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Preface  

The second INTENS project1  public dissemination event, i.e. the 2020 Finnish 

maritime energy symposium on smart and green shipping, is finally ready for the 

interested maritime colleagues across the world. Due to the COVID-19 pandemic 

situation, this year it is exceptionally organized as the online INTENS WEEK public 

seminars to be held on October 5-9, 2020, instead of the originally planned public 

seminar. 

The INTENS WEEK public webinar series are scheduled as four daily webinars. 

Each session includes 4-5 technical talks to address one dedicated topic on the 

decarbonization or digitalization of maritime shipping, specifically including (Day 1) 

Novel solutions to digital shipping, (Day 2) Novel technologies for low-emission 

shipping, (Day 3) Novel technologies for energy-efficient shipping and (Day 4) Data-

driven solutions to smart shipping.  

This book is a selected collection of extended abstracts of the aforementioned 

technical talks given at the webinars, also acting as the proceedings of the 2020 

INTENS WEEK public webinar series. It aims to give the readers a brief update on 

some of the major results that have been achieved by the INTENS project partners 

during the second project year, and also showcase the latest Finnish maritime 

activities, research and innovation practices, and on-going research and industrial 

efforts towards the decarbonization, digitalization and automation of maritime 

shipping. 
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1. Data driven ship design for digitalizing 
maritime industry 

Mia Elg1, Jyri-Pekka Arjava1, Matti Tammero1, Esa Jokioinen1,  

Bogdan Molchanov1, Lien Tran1 

Deltamarin Ltd 

 

 

1.1 Introduction 

Digitalisation is a hot topic today in ship design and operation. For ship owners 

and operators, monitoring ship performance and learning from past behaviour can 

result in direct savings in fuel costs or anywhere else in the logistics chain. 

Nevertheless, the available data of ship operations and related processes has the 

possibility to make even larger impact once it is utilized for various optimization 

tasks on fleet level and during the entire lifetime of a vessel. In addition, the future 

targets for greenhouse gas (GHG) reductions on global fleet level, presented by 

IMO, are emphasizing that the reductions in emissions must be made compared to 

absolute emissions during a reference year in the past. Current rules existing for 

reducing ship CO2 emissions, such as the energy efficiency design index (EEDI), 

demand technically that the ship should achieve certain level of emissions at one 

single design point. Nevertheless, the future vision clearly emphasizes the actual 

impact the ships are making, instead of single point values. Therefore, it is fair to 

assume that, from operational energy efficiency, fuel saving and legislation points 

of view, the focus in new ship design should be on considering the ship operational 

profile from the beginning. 

At this point of time, we have no clear map in front of us, i.e. which technical 

solutions or shipping fuels will prove to be superior, regarding both shipping GHG 

footprint reduction and providing profitable business case for the vessel considering 

the related costs. Most likely, there will not be single winners, but the optimal 

solution is always dependent on the unique factors for each ship and fleet regarding 

operational profile, surrounding climate, available infrastructure and so on. This 

                                                           
1 Contact: firstname.lastname@deltamarin.com 

mailto:firstname.lastname@deltamarin.com
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means that, for both future ship design and operational optimization, it is wise to 

focus on identifying a set of most likely and most impactful scenarios and analysing 

the design based on the majority or combinations of them. The analysis will reveal 

direction which leads with the largest probability to the desired future result. 

Therefore, the digitalizing maritime industry needs also a ship design process, 

which is natively able to adapt to the possibilities that the available data has. In 

practice, we need to be able to design the ship from the start with a “toolbox” where 

we can digest the available data for the ship and analyse the variations efficiently 

and quickly. Interactivity with the customer is a very important aspect since we 

should together decide on the design basis and the most relevant focus areas, such 

as the fuel and technology choices for the ship. Another key area to keep control 

over is the total costs of a ship. For example, preparing for future fuels or operating 

scenarios does not have to generate great additional costs during shipbuilding, but 

evaluating this is an important part of the process. 

To work with various possible and probable scenarios during any ship design 

task is a part of a big entity known as “future-proof ship design”. Future-proof design 

provides resilience against the most probable future challenges and the capability 

of adapting to the identified opportunities that will be enabled in the years to come. 

This article presents in brief Deltamarin’s approach and newly developed methods 

for designing future-proof ships in practice with certain relevant examples. The 

methods are explained more in the Deltamarin’s blog series on digital design. 

1.2 Data driven, digital ship 

When designing a new ship, everything starts with understanding the requirements 

set for the new ship project, which are usually related to maximising the number of 

cargo units to be transported within the operating area. This very first step of the 

design process is also the starting point where the digitalisation comes into the 

picture: any measured operational data of suitable reference ships, other business-

related data or data of the surrounding environment can be utilized as background 

for describing to certain extent the expected future operational field. We call this the 

extended operation profile of the ship. The traditional design process and methods, 

where the entire ship operational profile should be simplified for being able to focus 

on certain optimization points, would be major restriction for the utilization of the 

extended operation profile.  

The clear benefit of understanding the various operational conditions is that the 

designer has the opportunity to optimize ship performance to the most relevant 

conditions, even though the ship and her main systems still have to be dimensioned 

for the extreme conditions. Moreover, any additional equipment, such as energy 

saving devices for reducing ship carbon footprint, should be fully dimensioned 

according to the expected operational conditions to ensure maximum performance 

with minimum investment. 

What does a digital ship look like once she is at the “drawing board”? The answer 

is that the deliverable material is quite case-specific, focusing on reviewing and 

https://deltamarin.com/blog_category/digital-design/
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highlighting the items that are crucial to the specific case. During INTENS project, 

we created an example of interactive, digital design portal, which shows a “sneak 

peek“ at how we can evaluate certain KPIs of a ship which is still only a model but 

can already sail on digital waters. 

One example ship in the digital design portal is an Aframax-sized tanker. We can 

evaluate the daily emission rate and fuel consumption, based on the chosen fuel 

and route for the ship. In our portal, we have also included as an example a very 

traditional way to present a ship design. This so-called “data sheet” includes the 

main particulars of the ship, such as ship main dimensions, capacities and 

description of the most relevant machinery components. For reference, the data 

sheet also includes a figure of main engine daily fuel consumption at a certain 

design speed, which is 14.5 knots in the example case, and, the daily LNG (liquefied 

natural gas) consumption is stated as 31.7 tons per day with 1 ton per day of pilot 

diesel fuel consumption for the main engine. If we compare this number to the actual 

daily average consumption estimate in Figure 1, we can see that the actual fuel 

consumption is much smaller. This is naturally partly due to the chosen operation 

profile, which also includes a considerable amount of time in port. In addition, the 

digital design portal includes the expected auxiliary engine fuel consumption for 

producing electricity for the ship. Thus, the digital design portal aims for estimating 

the actual performance of the ship. We can see how the daily figures change as a 

function of the example profiles uploaded in the portal. 

 

Figure 1. Digital ship design portal example. 

 

https://deltamarin.com/digital-design-portal/
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1.3 Building blocks of the digital ship 

At Deltamarin, we have focused lately on being able to start the entire ship design 

process genuinely from creating the ship digital prototype. The digital model of the 

ship must be able to be created fast during the early design process, which could 

ultimately evolve into a digital twin of a ship, once she is built and in operation. What 

we have found out is that an efficient process does not consist of one single program 

or tool but of layers. In our work, three specific “layers” or entities are utilized for 

forming the digital ship: energy and environmental performance simulations, the 

ship’s volume and structural model and the data layer where we combine the wind-

, wave- and other measured data into the ship model to estimate its lifetime 

propulsion power profile. Each layer has interconnections with other ones, as with 

almost any ship design task, but the related tools and analysis methods are 

separate ones. 

Our energy and environmental performance simulation entity is called DeltaKey. 

For every project, both new buildings and retrofit projects, we compile a system level 

model of the ship energy flows. The data for the energy model originates partly from 

the new technical data produced by the design team and partly from relevant 

reference data, both operational and technical. The important task of the energy 

modelling is to monitor the ship key performance indicator (KPI) or a set of indicators 

and recognize areas which could be improved for reaching the desired 

performance.  

 

Figure 2. Digital ship design layers at Deltamarin. 
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The model of the ship energy and environmental performance in the intended 

operational conditions gives a highly valuable result for a newbuilding project. It 

shows for the entire project team “what good looks like”. This means, for example, 

a certain level of efficiency or expected fuel consumption. Keep in mind that the 

model can be utilized later for training the ship crew during ship building process. 

Especially, future new buildings most likely have new, complex technologies on 

board, for reaching the future performance targets. Even with a simplest ship, there 

is always a certain learning curve presented after the ship is commissioned before 

reaching a certain level of efficiency. Simulation models and the results from this 

work can help make this learning curve as steep as possible. The learning and 

operational optimization can be continued long after this, verified by actual 

measurement data from the current operations, which can suggest alternative 

targets for operational efficiency. 

Refining the ship operational profile to describe as correctly as possible the 

intended ship operation is always the most important step of the process. Therefore, 

in the INTENS project, Deltamarin has worked with large amount of measured 

operational data from a customer. The data is first cleaned before it can be utilized 

for describing the ship average expected operation profile in an energy model. 

Secondly, the data can be analysed in various ways. During the project, Deltamarin 

has studied various machine learning methods for filtering out certain external 

condition and ship operation related factors, such as choosing a speed profile for a 

given schedule. The results can be utilized both for recognizing operational patterns 

that ship operators may improve in an existing ship and for creating new generation 

ships for the similar type of route with new technologies on board, for considerably 

lower carbon footprint. Figure 3 presents an example of the propulsion energy 

breakdown during a longer period of operation.  

 

Figure 3. Propulsion energy break down in an example case. 
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DeltaSeas, our data layer, approaches the ship operational profile from even 

broader scope: no matter what kind of measurement data from existing ships we 

have for use at the start of a new building project, we must be able to always 

determine the ship propulsion power. Whereas the traditional methods rely on 

determining single speed calm water resistance with adding a fixed “sea margin” on 

top of that, DeltaSeas aims for determining ship life time propulsion power. 

DeltaSeas method was also presented in the previous publication for INTENS-

project in Deltamarin’s article “Trashing design margins with smart data”. 

The method requires the understanding of the ship itself, the speed and draft 

profile, the routes and weather. In a new build, Deltamarin is normally the designer 

of the hull and knows best how it behaves. In a conversion, some part or all the ship 

properties may come from previous reports or other sources. Normally, we would 

take responsibility for everything related to this. Our digital design portal includes 

small examples of the propulsion power profile that is calculated for an expected 

distribution of speed and loading condition of a ship at a specific sea area. The 

weather impact was considered with 30 years of statistical data from this area. 

Figure 4 presents the speed profile on the left and the resulting power profile on the 

right. Utilizing the left-most profile only for determining the ship energy consumption 

with a fixed weather margin would lead to very different energy consumption 

breakdown than the one on the right, followed by fuel consumption including all 

other related ship systems, such as waste heat recovery. 

Nevertheless, for the DeltaSeas method, one starting point is to have available 

the model of the ship hull. This brings forward to our third, and probably most 

concrete, and visual layer of the digital ship: the ship volume and structural model. 

We call this layer DeltaWay, which is a unique method to start a ship concept. At 

the start, we define ship main dimensions, such as length, beam, draft and 

displacement. DeltaWay method was first developed for RoPAX ships, where this 

step includes an optimization routine, relying both on reference ship data and 

general ship design expertise at Deltamarin.  

       

Figure 4. Example speed profile of a tanker (on the left) converted to a propulsion power 
profile including the expected ship loading condition and surrounding statistical weather data. 
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Once the main dimensions are defined, a tailor-made hull form will be created by 

our hydrodynamic team. The tailor-made hull form will be the basis for engine room 

development. Main engines will be fitted into hull form and engine room location and 

compartment layout development will be based on that. This will give a good basis 

for vessel development. The report from the arrangement model gives us the areas, 

volumes and center of gravity of each space of the vessel, which provides very 

accurate weight information of technical, interior and outfitting areas. This is also 

the natural stage for creating the ship energy model with DeltaKey for this specific 

project after performing the operational analysis using DeltaSeas with the new hull 

form. These tools and the related analysis can give valuable feedback so as to pay 

more attention or perform modifications in certain parts of the ship. 

 

 

 
Figure 5. Examples from visualisations of the DeltaWay process where the layout is generated 

supported by automated functions, with ready space categories. 



 

16 

In the DeltaWay method, the arrangements of the vessel flows, such as cargo, 

passenger and proviant development, can utilize the 3D environment together with 

certain library templates, which allows quick verifications and modifications of the 

layout. Furthermore, stability calculations start based on the developed layout so 

that the first verification of rules is available very early in the project. 3D structural 

layout is effectively created on top of ship general arrangement model at early 

concept design phase. Such a way of early 3D-modelling approach on structural 

concept allows solid basis for accurate weight calculations and space utilization. It 

is also possible to use the created model for early phase structural response 

assessments using finite element method. Combining comprehensive experience 

on structural concept design and utilizing novel 3D-methods during the early phase 

of the project allow a remarkably more effective usage of steel, taking into account 

the strength and vibration behavior of the vessel. 

During INTENS-project, Deltamarin has studied further new optimization 

methods that could expand the current design space. The results of this work are 

separately described in Chapter 3 of this publication, “Taking ship energy efficiency 

to a new level with cloud-based optimization”. In this case, we utilize the DeltaKey 

energy model for describing the case to be optimized, but the method itself is not 

limited to this one. The important aspect is that we are able to integrate the new 

optimization procedures in the existing digital design framework.  

1.4 Summary 

Deltamarin’s digital design “layers”, DeltaKey, DeltaSeas and Deltaway, all include 

individually a set of practical design tools and methods for producing a highly flexible 

digital representation of a ship. The aim is to optimize the ship performance in the 

future operational conditions, no matter whether there would be various alternative 

scenarios describing the future. The weight and even technical order of performing 

the first simulations varies, depending on the type of ship we are designing and the 

type of data available. This flexible development platform includes the relevant 

technical information that is required first for estimating the price of a ship at 

shipyards, and later for building the ship. After ship is built, the digital ship sets the 

baseline for the expected level of operational efficiency and sustainability and it is, 

therefore, a valuable benchmark to work against during the entire ship life cycle. 

Thus, for a ship designer, being involved during the ship entire lifetime is not only a 

possibility but also a necessity for designing future-proof ship. 
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2. Increasing ship energy efficiency using 
onboard data: opportunities and challenges 

Mikael Manngård a) 1, Joachim Hammarström a) 1, Wictor Lund a) 1, Jerker 

Björkqvist a) 1, Wilhelm Gustafsson b) 2 

a) Åbo Akademi University 
b) Meyer Turku 

 

2.1 Introduction 

Energy efficiency is becoming more important for marine industries due to 

increasingly strict international maritime regulations. All ships over 400 GT built after 

1 January 2013 have to follow the new Energy Efficiency Design Index (EEDI) 

enforced by the International Maritime Organization (IMO) to lower harmful 

emissions by increasing the energy efficiency [1]. To achieve the set long-term 

energy-efficiency goals, it is not likely that a single new technological advance will 

suffice, but all parts of the ship would need to be optimized for energy efficiency. 

Although there are existing conventional technologies related to hull improvements, 

propeller and rudder designs that together could achieve the set energy efficiency 

goals [2], not all technologies are applicable to all ships, especially to the existing 

ones. A list of some conventional technologies and their expected average energy 

efficiency gains are listed in Table 1. Although it appears that the largest potential 

gain is in improved ship designs, advanced control-system designs that focus on 

optimized waste-heat recovery have the potential to provide large improvement in 

energy efficiency. Simply put, even if a ship is properly designed, if it is not operated 

in an energy efficient way, heat will still be wasted. Thus, in this paper, we will focus 

on how to use onboard data and model-based technologies for improved ship 

control, monitoring and optimized waste-heat recovery.  

In recent years, we have seen an exponential growth in the number of sensors 

connected to the internet of things (IoT). The spread of the IoT to new areas will 

provide new data sets which can give value to new markets, including the marine 

                                                           
1 Contact: firstname.lastname@abo.fi 
2 Contact: firstname.lastname@meyerturku.fi 
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industries [3]. In contrast to general big data sets, industrial data typically possess 

spatiotemporal properties [4], i.e. both structure, dictated by physics, and time 

dependencies. For example, overall energy in a ship may the summation of 

independent energy consumers such as propulsion, hotel load, air conditioning, etc. 

In industrial systems, physical laws dictate how signals are related to each other 

and should thus be utilized when analysing data. Furthermore, time attributes in 

industrial big data cannot be neglected. Since any change in a physical system is 

always governed by dynamics, the methods used for analysis cannot rely on the 

assumptions that sampled data are independent and identically distributed, which 

is standard for statistical inference and machine learning (ML) methods. The 

spatiotemporal properties of industrial data may turn out to be challenging for out-

of-the-box big data and machine learning algorithms, which have been developed, 

for a large part, in the context of explaining the complex human and societal 

behaviours and decision-making. Human behaviour does not necessarily possess 

strong spatiotemporal properties, often unpredictable, irrational and not consistent. 

In contrast, an industrial process or machine is designed to perform a single task 

with high precision, reliability and predictability. Hence, it is not a given that the same 

big-data and ML algorithms, which have already made a lasting impact in areas 

such as image recognition and recommendation systems, will have the same impact 

on the process and marine industries. 

Control theory provides the necessary means to deal with control of dynamical 

systems in engineering processes and machines.  Although optimal and robust 

control methods are readily available in the control literature [5], model-based 

predictive control methods are expected to form a basis of future control systems 

[6], and soft sensor technologies used to estimating unknown inputs and state of 

systems are already implemented in a wide range of industrial processes [7, 8, 9], 

it does not mean that there is not room for data-based ML algorithms. Control 

methods rely extensively on system models, either obtained experimentally or 

based on physics. However, not all signals affecting an industrial process are easily 

Table 1. List of technologies and average potential gain in energy efficiency [2]. 

Type Technology Expected gain 

Control systems Waste-heat recovery 10 % 

Engines Engine de-rating 3 % 

Engines Common-rail upgrade 0.30 % 

Hull Bow optimization 10 % 

Hull Hull coating 5 % 

Propeller and rudders Ducted propeller 10 % 

Propeller and rudders Contra-rotating propellers 13 % 

Propeller and rudders Wheels 10 % 

Propeller and rudders Rudder bulb 4 % 

Propeller and rudders Post swirl fins 4 % 

Propeller and rudders Twisted rudders 3 % 
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modelled using physics or by expert knowledge. In a cruise ship, a few such 

examples are fluctuations in energy prices, ambient temperatures and hotel loading 

in cruise ships. Thus, although energy efficient operations of a ship are at its core 

an optimal control and decision problem, for a framework of optimized operations to 

have a lasting impact on the energy efficiency, a collection of technologies from a 

range of fields are likely needed. Various types of models are to be used: physics-

based models will dictate the spatial behaviour of data to ensure that mass and 

energy balances are satisfied, statistical models will be used to describe signals 

with uncertainty, data-based models will be used to describe signals that are not 

easily modelled by first principles, and integer programming methods are needed 

for optimizing discrete logic and decision making. 

2.2 Framework 

We present a framework for energy efficient heat management in ships through 

optimized scheduling, improved monitoring, integrated operations, and model-

based predictive control. The focus is on maximizing the energy efficiency by 

utilizing the available waste heat while ensuring that the ship can be operated safely. 

The use of faulty components or inferior spare parts can result in problems such as 

higher lube oil or fuel oil consumption, leading to an increase in total operating costs 

and lower energy efficiency [10]. By making the full use of available sensor data and 

system models, soft sensor technologies can be used to reconstruct unmeasured 

states of the system and estimate the condition of components. This will not only 

increase the awareness of how the plant is performing but also aid in designing 

predictive and prescriptive maintenance strategies that will result in improved 

energy efficiency. Furthermore, improved monitoring will not only aid the on-board 

crew in making better decisions but can also be fed forward to the regulatory control 

systems. Information of the condition of components could even be used as 

constraints in the control to extend the remaining lifetime of components by limiting 

performance temporarily. 

2.2.1 Data-based process monitoring 

Issues of how to improve product quality in the steel industry was surveyed in [11], 

and many of the same concepts apply to the marine industries as well. The 

challenges are the same between different industrial processes: how to build a 

reliable model of the right complexity from limited data, when to use first-principle 

models compared to data-based models, how to relate different types of models, 

and how to realize and maintain a model-based control system. We claim that a 

data-based process monitoring system which aids in improving the energy 

efficiency of a ship would at least need to have the following properties: (i) being 

able to estimate the current operating conditions at all locations of interest in the 

ship based on the collected sensor data, (ii) predicting the future available energy 

and demand at various locations in the ship based on current operating conditions, 
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(iii) the ability to detect and isolate sensor faults and external disturbances acting 

on the system, and (iv) detecting faults or malfunctions in the process. 

