a species and usually runs from start to finish with little variation (Girard et al., 2002; Negatu
and Franklin, 2002).

2.2.5 Problem solving

Problems can be considered to be single state, multi state, contingency, or exploratory. Problem solving can
involve self-awareness, robust adaptation, association, anticipation, and decision-making. The settings of
problems can be important to solution implementation. For example, an embodiment of AI for painting cars
has different constraints to an AI application for use in carrying out surgical operations in a hospital. Crucially,
problem solving can involve collective intelligence. Here, the development of AI has been inspired by swarm
intelligence in nature. For example, swarm intelligence is the collective behavior of decentralized, self-orga-
nized systems. Examples include insect colonies and swarms. For example, honeybee swarms have been
shown to process information in a remarkably similar way to the primate brain. The swarm utilizes massively
parallel information processing and has a spatially distributed memory, mechanisms for focusing attention,
an ability to discriminate and to filter out distractors and also to avoid functional fixedness.

It has also been found that a swarm can achieve a near optimal trade-off between decision accuracy and
decision speed (Foss, 2016). An analogous AI development is, for example, particle swarm optimization.
This works on problems by iteratively trying to improve a candidate solution with regard to a given measure
of quality. It solves a problem by having a population of candidate solutions (i.e. particles) and moving them
around in the search-space according to simple mathematical formulae over the particle's position and ve-
locity. Each particle's movement is influenced by its local best known position, but is also guided toward the
best known positions in the search-space, which are updated as better positions are found by other particles.
This can move the swarm toward the best solutions.

Particle swarm optimisation is a metaheuristic, as it makes few or no assumptions about the problem
being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as
particular swarm optimisation do not guarantee an optimal solution is ever found (Zhan et al., 2009).
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3. Multi-intelligent hybrid systems and hybrid beings

3.1 Multi-intelligent hybrid systems examples

Here, systems refers to purposeful structures formulated to comprise interrelated and interdependent ele-
ments including different types of intelligence. These different types of intelligence operate together in order
to achieve the goal of the system. Such systems have well defined boundaries including scope of operation.
M.I. systems are hybrid when they combine intelligences from different natural and/or artificial origins.

3.1.1 Natural intelligence + natural intelligence

Human beings have been combining their own intelligence with that of other living things for thousands of
years. For example, plants and insects have been used to heal human cuts and wounds for millennia. Some
such ancient practices are now supported by results from scientific research (Tian et al, 2013).

Also widespread has been the use of other animals’ intelligences by human beings during farming and
hunting. For example, cormorant fishing involved fishermen using cormorants to catch fish for people to eat.
Cormorants had a ring fitted around their necks that prevented them from eating every fish that they caught.
Instead, the neck ring was loosened after they had caught seven fish, so that they could eat the eighth fish
as a reward. It has been reported that once their quota of seven fish was filled, the cormorants would catch
no more until their neck ring was loosened (Hoh, 1988). Increasing human knowledge of the capabilities of
different animals has led to consideration of new ways of putting animals to work for human beings (Burke,
1993).

3.1.2 Natural intelligence + AI

More recently, different types of AI have been added to different combinations of natural intelligences. For
example, different types of AI now widely used during farming and hunting in so called precision agriculture.
Interestingly, human beings can deploy the natural intelligence of other animals against AI. For example,
Dutch police have joined forces with Guard From Above, a security firm based in the Hague, to keep way-
ward drones from causing trouble by snatching them out of the sky. Birds deployed by this security company
can hit drones in such a way that they do not get injured by the drone rotors. First, the birds disable the
drone that they are hunting, then they retrieve and bring it to the human being wanting the drone to be put
out of action (Thielman, 2016).

More generally, the combination of human intelligence with AI apps is increasingly widespread as people
use Web platforms and smart phones for during work, rest, and play. This follows on from so called, Intelli-
gence Amplification (IA), involving human use of information and communication technologies to improve
performance (Skagestad, 1993). Thus far, the efficacy of combining human intelligence and artificial intelli-
gence has been variable (Hill, 2016), and hype about new apps is often soon followed by them being aban-
doned (Arthur, 2014).

Another combination of human intelligence and AI is so called human-based computation. This can in-
volve the deployment of AI in co-ordinating, integrating, and/or interpreting the inputs of people in solving a
problem (Rosenberg et al., 2016).