Most of the above-mentioned criteria can be managed using soft sensor 

technologies, which make use of available measurement data, statistical properties 

associated with the uncertainty of the measurements, and mathematical models of 

the process [12]. Soft sensors have been used, for example, for aiding condition 

monitoring strategies of marine propulsion system components by estimating 

external torque excitations acting on the propeller [13], for process monitoring in 

process industries [14, 15], and for sensor fault diagnostics in aircrafts [16, 17], to 

mention a few. The typical structure of a soft sensor is illustrated in Figure 1. 

2.2.2 Integrated operations and control 

A ship is a complex system involving energy systems, processes, automation 

systems, people and raw materials (e.g. fuels). Operating a ship involves numerous 

tasks, which might broadly be classified into planning, scheduling, real-time 

optimization and control. Communication of information between tasks typically 

follows a hierarchical structure as in Figure 2. [18]. Scheduling is typically performed 

by real-time or batch optimization from which a supervisory system computes the 

 
Figure 1. Block-diagram of a typical soft sensor used for estimating internal states of a 

process, reconstructing unknown disturbances and removing noise from measurements. 

 

Figure 2. Typical hierarchy of process operations and control [18]. 
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desired set points or set point trajectories which the regulatory control system takes 

in to perform control actions at a process level. However, in an integrated operations 

and control scheme for optimized energy efficiency, the classical one-directional 

hierarchical decision making would likely be replaced with a structure where data is 

more free-flowing [18]. 

The challenges of integrating the decision making with the control is many-fold. 

First, the timescales of which actions are required to be taken at the different levels 

vary, as shown in Figure 2. Planning, scheduling and optimization are typically done 

in an open-loop fashion and performed on a daily to weekly basis and might require 

actions taking place on an hourly basis [18]. Examples of such tasks on a ship are 

route planning, on-board maintenance of components that do not require a service 

stop, and fresh-water evaporation. Note that all these tasks affect the energy 

systems and require actions of the control systems (supervisory and regulatory). 

Control generally operates on a much smaller timescale than scheduling tasks. The 

difference in timescales is the main reason why it makes sense to structure these 

tasks in a hierarchical one-directional structure as shown in Figure 2. However, in 

cases when the process is not reacting to control actions correctly, e.g. a 

component’s condition has deteriorated to a point that affects the performance of 

the system, such as fouling in an heat exchanger, sticking in a valve or damage to 

a mechanical component, information should be fed back ‘up-streams’ in the 

hierarchical table and be taken into account in the scheduling. Likewise, if a 

mechanical component has been damaged, it might even be possible to prolong its 

remaining lifetime by limiting the power transmitted through it and extending its 

lifetime. 

The difference in timescales on which process operations take place adds 

constraints to the process models used. First principle models used for regulatory 

control would typically describe the dynamics of a system and act on a timescale of 

seconds to minutes. However, on the timescales relevant to discrete decision 

making, the effect of dynamics disappears and dynamics can be neglected. This 

presents a model mismatch between control and process operations. Designing a 

computationally efficient framework, which handles this mismatch within the 

timescales, might turn out to be challenging. Furthermore, there is always a trade-

off between model accuracy and complexity, which needs to be accounted for.  

A realization of an integrated scheduling and supervisory control approach would 

need to perform real-time optimization on a receding horizon with either economical 

or efficiency goals as objectives. This strategy has been suggested for distributed 

power systems connected to a grid [18, 19, 20]. Optimal model-based control on a 

receding horizon is referred to as model predictive control (MPC) in control 

literature, or Economic MPC (E-MPC) when economic (or efficiency) goals are 

optimized [21]. Extending the E-MPC framework to handle the discrete decision 

variables, required for scheduling and logic operations, would result in a fully 

integrated operations and control scheme. However, the challenges of realizing 

such framework are both computational and to some extent control-theoretical [18], 

and would likely require technological progress in real-time optimization, mixed-

integer programming and parallel computing to be feasibly addressed in practice.  
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2.3 Summary 

This paper outlines the opportunities and challenges of a data-based integrated 

operation and control strategy for improving the energy efficiency of ships. 

Integration of operations and control can be done using model-predictive control 

frameworks for optimizing economic or efficiency goals. However, for such 

technologies to be realizable in practice, new advances in real-time optimization, 

integer programming and control theory are most likely needed. 

Condition monitoring using soft sensor technologies can decrease the downtime 

of processes, which can lead to increased efficiency. Soft-sensor technologies for 

condition monitoring is also expected to provide important information for 

scheduling and supervisory control. When dealing with data-based techniques, the 

quality and availability of data is key. Soft sensor technologies can be used for 

improving the data quality via sensor fusion, fault detection and fault isolations. 

When accounting for spatiotemporal properties of data in physical systems, the 

choice of model-type is fundamental. There is always a trade-off between model 

accuracy and computational complexity, and there is also a choice between data-

based and first principles modelling techniques to be made.  
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3.1 Introduction 

Mathematical modelling and simulation-aided engineering are becoming a common 

practice in the marine industry. While mathematical modelling and dynamic 

simulation provide a systematic approach to evaluating novel process and control 

concepts with respect to energy efficiency and operability, simulation-based 

optimisation would bring immense extra added value. 

This work started by developing a framework for simulation-based optimisation 

in the cloud [1]. We originally defined our main hypothesis as follows: Today's cloud 

computing infrastructure enables an easy and flexible framework for taking out-of-

a-box marine simulators and solving related optimization problems. For testing this 

hypothesis, we developed a framework that was already reported in [2]. 

To evaluate the suitability of the method for actual ship design process, a generic 

energy simulation model of a cruise ship was utilized. The case ship and the model 

structure are described in Section 3.3. The optimisation study is focused on finding 

the best solution for enhancing the energy efficiency of the ship and lowering the 

carbon footprint by introducing a waste heat recovery solution, a battery or both.  

We discuss our experiences gained in the model conversion and working with 

the framework and present the main findings of the case study. Finally, we take a 

brief look at the next steps. 

3.2 Optimization framework 

One basic idea in this work is to enable optimisation for simulation models that were 

not originally intended for this purpose. This rules out gradient-based algorithms, as 

simulators do not usually provide gradients. The model would have to be translated 

into a representation that provides them, which we want to avoid. We focus on 

black-box optimisation algorithms that only require the ability to set parameters, run 

simulations and obtain results. Specifically, we choose evolutionary algorithms as 

the primary approach because they parallelise well. Parallel computing is lucrative 

                                                           
2 Contact: firstname.lastname@vtt.fi 

mailto:firstname.lastname@vtt.fi


 

25 

in the cloud because pricing tends to be per number of resources and time; if your 

algorithm parallelises well, you can rent more CPUs to run it for a shorter time, 

obtaining results faster for the same cost. 

The general architecture of the framework remains essentially as described in 

[1]. The main change is that we have moved from Microsoft Azure to Rahti, a 

container cloud provided by CSC. This changed our container orchestration system 

from Kubernetes to OpenShift. OpenShift is a variant of Kubernetes, thus only minor 

changes were required in the framework. The current architecture is illustrated in 

Figure 1. Generally, it has been pleasant to use the CSC service, with far fewer 

technical problems than we had on Azure [2]. 

3.3 Case description 

3.3.1 Case ship 

The case ship is a generic cruise ship which is expected to run on MDO fuel. The 

cruise ship represents a typical example of a 4000 passenger cruise ship with diesel 

electrical propulsion plant. The total installed engine power is 75.6 MW, consisting 

of six medium-speed Wärtsilä 12V46F engines.  

The main characteristics of the ship main machinery and heat recovery are 

illustrated in Figure 2. Each engine is equipped with an exhaust gas boiler (EGB). It 

was assumed in the study that these boilers could produce superheated steam and 

additional heat can be produced in an oil-fired boiler. In addition, high temperature 

(HT) cooling water heat is collected from the engines, during HT charge air cooling 

and jacket water cooling processes, and fed into a separate waste heat recovery 

circuit. From this circuit, the waste heat is distributed to all consumers that can utilize 

the hot water as their heating source. It was also assumed that this HT-heat could 

be utilized for air conditioning heating and for producing fresh water onboard using 

 

Figure 1. Schematic view of the updated optimization framework. 
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evaporators. Low temperature (LT) cooling water heat, collected from the engines 

during lubrication oil cooling and LT charge air cooling processes, was not utilized 

in the case study. 

The operation profile included one year of typical operation patterns regarding 

vessel propulsion and hotel power. The vessel heat consumption was evaluated for 

the entire year in average conditions with average air temperature being 25 °C.  

3.3.2 Simulation model  

The modelling was done in the Matlab/Simulink environment with Deltamarin’s 

energy flow simulation tool, which is briefly discussed in Deltamarin’s digital design 

tool presentation in this publication, Chapter 1. In the model, the operation profile 

sets the power demand for the ship. The engine fuel consumption as well as heat 

production was evaluated with the aid of the Wärtsilä engine’s project guide. The 

partial-load behaviour was evaluated by interpolation between the values provided 

in the engine project guide. 

For the study, we included a possibility to install battery capacity for the ship. The 

variable parameter was the battery size. The state of charge range was set to 25–

95 %. The eventual degradation of the battery over time was not considered. The 

C-rating was set to 3. The battery operation logic was set for “peak shaving” with a 

simple load levelling logic. The principle of the model logic is based on an 

assumption that the battery management system (BMS) knows engine loads and 

specific fuel oil consumption (SFOC) from the previous time step. At the same time, 

BMS predicts the SFOC of the engines without batteries in the current time step by 

reviewing the incoming power demands. These two readings are compared. If the 

SFOC in new time step is better than in the previous one, the engines can change 

loading. In case the performance is worse in the new time step, the battery will even 

out the difference and keep engines running at the same load as in the previous 

time step as long as there is enough energy in batter for charging or discharging. 

 

Figure 2. Schematics of ship heating and waste heat recovery main principle. 
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In addition, the case ship had an option to include waste heat recovery in the 

ship. The chosen method in the study was a backpressure steam turbine. Their 

number and size could be varied in the model. The allowed maximum power for a 

single turbine was set to 1MW and the minimum power production was limited to 

33% of the maximum. 

3.3.3 Optimisation problem 

In ship design projects, the typical target is to maximize the ship transport efficiency 

by minimizing the related costs, both capital and operational expenditures (CAPEX 

and OPEX). As a ship is a highly complex multi-domain energy system and the input 

data for any design task may include a large degree of variation, it is often hard to 

define a single exact target for optimization. Multi-objective optimization can be 

used to provide the designer a set of optimal solutions to choose from, rather than 

a single answer. 

In the study, we present a retrofit project, where various energy or emission 

saving technologies are considered for an existing ship. As explained in the previous 

section, the chosen technologies were to install battery and steam turbines onboard. 

The battery size was allowed to vary between 0 and 10 MWh. The steam turbine 

size was allowed to vary between 0.1 and 1 MW, and the number of turbines 

between 0 and 4. The CAPEX was estimated to be 1000 €/kWh for the battery and 

1000 €/kW for the turbine. 

One objective was to reduce ship fuel consumption, thus lowering carbon dioxide 

emissions. However, the investment (CAPEX) should also be kept small. The third 

objective was to reduce the average number of main engine running hours, leading 

to lower maintenance costs. 

3.3.4 Model conversion for the framework 

The simulation model first need to be converted from Simulink into a form that allows 

parallel execution in the cloud, without requiring Matlab installations there. The ideal 

form is a shared library that can be called repeatedly to execute simulations. The 

model is then simulated with different input parameters, received from the optimiser, 

and returns output values to the optimiser. Fortunately, there is a standard 

packaging and interface for such executable simulation models, namely the 

functional mock-up interface (FMI, https://fmi-standard.org/). Model packages 

conforming to this standard are called functional mock-up units (FMU). We used 

Simulink Coder to translate the Simulink model into C code and an open source tool 

called Simulix to package the generated C code as an FMU. The compiled C code 

runs much faster than the original Simulink model, but not all features of Simulink 

are supported by the code generation. 

https://fmi-standard.org/
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3.4 Results 

3.4.1 Energy system optimisation  

Figures 3–5 illustrate the optimization objectives plotted pairwise against each 

other. The red highlighted dots represent the so-called archive of the genetic 

algorithm, which approximates the Pareto optimal surface. Figure 3 illustrates the 

relationship between ship fuel consumption and the investment costs. Figure 4 

illustrates the average number of engines running. Thus, the smaller the number, 

the lower amount of engine hours was needed. Figure 5 plots the ship fuel 

consumption against engine hours. Unsurprisingly, these objectives are co-aligned; 

the trade-offs are against CAPEX. The full results can be examined with Figure 6, 

where the main decision variables, optimization objectives and some other 

quantities of interest are plotted together. Table 1 presents the variables that are 

illustrated in Figures 3 – 6. 

Table 1. List of optimization objectives, decision variables and other plotted quantities. 

Label Clarification Unit description 

fuel fuel consumption kg/s average over the entire 

operation profile 

capex capital expenditure 1000 €  

n_me main engines in operation - average number of main engines 

in operation 

batt_cap battery capacity kWh total battery capacity installed 

bpst_n turbine amount - the number of steam turbines 

installed 

bpst_P turbine power kW maximum power of each back 

pressure steam turbine 

bpst_P_tot total turbine max power kW total power of steam turbines 

installed 

P_pbst_act turbine actual power kW average power actually produced 

by the turbines 

hue Heat Utilization Efficiency % efficiency of utilization of the 

exergy in ship waste heat flows 

considering also ship heat 

consumers. The efficiency is 

compared to a theoretical situation 

without any waste heat recovery. 

P_me_tot average engine power kW time average of total main engine 

power 
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Figure 3. Ship fuel consumption and CAPEX. 

 

Figure 4. Ship engines in operation and CAPEX. 
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Figure 5. Ship fuel consumption and engines in operation. 

 

Figure 6. Main result matrix of the optimization. 
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3.4.2 Discussion on the case results 

As Figure 3 illustrates, the maximum fuel saving range within the results varies from 

0 to 1.7% of the ship total fuel consumption. However, we can clearly see that the 

most relevant reduction in the fuel consumption can be achieved with rather 

moderate investment, i.e. less than 1 M€. Figure 6 helps indicate which 

configurations would provide this. Approximately, 1 MW steam turbine installed 

power with only one turbine seems to lead to best results. Battery capacity does not 

bring much improvement for the fuel consumption in the results. 

Increasing battery capacity continues to contribute to reduced main engine 

running hours, while the steam turbine configurations with over 1 MW installed 

power yield little benefit. Such configurations appear in the archive usually after the 

maximum battery capacity is met, as it would otherwise be more profitable to invest 

in the battery. 

The results could in this case give us guidance to favour primarily steam turbine 

capacity over battery capacity, if the purpose of the retrofit project would mainly to 

lower the fuel consumption and, thus, carbon emissions of the ship. 

3.4.3 Discussion on the case approach 

The chosen method reveals patterns that are not trivial and, therefore, it is very 

promising way to support ship design. Since an energy model can be compiled for 

a ship at any design stage and is a part of the ship design process, it is important to 

be able to utilize the existing model in the optimization work. In the case example, 

the energy model includes a system level description and analysis of the ship entire 

energy system, which enables the direct profitability analysis of the proposed 

concepts. After successful optimization round, the most promising results can be 

added to the design and the ship design process may continue without interruptions. 

The optimization process could be performed at any relevant stage of the design 

process.  

Once the optimization process is an integral part of the design process, it is also 

natural to evaluate the result with the existing conventions and methods which are 

already applied in the energy simulation work or other design disciplines. For 

instance, the heat utilization efficiency analysis, which was also a part of the results 

in Figure 6 shows that the hue-index values between 7 to 10. The analysis is to 

certain extent case-specific, but earlier work on this field would show that much 

higher efficiencies are possible to be gained. Therefore, this optimization task has 

clearly not included the most promising waste heat recovery equipment. The results 

of this analysis would suggest improving and re-defining the optimization case 

regarding the waste heat utilization methods. 

In this research, one of the main goals is to lower the threshold of using 

optimisation in the practice of simulation aided marine engineering. As the ship 

energy system model already existed, surely it could be easily adapted for 

optimisation. In practice, it turned out to be not quite so simple. First, there was the 
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need to translate the model into a form that could be executed outside of Matlab. 

Simulink Coder can do that but produces C code with an exotic interface. Simulix 

adapts this exotic interface to FMI. Unfortunately, not all Simulink or Matlab features 

are supported by these tools. In particular, runtime error checking is lost in 

translation: the model mostly relied on the Matlab “assert” function, which Simulink 

Coder essentially ignores, i.e., translates to nothing. Mathworks has recently 

introduced a new product, Simulink Compiler, that should be able to generate 

standalone FMUs from Simulink models, but we have not had a chance to try it. 

The translation tools create the FMU interface from the parameters and the top-

level ports defined in the Simulink model. The existing energy system model had 

none of these. Instead, it read its input from a custom format Excel file into global 

variables and used the Simulink logging facility to write outputs into a file. Adapting 

this, particularly the input, took some effort. We assume that this kind of case-

specific work for interfacing of inputs and outputs for the translated simulator is a 

common effort with future cases as well. 

Simulation-based optimisation requires the simulation model to be rather robust. 

The optimisation problem specifies the feasible value ranges for all the parameters, 

and the optimisation algorithm executes simulations exploring the whole range of 

feasible value combinations. If the model has only been used previously with 

manually picked “reasonable” parameter combinations, simulations may fail 

surprisingly frequently, when the parameters are picked by a machine with no sense 

of what is “reasonable”. In this case, the problem was exacerbated by the loss of 

runtime error checking; instead of halting with an error message, the simulations 

would typically hang, and for all we know some might have finished with incorrect 

results. Clearly, there are many aspects in the model configuration phase that could 

be taken into account for supporting the model’s later black-box use inside an 

optimizing loop. 

3.5 Conclusions 

We successfully converted a dynamic energy system simulation model into FMU, 

containerised it and used it in our cloud-based optimisation framework (reported in 

the references). The results showed that an optimization process that utilizes the 

existing models from a normal ship design process could bring much added value 

with minimal additional effort in the actual ship design task. Optimization would 

expand the current design space, provide increased learning for designers and, 

most of all, support decision making during the project, resulting in a ship that is 

more efficient in her transport task and more environmentally friendly. This 

generates added value for all parties in the process, both customer and designer. 

To minimise the additional effort for the optimisation process, such use should be 

anticipated during modelling. The model should have a reasonably clear interface 

that allows programmatic setting of model parameters, execution of simulations and 

retrieval of results. Runtime error checking is also important. 
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The next phase in this research is to study how machine learning approaches 

could be incorporated in the optimisation framework and what benefits it could bring. 
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4.1 Introduction 

Smart and green is an important megatrend of global shipping, as world trade is 

projected to grow significantly in the coming decades. The energy efficiency is a 

main driving force and the need to reduce emissions has been well understood in 

the marine industry. On the other hand, digitalization and automation have already 

been shaping the future of marine shipping. After-treatment systems (ATS) are 

dependent on the fuel quality (Figure 1). Main efforts are focused on the emission 

reduction of SOx and NOx in marine applications but oxidation catalysts for CO and 

hydrocarbons (HCs) are applied also with low-sulfur fuels. NOx emissions have 

been reduced with ammonia (urea) on sulfur-tolerant selective catalytic reduction 

(SCR) catalysts. 

 

 

 

 
 

Figure 1. Decreasing emissions in marine applications. 
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Natural gas with very low sulfur amount (low SOx, mainly SO2) is a good alternative 

fuel for marine applications, opposite to conventional heavy-oil liquid fuels. Although 

it produces less carbon dioxide (CO2) emissions compared to diesel HCs, methane 

itself is a strong greenhouse gas (GHG effect 25-fold compared to CO2) and need 

to be limited. The particulate matter emissions are very low with natural gas. 

However, methane is the most difficult hydrocarbon to oxidize and expensive noble 

metals (palladium, platinum) are needed for methane oxidation catalysts (MOC). 

Pd-rich catalysts are best for methane oxidation, but they are quite sensitive to the 

deactivation. Thermal degradation is due to the loss of active sites by the crystallite 

growth of noble metal particles. Chemical poisoning covers the active sites and 

especially sulfur (S) is detrimental to the Pd-based oxidation catalysts. [1, 2] 

Sulfur can be regenerated from the catalyst surface at elevated temperatures. 

However, the marine engines are working in lean conditions and very high 

temperatures is then required to decompose sulfates. On the other hand, sulfates 

can be decomposed at lower temperatures in stoichiometric or rich conditions. The 

catalyst performance has been restored by the regenerations in enriched gas 

mixtures in earlier studies [3, 4]. 

In the INTENS project, we investigated SOx adsorbents or traps, which have a 

task to protect MOC against sulfur poisoning. Adsorption capacity and sulfur 

removal from MOC during the regeneration are the challenges in this method. 

4.2 Experimental 

Sulfur poisoning of Pd-rich MOCs was simulated in synthetic gas bench (SGB) using 

lean exhaust gas conditions (λ=1.8, 100 ppm SO2). Sulfur was adsorbed on 

catalysts and SOx traps at 400°C and 550°C. The lower temperature simulates the 

higher adsorption of SO2 and the higher temperature the use conditions at pre-turbo 

position. Desulfation regeneration was examined at 550°C by a regeneration 

mixture, where  was rich (0.99). Sulfur is accumulated on the surface as sulfates 

either on the active sites or porous support. Sulfate adsorption is dependent on SO2 

oxidation rate to SO3 (SO4) and the bond strength between SO4 and metal cations 

on catalysts. When MOCs are usually alumina-based catalysts, the strength of Al-

SO4 (aluminium sulfate) bond is a base line for SOx adsorbent comparisons. SO2 

oxidation on noble metals is faster than on base metal catalysts. Therefore, 

adsorbent catalysts or materials were examined with and without noble metals. 

SCR and ammonia slip catalyst functionality was investigated by SGB and engine 

experiments. Due to medium temperature operation window, high sulfur in fuels and 

catalyst costs, the SCR has been based on vanadium/TiO2-WOx catalysts. SCR 

functionality was investigated in steady state condition with fixed or varying NH3/NOx 

ratio. Catalysts were investigated as fresh or hydrothermally aged. The feed gases 

in SGB simulations are summarized in Table 1. 
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Table 1. Feed gases in experimental simulations. 

 

 

4.3 Results 

4.3.1 Sulfur durability and regeneration of methane oxidation catalysts 

When MOC is in exhaust gas, lean SOx trap (LST) has a task to protect MOC and 

collect SOx during lean driving periods. During regeneration periods SOx is removed 

from LST and should further pass through MOC downstream. The effect of LST 

should be compared as an additional unit or it replaces MOC volume. Even if LST 

requires volume in design and causes pressure drop, it is much cheaper with SOx 

adsorbents than PGM-rich MOC of the same volume. The cost equivalency 

(investment, use) for volumetric ratio of MOC/LST is a base for design (Figure 2). 

 

 

 
 

Figure 2. Lean SOx trap with MOC. 
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MOC

Sulfation

MOC

Regeneration

SCR

NO, ppm 500 500 500 1000

NO2, ppm - - - -

Methane, ppm 1500 1500 3000 -

Ethane, ppm 300 300 500 -

Propane, ppm 100 100 100 -

Acetaldehyde ppm 150 150 150 -

CO, ppm 1200 1200 4000 -

Oxygen, % 10 10 0.91 10

CO2, % 7.5 7.5 7.5 -

Water, % 8 8 8 10

NH3, ppm - - - 1000

SO2, ppm - 100 - -

Nitrogen Bal. Bal. Bal. Bal.

λ 1.78 1.78 0.99 lean

Space velocity, h-1 50.000

varying

50.000
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MOCMOC
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SO2
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The screening results showed that SOx could be adsorbed at different materials. 

SO2 adsorption at 550°C showed that fewer samples adsorbed clearly more; the 

lower the SO2 curve during the adsorption phase the more SO2 was adsorbed 

(Figure 3). Not all the available sulfur was trapped but a part was always passing 

through LST. There are differences also in the regeneration for different samples 

when looking at the SO2 curves at the regeneration area. SO2 adsorption increased 

for similar samples with a low amount of platinum for all the examined compositions. 

During the first minutes of the regeneration phase, high SO2 peaks were observed 

for most samples. However, a sample (KD) did not show any release of SO2 during 

regeneration. That is a composition being able to keeps SOx even at 550°C with 

=0.99. 

 

 

 

 

 

 

Figure 3. SO2 adsorption and desorption on Pt-free (up) and Pt-containing (down) LSTs. 
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Figure 4. SO2 adsorption and release, and methane conversion during sulfation and 

regeneration on LST + MOC at 550°C. 

Experiments with the combinations of LST + MOC showed that the presence of 

sulfur adsorbent and Pt on LST enhanced SOx adsorption and kept methane 

conversion on a higher level (Figure 4). It was detected a saturation by longer 

experiments (4 hours, corresponding about 400 h in use conditions) and then SO2 

started to by-pass LST+MOC. 

4.3.2 NOx removal with vanadium SCR catalysts 

Vanadium-SCR catalysts (V2O5/TiO2-WO3) are the main stream for marine 

applications due to temperatures, sulfur content and costs. New types of metal 

vanadate were also investigated for marine applications. Traditionally Dinex has 

prepared metal-substrated V-SCR catalysts but similar catalyst compositions were 

also added on ceramic substrates in this project. The activity and hydrothermal (HT) 

durability was dependent on vanadium concentration (range of 1 - 4 wt-%) in porous 

support. Higher V2O5 loadings (>3 wt-%) result in improved low temperature activity 
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and lower HT durability (Figure 5). These higher V loading are applied to 

applications where temperatures never exceed about 550°C but V-SCR catalysts 

for an operation at 500 - 600°C is based on lower V loading (1.5 - 2.0 wt-%) 

Ammonia slip catalyst has also additional role to remove CO and reactive HCs in 

marine applications, when diesel oxidation catalyst (DOC) is not present when sulfur 

is high (Figure 6). Even if HC raw emissions are usually low in marine engines, CO 

from urea can be high and aldehydes are harmful compound to be removed in diesel 

and NG engines. A small ASC (high SV) with a very low Pt loading has a negligible 

effect on sulfate formation ( particulates) but the oxidation of CO, aldehydes and 

unsaturated HCs (like C3H6) was enhanced in comparison to V-SCR catalyst only. 

However, saturated HCs (CH4, C2H6, C3H8) require a large MOC type catalyst to be 

oxidized efficiently. 

 

 

 

Figure 5. NOx conversion on fresh and aged V-SCR catalyst in NO only feed gas (1000 ppm 

NO, 1000 ppm NH3, 10% O2, 10% water in N2, ceramic 400 cpsi, SV 50.000 h-1). 
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4.4 Conclusions 

The results gave an indication of the possible utilization of SOx traps to improve 

MOC efficiency and durability. In next steps, the design and method of LST+MOC 

will be optimized to match best for the real applications. In future, diesel, natural gas 

and hybrids are alternatives requiring each tailored ATS strategy/designs for NOx, 

SOx, HCs and particulate matter (PM  DPFs) by emission legislations. 
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5.1 Introduction 

Liquefied natural gas (LNG) utilization as marine fuel is increasing. With LNG, both 

SOx and NOx regulations of the IMO (International Maritime Organization) can be 

achieved without any need for after-treatment, since natural gas (NG) is nearly 

sulphur free, resulting in no SOx emissions while low NOx levels can be achieved 

due to low combustion temperature of natural gas (in lean burn conditions). In 

addition, particle emissions form natural gas combustion are low and, in practice, 

no black carbon is formed from NG combustion [1]. Moreover, CO2 emission is lower 

with NG use compared to diesel fuels because NG is mainly composed of methane 

with a higher H/C ratio compared to diesel. The hydrocarbon emissions, on the other 

hand, are higher with NG compared to diesel fuels [2-5]. Because natural gas is 

mainly methane, most of the hydrocarbon emissions is also methane. Since 

methane is a strong greenhouse gas, its emissions should be minimized.   

One option to reduce methane emissions is the use of oxidation catalyst. In order 

to oxidize methane, a highly efficient catalyst is needed. Challenge in the 

development of methane oxidation catalyst is the catalyst deactivation since as little 

as 1 ppm SO2 present in the exhaust has already been found to inhibit the oxidation 

of methane [6, 7]. 

In this study the performance and regeneration of one methane oxidation catalyst 

(MOC) is studied. 
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5.2 Experiment setup 

The research facility included a passenger car gasoline engine that was modified to 

run with natural gas. The engine with the test facility was presented in detail in 

Murtonen et al.[8]. The engine was operated with a lean air-to-fuel mixture. With this 

facility the exhaust gas flow and temperature (measured upstream of the catalysts) 

were adjusted independently, and therefore, it was possible to keep the exhaust gas 

composition and flow constant while changing only the temperature. 

The NG was from Nord Stream and was high in CH4 content (>95%). The sulphur 

content of the gas was below 1.5 ppm. The lubricating oil sulphur content was 2100 

mg/kg, density was 0.85 kg/dm3 and viscosity at 100 ⁰C was 13.4 mm2/s.  

Methane oxidation catalyst (MOC) utilized platinum-palladium as active metals. 

In addition to MOC only, similar studies were done with a SOx trap installed in front 

of the MOC. The SOx trap utilized platinum as catalyst. 

Additional SO2 was fed into the exhaust (see Figure 1) in part of the ageing tests 

contributing to a 1 ppm increase in the exhaust gas while any sulphur from the 

natural gas and lubricating oil, led to a SO2 level of approximately 0.5 ppm in the 

exhaust gas. This means SO2 level of 0.5 ppm without any additional SO2 and SO2 

level of 1.5 ppm with the added SO2 in the exhaust, respectively. Altogether, three 

similar experimental campaigns were conducted. Two tests were done with MOC 

only, one test with additional SO2 and the other one without SO2 addition. The third 

test was conducted with SOx trap installed before the MOC (including the additional 

SO2 in the exhaust gas). 

The experiments were conducted over a 180 hours’ ageing at the selected driving 

mode with exhaust temperature adjusted to 550⁰ C and exhaust flow to 60 kg/h. 

The engine was running without stops and once a day regeneration was done by 

turning the engine to stoichiometric condition for 5 minutes. 

Emission measurements were done at the upstream and downstream of the 

catalyst system (see Figure 1). This included a Horiba PG-250 analyser used to 

measure NOx, CO, CO2, and O2. Online SO2 emissions were determined by a 

Rowaco 2030 1 Hz FTIR Spectrometer. MicroGC was used to measure the 

hydrocarbons and hydrogen (H2). Moreover, multiple gaseous components were 

measured continuously by two Gasmet FTIR spectrometers simultaneously at the 

upstream and downstream of the catalyst system. 

 

Figure 1. The experiment setup. 
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5.3 Results and discussion 

To oxide methane, in addition to the effective catalyst, high temperature is required. 

This was found to be true in the present study as well. After pre-conditioning the 

catalyst for 48 hours in the engine exhaust, the initial performance was defined by 

measurements at the upstream and downstream of the catalyst. Figure 2 presents 

the initial methane conversion as a function of exhaust temperature and at three 

different exhaust flows. At exhaust temperature of 400 ⁰C, the methane conversion 

was found to be negligible (only 2%). However, when increasing the temperature, 

the methane conversion increases sharply, being above 20% at exhaust 

temperature of 460 ⁰C, above 60% at exhaust temperature of 500 ⁰C and at the 

highest temperature of 550 ⁰C the methane conversion is approx. 70%. 

Furthermore, the lower exhaust flow (40 kg/h) studied at 550°C increased the 

methane conversion to near 80% which is reasonable since the lower exhaust flows 

mean more time for the catalytic reactions to occur. 

 

 

Figure 2. Initial methane conversion for ‘trap+MOC’ case (the line is to guide eye only). 

The methane conversion of the MOC was found to decrease rather quickly over 

time. Regeneration, done once a day, after each 20 h of driving, was however found 

to be able to recover the methane efficiency of the catalyst. During the 5 minutes’ 

regeneration, a release of SO2 was detected at the downstream of the catalyst.  

The exhaust SO2 level had a clear influence on the methane efficiency, since 

when MOC was aged with 1 ppm extra SO2 added to the exhaust, the methane 

conversion after each 20 h of driving was lower compared to the case where MOC 

was aged without any extra SO2 in the exhaust (see Figure 3). The SOx trap was 

found to shield the MOC since when the same ageing was conducted with trap 
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installed at the upstream of the MOC, the methane efficiency was similar to the case 

with no SO2 added to the exhaust.  

 

 

Figure 3. Methane conversion during ageing. Regenerations done after each 20h. 

These results give indication of the possible utilization of MOC in LNG ships to 

control methane slip emissions. However, the regeneration process in real sized 

marine engine is an issue that needs to be investigated. Further catalyst 

development, regarding the efficiency and sizing, might also be needed to have the 

catalyst size suitable to be installed in high-temperature conditions in the exhaust 

line.  

References 

[1]  Lehtoranta, K.; Aakko-Saksa, P.; Murtonen, T.; Vesala, H.; Ntziachristos, L.; 

Rönkkö, T.; Karjalainen, P.; Kuittinen, N.; Timonen, H. Particulate Mass and 

Nonvolatile Particle Number Emissions from Marine Engines Using Low-Sulfur 

Fuels, Natural Gas, or Scrubbers. Environ. Sci. Technol. 2019, 53 (6), 3315–

3322. https://doi.org/10.1021/acs.est.8b05555. 

[2] Anderson, M.; Salo, K.; Fridell, E. Particle- and Gaseous Emissions from an 

LNG Powered Ship. Environ. Sci. Technol. 2015, 49 (20), 12568–12575. 

https://doi.org/10.1021/acs.est.5b02678. 

[3]  Lehtoranta, K.; Murtonen, T.; Vesala, H.; Koponen, P.; Alanen, J.; Simonen, 

P.; Rönkkö, T.; Timonen, H.; Saarikoski, S.; Maunula, T.; et al. Natural Gas 

Engine Emission Reduction by Catalysts. Emiss. Control Sci. Technol. 2017, 

3 (2), 142–152. https://doi.org/10.1007/s40825-016-0057-8. 

[4]  Hesterberg, T. W.; Lapin, C. A.; Bunn, W. B. A Comparison of Emissions from 

Vehicles Fueled with Diesel or Compressed Natural Gas. Environ. Sci. 

https://doi.org/10.1021/acs.est.8b05555
https://doi.org/10.1021/acs.est.5b02678
https://doi.org/10.1007/s40825-016-0057-8


 

45 

Technol. 2008, 42 (17), 6437–6445. https://doi.org/10.1021/es071718i. 

[5]  Liu, J.; Yang, F.; Wang, H.; Ouyang, M.; Hao, S. Effects of Pilot Fuel Quantity 

on the Emissions Characteristics of a CNG/diesel Dual Fuel Engine with 

Optimized Pilot Injection Timing. Appl. Energy 2013, 110, 201–206. 

https://doi.org/10.1016/j.apenergy.2013.03.024. 

[6]  Ottinger, N.; Veele, R.; Xi, Y.; Liu, Z. G. Desulfation of Pd-Based Oxidation 

Catalysts for Lean-Burn Natural Gas and Dual-Fuel Applications. SAE Int. J. 

Engines 2015, 8 (4), 1472–1477. https://doi.org/10.4271/20l5-0l-0991. 

[7]  Lampert, J. K.; Kazi, M. S.; Farrauto, R. J. Palladium Catalyst Performance for 

Methane Emissions Abatement from Lean Burn Natural Gas Vehicles. Appl. 

Catal. B Environ. 1997, 14 (3–4), 211–223. https://doi.org/10.1016/S0926-

3373(97)00024-6. 

[8]  Murtonen, T.; Lehtoranta, K.; Korhonen, S.; Vesala, H.; Koponen, P. Imitating 

Emission Matrix of Large Natural Catalyst Studies in Engine Laboratory. In 

28th CIMAC World Congress; 2016; Vol. Paper #107. 

 

 

https://doi.org/10.1021/es071718i
https://doi.org/10.1016/j.apenergy.2013.03.024
https://doi.org/10.4271/20l5-0l-0991
https://doi.org/10.1016/S0926-3373
https://doi.org/10.1016/S0926-3373


 

46 

6. Catalytic oxidation of methane: Modeling and 
simulations 

Kirsi Spoof-Tuomi1 

University of Vaasa 

 

6.1 Introduction 

Natural gas is of great interest nowadays in the effort to move towards less polluting 

marine fuels. Gas engines operating in lean conditions have proven to be successful 

in maintaining high efficiency while reducing NOx, SOx, CO2, and PM emissions. 

However, these benefits are, in part, offset by unacceptable levels of methane 

emissions in the exhaust gas of lean-burn gas engines. In our previous study [1], 

we concluded that only 2.5% methane slip from LNG combustion already negated 

the benefit of reduced CO2 emissions, leading to global warming potential equal to 

diesel fuel. This underlines the importance of controlling methane emissions from 

gas engines.  

A methane oxidation catalyst (MOC) is increasingly being considered as a critical 

component in the exhaust after-treatment architecture of lean-burn gas engines. 

The oxygen present in exhaust gases from lean-burn engines enables the oxidation 

of CO and hydrocarbons (HC) over an oxidation catalyst. However, the conversion 

of methane remains more challenging compared to other HCs because high catalyst 

temperatures are necessary for the oxidation of this highly stable compound [2]. In 

addition, under lean-burn conditions, the oxidation reaction occurs in the presence 

of large quantities of water, which has a deactivating effect on catalysts. 

Furthermore, methane oxidation catalysts are sensitive to sulfur poisoning, even at 

very low sulfur levels. Sulfur present in lean-burn conditions, dominated by large 

excess of air, will be oxidized to SO2, and further to SO3, leading to the formation of 

sulfates and sulfites on both the noble metal active phase and the support [3]. 

Gremminger et al. [3] found that even less than 0.3 ppm of sulfur species led to the 

accumulation of sulfur on MOC and caused rapid deactivation of the catalyst.  

                                                           
1 Contact: firstname.lastname@uva.fi 
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The ability to regain CH4 conversion activity of deactivated catalyst via a 

regeneration mechanism is a critical issue for lean-burn gas engine applications. 

There are two ways for regenerating sulfur poisoned PGM-based catalysts. The first 

method is thermal regeneration. The problem with this approach is that 

temperatures required for regeneration are high. Studies have shown that complete 

regeneration is not possible even at a temperature of 650°C [2,4]. Another approach 

for catalyst regeneration is to change the chemistry of the exhaust gas. [4] For 

example, lowering the oxygen concentration in the catalyst feed gas can aid 

regeneration [5]. 

This study aims to investigate the potential of using a simulation-based approach 

for predicting MOC behavior over time, i.e., deactivation and the effect of 

regeneration. The simulation model was created by GT-SUITE software developed 

by Gamma Technologies, LLC. Global kinetics was used to represent the oxidation 

reactions over a bimetallic Pt-Pd catalyst. The SO2 effects were further added to the 

model. Finally, the complete model was used to simulate catalyst regeneration by 

changing the temperature and exhaust gas composition. 

6.2 Materials and methods 

The catalyst modeled in this study was a bimetallic Pt-Pd catalyst with the Pt/Pd 

weight ratio of 1:4. The noble metal loading in the catalyst was 200 g/ft3 (7.06 g/l). 

Gamma alumina (γ-Al2O3) served as the support material. 

6.2.1 Kinetic modeling 

According to the software provider, typically two HC’s in the system is sufficient and 

practical for modeling purposes. In general, one fast oxidizing and one slow 

oxidizing, or large HC, need to be modeled [6]. In our model, C2H6 represented the 

fast oxidizing HC and CH4 the slow HC. Among alkanes, methane is the kinetically 

least reactive molecule [7]. 

The set of oxidizing reactions considered in this work was: 

CO + 0.5O2 → CO2 

H2 + 0.5O2 → H2O 

C2H6 + 3O2 → 2CO2 + 2H2O 

CH4 + 2O2 → CO2 + 2H2O 

NO + 0.5O2 → NO2 

6.2.2 Model calibration 

MOC calibration means finding a set of reaction rates that best fits the measured 

data so that the model adequately predicts the conversion of reactants over the 

range of expected exhaust gas temperatures, flow rates, and species 

concentrations [6]. Typically, there are two rate constants for each reaction that 
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needs to be calibrated; the frequency factor or pre-exponent multiplier, A, and the 

activation energy, Ea, in units of J/mol: 

𝑘 = 𝐴 ∙ 𝑒𝑥𝑝 (
−𝐸𝑎

𝑅𝑇
), 

where k is the rate constant, R is the universal gas constant in units of J/mol/K, and 

T is the temperature in units of K. The term Ea/R is also known as the activation 

temperature in units of K.  

According to Arrhenius reaction kinetics: 

𝑅𝑎𝑡𝑒 = 𝑘[𝐴]𝑎[𝐵]𝑏 

Extending this to surface reactions involving coverages, the full rate becomes: 

𝑅𝑎𝑡𝑒 = 𝑘 ∙ [𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑚]𝑜𝑟𝑑𝑒𝑟(𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠)(𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠) 

           = 𝐴 ∙ 𝑒𝑥𝑝 (
−𝐸𝑎

𝑅𝑇
) [𝐶𝑖]𝑗(𝜃𝑖)(𝐺𝑖) 

6.2.3 Experimental data 

The experimental data were obtained from the catalyst developer. It included HC 

and CO light-off performance tests on both fresh and sulfur-poisoned catalysts. The 

sulfur-poisoned catalyst was first aged hydrothermally at 700°C for 20 h (10% H2O 

in air) and then treated for 20 h at 400°C with a sulfur-containing gas having a 

concentration of 25 ppm SO2. The exact inlet gas compositions are tabulated in 

Table 1. 