3.1.3 AI + AI

In 2016, there are relatively few AI only systems, which operate without any human intervention. One pos-
sible example is adaptronics. This involves combining smart materials and smart structures with intelligent
systems. This is done to address rising demands for modern structural systems that go beyond the technical
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and economic limits of mechatronic systems. In practice this involves combining conventional structures,
such as those for vehicles, with active material systems that extend classical load-bearing and form-defining
structure performance by adding sensor and actuator functioning. These adaptive structure systems can
adapt to their operational environments optimally in terms of, for example, low-vibration, low-noise function,
dimensional stability. This, in turn, can lead to the protection of raw materials, the reduction of environmental
stress (resulting from noise and emissions), to a decrease of system and operating costs and a higher func-
tionality and efficiency of systems. Thus, although a human being may still be needed to drive a vehicle, the
structure of the vehicle can be adapting automatically to whatever conditions it encounters (Bein et al, 2011).

3.2 Multi-intelligent hybrid beings examples

Combining different types of intelligences into hybrid beings involves the creation of sentient entities. Com-
pared to hybrid systems, this can involve more ethical issues and engineering challenges. These include the
issues and challenges involved in gene engineering, body hacking, and developing androids. M.I. beings
are hybrid when they combine intelligences from different natural and/or artificial origins. Hence, common
across different types of multi-intelligence hybrid beings can be adverse foreign-body reactions. These can
range from foreign-body granuloma when human beings biologically reject an implant to foreign-body soci-
ological reactions when androids are viewed by society as being threatening rather than helpful.

3.2.1 Natural intelligence + natural intelligence

While the combination of natural intelligences into systems has been common for millennia, the combination
of natural intelligences into beings has been fundamentally limited to hybrids between different genera, dif-
ferent species within the same genus, and different subspecies within a species. These can occur naturally
in stable environments, naturally in changing environments, and through direct human intervention (Arnold,
1996). Direct human intervention can now take place through, for example, gene engineering. This can
include improving the properties of plants for human purposes by adding the genes of animals to them
(Osusky et al, 2005).

3.2.2 Natural intelligence + AI

While the combination of natural intelligences with artificial intelligences into systems is increasingly wide-
spread, their combination into beings is less common. If AI is added to natural intelligence, the resultant
beings could be described as cyborgs (Halacy, 1965; Wejbrandt, 2014). If natural intelligence is added to
AI, the resultant beings could be described as biorobots. Cyborgs are becoming closer to reality through so
called, body hacking. This involves fitting intelligent devices within the human body. For example, a device
analogous to a heart pacemaker can be fitted into the human body to bring about deep-brain stimulation.
The device can then regulate the brain’s electrical impulses and chemical levels via electrodes.

Applications of deep-brain stimulation may someday be more enhancing than therapeutic. For example,
in 2013, a team from UCLA showed that the procedure could buttress memory, improve the ability to pro-
cess, and store information. Then, in 2015, a study using rats determined that it could potentially stave off
memory loss and dementia-like symptoms. In other words, in addition to making human beings smarter,
deep-brain stimulation could also ensure that human beings remain smart for longer (Konnikova, 2015).

3.2.3 AI + AI

Embodied AI such as physical robots (i.e. not virtual software agents known as bots) are an example of
many different types of AI being brought together in efforts to have multi-purpose AI beings. Physical robots
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can have some or all of the following characteristics: operate autonomously to some extent; ability to move
around; able to accept electronic programming; process data including physical perceptions electronically;
operate physical parts and/or physical processes; sense and manipulate environment; and exhibit behavior
which mimics humans or other animals. These characteristics involve combining different types of AI includ-
ing: automated reasoning, computer vision, machine learning, and natural language processing.

The use of physical robots is already widespread in many different types of settings including battle
grounds, factories, greenhouses, homes, mines, and warehouses (e.g. Moubarak and Ben-Tzvi, 2012). If
physical robots are developed to look as close to human beings as is possible, they may be described as
androids (Ishiguro, 2007). Embodied AI also includes animats (Wilson, 1991).
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4. Multi-intelligence principles

4.1 Apply post-anthropocentric objectivity

Anthropocentric perspectives continue even though their limitations are increasingly widely recognized for
research and development concerning intelligence. For example, there are widely held anthropocentric
views about the intelligence of domestic dogs (Coren, 2009). These include human perspectives of their
intelligence being instinctive (what dogs are bred by human beings to do for them, such as herding); working
and obedience intelligence (what dogs learn from human beings telling them what to do); and adaptive (what
dogs can learn for themselves). Using tests originally designed to demonstrate the development of language
and arithmetic in human children, research findings indicate that domestic dogs are as intelligent as “the
average two-year-old child” (Gray, 2009). Such anthropocentric research ignores that dogs have intelligence
attributes, which humans can never develop at any age. These include dogs being able to solve problem
based on their superior olfactory abilities. For example, through their sense of smell domestic dogs can
detect illnesses in humans including various forms of cancer (Horvath, 2008).