Table 1. Simulated exhaust gas and SO2 poisoning mixtures. 

 

 Simulated exhaust gas SO2 poisoning mixture  

CH4 1500 ppm – 

C2H6 300 ppm  

C3H8 100 ppm – 

C2H4O 150 ppm  

NO 500 ppm – 

CO 1200 ppm 0.05% 

H2O 8% 10% 

CO2 7.5% 10% 

O2 10% 6.5% 

SO2  25 ppm 

N2 Bal. Bal. 

GHSV 50 000 h−1  
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6.2.4 Sulfur deactivation 

To further develop the model, the SO2 effects were added to the model. The sulfur 

poisoning model used in this study is based on the work of Gayatri [8]. In this 4-site 

reaction mechanism, each site represents a different surface species:  

 S1: Loosely bound SO2 on PGM-site. This desorbs at low temperatures. 

 S2: Surface sulfite. Present at typical MOC operating temperatures. Affect 

the active sites on PGM. 

 S3: Surface sulfate. Present at typical MOC operating temperatures. Affect 

the active sites on PGM. 

 S4: (Bulk) Sulfate on Alumina. SO2 adsorbed on S4 site involves the bulk 

alumina and should not affect PGM active sites.  

 

The reaction steps and rate expressions for SO2 adsorption on and desorption from 

the catalyst are as follows: 

SO2 + S1 ↔ SO2–S1 r1 = A1exp(-E1/RT)[SO2]θS1  

r2 = A2exp(-E2(1-α1θSO2–S1)/RT)θSO2–S1 

SO2 + S2 ↔ SO2–S2 r3 = A3exp(-E3/RT)[SO2]θS2
3  

r4 = A4exp(-E4(1-α2θSO2–S2)/RT)θSO2–S2
3 

SO2 + S3 ↔ SO2–S3 r5 = A5exp(-E5/RT)[SO2]θS3
3  

r6 = A6exp(-E6/RT)θSO2–S3 

SO2–S3 + S4 ↔ SO2–S4 + S3 r7 = A7exp(-E7/RT)θSO2–S3
3θS4  

r8 = A8exp(-E8/RT)θS3
3θSO2–S4 

6.3 Results and discussion 

The kinetic parameters for CH4, C2H6 and CO were first calibrated to best fit the 

experimental data without sulfur effect. Thus, light-off experiments with the fresh 

catalyst were used as a basis for calibration. Inhibition functions were adopted from 

the DOC_Sampara and Bisset model in the GT-Suite library. Table 2 summarizes 

the temperatures for 50% and 90% conversions, frequency factors, and activation 

energies for CH4, C2H6 and CO after calibration. A more detailed description of 

conversion curves for CH4 is presented in Figure 1.  
 

Table 2. T50% and T90%, frequency factors and activation energies for CH4, C2H6 and CO. 

  T50% (°C) T90% (°C) A Ea (J/mol) 

  measured simulated measured simulated   

 

CH4 366 369 425 425 2.614E+06 88898 

C2H6 348 348 389 393 3.692E+05 69525 

CO 165 165 189 185 9.828E+04 24960 
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Figure 1. Measured and predicted conversion curves for CH4 after calibration. 

Following this, the SO2 reactions were calibrated and added to the model. The 

completed model was then run at three different temperatures, 400°C, 450°C and 

500°C, which are typical in lean operating natural gas engines [9]. Overall, the 

simulation indicated a fast deactivation of the catalyst in the presence of SO2. At 

400°C, a dramatic drop of the CH4 conversion could be observed, resulting in less 

than 10% methane conversion after 20 h exposure time on SO2 containing (25 ppm) 

stream. Similarly, at 450°C and 500°C the CH4 conversion decreased rapidly during 

the first 4 h, eventually leading to CH4 conversion of 30% and 70% after 20 h time 

on SO2 containing stream (Figure 2). After 20 hours exposure on SO2 containing 

stream, CO T90% increased from 189°C to 224°C, and C2H6 T90% from 389°C to 

492°C, respectively.  

        

Figure 2. CH4 conversion as function of time on SO2 containing stream at two different 

temperatures. 

Finally, the model was run to predict the effect of the regeneration process. In the 

simulations, both the air-fuel ratio and the temperature were varied. The choice of 

this approach was based on Gremminger et al. [3]. They found that regeneration by 

reductive treatment combined with temperatures above 500°C was the most 

efficient for catalyst regeneration. 
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Results from the simulation are depicted in Figure 3. The first 5 hours 

demonstrates the deactivation of a fresh catalyst at 450°C with  

 25 ppm SO2 

 1500 ppm CH4 

 300 ppm C2H6 

 100 ppm C3H8 

 500 ppm NO 

 1200 ppm CO 

 10% O2 

 8% H2O 

 7.5% CO2 

in N2. The model predicted a CH4 conversion decrease from over 90% in fresh state 

to 35% in SO2-poisoned state. After 5 hours, the regeneration period takes place. 

To regenerate the SO2-poisoned catalyst, a 30 min reductive treatment is applied 

at 550°C. The regeneration mixture consisted of  

 9800 ppm CH4 

 200 ppm C2H6 

 2.02% O2 (λ=1) 

in N2. The model now predicted a CH4 conversion increase from 35% in SO2-

poisoned state (at 450°C) to 95% in regenerated state (at 550°C). The result is in 

line with the experimental data, which showed a 95% conversion at 550°C after 30 

min regeneration by reductive treatment. The decrease in CH4 conversion during 

the process is due to lack of excess O2 in the reaction gas feed [10]. Figure 3 also 

illustrates the release of SO2 from the catalyst during the regeneration procedure. 

  

Figure 3. CH4 conversion (left) and SO2 release (right) during regeneration. 

To elaborate the model further, more detailed modelling of the reactions that may 

occur during regeneration could be incorporated. For example, in wet conditions, 

steam reforming and possibly water–gas shift reactions may take place during 

reductive treatment, providing hydrogen gas for low-temperature sulfate 

decomposition [10].  
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The accuracy level of the model created in this study is limited due to the limited 

experimental data available. To achieve reasonable confidence in a predictive after-

treatment model, the test protocol should be designed in such a way that it enables 

accurate calibration. The user should be able to verify the thermal properties with 

confidence before moving on to calibrating kinetics. Therefore, a stand-alone 

experiment to characterize the thermal behavior of the reactor should be performed 

before attempting to calibrate reaction kinetics. To be able to simulate changes 

occurring under transient conditions, the set of experiments should cover a wide 

range of inlet conditions in terms of space velocity and gas temperature [6]. 

Furthermore, varying the concentrations of gas-phase components (CH4, NO, SO2, 

O2, and H2O) in the inlet stream would benefit, e.g., tuning the inhibition terms [11]. 

6.4 Conclusions 

The objective of this study was to explore the feasibility of using a simulation-based 

approach to predict MOC behavior over time, i.e., deactivation and the effect of 

regeneration. The catalyst simulation model was created with GT-SUITE software. 

The model was calibrated against experimental data collected from light-off 

performance tests on fresh, aged, and regenerated catalysts. 

The main conclusions were: 

1. For the fresh catalyst, the model agreement with the experimental 

observations was good.  

2. Catalyst deactivation due to sulfur poisoning was successfully modeled by 

linking the CH4 oxidation reaction dependent on the empty PGM-site 

coverages.  

3. The catalyst model, and its underlying kinetic parameter set, predicted 

catalyst regeneration by varying the temperature and exhaust composition 

reasonably. The accuracy of the model under transient conditions could be 

improved by fine-tuning it further against varying inlet concentrations and 

flow rates. 

4. To ensure the reliability of a predictive after-treatment model, a very careful 

test protocol design is required.  
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The maritime sector is projected to undergo a drastic energy transition that will start 

affecting the industry soon. The main goal of this transition is to reduce the carbon 

emissions of shipping by 70% by 2050. According to predictions, this carbon 

emissions reduction can be achieved with a combination of emission reduction 

technologies and adopting alternative fuels, with each of these measures 

contributing an approximately equal amount to the end carbon emissions reduction. 

Technologies like fuel cells and batteries have the potential to reduce carbon 

emissions significantly, but technological maturity and adoption rates need to 

improve significantly to make them economically competitive. LNG is expected to 

be the most prominent fuel to replace current fuel oils and MGO in the short term. 

In the long term, the used fuel mix will need to gradually shift towards CO2-free 

alternatives like ammonia or synthetic methane produced from renewable 

hydrogen. Biofuels may also be a long-term solution, but more research is needed 

on their environmental and socioeconomic effects. 

7.1 Introduction 

The International Maritime Organization (IMO) has made a preliminary plan to 

reduce maritime greenhouse gas (GHG) emissions by 50% by 2050, in accordance 

with the Paris Agreement. As a result, the design and operation of maritime vessels 

will undergo drastic changes in near future. Currently, shipping related emissions 

are regulated by MARPOL Annex VI (IMO, 2020), which limits the amount of CO2, 

NOx, SOx, and particulate matter (PM) a ship may emit. Shipping was responsible 

for about 2.2% of total anthropogenic GHG emissions in 2014 (IMO, 2015). 

However, this figure may rise drastically in the future, as maritime trade is projected 

to increase by 39% by 2050 (DNV GL, 2019) and business-as-usual scenario 
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predictions paint a grim picture of potential GHG emissions in the future (IMO, 

2015).  

CO2 emission reductions are realized for newbuilds through a specified energy 

efficiency design index (EEDI). This index allows less and less CO2 emissions 

progressively towards the future. In early 2020, the global sulphur limit of marine 

fuels was reduced from 3.5% to 0.5%. In addition, fuel sulphur content has been 

limited to 0.1% in specified emission control areas (ECA) from 2015 onwards. Ships 

can still operate with fuels containing more sulphur than these limits allow, but in 

this case, they must be fitted with exhaust gas treatment systems that reduce SOx 

emissions. 

NOx emissions are regulated for ships that operate in specified NOx control ECAs. 

These regulations will apply also to ships that operate in regions where future NOx 

control ECAs are established. Newbuilds must comply with tier III NOx regulations, 

which limit NOx emissions to 9*n g/kWh, where n is the revolutions per minute 

(RPM) region the ships engine is operated as. For example, a 720 RPM motor is 

limited to 2.4 g/kWh NOx emissions. 

According to the current understanding, EEDI will not be enough to reduce 

shipping related GHG emissions by 50% by 2050. Carbon emissions of shipping 

will need to reduce by 70% by 2050 to reach this goal. Additional measures in the 

form of more stringent regulations or carbon pricing can be expected for the shipping 

sector soon. DNV-GL predicts that in a possible pathway to this goal, energy usage 

per tonne-mile will decrease by 35% - 40% by 2050 as a result from hull and 

machinery improvements, intelligent solutions and speed reductions. Rest of the 

carbon emissions will need to be reduced by having carbon neutral fuels account 

for 30%-40% of the total fuel mix of marine vessels by 2050. (DNV GL, 2019) 

(Anderson & Bows, 2012) 

7.2 Technology options 

Various technological improvements and new technologies can help decrease the 

energy usage of shipping per ton-mile by 35% - 40%. The adoption of many of these 

technologies is still in its infancy in the maritime sector, and thus they hold great 

potential in reducing overall GHG emissions. Some technologies may already be 

economically efficient, but significant barriers prevent widespread adoption. 

According to (Rehmatulla;Parker;Smith;& Stulgis, 2017), lack of sea-trials and split 

incentives was cited as the most important barriers in the way of adopting energy 

efficient technologies. 

Lack of sea-trials for emerging technologies remains a large problem for the 

industry as few want to risk being early adopters. Investors might not be comfortable 

in making their decisions based on simulations alone, as they might be blind to 

several hidden costs associated with a technology. Better access to high quality 

ship energy consumption data is cited as a solution to this problem, accompanied 

by research utilizing this data of course. 
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Split incentive barriers arise from the length of contracts between charterers and 

ship owners, which applies to most merchandise vessels. The length of most 

chartering contracts falls well below the payback time of energy efficiency increasing 

measures. On the other hand, only 40% of savings accrued by using less fuel reflect 

back to the ship owners. These issues deter both parties from investing in these 

technologies. Third party financing solutions may be a solution to this issue. 

7.2.1 Fuel cells 

Interest towards fuel cells in maritime applications stems from their higher efficiency 

than ICEs. Low temperature fuel cells, such as proton exchange membrane (PEM) 

cells can reach efficiencies of 50%-60%, and high temperature cells, like the solid-

oxide fuel cell (SOFC), can have an electrical efficiency as high as 80% if heat 

recovery systems are used. According to (Tronstad;Åstrand;Haugom;& Langfeldt, 

2017), PEM fuel cells are the most feasible fuel cell solutions for smaller vessels, 

whereas high temperature PEM fuel cells and SOFCs are most feasible for larger 

vessels. Significant research is underway to scale up fuel cell technology, increase 

their efficiency and lower costs. Especially PEM cells have reached technological 

maturity due to their application to the automotive sector. DNV-GL predicts that fuel 

cells will be cost competitive for heavy vehicles in 2030 (DNV GL, 2019). 

Fuel cells operate by converting the potential chemical energy of hydrogen-based 

fuels into electricity. The by-product of this conversion is water, which makes the 

technology locally emission-free. Low temperature cells are more stringent to what 

fuel they accept, with the PEM cell allowing only hydrogen to be used as fuel. High 

temperature cells are more flexible in this regard, and fuels such as ammonia, LNG 

or methanol may be considered. 

The CAPEX of installing fuel cells has been estimated to be between 2000 – 

6000 per kW. PEM fuel cells occupy the smaller cost range of this prediction, with 

high temperature PEM cells in the middle and SOFCs at the higher end. The OPEX 

for marine applications is expected to be 2-8 times as high as for a comparable 

internal combustion engine running on fossil fuel. Further adoption of the technology 

is expected to drive CAPEX down. For example, the cost of automotive PEM fuel 

cells is expected to drop to 280 USD per installed kW if manufacturing reaches 

20,000 units per year. International rules regarding fuel cell installations on vessels 

is currently under development by the IMO. Fuel storage and supply rules currently 

cover LNG, with methanol underway. (DNV GL, 2019) 

7.2.2 Batteries 

Lithium-ion batteries have been recently installed on board smaller scale ferries and 

passenger vessels either as the primary energy source, or then as a hybrid solution. 

Massive research and economy of scale development is currently driven by the 

automotive sector. Various lithium-ion battery chemistries are available, with 

multiple sources pointing at NMC as the most feasible solution for ships. This is 
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mainly due to its high overall energy density. Maritime battery CAPEX is somewhat 

hard to estimate. Some studies predict that mass production of battery cells for the 

automotive sector will drop the price of batteries to 100-200 USD/kWh. This might 

offer some insight into how the cost of maritime batteries will develop as well. 

However, maritime battery systems are more tailor-made and thus more expensive 

than these mass-produced alternatives. Current estimates of maritime battery costs 

are about 1500 USD/kWh including the cost of the needed power electronics. 

(European Maritime Safety Agency, 2020) 

While batteries may be sufficient as the sole energy provider in very small 

vessels, their price, mass and volume make them infeasible for the majority of 

ocean-going vessels. However, they may have a place in increasing the efficiency 

of the main power train of all vessels, or then as a power source during port 

operations. Possible future innovations such as solid-state batteries may improve 

battery energy density significantly, making them feasible for larger vessels and 

longer trips. 

7.2.3 Wind propulsion 

Wind propulsion technologies include applications that use wind energy to reduce 

the overall propulsion demand of a ship. These include Flettner rotors, kites and 

sails. While wind propulsion technology is not likely to act as the sole power 

producer of ships, it may be effective in contributing towards the goal of reducing 

energy usage per tonne-mile by 35% - 40%, which was discussed earlier. 

According to (Rehmatulla;Parker;Smith;& Stulgis, 2017), Flettner rotor providers 

cite a payback time of five years or lower for their technology. However, the adoption 

of Flettner rotors in shipping remains in its infancy. Structural integrity of the rotor 

and cargo handling issues were seen as the most prominent barriers to adopting 

this specific technology. Classification societies play an important role in solving 

these problems. Furthermore, investors are worried about hidden costs that are not 

accounted for in the technology providers’ models. For example, the recuperation 

of capital spent on Flettner rotors may necessitate altering the ships route to favour 

better wind conditions. This may in turn reflect negatively on profits due to longer 

shipping durations. 

7.2.4 Other technologies 

Waste heat recovery systems utilize the energy stored as heat in exhaust gas or 

high-temperature engine cooling cycles. The excess heat is typically used to 

generate high pressure steam in a boiler, which in turn can be used to generate 

electricity. Typical payback times of such systems are between 2 to 5 years, 

reflecting potential fuel savings between 4% - 16%. The payback time and fuel 

savings depend on the extent of the system installed. (Baldi & Cecilia, 2015) 

Intelligent solutions such as optimized energy system unit commitment, route 

optimization, speed optimization and capacity utilization form their own group of 
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technological advancements. The benefits of such systems are of course highly 

case dependent, but their impact on CO2 reduction potential is estimated in 

(Bouman;Lindstad;Rialland;& Strømman, 2017) to be between up to 25%. Such 

methods are attractive since they promise to utilize the available fleet more 

effectively without expensive modifications. However, more research is needed 

around these topics to realize their full potential. 

Air lubrication of the ship hull has generated interest recently and some 

installations already exist. Typical reported fuel saving estimations range between 

5% - 10% for these installations. The economic efficiency of these installations is 

hard to determine, since the type of technology employed differs significantly and 

no study specifically on this topic seems to be available. The benefit of applying 

such technology is that it can be relatively easily retrofitted to existing hulls. 

(Silverstream technologies, 2020), (Wärtsilä, 2020) 

7.3 Fuel options 

One of the most important properties of ship fuels is their volumetric energy density. 

A higher volumetric energy density allows a ship to operate longer without bunkering 

and thus generate more profits. Figure 1 demonstrates this energy density for a 

variety of selected fuels. Based on the figure, it is evident that batteries and 

hydrogen are infeasible as the primary energy sources for the majority of shipping. 

Most of the potential alternative fuels occupy the middle region of the graph, just 

below 20 MJ/l.  

 

Figure 1. Fuel volumetric energy density comparison. The sizes of the fuel tanks illustrate the 
increasing storage space needed to store the same amount of energy. 
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7.3.1 LPG 

Liquefied petroleum gas (LPG) is an oil refinery product, composed mostly of a mix 

of butane and propane that could potentially play a part in replacing HFO/MGO soon 

in the used fuel mix. It needs to be stored aboard either refrigerated, or then 

pressurized. Pressurized storage seems to be the more feasible option. LPG has a 

high volumetric energy density of 19 MJ/l, no SOx emissions and relatively low NOx 

emissions. LPG is also expected to have significantly lower PM emissions 

compared to HFO. CO2 emissions from LPG are approximately 16% lower 

compared to HFO. (DNV GL, 2019) 

Only a 2-stroke full power ICE burning LPG is on the market. A de-rated 4-stroke 

variant is offered by Wärtsilä. Furthermore, Wärtsilä also offers a system where LPG 

is reformed to methanol, which can then be used as fuel in dual-fuel engines. The 

2-stroke engine needs ECR/SCR systems to comply with tier III NOx regulations. It 

is unclear whether a 4-stroke ICE would need these systems. (DNV GL, 2019) 

The availability of LPG could in theory currently cover the marine sector. 

However, this would leave no LPG to be used elsewhere if production capacity is 

not increased. The CAPEX cost of an LPG tank is estimated to be roughly half of 

that of LNG tanks. LPG can somewhat compete with HFO in terms of pricing, just 

like LNG. It is currently more expensive than LNG, but cheaper than low sulphur 

fuel oils. International legislation regarding LPG as a marine fuel will take some time 

to be completed. (DNV GL, 2019) 

7.3.2 Biofuels 

Biofuels are fuels derived from biomass or biomass residue. The most promising 

derivatives of these for shipping include hydrotreated vegetable oil (HVO), fatty acid 

methyl ester (FAME) and liquefied biogas (LBG). Biofuels are an interesting 

candidate for replacing fuel oils, MGO and LNG in the future, because they can be 

used with the current infrastructure and technology with little or no modifications, 

and they promise significant CO2 reductions. Biofuels of course produce similar 

emissions as fossil fuels when burned in an ICE, but the premise is that the GHG 

emissions are captured by the growing biomass used for biofuel production. This 

premise is however slightly controversial. Estimations of CO2 reduction range 

between 19% - 88%. Some land-use and socio-economic problems are also 

associated with mass production of biofuels. In addition to CO2 reductions, using 

biofuels emits very low SOx and PM emissions. HVO and FAME need NOx 

abatement technology, whereas LBG has similar NOx emissions as LNG and meets 

Tier III NOx regulations as is. (DNV GL, 2019) 

Current usage of biofuels in shipping is very limited. The main barriers in way of 

its adoption include pricing and production at sufficient volumes. The pricing of 

biofuels is hard to estimate as the market for it is in its infancy, and regional prices 

vary by a large margin. International legislation regarding biofuel production and 

usage is underway. (DNV GL, 2019) 
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7.3.3 LNG 

Liquefied natural gas is a fossil fuel that can be stored cryogenically onboard with 

medium volumetric energy density and used as fuel in modern dual-fuel ICEs. LNG 

can also be used as fuel in high temperature fuel cells. It is a promising alternative 

that could replace HFO and MGO soon, because it is cost competitive with HFO, 

abundantly available and reduces CO2 emissions by up to 24% compared to HFO, 

depending on the type of engine technology used. Infrastructure for LNG bunkering 

is still quite limited but being developed around the world. LNG has very low SOx 

emissions and similar NOx and PM emissions as HFO with ECR/SCR. On the other 

hand, using LNG introduces the problem of methane slip, which is an issue since 

methane is about 34 times as potent GHG as CO2. LNG storage tanks require about 

3 times as much space as HFO, which makes it a suitable fuel for deep-sea ships. 