This example illustrates that if human beings are given test designed to demonstrate the development
intelligence among dogs, human beings could be found to have very low intelligence (Chittka et al., 2012).
Hence, when research is designed to encompass a wider range of intelligence attributes, such as self-recog-
nition and means-end awareness, results support opinions that domestic dogs can be smarter than human
beings (Howell et al, 2013).

An important outcome from post-anthropocentric research is that it can provide insights into the formula-
tion of a more robust conceptual framework for general intelligence, which can be applied to many species
including human beings (Hambrick, 2016). Through anthropocentric human eyes and through a microscope,
many microbes, plants, fish, insects, birds, and animals can appear so alien, i.e. so fundamentally not hu-
man, that it may be difficult to attribute levels of intelligence anything close to human intelligence (Green-
wood, 2014). This, however, is due to human cognitive biases such as observation bias and confirmation
bias Rather, than lack of intelligence across nature (Freedman, 2010; Oswald & Grosjean, 2004).

Accordingly, it is important to seek to counteract anthropocentric biases with methods with proven efficacy
for counteracting the effects of preconceptions (Fox, 2016b) when a multi-intelligent hybrid system or being
is to be developed. This is necessary to enable the widest possible consideration of all types of intelligence,
and so avoid excluding the best options for a multi-intelligent hybrid system. During the detailed design
phase, anthropocentric factors may be considered during the design and development of user interfaces for
human beings.

4.2 Aim for transformational effects

Multi-intelligent hybrid systems and beings can enable automational, informational and transformational ef-
fects. Automational effects and informational effects include new types of productivity based on the substi-
tution of human labour, and the availability of more information for decision making. Transformational effects
include new-to-the-world solutions being created that transform what can done (Mooney et al., 1996; Ross
and Beath, 2002; Venkatraman, 1994).

Often, there is limited focus on transformational effects due to phenomena such as competence traps,
success traps, path dependencies, and lock-ins. These can all involve human beings preferring to make
incremental improvements within existing paradigms. Rather than transforming what can be done. This, in
turn, can lead to the extinction of natural lifeforms and/or human organisations in the face of competition that
is transformational (Sydow et al., 2009; Teger, 1980). Thus far, human beings often have been developing
and applying AI to bring about automational and informational effects. For example, the company Ravn has
developed AI to sift, index and summarise documents as a human crime investigator would do.
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However, the AI can work much more quickly and without breaks. This relentlessness enables hundreds
of thousands of documents to be processes every day. At the same time, the AI can learn and bolster its
own knowledge base to become more efficient and effective in sorting through and classifying documents in
terms such as “privileged” and “non-privileged” (Murgia, 2017). Beyond such automational effects, informa-
tional effects can be brought about by, for example, using AI to generate from data about one event a variety
of written articles in the different styles of different publications (Anderson, 2012) or generate a variety of
original artworks from the different styles of human artists (Rutkin, 2014). By contrast, transformational ef-
fects await development. For example, human beings have deployed AI to make street lighting more efficient
through automating the adjustment of street lighting in response to the automated detection of movement
(Leccese, 2013).

A transformational alternative would be adapt human vision through multi-intelligence inclusions that en-
able people to see clearly in any lighting conditions – day or night. An illustrated summary of relations be-
tween automational, informational, and transformational effects is shown in Figure 1 below (Fox, 2013). This
indicates that transformational effects can be served by automational, informational and transformational
effects. For example, transformational improvements to natural vision, which would be sufficient to eliminate
the need for street lighting, could involve automational data processing and informational presentations.

Figure 1. Automational, informational and transformational effects

4.3 Balance natural and artificial intelligences

Natural intelligences and artificial intelligences can have different strengths and weaknesses, which should
be balanced to enable best outcome with resources available. In some cases, individual human beings can
take the lead and determine outcomes with the aid of AI. Consider, for example, the online community of 3D
printing enthusiasts: YouMagine.com. What they imagine is realised through AI applications that enable
rapid engineering of their 3D digital sketches into 3D printed practical goods. By contrast, the AI application
DeepDream takes initial digital images provided by people into unpredictable artistic directions. DeepDream
applies a neural network to find and enhance patterns in images in order to create dreamlike art (Culpan,
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2015). Similarly, Jukedeck takes initial human inputs for style, rhythm and intensity in unpredictable musical
directions (Fildes, 2016).

While YouMagine, DeepDream, and Jukedeck apply AI to what individuals imagine, other AI applications
can act upon the imaginative contributions of crowds. For example, crowd composition of original music and
videos can involve different divisions of work between human imagination and AI engineering (Muñoz et al.,
2016; Rutkin, 2015; Wilk et al., 2015).

Figure 2 below provides an illustrative summary of alternative balances between natural intelligence and
artificial intelligence related to the extent of task scope. This illustrates that tasks with wide scope may be
achieved best by natural intelligence carrying out most of the work. Notably, the oldest natural capabilities,
such as psychomotor skills, are more difficult to reverse engineer into AI than newer capabilities, such as
advanced mathematical reasoning (Goldberg, 2015; Moravec, 1988). Hence, it can be more technically fea-
sible, economically viable, environmentally sustainable, and operationally practical to train birds to hunt down
wayward drones than trying to develop an AI to hunt down wayward drones. At the same time, AI can be
invaluable in, for example, automated mapping of drone paths and hunt bird locations (Thielman, 2016).

Figure 2. Different balances of natural and artificial intelligence across tasks with different scopes

4.4 Eliminate obsolete boundaries

Many boundaries, such as those between work and leisure, are rendered obsolete by multi-intelligence. For
example, AI can act as on-demand film engineers, sound engineers, manufacturing engineers as human
beings express themselves in their leisure time through self-broadcasting, music self-publishing, and per-
sonal manufacturing. This AI enabled engineering is easily, quickly, and inexpensively accessed through,
for example, online communities and smart phone apps. AI apps do not have a limited number of fixed
working hours that have to be agreed in advance, and may change at short notice. Rather, AI apps work on
demand whenever they are needed for as long as they are needed.

Self-expression during leisure time can lead to financial remunerations ranging from small infrequent
amounts to huge income streams of many millions. This is because combing human imagination and auto-
mated engineering enabled by AI changes the well-established proposition that success is based on an
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original idea comes from one percent inspiration in an instant and 99 percent perspiration over subsequent
months and years. Instead, automated engineering by AI apps can greatly reduce the amount and duration
of human perspiration from initial idea to independent enterprise. In particular, independent enterprises that
can serve long-tail demand of small numbers of niche sales in many different geographical regions. Thus,
the socio-economic mode of work by one person can change rapidly as an initial idea is prototyped, market
tested, introduced internationally, and an independent enterprise is set-up. This can lead to rapid transition
from informal unpaid consumption work to formal paid commercial work.

At the same time, new goods and services introduced in this way may be open, both technologically and
legally, for original adaptations by those who acquire them. This, in turn, introduces autocatalytic economic
possibilities. In particular, informal unpaid self-expression can lead to new enterprises offering goods / ser-
vices, which then involve others in informal unpaid self-expression that can lead to further new enterprises
(Norris, 2015; Ross, 2014).

The rapid cheap automated engineering introduced by AI apps is essential to these new autocatalytic
economic possibilities. This is because people no longer have to be, or have to hire, human engineers during
creating the goods and services that they imagine. This enables rapid low cost prototyping, market testing,
and international introduction of new goods and services (Fox, 2017).

More generally, multi-intelligence affects boundaries between consumption and production throughout
many sectors as people are able to carry out many more tasks themselves where they are, which they would
previously have had to wait for others to do for them at much higher costs (Acampora et al, 2013; Rabbitt et
al, 2015). More profound boundaries, which may become obsolete, are those between natural intelligence
and artificial intelligence as these are combined in cyborgs and androids. However, the full potential of M.I.
is not likely to be realised if anthropocentric preconceptions are not replaced by post-anthropocentric open-
mindedness.
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5. Directions for research, development, and innovation

Metaphysics, socio-technical theory, semiotics, and systems engineering are relevant to research, develop-
ment and innovation concerning the combination of different intelligences into hybrid systems and hybrid
beings.