(DNV GL, 2019) 

LNG emissions depend a bit on the used engine technology. Some studies have 

suggested that high pressure engines reduce GHG emissions by 20-24% compared 

to HFO, taking methane slip into account. However, these types of engines need 

NOx abatement technology to comply with tier III NOx regulations. Low pressure 

engines have naturally lower NOx emissions, but the GHG reduction potential is only 

0-18% since they are more susceptible to methane slip. (DNV GL, 2019) 

The capital costs of LNG engine and fuel systems need to be reduced to make 

them economically competitive with builds that are more traditional. The CAPEX of 

an LNG powered ship is estimated to be 10-30% higher than a similar ship powered 

by HFO. Despite this, LNG is cited as the most promising alternative fuel, due to the 

cost competitiveness and availability of the fuel itself. LNG is the only alternative 

fuel that can meet the projected fuel demand for the next 10 year. There are 

currently 165 LNG powered vessels in operation, 154 confirmed orders and 500 

LNG carriers using LNG as fuel. International legislation regarding LNG is ready. 

(DNV GL, 2019) 

7.3.4 Methanol 

Methanol is a fuel that can be used either in ICEs or in fuel cells. It is liquid in ambient 

temperature and thus easily stored aboard, although its volumetric energy density 

demands a fuel tank approximately 2.5 times the size of a comparable oil-based 

fuel. It has no SOx emissions, but ECR/SCR systems need to be used with methanol 

to comply with NOx tier III regulations. Most methanol today is produced from natural 

gas and the total CO2 emissions of its life cycle are higher than HFOs comparative 

CO2 emissions. However, methanol can also be produced from biomass reducing 

its life cycle GHG emissions drastically. Furthermore, methanol can also be 

produced from hydrogen and CO2, making it a potential green fuel in the future. 

(DNV GL, 2020) 

The CAPEX of methanol storage tanks is about 1/3 the cost of LNG tanks. 

Retrofitting traditional ICEs to use methanol as fuel is estimated to cost between 
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250-350 EUR per kilowatt for larger engines. The fuel is also widely available, 

although bunkering infrastructure is very limited. The price of methanol itself is close 

to MGO or slightly higher which acts as a significant barrier for its uptake. Methanol 

is unlikely to see widespread adoption due to its high price and poor current 

environmental performance. International legislation regarding using methanol as 

fuel should be covered soon. (DNV GL, 2019) 

7.3.5 Hydrogen 

Hydrogen has huge potential in the future, but low adoption rate currently. Storage 

options vary from storing it in medium to high pressure, with the possibility of also 

storing it as a liquid cryogenically. The latter option is preferable since it has the 

best volumetric energy density; the property in which hydrogen lacks most. Liquid 

hydrogen has a volumetric energy density of only 6 MJ/l, when the storage facility 

is accounted for. This results in a fuel tank 6 times the size of a fuel oil alternative, 

which makes hydrogen infeasible to use in deep-sea shipping. Furthermore, the 

cost of hydrogen a hydrogen storage tank is estimated to be a bit over twice the 

cost of an LNG storage tank. Hydrogen is most associated as the fuel used in fuel 

cells. However, it can also be used in ICEs with efficiencies of about 40-50%. 

Emissions from using hydrogen depend entirely on the emissions of the production 

method used, as hydrogen is emissions free locally. (DNV GL, 2019) 

Currently, 95% of hydrogen is produced by steam reforming natural gas, a 

process with significant GHG emissions. In fact, total GHG emissions of using 

hydrogen produced with this method are higher than using traditional HFO. Despite 

this, hydrogen is a very expensive fuel and will not be cost competitive with the 

alternatives in a while. There is no infrastructure for distributing or bunkering 

hydrogen, and it will take some time before international legislation is ready for using 

hydrogen as a marine fuel. (DNV GL, 2019) 

Hydrogen could potentially be produced nearly emission free with electrolysis 

powered by renewable or nuclear energy. Hydrogen produced with this technology 

forms the basis for all future power-to-fuel alternatives, such as ammonia and 

synthetic methane. These fuels are projected to be vital for achieving IMOs emission 

goals. In addition, hydrogen may serve as the primary energy source of short-sea 

vessels in the future. 

7.3.6 Ammonia 

Ammonia as a fuel is similar to hydrogen, with the decisive difference of it having a 

higher volumetric energy density of 12 MJ/l: slightly lower than LNG. Furthermore, 

ammonia liquefies in much higher temperatures compared to hydrogen or methane, 

which makes its storage easier. It can potentially be used as a fuel in high 

temperature fuel cells emission free. However, this technology is not mature. ICEs 

that use ammonia as fuel are currently under development but will most likely need 

NOx abatement technology to comply with tier III NOx regulations. Ammonia is toxic 
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which might reflect as higher costs due to the needed safety equipment and stricter 

regulations. Currently, ammonia is seen as the most promising carbon-neutral 

option in the long term, because of the lower cost of its storage, energy converter 

and the fuel itself compared to hydrogen or synthetic methane. (DNV GL, 2019) 

7.4 Discussion & conclusion 

Reaching the goal of 50% reduced emissions in shipping by 2050 will be difficult 

and current regulations and policies do not incentivize investors enough to reach 

this goal. Since shipping is very closely tied to globalization and world trade, policies 

that influence the competitiveness of this sector have wide reaching effects, which 

makes developing and enforcing new policies a huge effort. Nevertheless, some 

further policies can be expected in the shipping sector soon, such as carbon pricing. 

Ships built today will need to be competitive for up to 40 years, and thus, a ship’s 

environmental impact is one of the most important considerations for new-builds 

today. 

The short-sea shipping sector is more flexible in which technologies and fuels it 

may adopt. Emerging technologies like batteries and fuel cells may become cost 

effective in this sector soon. The deep-sea segment, on the other hand, is restricted 

to fuels that boast a high volumetric energy density. Furthermore, new technologies 

take time to develop to such a scale that would be required for large ocean-going 

vessels. On the other hand, wind propulsion technology like Flettner rotors may be 

very well close to wide scale adoption in this sector. This is dependent on increased 

sea trials for the technology, as well as third party financial instruments for investing 

in such technology. Technologies like fuel cells, batteries and wind propulsion need 

to be employed along hull improvements, waste heat recovery systems and 

intelligent solutions to work towards the target of 40% reduced energy used per 

tonne-mile.  

LNG is regarded as the most promising fuel out of the current alternatives. It 

reduces CO2 emissions significantly compared to HFO/MGO, dual-fuel engine 

technology is mature, bunkering infrastructure for LNG is being developed 

constantly and it is the only alternative fuel that can meet the projected fuel demand 

for the next 10 years. In addition, it is cost competitive with current fuels. 

However, to reach target emission levels, switching to LNG is not enough. 

Towards 2050, adoption of carbon-free fuels needs to occur. It is still unclear which 

green fuel will eventually prevail. Ammonia looks like the most cost competitive 

option currently. On the other hand, if short-term predictions regarding LNG hold 

true, the shipping sector may be more inclined to shift towards synthetic methane 

since it can be used as is with LNG infrastructure and technology. 

Ships come with a wide range of different sizes, purposes and operational 

profiles. As such, it is impossible to pinpoint a single technology or fuel as the best 

overall. The choice of which technology or fuel to invest in is highly dependent on 

the specific use case and assumptions about the regulatory framework of the future. 
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Because of this, the selection process of such technologies should be done 

individually for each ship. 
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8.1 Introduction 

In this study, we present our recent groundwork analysis of large-eddy simulation 

(LES) modeling of RCCI combustion. Mixing and ignition of a high-reactivity diesel 

spray and a low-reactivity, lean methane-air mixture is investigated using numerical 

methods. With increasing concern over environmental preservation, one solution for 

reducing harmful emissions is utilizing low temperature combustion (LTC) at leaner 

mixture conditions [1]. Reactivity Controlled Compression Ignition (RCCI) offers a 

viable solution for emission reduction while still providing very high engine efficiency 

[2]. It targets at controlled heat-release rate and ignition timing through controlling 

in-cylinder reactivity stratification. In this study, the effect of injection timing in 

combustion characteristics is investigated by advancing the start of injection (SOI) 

away from the top dead center with a constant injection duration. A compression-

heating model is utilized to account for the ambient temperature and pressure 

increase due to compression effects. A diesel surrogate (n-dodecane) is injected 

into a homogeneous air-methane mixture with varying injection timing to investigate 

the effect of injection timing and overall mixture reactivity on dual-fuel ignition 

process, as shown in Figure 1.  
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8.2 Case Definition 

8.2.1 Numerical Methods 

For the gas phase, compressible Navier-Stokes equations are solved via Large-

Eddy Simulation (LES) using the OpenFOAM-6 CFD solver [3]. The pressure 

implicit splitting of operators (PISO) method is used for pressure-velocity coupling. 

The injected high-reactivity liquid diesel spray is modeled using Lagrangian 

Particle Tracking (LPT) method. A no-breakup model is used with a constant droplet 

diameter, with the assumption that the injected particles have already undergone 

the droplet breakup process. 

For combustion modeling, our in-house solvers, implemented on OpenFOAM, 

are used to speed up the chemistry reaction-rate calculation process. A finite-rate 

chemistry method is adopted and a chemical mechanism from Yao et al. [4] (54 

species, 269 reactions) is utilized. The open-source pyJac library [5] is used for 

replacing the finite-difference chemistry ODE Jacobian with an analytical one. In 

addition, the ODE solver that handles the stiff chemistry problem is enhanced by 

utilizing LAPACK libraries for matrix operations. Finally, a run-time dynamic load 

balancing routine is implemented to increase the parallel-computing efficiency of 

the chemical reaction rates. The main framework of our numerical models is 

described in detail in our previous studies [6, 7].  

8.2.2 Compression Effects 

To be able to model the combustion process under RCCI conditions more 

accurately, the rise in pressure and subsequent temperature due to engine 

compression should be taken into account. A compression heating source term is 

added to the CFD governing equations to achieve this, following the works [8] and 

[9]. The derivation of the source term is described in Equations 1 and 2. 

 

Figure 1. An illustration of the dual-fuel ignition process. 
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8.2.3 Investigated Conditions 

A single injection diesel configuration (Tinj = 0.5 ms) is adopted by varying the start 

of injection (SOI) in the range of 7.2 to 36 CAD (crank angle degree) before top 

dead center (BTDC), details of which are given in Table 1. A simple 3D geometry is 

simulated under this source term and its thermophysical properties are compared 

with a 0D homogeneous reactor under same compression conditions in Figure 2. 

Table 1. Investigated SOI timings and subsequent ambient conditions. 

 

 

8.3 Results and Discussion 

As seen in Figure 3, advancing the SOI from 7.2 up to 21.6 CAD BTDC advances 

both first (τ1) and second stage (τ2) ignition. However, with further advanced SOI, 

 
(1) 

 
(2) 

 
 

(a) (b) 

Figure 2. (a) A schematic of the numerical setup used in the simulations (b) Motored pressure 

with compression heating model (red) and a 0D homogeneous reactor (blue) under same 

compression conditions. 
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the τ2 starts to retard towards TDC, caused by lower reactivity of the spray charge 

due to over-dilution and subsequent shift in ignition timing characteristics. This 

observation supports the findings of Li et al. [10], where they observed the ignition 

to first advance and then retard with advancing the SOI with respect to TDC. In 

addition, it can be observed that while τ1 does not exhibit the same non-linear 

behavior with respect to TDC, its rate of change decreases when SOI is further 

advanced.  

The cut-planes of various fields obtained from cases SOI-7.2, 21.6 and 36 are 

presented in Figure 4 at their corresponding τ1+0.2 ms time instances. The change 

 

 

Figure 3. First and second stage ignition (τ1, τ2) times obtained from the 5 simulations with 

varying SOI with respect to TDC. 

 

 

Figure 4. Mixture fraction, temperature, H2O2 and CH4 cutplanes for cases SOI- 7.2 (left), 21.6 

(middle) and 36 (right), at their corresponding τ2+0.2 ms time instances (blue isoline 

represents stoichiometric mixture fraction). 
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in mixture characteristics and ignition strength is clearly observed: for SOI closer to 

TDC at 7.2 CAD (left), the overall mixture is above stoichiometry due to small mixing 

time. Due to the rich conditions, the high-temperature ignition kernel is large in 

volume and forms a robust energy source for the subsequent propagation into the 

ambient charge. The specie H2O2, associated with low-temperature chemistry 

(LTC), is fully consumed within the rich spray charge, indicating that the shift from 

LTC and high-temperature chemistry (HTC) regime is already underway within this 

region. Finally, the ambient CH4 within the spray charge is almost fully consumed, 

further showing that the ignition is strong and already locally consuming the ambient 

fuel. 

The main findings of the study are: 

● When SOI is advanced, ignition time also advances. When a critical SOI 

point is reached, ignition retards towards TDC due to spray dilution. 

● For early SOI ignition, kernels are small in size, leading to possible issues 

of premixed flame initiation. 

● By advancing SOI, the propagation mode of combustion can be influenced 

from spontaneous to deflagrative, due to larger reactivity stratification in 

the system. 
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9.1 Introduction 

Vahterus is always developing new solutions to improving the current heat transfer. 

Marine industry is forced to reduce the emissions and increase the overall energy 

efficiency of ships. As the main source of energy waste in the ships is still exhaust 

gas, it is important to improve conventional ways to recover heat from the exhaust 

gases. 

Vahterus have tested a new exhaust gas heat-recovery system together with the 

LUT University. The target for the development and test work was to develop new 

heat recovery solutions for exhaust gases utilizing plate heat exchanger technology 

and to utilize the exhaust gas in Organic Rankine Cycle (ORC).  

9.2 Exhaust gas heat recovery with plates 

Exhaust gas heat recovery is made by cooling down the exhaust gas during a heat 

exchanging process in a heat exchanger where, at the cold side, either evaporating 

or liquid fluid is heated up. Traditionally, the heat exchanger with finned tubes is 

used for the purpose. Traditional tube type heat exchanger can be used with 

different enhancement devices, but it typically has larger hydraulic diameters and 

surface-area-to-volume ratio than a plate heat exchanger does.  

In addition, plate heat exchanger has following advantages in comparison to 

traditional tube type heat exchanger [1]: 

- Plate surface corrugation has a significantly better heat transfer coefficient 

than the tube type because of the highly vortex flow, disruption and 

reattachment of boundary layers and increased effective heat transfer 

area. 
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- Plate type heat exchanger usually is a much smaller, reducing the overall 

space requirement, weight and vibration problems. 

Because of the aforementioned characteristics, it was decided to further optimize 

the plate geometry for the exhaust gas heat recovery use. 

9.3 Exhaust gas powered ORC-system 

The Vahterus new heat exchanger type was tested in the LUT test lab. The heat 

exchanger was installed to an existing ORC system, as shown in Figure 1. Exhaust 

gas heat was used to evaporate working fluid, octamethyltrisiloxane, also known as 

MDM. During the process, the MDM in the heat exchanger is first heated up to 

evaporation temperature, evaporated and in the final part superheated. Heat source 

was a diesel generator (AGCO SG275).  

 

 

Figure 1. Schematic process diagram of the test loop. 
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The target of the test was to understand how well the designed plate geometry 

would work and what the heat recovery potential of the cross flow plate heat 

exchanger is. The tested plate type is SH type Vahterus plate, having longer thermal 

length for cold side and very short thermal length for exhaust gas side. This is to 

keep the exhaust gas side pressure drop low and to ease mechanical cleaning. The 

new modified plate shape also fit well into exhaust gas funnel.  

 

Figure 2. Picture of the tested plate type 

The test indicated that the plate type performed well in an ORC system powered by 

exhaust gas. Although the flow arrangement was crossflow, good temperature 

crossing of the fluids was noticed. 

An example of one test instance shows: 

 Exhaust gas inlet temperature 420°C and outlet 225°C. 

 MDM inlet temperature 160°C, evaporating at 220°C and gas outlet 

temperature 250°C.  
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Figure 3. Sample of single point temperature profile. 

 

The tested heat exchanger was undersized for the duty to make the heat transfer 

calculation more accurate. Specifically, very small temperature differences in the 

heat exchanger makes the calculation of heat transfer coefficient unreliable, thus it 

is recommended to use a heat exchanger with very little surface areas in the test 

conditions. The real scale heat exchanger is later designed to meet the required 

temperature differences. 

9.4 Next steps 

The test work together with LUT and Vahterus made it clear that exhaust gas can 

be directly used in an ORC process without intermediate loop. Together with the 

finding from Vahterus’ own long-term diesel exhaust-gas heat recovery test, it is 

proven that plate heat exchangers are suitable for the duty. 

The introduction of gaseous fuels to diesels engines is enabling lower exhaust 

gas exit temperatures without corrosion risks. This will challenge the tradition in 

exhaust gas heat recovery.  

In summary, the 100-year-old plate heat exchanger technology is one option both 

to improve the exhaust gas heat recovery rate and to reduce the heat exchanger 

weight and space in the system. A full-scale exhaust gas heat recovery system is 

currently being set up at Vahterus for further studies and test. 
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10. Waste heat recovery - Dynamic modelling and 
simulation 

Radheesh Dhanasegaran1, Antti Uusitalo1, Teemu Turunen-Saaresti1 
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10.1 Introduction 

For the recovery of low-grade waste heat in energy-to-power conversion processes, 

Organic Rankine Cycle (ORC) technology has demonstrated its capability in the last 

two decades. Deploying such technology for Waste Heat Recovery (WHR) in marine 

environment would allow to reach notable fuel savings and to reduce emissions. 

However, using ORC technology in marine environment also demands for 

continuous performance assessment of the ORC systems and requires improved 

control strategies due to the highly transient operational characteristics of marine 

applications. For this purpose, dynamic simulation and digital twins have been 

recognized as powerful tools for predicting the system operation under different 

conditions.  

For building an accurate dynamic model for an ORC system, mathematical 

representation of the cycle components is needed in order to be able to describe 

and predict the behaviour of the cycle at both design and off-design conditions, as 

well as under highly transient operating conditions. A dynamic model has been 

developed using MATLAB-SIMULINK environment for a small-scale and high 

temperature ORC facility at the LUT University. The modelling of transient response 

taking into account the thermal inertia of the heat exchangers has been recently 

developed and tested with simulations for the individual heat exchangers of the 

system.  
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10.2 Simulation Process 

10.2.1 Dynamic Modeling 

Understanding the transient behaviour of power cycles is important as they are 

operated under different operating conditions, including the start-up, shutdown, 

design point operation and other off-design conditions. In principle, this dynamic 

behaviour can be described by a set of transient governing differential equations 

and inherent physical characteristics [1]. Apart from the modelling of 

turbomachinery components, the simulation of the heat exchangers is equally 

important in predicting the system operation characteristics as well as to reduce 

possible failures and the maintenance costs of ORC systems [2]. In the literature, 

there are only very few dynamic models developed and validated for a small-scale 

and high temperature ORC system, which highlights the need and the novelty of the 

current work.  

10.2.2 Modelling Process 

The Matlab-Simulink environment has been utilized to create the dynamic model, 

whereas CoolProp, an open-source thermodynamic transport database, is used for 

defining the thermophysical properties of the working fluid at different process 

nodes. The modelling process can be divided into two steps: (a) Modelling of 

Turbogenerator blocks and (b) Modelling of Heat exchanger blocks. The schematic 

representation of the ORC Plant in question is shown in Figure 1. For predicting the 

transient behaviour due to the effects of thermal inertia, a thermal network modelling 

approach has been adopted for the modelling of heat exchanger components 

shown in Figure 2. 

 

Figure 1. Schematic of the ORC Plant at the LUT University. 
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Figure 2. Thermal Network Modelling Approach for Heat Exchangers. 