5.1 Reframing metaphysics

M.I. raises new philosophical questions about the nature of existence and identity. A major contribution of
metaphysics is ontological description of categories of being and how they relate to one another. Categori-
sation of being involve consideration of identity and how identities change through different causes. The
potential for, and bringing into existence of, multi-intelligence hybrid beings expands ontology beyond what
have hitherto been separate evolutions of natural and artificial intelligence. Metaphysical definitions for being
and identity have profound implications for moral philosophy and political philosophy. Moral philosophy en-
compasses meta-ethics, normative ethics, and applied ethics. Meta-ethics seeks to determine the meaning
and truth of moral propositions. Normative ethics seeks to determine what should generally be believed to
be right and wrong. Applied ethics seeks to identify the morally correct course of action in various fields of
everyday life at various levels, including: national, clinical, professional, organisational, and individual deci-
sions (Beauchamp, 2001).

Following from Asimov’s Three Laws of Robotics, the development of AI has encompassed ethics for
decades including machine ethics and robotic ethics / roboethics (Tzafestas, 2016). Political philosophy is
concerned with determining the meaning of liberty, justice, and rights, and their alternative means of reali-
sation through government and law. Philosophical questions about the nature of existence brought about or
changed by M.I., carry into ethical issues and how they should be addressed by government and through
laws (Kymlicka, 2002).

These questions can be perceived and addressed differently through different philosophies of science,
including: positivism, interpretivism, constructivism, and critical realism. These each have their own perspec-
tives from the nature reality to the role of government in bringing about ethical behaviours. Within positivism,
reality is measurable and desired effects can be brought about by government control of causal mechanism.
Within interpretivism, reality is in the eye of the beholder, and government can seek to increase the proba-
bility of desired effects through aligning with those who have most influence in society. Within constructivism,
reality is socially constructed through intersubjective convergence, and government can seek to bring about
desired effects through extensive participatory debate, experimental interventions, and open-ended learning.
Within critical realism, reality has three layers: why things happen, how things happen, and what people
experience. In this critical realist view, government is part of a dynamic system which can only be steered
with the active involvement of those who are governed (McAnulla, 2006).

Rather than seeking to assert the superiority of one philosophy of science over others, future work should
encompass different philosophies of science when addressing metaphysical questions from existence and
identity through to ethics and governance. These can form the basis for later syntheses during sociological
investigations.

5.2 Extending socio-technical theory

There are extant scientific theories that can initially inform the introduction of multi-intelligence hybrid sys-
tems and beings. These predictive theories include: technology determinism, social shaping of technology,
technology domestication, and monster theory. Within technology determinism, technologies as seen as
causal agents that transform society without people having much control over that transformation. Technol-
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ogy determinism has been summed up the phrase, “technology determines history” (Bimber, 1990). A re-
sponse to technology determinism is the social shaping, or construction, of technology, which views human
beings as having agency. In particular, human beings are viewed as being the shapers of technologies
through different types of engineers who develop technologies and are influenced by their social contexts
(Williams and Edge, 1996).

Technology domestication addresses how technologies are tamed through integration into everyday lives.
Metaphorically, technology domestication focuses on the progression of technological devices from being
perceived as being dangerous to being accepted as harmless in everyday life. Technology domestication
studies have revealed that the integration of technologies into everyday lives is not the same as them being
viewed positively (Silverstone and Hirsch, 1992).

Monster theory draws upon anthropological studies to explain public moral perceptions about technolog-
ical innovations. In particular, perceptions of technologies are viewed as being mediated by cultural beliefs
and contemporary myths about what is natural and what it means to be human (Smits, 2002). Monster theory
can easily be related to the ‘uncanny valley’, which is a term for the discomfort human beings feel when
something mimics nature too well for human psychological comfort (Mori, 2012).

AI being able to learn and self-replicate undermines the fundamental premises of technology social shap-
ing and technology domestication. At the same time, AI being able to learn and self-replicate introduces new
support for technology determinism and new directions for monster theory. Hence, the introduction multi-
intelligence hybrid systems and hybrid beings calls into question the bases of extent socio-technical theories;
and calls for the formulation of new theoretical constructs that can enable better prediction of social re-
sponses and social outcomes.