 Turbogenerator block 

The turbogenerator block consists of the turbine and the main feed pump. The 

dynamics of the turbogenerator are related to the changes in the turbogenerator 

rotational speed, which varies between 12 000 rpm and 30 000 rpm during the 

normal operation, the changes in working fluid thermodynamic properties at the inlet 

and outlet and the changes in performance of the turbine and feed pump. The 

turbine efficiency is determined based on the rotational speed and the mass flow 

rate. The polynomials derived from the experimental data are used for describing 

the turbine isentropic efficiency and the pressure rise under different rotational 

speeds and conditions. The turbine calculation process is explained in the flowchart 

shown in Figure 3. 

 

Figure 3. Turbine Calculation Process Flowchart. 
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 Heat Exchanger blocks 

In the heat exchanger calculation process, two known inlet and two unknown outlet 

temperatures are solved using a bi-section algorithm. The heat rate equations to be 

solved for the heat exchangers, namely the recuperator condenser and evaporator, 

are shown in Equation (1), (5) and (9). The outlet temperature calculation process 

is explained in the flow chart shown in Figure 4. 

 

ϕ1,R_ℎ𝑜𝑡  =  ϕ2,R_𝑐𝑜𝑙𝑑 =  ϕ3,R (1) 

where, 
 

ϕ1,R_ℎ𝑜𝑡 = 𝑞𝑚ℎ
(ℎ2 − ℎ3) 

(2) 

ϕ2,R_𝑐𝑜𝑙𝑑 = 𝑞𝑚𝑐
(ℎ7 − ℎ6) 

(3) 

ϕ3,R_ℎ𝑜𝑡 = 𝑈. 𝐴. Δ𝑇𝐿𝑀𝑇𝐷 
(4) 

and 
 

ϕ1,Chot
 =  ϕ2,Ccold

=  ϕ3,C 
(5) 

where 
 

ϕ1,C_ℎ𝑜𝑡 = 𝑞𝑚ℎ
(ℎ3 − ℎ4) 

(6) 

ϕ2,C_𝑐𝑜𝑙𝑑 = 𝑞𝑚ℎ
. 𝑐𝑝. (𝑇𝑐𝑜 − 𝑇𝑐𝑖) 

(7) 

ϕ3,R_ℎ𝑜𝑡 = 𝑈. 𝐴. Δ𝑇𝐿𝑀𝑇𝐷 
(8) 

and 
 

ϕ1,E_𝑐𝑜𝑙𝑑  =  ϕ2,E_hot =  ϕ3,E 
(9) 

where 
 

ϕ1,R_ℎ𝑜𝑡 = 𝑞𝑚ℎ
(ℎ8 − ℎ7) 

(10) 

ϕ2,R_ℎ𝑜𝑡 = 𝑞𝑚𝑐
(ℎℎ𝑜 − ℎℎ𝑖) 

(11) 

ϕ3,R_ℎ𝑜𝑡 = 𝑈. 𝐴. Δ𝑇𝐿𝑀𝑇𝐷 
(12) 

 

To calculate the dynamics arising from the thermal inertia in the heat exchanger 

components, a thermal network modelling approach is followed, which simplifies the 

heat exchanger to a thermal resistance network where the heat is transferred from 

the hot source to a heat sink through a nodal wall in between as shown in Figure 2. 

The accumulated heat in this node gives rise to the thermal inertia. The 

corresponding equation is shown in the Equation (13). 

𝑇𝑤
𝑛+1 = 𝑇𝑤

𝑛 + 
∆𝑡

𝜌𝑚𝑉𝑚𝑐𝑝

[ℎℎ𝐴(𝑇ℎ − 𝑇𝑤) −  𝑐𝐴(𝑇𝑤 − 𝑇𝑐)] (13) 
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Figure 4. Heat Exchanger Outlet Temperatures Calculation Process Flowchart. 

Currently, we have implemented the thermal inertial effects, arising from the 

material for the individual heat exchanger block components, by programming its 

physics in the Level-2 S-functions code to test their performance. We are in the 

process of testing the full-scale simulation by connecting all the individual block 

components together to form a closed-loop cycle, representing the entire ORC 

system. 

10.2.3 Future work 

After adding the effects of thermal inertia of the heat exchangers to the dynamic 

model, the following features will be considered and added to the dynamic model in 

the near future to improve the accuracy of the model. 

1. Adding the rotational inertia of the turbogenerator to the model. The 

rotational inertia effect is important as the turbogenerator speed in 

constantly adjusted based on the operating conditions and the amount of 

available waste heat. The rotational inertia can be also considered 

important during the start-up and shut down stages of the ORC system. 

This feature has been already taken into account in Excel based dynamic 
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cycle model at LUT and the same calculation approach will be added to 

the present Matlab/Simulink model.  

2. Adding inertial effect caused by the working fluid on heat exchanger 

models. In the present model, the inertial effect in the heat exchangers has 

been assumed to be caused by the heat exchanger material, but the 

inertial effects caused by the working fluid will be also investigated in the 

future.  
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11. Optimization of heat integrated ship systems 

Antti Ritari1, Janne Huotari1, Kari Tammi1 and Armin Narimanzadeh1 
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11.1 Introduction 

Heat integration addresses the problem of matching hot and cold streams and 

recovering as much heat as possible. Increased heat recovery translates into 

reduced heating and cooling supply from fuel consuming utility equipment, such as 

boilers and chillers. Significant progress in ship energy efficiency has been achieved 

by recovering and allocating the waste heat from internal combustion engine 

exhaust gas to the most valuable targets. Recently there have been increased 

efforts to recover low-grade heat from engine cooling circuits. Moreover, novel 

energy conversion technologies, such as high temperature fuel cells, will create new 

opportunities and challenges for heat integration in the coming years [1].  

This paper develops a mathematical programming model formulation that 

provides a systematic approach to the design of heat-integrated ship energy 

systems. The developed model aims to simultaneously optimise complex energy 

system configuration and heat integration while minimizing total cost. This modelling 

approach represents a shift from individual component integration in isolation 

towards automated system level integration of all processes and equipment 

choices, considering the relevant interactions.  

11.2 Heat integration 

A network of heat exchangers must be synthesised to realise the efficient heat 

exchange between hot and cold streams. The large number of possible network 

configurations and non-convexity of heat exchange area function result in a difficult 

combinatorial design problem. However, a designer can take advantage of the 

insight that the maximum potential of heat integration can be identified without 

knowing explicitly the detailed design of the heat exchanger network [2, 3]. Pinch 
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analysis is a well-known graphical and intuitive technique that enables this insight. 

In the context of ship design, a few recent successful applications of pinch analysis 

can be found in Organic Ranking Cycles (ORC) design [4, 5]. 

11.2.1 Pinch analysis and maximum heat recovery target 

The computation of the maximum heat integration potential for a given set of thermal 

streams with fixed supply and target temperatures is based on three principles: (1) 

energy is conserved, (2) heat flows only from higher temperature stream to lower 

temperature stream, and (3) driving force for heat exchange in a heat exchanger is 

a function of the minimum temperature difference between the hot and cold streams 

(∆𝑇𝑚𝑖𝑛) [2, 3].  

Based on these principles, the graphical pinch analysis identifies a pinch point, 

where the hot and cold composite curves have the smallest gap in the temperature 

(y-axis) direction (Figure 1). The pinch point is a constraint that prevents further heat 

exchange. There should be no heat exchange across the pinch, as this would 

increase the external heating (utility) requirement above the pinch and increase the 

cooling need below the pinch. 

 

Figure 1. Pinch method: composite thermal streams adjusted for maximum heat integration. 

Taking advantage of the pinch temperature information, a designer can then make 

changes in supply and target temperatures and mass flows of streams, which 

results in a more favourable pinch point that provides better heat integration 

opportunity. However, graphical pinch methods limit the search process to iteration 

by hand. 

11.2.2 Mathematical programming approach to heat integration and stream 

selection 

The three heat exchange principles can be expressed as a set of constraints in a 

linear mathematical programming model, which enables automated execution of the 
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steps in the graphical pinch method. This approach is based on the decomposition 

of the entire temperature interval of all streams into a number of smaller intervals 

[3]. A heat balance constraint is defined for each interval separately (Figure 2). This 

ensures the thermodynamic feasibility of heat exchange. The heat balance forces 

the interval input and output heat residuals (𝑄̇𝑘
𝑅, 𝑄̇𝑘+1

𝑅 ) and the sum of hot and cold 

stream heat loads to match at each temperature interval. In addition, heat residual 

is nonnegative so that heat flow direction is towards the lower interval only. 

 

 

Figure 2. Temperature interval heat balance. 

The solution to this optimisation problem gives the same result as the graphical 

pinch method: maximum heat integration, heat exchanged at different temperature 

intervals, and the pinch temperature. Within the scope of mathematical 

programming, the heat exchange constraints can be embedded within an 

equipment selection and dimensioning optimisation model. The supply and target 

temperatures of streams must be fixed, but the mass flows can vary continuously. 

These mass flows can then be defined as a function of the load of the equipment 

that they are associated with. For example, engine cooling water circuit mass flow 

is a function of engine power output. The advantage of this embedding approach is 

that the heat exchange and process modifications are automated and executed 

simultaneously, instead of iteratively as with the graphical pinch method. 

11.2.3 Minimum cost energy system design problem 

In the general energy system design, the task is to select which equipment to install, 

sizes of installed equipment and their operation over time. The objective is to 

minimise annualised capital and operation costs while meeting the demand for 

electric power, freshwater generation, heating and cooling. 

Let U denote the set of candidate equipment available for installation. This set 

contains main engines, boilers, evaporators, sea water pumps, air handling units 

and all other equipment that performs a distinct function. Each equipment u∈U is 

associated with three variables that represent decisions a designer needs to make. 

First, each candidate equipment is either selected or not, and this yes/no decision 

is represented by a binary variable yu. Second, the size of equipment is a continuous 

variable zu, which can receive nonnegative values only if the respective equipment 

is installed. The final decision concerns the load of each equipment, denoted by xu,i. 
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This variable receives a different value for each operating period i∈ I and is not 

allowed to exceed the installed size. 

For each equipment u∈U, there is a set Su of thermal streams. If the set is empty, 

the equipment has no thermal streams. Parameter 𝑞̇𝑢,𝑠,𝑘  gives the heat duty of 

stream s∈Su per unit of load of equipment u for temperature interval k. Hot streams 

(require cooling) receive positive parameter values and cold streams (require 

heating) negative values. Note that this formulation combines the separate 

nonnegative hot and cold streams 𝑄̇𝐶 and 𝑄̇𝐻 in Figure 2.  

The general form of the optimisation problem is formulated as a mixed-integer 

problem as follows (decision variables are bolded for clarity): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑄𝑘 ,𝑦𝑢,𝑥𝑢,𝑧𝑢

∑ [∑(𝑡𝑖𝐶𝑢
𝑜𝑝

𝒙𝒖,𝒊) +
1

𝜏
(𝐶𝑢

𝑖𝑛𝑣1𝒚𝒖 + 𝐶𝑢
𝑖𝑛𝑣2𝒛𝒖)

𝑖∈𝐼

]

𝑢∈𝑈

 (Annualized cost) (1) 

subject to 

 
∑ ∑ 𝒙𝑢,𝑖𝑞̇𝑢,𝑠,𝑘

𝑠∈𝑆𝑢𝑢∈𝑈

+ 𝑸̇𝒌,𝒊
𝑹 − 𝑸̇𝒌+𝟏,𝒊

𝑹 = 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 (Heat balance) (2) 

 ∑ 𝒙𝒖,𝒊𝑊̇𝑢

𝑢∈𝑈

− 𝑊̇𝐷 ≥ 0 ∀𝑖 ∈ 𝐼 (Power balance) (3) 

 ∑ 𝒙𝒖,𝒊𝑚̇𝑢
𝑤

𝑢∈𝑈

− 𝑚̇𝐷
𝑤 ≥ 0 ∀𝑖 ∈ 𝐼 (Water balance) (4) 

 ∑ 𝒙𝒖,𝒊

𝑖∈𝐼

− 𝒛𝑢 ≤ 0 ∀𝑢 ∈ 𝑈 (Equipment size) (5) 

 𝑧𝑢
𝑚𝑖𝑛𝒚𝒖 ≤ 𝒛𝒖 ≤ 𝑧𝑢

𝑚𝑎𝑥𝒚𝒖 ∀𝑢 ∈ 𝑈 (Domain bounds) (6) 

 𝑦𝑤 ∈ {0,1},   𝑅min(𝐾) = 0,   𝑅max(𝐾)+1 = 0,   𝑅𝑘 ≥ 0   

 

The objective function (1) to be minimised is the total cost including annualised 

operating costs and investment cost of equipment. Parameter 𝐶𝑢
𝑜𝑝

 is the operation 

cost proportional to load, ti is annual operating duration in mode i, τ is investment 

annualising factor and 𝐶𝑢
𝑖𝑛𝑣1 and 𝐶𝑢

𝑖𝑛𝑣2 are the fixed and proportional investment 

cost parameters. 
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Each equipment is associated with a parameter that represents its specific 

electric power generation or consumption. A similar principle applies to freshwater. 

Constraints (3) and (4) account for power balance and freshwater balance, 

respectively. Constraint (6) incorporates a logic relation between the binary variable 

yu and the equipment installed size variable zu. The constraint simultaneously 

bounds the size between minimum and maximum allowed and ensures that if the 

size is nonnegative, the binary variable must have a value of one and the fixed 

investment cost is activated in the objective function. 

11.2.4 Integration of refrigeration cycles 

Refrigeration cycle devices are heat pumps that are used to provide a cold utility 

below seawater temperature, mainly to cool chilled water for air conditioning units. 

In this cycle, mechanical work is converted into a heat flow from a heat source to a 

heat sink at a higher temperature. From a pinch analysis point of view, a 

refrigeration cycle is composed of one hot stream, one cold stream and the 

corresponding electricity consumption of a compressor [4].  

11.3 Numerical example problem 

The following small example problem illustrates the application of the optimisation 

framework for determining equipment configuration with heat recovery in order to 

minimize total cost. In this case, the solution can be represented graphically in a 

concise manner.  

The problem involves a 2500 passenger LNG cruise ship for Caribbean climate. 

Constant conditions are assumed: 27 °C seawater temperature, 35 °C air 

temperature, 80% air humidity and 15 MW electrical power demand for hotel and 

propulsion. Additionally, the requirement of hot water is 10 t/h, air flow in air 

conditioning 50 t/h, and freshwater production 40 t/h. In the scope of this study, the 

major choices that a designer faces are determining the sizes of the utility 

equipment (boiler, compression chiller) and freshwater production by reverse 

osmosis (RO), evaporation (EV) or a mix of both. RO has higher energy efficiency, 

but EV utilises heat that may be available ‘for free’. 

The first column in Table 1 shows the candidate equipment available for 

selection. Columns four to ten represent thermal streams associated with the 

equipment. Heat duty is positive for hot streams and negative for cold streams. The 

total heat duty of a stream is given by multiplying this value by the output of the 

equipment that the stream belongs to. For instance, the 10 MW power output of the 

dual fuel engine requires 167 kW LNG heating duty. A more detailed description of 

the case study, including cost parameters, is given in an online Python notebook 

(Supplementary material). 
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Table 1. Equipment and thermal stream data. 

Equipment ID Size Stream ID Type Supply 

temp [C] 

Target temp 

[C] 

Heat capacity 

[kJ/kg C] 

Heat duty [kW] 

Dual fuel engine ENG Elec power [MW] LNG heating LNG Cold -160 30 2.09 -16.7 

   Exhaust gas EG Hot 360 277 1.08 136 

   Charge air CAC Hot 215 50 1.08 294 

   Cylinder wall JWC Hot 150 150 - 155 

   Lubricating oil LOC Hot 80 56 1.9 59 

Exhaust gas 

economizer 

EGE Heat [MW] Heat discarded DMP Cold 267 267 - -1000 

Compression 

chiller 

CCC Cooling duty 

[MW] 

Refrigerant 

condensation 

CND Hot 35 35 - 1500 

   Refrigerant 

evaporation 

EVP Cold 1 1 - -1000 

Water heater 

exchangers 

HWH Water flow [t/h] Heating WH Cold 27 70 4.09 -648 

Air conditioning AC Air flow [t/h] Air cooling AHU_C Hot 35 12 1.08 86 

   Air heating AHU_H Cold 12 23 1.08 -42.8 

Gas fired boiler GFB Heat duty [MW] 10 bar steam MPS Hot 184 184 - 1000 

Sea water 

pumps 

SWP Water flow [t/h] Cooling water 

heat input 

SW Cold 27 30 4.19 -45.2 

Multi-stage 

evaporator 

MSF Water flow [t/h] Preheating SWF Cold 27 80 4.19 -799 

Reverse 

osmosis unit 

RO Water flow [t/h] - - - - - - - 
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Figure 3. Heat cascade in the cost optimal configuration. 

The obtained heat cascade in the cost optimal configuration is shown in Figure 3 

and the optimal equipment sizes are listed in Table 2. In this case, the problem is 

formulated and solved for a single period only and there is no distinction between 

the equipment’s load decision variable and capacity variable. However, this small 

example problem does not reflect the performance of state-of-the art solvers, as 

larger problems of many orders of magnitude can be solved efficiently in practice.  
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Table 2. Optimal equipment sizes. 

Equipment Size Unit Stream Heat duty [MW] 

ENG 16.8 Elec power [MW] EG 2.3 

   CAC 5.0 

   JWC 2.6 

   LOC 1.0 

   LNG -0.3 

EGE 0.0 Heat [MW] DMP 0.0 

CCC 1.4 Cooling duty [MW] CND 2.1 

   EVP -1.4 

HWH 10.0 Water flow [t/h] WH -6.5 

AC 50.0 Air flow [t/h] AHU_C 4.5 

   AHU_H -2.1 

GFB 0.0 Heat duty [MW] MPS 0.0 

SWP 44.6 Water flow [t/h] SW -2.0 

MSF 11.5 Water flow [t/h] SWF -5.1 

RO 28.5 Water flow [t/h] - 0.0 

11.4 Conclusions 

The optimisation model formulation presented in this work provides a systematic 

approach for heat integrated ship energy system design. The heat integration 

problem was formulated as a linear programming problem, which can be solved 

very efficiently. This model was embedded in a mixed-integer programming model, 

which features the decisions on the selection, sizing and operation of available 

equipment. As a result, the searching process of process integration is automated. 

The optimisation framework presented covers the main aspects of complex heat 

integration design problems for ships. Within this framework, many important 

problems can be tackled, including sink and source temperature selection in 

thermodynamic cycles, working medium selection and steam network design [2].  

A number of extensions increase the usefulness of the model. Some streams 

may not exchange heat with each other due to physical location, heat exchange 

coefficient or control issues. Such forbidden matches must be enforced by 

additional constraints and light reformulation of the problem. However, this comes 

at the cost of an increased number of decision variables.  

The heat integration model gives the target for maximum heat recovery potential, 

but not the detailed heat exchanger network configuration. The pinch point(s) 

derived from the heat cascade can aid in the design of the detailed network, as 

these points split the network to two or more disconnected parts that do not 

exchange heat. Although the pinch point may change between operation periods, 

the small number of periods that account for the largest share of total heat load 

should guide the heat exchanger network design. 



 

88 

Supplementary materials 

Python script for the optimization model formulation is available at 

https://users.aalto.fi/~aritari/intens.html 
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12.1 Introduction 

Energy efficiency is one of the key indicators of the vessel electric system because 

it directly affects engines’ fuel consumption. Nowadays, the vessel electric system 

is typically based on alternating current (AC) technology. However, in hybrid 

vessels, power electronic converters are used to connect many of the subsystems, 

such as propulsion systems, and energy storage systems to the electric system. 

Power electronic converter could also be used in direct current (DC) based electric 

systems. In DC-based power distribution systems, less conversion stages are 

needed, making the DC-based approach attractive. In this paper, we investigated 

the hybridization of the electrical network of a cruise vessel, as shown in Figure 1, 

especially concerning different system configurations and their comparison. 

 

Figure 1. Investigated cruise vessel network. 
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12.2 Case study 

First, different configuration options are determined and rough performances, with 

respect to fuel consumption, operation hours, fuel price and maintenance cost, are 

defined for the different options. The output is system configurations: number of 

diesel generators, power of diesel generators and battery capacity, power and 

minimum required C-value, if there is battery energy storage system (BESS) in 

configuration. Calculation is implemented with Matlab. 

 

Load data and power distribution 

The power distribution is analysed based on diesel generators load. Power 

distribution and energy in different load are determined. Figure 2 presents power 

distribution and energy in different load. 

 

 
 

 
 

Figure 2. Power distribution and energy in different load (in power). 
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Engine data, specific fuel oil consumption curves 

The specific fuel oil consumption (SFOC) of different engines is determined based 

on the available data. The fuel consumption is given from 100 % load to 50 %. The 

fuel consumption has been estimated when the load is below 50 %. Specific fuel 

consumption curves are derived for 13 different diesel engines.  