Furthermore, the new theoretical constructs should have a post-anthropocentric perspective that encom-
passes other societies in nature as well as human societies. Moreover, the introduction of multi-intelligence
hybrid systems and hybrid beings brings fundamental questions about what makes up a society when its
populations are hybrids. Hence, social biology and social psychology need to be taken into consideration
when extending socio-technical theory (Bainbridge et al., 1994; Wilson and Wilson, 2007).

5.3 Integrating semiotics

The making of meaning is studied in semiotics. Semiotics is distinct from linguistics as it encompasses non-
linguistic sign systems. Semiotics encompass semantics, syntactics, and pragmatics. Semantics addresses
the representation of meaning in different forms of communication including audible and silent expression.
Syntactics considers structures in the communication of meaning. Pragmatics considers the ways in which
context contributes to meaning (Danesi, 2007). Meaning making runs through metaphysical consideration
of existence into the socio-technical consideration of the meaning of specific innovations in specific situa-
tions.

From an anthropocentric perspective, semiotics includes viewing all human cultural phenomena as forms
as communication. Semiotics also encompasses biosemiotics and computational semiotics. Biosemiotics
seeks to integrate semiotics with findings from biology. Biosemiotics has two basic foci: vegetative semiotics
studying semiosis at the cellular and molecular level including sign-mediated interactions in bacteria com-
munities such as quorum sensing and quorum quenching; and zoosemiotics semiotics studying organisms
with neuromuscular systems (Kull, 1999). Computational semiotics draws upon studies in logic, mathemat-
ics, cognition, and linguistics, as well as established semiotics. An important topic in computational semiotics
is sign-theoretic perspective AI knowledge representation (Andersen, 1991).

The study of meaning making for multi-intelligence hybrid systems and beings requires integration of
semiotics, biosemiotics, and computational semiotics. This integration involves semiotics that are planned
in advance rather than only studied during their occurrence. This has already been the case to some extent
in computational semantics. However, that has had an anthropocentric perspective as it has focused upon
human-computer interaction (HCI).
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Furthermore, planning in advance needs to consider how different types of meaning will be created at the
metaphysical level by the development of different multi-intelligence hybrid systems and beings. It is to be
expected that different human cultures can perceive the same systems and beings in different and opposing
ways. This diversity of perceptions about the nature of existence and identity can be further increased as
multi-intelligence hybrid systems and beings form their own opinions about others. Then, planning in ad-
vance needs to address how multi-intelligence hybrid systems and beings will formulate meanings for com-
munication to others for maximum reliability and validity. Here, reliability involves the maximum number of
communication recipients understanding a communication in the same way. Here, validity involves the max-
imum number of communication recipient understanding a communication in the same way as the sender
intended.

5.4 Systems engineering for multi-intelligence

Systems engineering is concerned with design and application of the entire systems, rather than parts. Sys-
tem engineering looks at challenges in their entirety, while taking account of all the facets and all the varia-
bles and linking the social to the technological. This involves identification and quantification of system goals,
creation of alternative system design concepts, selection and implementation of the best design, verification
that the design is properly built and integrated, and post-implementation assessment of how well the system
meets the goals.

Systems engineering is a well-established discipline with an international council (Gianni et al., 2014;
Goode et al., 1957). Established systems engineering methods are relevant to the development of multi-
intelligence hybrid systems and beings. However, more fundamental factors need to be taken within the
scope of their systems engineering. These include: moral philosophy, political philosophy, social psychology,
and semiotics. At the same time, systems engineering needs take inputs from the latest findings from scien-
tific research into the nature of intelligence. For example, it has been argued that learning about general
intelligence in non-human species is an essential component of developing a complete theory of general
intelligence. This is feasible because testing cognitive abilities in other species does not depend on ecolog-
ically relevant tests. Then, discovering the place of general intelligence among traits in other species will
constitute a major advance in understanding the evolution of intelligence (Ardena & Adams, 2016).

Also, new research study findings about how different types of beings affect each other need to be taken
into account. These include studies of so called “social genetic effects”. Such studies investigate how the
fundamental nature of others affects the well-being of those they interact with (Baud et al., 2017). As the
systems engineering can bring about fundamentally novel natures in multi-intelligence hybrid systems and
beings, the diversity of effects on others should be considered from new perspectives. This will require going
beyond the usual types of external analyses carried out in systems engineering where there is much more
prior knowledge of the likely reaction of others. In particular, fundamental consideration will need to be given
to interactions between structure and agency; and the new ways in which multi-intelligence enables them to
shape each other (Archer, 2003).
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