 

Configurations  

All possible diesel generator combination options are determined. For each option, 

the following information is provided: the number of diesel generators (N), the 

maximum power of the diesel generators (max_p), which equals to the total rated 

power of the diesel generators, and the power range (P_min, P_max). 

  

Mode 0: diesel generators only mode 

There are three different mode options when implementing the configurations. In 

mode 0, only diesel generators are included in configuration and all load power is 

distributed among diesel engines.  

All configurations that meet the criteria are selected and, for each configuration, 

the estimates of the fuel consumption and operating hours of diesel generators 

during the load cycle are determined. The total power of the diesel generators Ptotal 

is between 46 MW and 60 MW, and the number of diesel generators at configuration 

is 4. Diesel generators are operated at a maximum power of 85 % of the diesel 

generator’s rated power. Table 1 presents ten different configuration options with 

the lowest fuel consumption and Figure 3 presents the fuel consumption and 

operating hours (with mode 0) of all different configurations.  

Table 1. Ten different configuration options with the lowest fuel consumption, showing the 

steady state fuel consumption and operation hours. 

DG1 

[MW] 

DG2 

[MW] 

DG3 

[MW] 

DG4 

[MW] 

Total 

[MW] 

Fuel cons. 

[ton] 

Operation 

hours [h] 

5.9 9.44 14.4 16.8 46.54 1987 1309 

5.9 10.8 14.4 16.8 47.9 1992 1301 

5.9 10.8 16.8 16.8 48.94 1993 1397 

5.9 7.08 16.8 16.8 46.58 1993 1363 

5.9 10.8 16.8 16.8 50.3 1997 1381 

5.9 14.4 14.4 16.8 51.5 1999 1250 

5.9 14.4 16.8 16.8 53.9 2000 1250 

7.08 8.26 14.4 16.8 46.54 2000 1353 

5.9 8.26 16.8 16.8 47.76 2000 1364 

7.08 9.44 14.4 16.8 47.72 2003 1260 
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Figure 3. Fuel consumption and operation hours of all different configurations. 

 

Fuel consumption and operation hours are estimated in steady state. The 

operational strategy on how the power should be distributed between the diesel 

generators in order to minimize the fuel consumption is derived. The chosen 

operational strategy is shown in Figure 4. Based on the operation achieved using 

the strategy, the total fuel consumption is calculated during one full load cycle. The 

step of engines power Pdg is 8.5 %.  

 
 

Figure 4. Power distribution between diesel generators. 
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Mode 1: peak shaving 

Mode 1 is a peak shaving mode. If the load is greater than the total power of the 

diesel generators, the BESS works at the discharging mode to compensate the 

difference. The BESS works at the charging mode if the load is smaller than the 

selected minimum power of the diesel generators. 

 
 

Figure 5. Peak shaving mode. 

 

 

 

Figure 6. BESS power and BESS energy during load cycle with peak shaving mode. 

 

The minimum BESS capacity is calculated based on the variation of energy (E ) 

during the load cycle (Figure 6). Specifically, the needed energy E during the cycle 

is assumed to be 60% of energy storage capacity. Then the E is enough also by 

the end of the BESS lifetime when the used state of charge (SOC) is changed from 

80% to 20% (Figure 7). 

P_psmax 

P_psmin 
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Figure 7. EBESS during battery cycle life. 

 

Other than peak shaving, the power distribution between the diesel generators 

follows the same principles as in Mode 0.  

 

Mode 2: Reserve Power 

Mode 2 is reserve power mode. In this mode, the BESS acts as a reserve power 

and the total nominal power of diesel generators can be sized then smaller. The 

BESS power is half of the nominal power of the largest diesel generator and the 

BESS capacity is enough for 15 minutes if used BESS maximum power.  The power 

distribution between the diesel generators also follow same principles as in Mode 

0. 

12.3 Conclusions 

The selection of diesel generator configurations of hybrid power distribution system 

(PDS) was studied for the case vessel. Fuel consumption and operating hours were 

specifically analysed. Results in Table 2 show only minor differences in operational 

costs between different configurations, however. Work carried out gives a basis for 

optimizing the battery usage for the case vessel.  
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Table 2. Cost of selected configurations. Fuel price is 500 $/ton; maintenance cost is 10 $/h. 

 Config. 1 

(Mode 0 min. 

Fuel cons.) 

 

 

1x5.2 MW + 

1x9.44 MW + 

1x14.4 MW + 

1x16.8 MW  

(DG tot 45.84 

MW) 

Config. 2  

(DGs only 

min. Oper. 

hours) 

 

3x14.4 MW + 

1x16.8 MW  

 

(DG tot60 

MW) 

Config. 3  

(Peak shaving 

mode min. Fuel 

cons.) 

 

1x4.72 MW + 

1x8.26 MW + 

1x10.8 MW + 

1x14.4 MW + 

BESS 17.3 MW, 

17.3 MWh 

(DG tot 38.18 

MW) 

Config. 4 

(Reserve 

power min. 

Fuel cons.) 

 

1x7.08 MW + 

1x14.4 MW + 

1x16.8 MW + 

BESS 8.4 MW 

3.5 MWh 

 

(DG tot 38.28 

MW) 

Fuel consumption 

[ton] 

1987 2065 1975 2027 

CO2 emission 

[ton] 

6357 6608 6319 6486 

Operating hours 

[h] 

1309 1132 1465 1250 

Fuel price [k$] 993 500 1 032 500 987 500 1 013 500 

Maintenance cost 

[$] 

13 090 11 320 14 650 12 500 

OPEX [k$] 1 006 590 1 043 820 1 002 150 1 026 000 
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13.1 Introduction 

Oil filters are membranes wrapped in a casing, through which oil is passed in order 

to clean it from contamination. The contamination is either contained in the source 

oil itself, such as fuel oils, or generated in the process that the oil is used in, such 

as hydraulic systems or for lubricating. Oil filters are typically passive and non-

expensive components, but replacing them requires time, service and component 

availability and might need a stop of the equipment.  Consequently, oil filters are 

typically replaced at regular intervals which are short enough to avoid the risk of 

being clogged or broken during the operation, which however may lead to 

unnecessary replacement of well functioning filters. On the other hand, even an 

almost new oil filter could get clogged, if the environment is harsh. 

In the INTENS project, we aimed to develop a type of smart oil filter that can be 

self-aware of its own status and communicate with the environment. We address 

such questions as: How could sensors, IoT and data be used to predict the 

Remaining Useful Lifetime (RUL) of an oil filter with good precision, schedule 

optimal filter replacement and avoid any unscheduled stops due to filter faults? 

Specifically, we explored the extents of sensors, data processing and 

communications needed for achieving precise RUL estimation. Both theoretical 

work and lab experiments were necessary for developing efficient algorithms for 

predicting the RUL of an oil filter. These algorithms have been implemented in an 

edge-computing environment and validated in the lab and are to be further validated 

both with field data and in field tests. 
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13.2 Methodology for building a Smart Oil Filter 

Oil filters are used to remove contamination in fuel systems, hydraulic systems and 

lubrication systems.  When a specified amount of contaminant is accumulated, the 

filter must be replaced in order to guarantee desired filtration performance and avoid 

filter failure. The replacement is usually pre-scheduled in practice, which however 

may happen at wrong time, either too early or too late. There are also sensors that 

can detect pressure peaks indicating faster-than-expected contaminant 

accumulation but still cannot tell the real condition of the filters precisely. 

When an oil filter is in operation, it is of interest to know how much contaminant 

have been accumulated in order to know when the filter should be replaced. One 

way to estimate the amount of accumulated contaminant is to monitor the pressure 

drop over the filter manifold, i.e. the pressure difference over the filter. When the 

filter is free from contaminants, the differential pressure should be at its lowest. As 

contaminants start accumulating, the differential pressure increases over time. 

The proposed smart oil filter can monitor its condition continuously, track the 

average change in differential pressure and thus estimate its RUL, i.e. the remaining 

time to the point when the critical pressure threshold is exceeded. Once the RUL of 

a filter is known, the replacement can then be scheduled in advance accordingly. 

A quantitative model of how various parameters affect the differential pressure in 

steady state has been developed by Jokinen, Calonius, Gorle and Pietola, which is 

based on data from experiments performed at Parkers premises in Urjala, Finland 

[1, 2]. The measured variables include the oil flow rate, temperature, contamination 

level, differential pressure and the mass of the accumulated contaminants. Using 

the physical knowledge as a guidance, a parametric model with algebraic function 

is then developed to approximate the mass of the accumulated contaminants in the 

steady state. A valuable conclusion from the work is that, under the studied 

conditions, all steady state curves have the same shape, as shown in Figure 1. 

While this basic idea is simple, there is unfortunately no direct relation between 

the amount of accumulated contaminant and the differential pressure. To address 

the issue in a more approachable manner, consider the oil pressure in a car whose 

oil and oil filter have recently been changed. The oil pressure in an engine contains 

 

Figure 1. Typical pressure drop build-up. [3] 
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a larger number of components compared to the manifold differential pressure 

measured in a smart filter. Using the car engine as a model, we can get insight into 

the dynamics of oil pressure and some of the aspects that makes it difficult to 

estimate the current rate of contaminant accumulation.  As the speed of the engine 

increases, the oil pressure increases to some extent because the operational speed 

of the pump increases. When a car is cold started in the absence of preheating, at 

a temperature of, for example, –10°C, the oil pressure will initially be very high 

because the cold oil temperature makes the viscosity of the oil very high.  However, 

as the oil heats up while the engine is running, the viscosity of the oil decreases. 

Based on this we can define some of the constraints under which the smart oil 

filter must be implemented. Thus, in order to estimate the RUL, we cannot solely 

rely on steady-state methods. To keep the manufacturing costs of the final smart oil 

filter product low, we only measure the differential pressure and possibly the 

temperature close to the smart filter computer, leaving out the flow rate and the 

contamination level from the experiments. The computer attached to the smart oil 

filter must be of microcontroller scale, in order to keep costs down and to avoid extra 

overhead due to larger energy consumption. The attached computer also must not 

require connectivity to perform the tasks needed for RUL estimation. An implication 

of the small scale of the smart filter computer is that the machine learning algorithms 

we want to perform on the edge must be constrained in terms of memory usage and 

computational demand. 

By tracking the evolution of the differential pressure over a given oil filter 

throughout its lifetime, we can find the most likely differential pressure caused by 

the accumulated contaminant. We first need a way to identify when a plant operates 

at nominal oil pressure, which can be done either deterministically or 

probabilistically. After we have determined that the plant is operating at nominal oil 

pressure, we can start recording the pressure drop. Even though the plant operates 

at nominal oil pressure, there are still fluctuations in the differential pressure, which 

can be handled using, for example, a Kalman filter. The recorded data points can 

be used to estimate when the differential pressure will reach the critical threshold, 

preferably augmented with the knowledge gathered from the lab experiments. 

Salman Gill did a master thesis on this subject in the scope of this project [3], which 

contributed to this study in two ways: It produced a prototype algorithm with an 

accompanying software implementation for RUL estimation; and it helped 

conceptualize the methodological framework. 

The methodology makes few assumptions about the characteristics of the filter 

and the usage of filter. For example, motivated by the limited lab results, we assume 

that filters degrade in the same way independently of their type or environment. We 

assume almost nothing about how the filter is used, except that there ought to be a 

nominal oil pressure that can be identified. However, motivated by speculation, we 

do assume that there are differences in how filters degrade between different plants 

although our methodology does not differentiate between these, apart from the 

maximal allowed pressure drop over the filter. For example, we believe that there 

may be differences in degradation behaviour among the fuel oil filter on a ship, the 

lubrication oil filter in a car and the hydraulic oil filter in an excavator.  
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Another question is what will happen in the next cycle after an oil filter is replaced. 

Will we see the same differential pressure development? Will we see trends? Will 

there be surprises? We do not have the data to make conclusions yet, but we 

explore how the different alternatives can be addressed. We currently assume that 

each filter cycle will be the same in order to improve the prediction accuracy. 

Similarly, we could add the assumption that in a new installation, the filter will 

behave the same as in other similar installations. Besides, from a collection of 

differential pressure evolution datasets, we can create profiles that represent the 

statistical behaviour of the filters. A statistical profile can give more confidence in 

the historical data compared to any single differential pressure evolution dataset. 

More quantitatively, information about inter-cycle behaviour can be used for RUL 

estimation when we have no other information available. For instance, the method 

for estimating the RUL requires that we have a large enough number of data points 

about the nominal differential pressure. To get one nominal pressure data point, the 

method needs to decide that the plant is in a specific operating point. This may take 

a long time to reach or may not even happen at all under some operating conditions. 

The amount of time necessary to reach a decision is affected by the properties of 

the plant itself, the sensitivity of the method and the method’s rate of convergence. 

When there are too few data points available to make an estimate, we can use prior 

data as discussed previously. 

13.3 Research and implementation 

The work towards a Smart Oil Filter implementation is divided into phases. The goal 

is to implement a device, attached to the oil filter manifold, which uses measured 

differential pressure over the manifold as input, and adopts a data driven approach 

to a real-time estimate of the filter RUL as output.  

13.3.1 Phase 1 - Technology review 

The first step to make an overview of which techniques can be used to predict the 

RUL. The following were considered: 

1. Statistics based – Using autoregression, the next data points are assumed 

to be a linear combination of previous values and a stochastic term. 

2. Kalman filter – In a Kalman filter, the internal state of the system model is 

updated using a combination of internal state updates and measurements. 

Kalman filters assumes that the model is linear. If the systems is non-linear, 

an extended Kalman filter can be used. 

3. Particle filters – In a particle filter, the internal state is estimated based on 

all previous observations. As a result, the probability density of the current 

state is achieved. The main difference from Kalman filters is that the system 

model does not need to be linear. The challenge with this method is that it is 

computationally heavy. 

Figure 2 gives a comparison of aforementioned techniques for estimating RUL. [3] 
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13.3.2 Phase 2 - Proof of concept and lab tests 

First a few design decisions are made. We wanted a prototype which we could use 

to run experiments at the lab in Urjala. For this, we needed a platform which is easily 

programmable with the support for existing machine learning libraries together with 

robust analog I/O. 

The hardware platform for the intended product should be in the microcontroller 

scale. However, we could not find a good candidate that would provide enough 

flexibility to test different kind of implementation options. We decided to use the 

modular Revolution Pi platform, which is an open source industrial PC based on the 

Raspberry Pi. For ours study, we needed one compute module and an analog I/O 

module, which support both voltage I/O and mA current I/O. 

The Revolution Pi runs by default a customized version of Raspbian that allows 

the installation of a wide variety of packages out of the box. Since there are libraries 

for the python programming language to program the I/O ports, it was possible to 

make calculations using the familiar Numpy and Scipy libraries from python with 

data directly from the I/O ports. When we use python together with commonly 

available libraries, it is possible to develop parts of the software on a normal 

workstation computer even without the access to the embedded system, making 

the development process faster. 

  

  

Figure 2. Comparison of techniques for estimating RUL. [3] 
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We developed a prototype software at the premises of Åbo Akademi, even 

without access to a differential pressure sensor, testing the software only with lab 

data and synthetic data. When we got enough confidence in our prototype, we went 

to Urjala to test it. There we plugged in the Revolution Pi into the 4-20 mA current 

loop used by the pressure sensors. The results help us understand the fluctuating 

behaviour of the differential pressure as well as more insight into what kinds of 

things can go wrong. As an example, Figure 3 shows the reaction of the differential 

pressure to the sudden change of oil flow rate through the filter. 

13.3.3 Phase 3 - Field study. 

The Smart Filter algorithms have proven to work both in the simulation and in the 

lab, however in rather steady state situations. The next step is to investigate how 

the algorithms perform in the situations where there are large variations in 

temperatures as well as multiple start-stop cycles. The plan is to get data from plants 

operated in the field and to feed the differential pressure data into the algorithm. 

The Phase 3 is still ongoing. 

13.4 Discussions 

The Smart Oil Filter methodology is taking shape. While the development of a Smart 

Oil Filter may seem like a bread and butter IoT development task, the constraints 

on the artefact we have adds considerably the development complexity. 

 

Figure 3. Pressure drop as flow rate through filter is changed. 
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1. We have only a small number of measurements at disposal to estimate the 

RUL.  

2. The environment is rough and diverse. 

3. The amount of space and energy at disposal is limited. 

4. There is limited connectivity. 

Without some of these constraints, the validation phase would be a lot simpler. If 

we would have a larger number of measurements, we could use more reliable 

estimation methodologies. If the environment for the Smart Oil Filter would be more 

friendly for electronics and other equipment, the field study would be easier to 

implement. With less environmental diversity, the field study would not even be 

necessary. 

While there are challenges, we believe that this approach is promising. The 

largest weakness in the methodology we presented for estimating the RUL is that it 

may be difficult to identify or reach stable conditions of the plant.  However, we have 

very little knowledge about how the field data looks like before the field test, and 

there may still be interesting surprises ahead. 
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14. Fault detection in marine systems using soft 
sensors  

Mikael Manngård1, Jerker Björkqvist1 

Åbo Akademi University 

 

14.1 Introduction 

Knowing when sensor data can be trusted is crucial for an automated process. 

Model-based fault detection and isolation (FDI) has received considerable attention 

during the past decades [1,2] and has been applied for aircraft control [3], in 

automotive industries [4,5], and in chemical [6] and paper processes [7], just to 

mention a few. Typically, FDI-schemes rely on mathematical models to capture the 

dynamics of the process. The mathematical models are used to derive observers 

(aka soft sensors) which are used to generate signal residuals of output estimate 

errors. By making the observers insensitive to different types of faults that occur at 

various locations in the process, faults can be detected and isolated by comparing 

the signal residuals [8].  

When a system is subject to unknown external disturbances or inputs, in order to 

avoid false alarms, it is important that either the unknown disturbances are 

estimated or the estimated signal disturbances are decoupled from the unknown 

inputs [9]. The problem of FDI using unknown input observers is closely related to 

the simultaneous input and state estimation (SISE) problem. A solution to the 

problem of estimation in the presence of unknown input signals was originally 

proposed in 1987 in [10], but was as late as in 2008 shown to provide optimal state 

estimates [11]. The recursive observer proposed in [11] provides unbiased and 

minimum-variance optimal input and state estimates for the case when we are 

completely ignorant of the statistical nature of the unknown input signals. 

In practice, we are usually not completely ignorant about the statistical nature of 

input signals. It is not completely unrealistic that the variance of unknown inputs or 

disturbances is known prior to the estimation. Thus, in this paper, by assuming that 

input disturbances have known variances, following similar lines as in [12], a 
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Kalman-filter type of input-and-state estimator (KF-SISE) is derived. Furthermore, 

we show that the output error residuals of the KF-SISE filters are completely 

decoupled from the unknown inputs and can hence be used to detect and isolate 

sensor faults. 

14.2 System description 

In control engineering, it is common practice to represent physical systems with 

state-space models, where the relation between inputs, outputs (measurements), 

state and noise variables are represented as a set of first order differential 

equations. A linear discrete linear time invariant (LTI) state-space model is of the 

form 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐹𝑣(𝑘), 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑤(𝑘), 

 

where 𝑥(𝑘) ∈ ℝ𝑛 is a vector of states, 𝑢(𝑘) ∈ ℝ𝑛 is a vector of input signals affecting 

the system and 𝑣(𝑘) ∈ ℝ𝑛 is white noise which is assumed to be uncorrelated with 

the inputs. The vector 𝑦(𝑘) ∈ ℝ𝑝 contain the available measurements, which are 

assumed to be a linear combination of the states and to be affected by white noise 

𝑤(𝑘) ∈ ℝ𝑝 . For simplicity, we assume that the noise vectors 𝑤(𝑘), 𝑣(𝑘)  are 

uncorrelated. However, all results to follow can be extended to including 

correlations. Many physical systems can be modelled in the above form. For 

example, rotating machinery such as engine-and-generator sets [13, 14] and 

azimuth thruster drivelines [15] are naturally represented by a state-space model 

under some ideal conditions using Newton’s laws of rotation. 

 

 

Figure 1. Two-mass model of an engine-generator set. 

 

Example 1. Consider the mechanical system of an engine connected to a generator 

through a flexible coupling. The motor is represented by a single mass with inertia 

𝐼1, and the generator by a mass with inertia 𝐼2, as shown in Figure 1. Newton’s laws 

of rotation describe the change in angular velocities 𝜔1, 𝜔2 and shaft angles 𝜃1 , 𝜃2 

through the following set of ordinary differential equations: 



 

105 

𝜔̇1 = − 𝑐 𝐼1⁄ (𝜔1 − 𝜔2) − 𝑘 𝐼1⁄ (𝜃1 − 𝜃2) + 1 𝐼1⁄ 𝜏1, 

𝜔̇2 = 𝑐 𝐼2⁄ (𝜔1 − 𝜔2) + 𝑘 𝐼2⁄ (𝜃1 − 𝜃2) + 1 𝐼2⁄ 𝜏2, 

𝜃̇1 = 𝜔1, 𝜃̇2 = 𝜔2 

where 𝑐  and 𝑘  are the damping and stiffness coefficients of the coupling 

respectively. The external signals 𝜏1  and 𝜏2  represent the motor and generator 

torques respectively. Defining a state vector 𝑥 = [𝜔1 𝜔2 𝜃1 𝜃2]𝑇 and an input 

vector 𝑢 = [𝜏1 𝜏2]𝑇 , the system is readily expressed in a state-space form and a 

discrete-time model is obtained by discretization e.g. using zero-order-hold or 

bilinear transform. 

14.2.1 Sensor faults and unknown disturbances 

In practice, there are often unknown external excitations affecting the states of a 

system and it is also common that measurements contain faults. Denoting unknown 

external excitations 𝑑(𝑘)  and sensor faults (including noise) 𝑓(𝑘), we have the 

following state-space model 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐹𝑣(𝑘) + 𝐺𝑑(𝑘), 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑓(𝑘). 
(1) 

  

The goal in this paper is two-fold: (i) reconstruct the states and input disturbances 

based on available measurements; (ii) use redundancy in measurements to detect 

and isolate sensor faults. Formally, we would like to design a linear and stable filter 

for estimating the states 𝑥(𝑘)  and input disturbances 𝑑(𝑘 − 𝐿) , 𝐿 > 0 , from 

measurements 𝑦(𝑘), 𝑦(𝑘 − 1), …. Note that a time-delay 𝐿 in the input disturbance 

has been introduced. This is a necessity since there disturbance 𝑑(𝑘) does not 

affect the measurement 𝑦(𝑘) at time instance 𝑘. In case there is a redundancy in 

the available measurements, a bank of SISE-filters, where each filter uses a subset 

of the available measurements, can be constructed. By analysing the estimated 

output residuals between the filters, sensor faults can be detected and isolated. 

14.3 Simultaneous input and state estimation 

A standard problem in control engineering is the design of linear filters (aka 

observer/estimators/soft sensors) to reconstruct the state-vector 𝑥(𝑘) based on the 

known input signals 𝑢(𝑘) and available measurements 𝑦(𝑘), 𝑦(𝑘 − 1), … up to time-

instance 𝑘. The problem of finding a minimum-variance optimal observer in the 

presence of noise was famously solved by Rudolf E. Kálmán and is nowadays 

simply referred to as the Kalman filter. The Kalman filter is widely considered one 

of the great achievements in control theory [16]. The steady-state versions of the 

filter come in two forms: the predictive Kalman filter 

 

𝑥̂(𝑘 + 1) = (𝐴 − 𝐾𝐶)𝑥̂(𝑘) + 𝐵𝑢(𝑘) + 𝐾𝑦(𝑘), (2a) 
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and the filtering Kalman filter 

 

𝑥̂(𝑘) = (𝐼 − 𝐾𝐶)𝐴𝑥̂(𝑘 − 1) + (𝐼 − 𝐾𝐶)𝐵𝑢(𝑘 − 1) + 𝐾𝑦(𝑘), (2b) 

  

where the matrices 𝐾 are the Kalman-filter gains and are given as a solution to a 

discrete algebraic Riccati equation. 

The Kalman filter does not directly provide a solution to the SISE problem, and 

the general SISE-problem for the case where the input excitations are completely 

unknown, i.e. no prior knowledge of the statistical or spectral properties of the 

signals is available, was solved as late as in 2007 in [10]. Statistically, a signal being 

completely unknown would correspond to the signal being white noise with infinite 

variance. However, such an assumption makes little sense physically. Thus, in this 

paper, we assume instead that the unknown input disturbances have finite (but 

possible large) variance. This allows us to formulate the SISE problem as a Kalman-

filtering problem (KF-SISE). 

14.3.1 KF-SISE 

Consider the case in (1) where 𝑓(𝑘) = 𝑤(𝑘)  is zero-mean white noise with 

covariance 𝑄  and 𝑣(𝑘)  has covariance 𝑅 . The unknown input signal 𝑑(𝑘)  is 

modelled as white noise with covariance 𝑄𝑑 or equivalently as a noise process 

 

𝑑(𝑘) = 𝐸𝑒(𝑘), (3) 

 

where 𝑒(𝑘)  is zero-mean white noise with unit covariance and 𝐸 = 𝑄𝑑
1/2

. 

Substituting (3) into (1) gives the extended state-space model 

 

[
𝑑(𝑘)

𝑥(𝑘 + 1)
] = [

0 0
0 𝐴

] [
𝑑(𝑘 − 1)

𝑥(𝑘)
] + [

0
𝐵

] 𝑢(𝑘) + [
𝐸 0

𝐺𝐸 𝐹
] [

𝑒(𝑘)
𝑣(𝑘)

] , 

𝑦(𝑘) = [0 𝐶] [
𝑑(𝑘 − 1)

𝑥(𝑘)
]. 

 

Note that standard Kalman-filtering techniques readily provide minimum-variance 

estimates of 𝑑(𝑘 − 1) and 𝑥(𝑘) of the above model. Furthermore, simple algebraic 

manipulation of the steady-state Kalman filter (2b) gives the following input and state 

observers: 

 

𝑥̂(𝑘) = (𝐼 − 𝐾2𝐶)𝐴𝑥̂(𝑘 − 1) + (𝐼 − 𝐾2𝐶)𝐵𝑢(𝑘) + 𝐾2𝑦(𝑘), 

𝑑̂(𝑘 − 1) = −𝐾1𝐶𝐴𝑥̂(𝑘 − 1) − 𝐾1𝐶𝐵𝑢(𝑘) + 𝐾1𝑦(𝑘), 
(4) 

 

where the filter gains 

𝐾1 = 𝑃2𝐶𝑇(𝐶𝑃3𝐶𝑇 + 𝑅)−1, 

𝐾2 = 𝑃3𝐶𝑇(𝐶𝑃3𝐶𝑇 + 𝑅)−1, 
(5) 

the error covariances 

𝑃1 = cov(𝑑 − 𝑑̂, 𝑑 − 𝑑̂) = 𝐸𝐸𝑇 = 𝑄𝑑, 
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 𝑃2 = cov(𝑑 − 𝑑̂, 𝑥 − 𝑥̂) = 𝐸𝐸𝑇𝐺𝑇 = 𝑄𝑑𝐺𝑇 

and 𝑃3 = cov(𝑥 − 𝑥̂, 𝑥 − 𝑥̂) is given by the unique positive solution to the Riccati 

equation 

 

𝑃3 = 𝐴𝑃3𝐴𝑇 + 𝐺𝑄𝑑𝐺𝑇 + 𝐹𝑄𝐹𝑇 − (𝐴𝑃3𝐶𝑇)(𝐶𝑃3𝐶𝑇 + 𝑅)−1(𝐴𝑃3𝐶𝑇)𝑇 . 

 

Estimates are unbiased, i.e. E[𝑥̂(𝑘)] = 𝑥(𝑘) and E[𝑑̂(𝑘)] = 𝑑(𝑘) as 𝑘 → ∞, and 

the error covariances are minimized. Observe that, although the disturbance error 

variance 𝑃1 is large, in fact, it is the same as the assumed signal variance, and the 

estimates 𝑑̂(𝑘) have been obtained with only a single time-lag 𝐿 = 1 with respect to 

the available measurements. By introducing a larger time-lag 𝐿 > 1 , the error 

variance can be significantly reduced, cf. [13,15]. This is referred to as fixed-lag 

smoothing in the control literature [15].   

 

Example 2. Consider the system in Example 1. We assume that angular velocities 

are measured from both the engine and generator, torque is measured from the 

flexible coupling, and average torque loads are known and contained in 𝑢(𝑘) . 

Torque excitations, e.g. from combustion, are unknown, represented by 𝑑(𝑘), and 

to be estimated. This example illustrates the effect that fixed-lag smoothing has on 

the error covariances of the input torque estimates.  

It is assumed that the state noise vector 𝑣(𝑘) = 0 and measurement errors are 

white noise 𝑤(𝑘) with known covariance matrix 𝑄 = 10−4𝐼. The variance of input 

torque excitations is assumed to be 𝑄𝑢 = 103𝐼.  Stiffness and damping coefficients 

are 𝑐 = 3.4 × 103 Nm/(rad/s) and 𝑘 = 905 × 103  Nm/rad respectively, and the 

moment of inertias 𝐼1 = 570, 𝐼2 = 950  kgm2. The error variances for the 

instantaneous torque excitations are illustrated in Figure 2 for time-lags L= 1, … ,10. 

 

Figure 2. The impact of fixed-lag smoothing on the error variances of the input estimates. 
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Figure 3. Fault detection and isolation scheme for a system with three sensors. 

14.4 Fault detection and isolation 

A simple FDI scheme that uses redundancy in measurements to detect sensor faults 

is to create a bank of Kalman filters where one sensor has been left out from each 

filter. This is illustrated in Figure 3. The resulting filter bank contains as many filters 

as sensors. 

The state estimation residual for a KF-SISE (4) is obtained by combining (1) and 

(2b) and given by 

 

𝜀(𝑘) = 𝑥(𝑘) − 𝑥̂(𝑘) = (𝐼 − 𝐾2𝐶)𝐴𝜀(𝑘) + (𝐼 − 𝐾2𝐶)𝐹𝑣(𝑘) − 𝐾2𝑓(𝑘). (6) 

  

and the output-error residual is  

 

𝑟(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) = 𝑦(𝑘) − 𝐶𝑥̂(𝑘) = 𝐶𝜀(𝑘) + 𝑓(𝑘). (7) 

  

Defining a new state variable 𝑧(𝑘) = 𝜀(𝑘) + 𝐾2𝑓(𝑘), the dynamics of the residual 

system is described by the following state-space model 

 

𝑧(𝑘 + 1) = (𝐼 − 𝐾2𝐶)𝐴𝑧(𝑘) + (𝐼 − 𝐾2𝐶)𝐹𝑣(𝑘) 

𝑟(𝑘) = 𝐶𝑧(𝑘) + (𝐼 − 𝐶𝐾2)𝑓(𝑘). 
(8) 

  

Any filter-gain 𝐾2  is designed such that |eig(𝐴 − 𝐾2𝐶𝐴)| < 1  ensures that the 

system (8) is stable and the residual 𝑟(𝑘) → 0 is asymptotical if there is no sensor 

fault present, i.e. 𝑓(𝑘) = 0 and 𝑣(𝑘) = 0. Conversely, if 𝑓(𝑘) ≠ 0, the error residual 

is non-zero. Note that in (8), a sensor fault 𝑓(𝑘) affects the output residual 𝑟(𝑘) 

directly with gain (𝐼 − 𝐶𝐾2) . If the state noise 𝑣(𝑘)  is small compared to the 

magnitude of the sensor faults, faults can be detected by analysing the residual 

𝑟(𝑘). Furthermore, by excluding a single (but different) sensor from each filter, a 

fault in that sensor will be visible in all filter residuals, except the filter from which 

that sensor has been left out. This allows us to both detect and isolate faults by 

comparing output-error residuals. A limitation of the proposed FDI-scheme is that 

only a single sensor fault can be detected at any given time.  

 

Example 3. Consider the same setup as in Example 2. A filter bank containing three 

KF-SISE filters designed as in Section 3.2 are implemented, where the velocity 
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measurement from the motor has been left out from the first filter, the velocity 

measurement from the generator has been left out in the second, and the torque 

measurement from the flexible coupling has been left out in the third. In Figure 4, 

the magnitudes of the residuals relative to the sensor fault are illustrated. It is of 

interest to note that faults in torque measurements cannot be detected in this 

example. This is, however, an artefact of this specific problem and does not hold in 

general.  

 

Figure 4. Residuals relative to the fault magnitude |𝑟𝑖/𝑓𝑗|. 

14.5 Summary 

In this paper, a soft sensor for simultaneous input and state estimation and fault 

detection and isolation has been derived. By assuming that the unknown input 

signals have known signal variance, input and state observers can be derived using 

standard Kalman-filtering techniques. Furthermore, the resulting output-error 

residuals have been decoupled from the unknown input signals, which allows us to 

both detect and isolate sensor faults. An example of an engine-generator set has 

been used to demonstrate that unknown inputs can be accurately estimated by 

fixed-lag smoothing, and sensor faults can be detected and isolated from the output-

error residuals.    
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15.1 Introduction 

Fault diagnostics aims to detect faults and their causes in the system by 

computational methods [1]. Faults can be detected and diagnosed either by a 

model-based approach, in which the expected behaviour of the system is described 

by a mathematical model, or by a data-based approach in which the expected 

behaviour of the system is described by historical data of its operation [2,3]. Hybrid 

approaches combining the two have also been developed [4, 5].  

One of the challenges of data-based fault detection is that realistic data about 

faults in operation is not available; vast majority of data is typically about system 

operation in normal, healthy conditions. In addition, smart systems relying on 

artificial intelligence (AI) need vast amount of data for training. One way to address 

this challenge is data-enriched system fault diagnostics, where variety of data with 

system fault situations is generated using simulations. In data-enriched system fault 

diagnostics, simulated data is used as supplementary data for learning algorithms. 

Internal combustion engine (ICE) can be optimized in many ways to gain better 

performance. Performance depends on the fuel mixture, injection amount and 

timing, and the engine breathing via the timing of air intake and exhaust controlled 

with valve-train. Faults within the valve-train result in a reduction of performance 

and reliability. In the conventional camshaft mechanism, the position of intake and 

exhaust valves is fixed to the crank rotation and cam profile. Fault detection and 

diagnostics system in the conventional mechanism can be based on e.g. engine 

vibrations [6]. In cam-less valve-train solutions, such as electro-hydraulic system 

[7], the valve motion is not mechanically restricted and therefore cannot be 

straightforwardly connected to the engine vibrations, for example. Still, the timing 

and lift of the valves should be fully controllable to avoid unwanted situations, such 

as valve collision with piston. 

                                                           
1 Contact: firstname.lastname@vtt.fi 

mailto:firstname.lastname@vtt.fi


 

112 

The goal of the study is to devise a system to estimate the correct valve position 

in electro-hydraulic valve-train system despite intermittent signal faults, or to flag 

the sensor as faulty whenever the valve position cannot be reliably estimated. The 

fault correction and detection system should operate at sub-millisecond latency, as 

the engine speed can be on the order of 1200 rpm (50 ms per revolution), and the 

system should be reliable even in a case of engine faults or abnormal operation. 

15.2 Faults considered in the study 

Magnetic quadrature sensors provide signal on incremental position changes of the 

valves in discrete steps. Speed and direction of the valve is indicated from the 

sensor signal. The sensors have been observed to experience intermittent signal 

loss, which might be due to engine vibrations, sensor assembly alignment, harsh 

environment or electromagnetic disturbances, for example. Investigating the reason 

for the signal loss is beyond the scope of this study. A data-based model of the 

sensor is built based on the measured data of a valve-sensor system operating in 

healthy or failed state. 

Another fault studied here is a failure in the valve spring. Realistic experimental 

data in which a valve spring fails is difficult and expensive to acquire. Therefore, all 

the experiments were run with healthy spring. Using a first-principles simulation 

model describing the valve system, we simulated spring faults by decreasing the 

spring load from its nominal value down to 10% with 10% steps.  

15.3 Experimental data 

Wärtsilä has provided us with measured position data from two inlet valves of an 

electro-hydraulic engine. One of the inlet valve position sensors suffers from 

intermittent loss of quadrature signal, which means the decoded position signal may 

suddenly freeze. The other inlet valve position sensor functions reliably and can be 

used as a relatively accurate reference for the correct valve position, since the two 

cylinders are interlocked. There are six data sets for both valves, described in Table. 

A basic solution for the fault detection and correction of a valve sensor using the 

measurement data was presented earlier in this project [8], based on data set 1. 

Table 1. Overview of measurement data sets. 

Data 

set 

Sample 

rate (kHz) 

Duration 

(s) 

Dropouts, 

% of duration 

RPM range Notes 

1 200 15 2.0 500–750   

2 1000 5 0.4 750  

3 200 30 1.6 750  

4 200 15 0.2 180–750 Engine start-up 

5 200 26 3.3 550–850 Controlled RPM variations 

6 200 16 0.1 0–750 Engine shutdown 
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15.4 Simulation results 

In addition to measurement data, Wärtsilä has provided us access to a physics-

based system simulation model of the electro-hydraulic valve-train system. Using 

this model as the basis, spring faults were simulated with the GT-Power software 

[9]. Simulated effect of the valve spring preload on the valve lift curve is presented 

in Figure 1. 

Sensor faults were added to the simulated results with Matlab [10]. Six engine 

cycles were used in the data, leading to the signal length of 0.96 s. The amount of 

signal failures was varied from 3% to 7%. The maximal failure duration was varied 

from 0.22 to 1.0 ms. The failure point of times during the six cycles were 

randomized. Due to signal losses, the lift curve starts to drift, as shown in Figure 1. 

 

 

Figure 1. Effect of the valve spring preload on lift curve (left). An example of drifting due to 

signal loss; spring load 50%, sensor fault rate 10%  and fault durations 0.11-1.0 ms (right). 

15.5 Fault correction algorithm 

We have implemented an algorithm that estimates valve position based on the 

observed position signal from the quadrature sensor.  The sensor is assumed to be 

either healthy or faulty at any given time.  Failures lead to the significant drifting of 

the position signal, i.e. the offset between the actual and observed position.  The 

developed algorithm corrects drifting by detecting when the valve closes and 

resetting the position value. 

State estimation model 

The model of the valve movement is based on only basic Newtonian dynamics with 

three continuous state variables: the actual position 𝑥 of the valve, the velocity 𝑣 

and the offset 𝑤 between the actual position and the sensor position signal.  The 

observed position is 𝑥 + 𝑤.  Accelerations are estimated from observations, without 

explicitly modelling the forces on the valve. 

To model sensor failures and valve closing, we extend the system model with a 

discrete state variable.  For technical reasons, there are seven discrete states as 



 

114 

shown in Figure 2.  When the sensor is healthy, the state changes between OPEN 

and CLOSED.  Once a sensor failure with the valve open happens, the system 

enters the DROPOUT state, and after the failure passes through the artificial 

RECOVER state back to OPEN.  Sensor failures with the valve closed are not 

detectable and are not modelled as such – however, if the dropout extends past the 

opening of the valve, there is a detectable velocity discontinuity, and we have three 

artificial RISEj states (𝑗 ∈ {1,2,3}) to model the required position correction. 

In all states, the position 𝑥  and velocity 𝑣  follow the equations 𝑥𝑘+1 = 𝑥𝑘 +

 𝑣𝑘∆𝑡 +
1

2
𝑎𝑘  ∆𝑡2 , and 𝑣𝑘+1 = 𝑣𝑘 + 𝑎𝑘  ∆𝑡 , where 𝑘  is a time step index, ∆𝑡  is the 

length of the time step, and the acceleration term 𝑎𝑘 is modelled as Gaussian white 

noise.  In discrete states other than DROPOUT, the offset stays constant with 

𝑤𝑘+1 = 𝑤𝑘.  In the DROPOUT state, the offset 𝑤 follows the equation 𝑤𝑘+1 = 𝑤𝑘 −

 𝑣𝑘𝑑𝑡 −
1

2
𝑎𝑘  ∆𝑡2, keeping the observed position 𝑥𝑘 +  𝑤𝑘 constant. 

Transitions between discrete states occur otherwise at constant time intervals, 

but transitions to and from DROPOUT states are triggered whenever the sensor 

position signal changes (as the quadrature signal is discrete-valued).  The transition 

probabilities between discrete states are modelled according to Table.  In the table, 

the probabilities 𝑝𝐷, 𝑝𝐷𝑆, 𝑝𝐷𝑅, 𝑝𝑂, 𝑝𝑅,𝑗, and 𝑝𝑅𝑅 are free parameters that we estimate 

from data.  The closing probability 𝑝𝐶(𝑥, 𝑣) = P(𝑥 ≤ 0)P(𝑣 ≤ 0) is derived from the 

Gaussian distribution of state variables (𝑤, 𝑥, 𝑣) in the origin state of the transition; 

this roughly approximates the probability that the estimated position is at or below 

closing (𝑥 ≤ 0) and the velocity is downward (𝑣 ≤ 0).  As a special case, if the 

estimated mean position 𝑥 ≤ 0, transition to CLOSED state always occurs with 

probability 1; for simplicity this special case is not fully written out in the table.  In 

RISEj states, only the latter mechanism is active, denoted by 𝑝𝐶𝑅(𝑥). 

On transition, the continuous state variables are not changed except in two 

circumstances.  First, on the transition to CLOSED state, the continuous state is 

reset to (𝑠𝑘 , 0, 0)  where 𝑠𝑘  is the observed sensor position.  Second, on the 

transition to a RISEj state, the continuous state is reset to a predetermined Gaussian 

representing valve state early on the lift curve, as seen in Figure 3. 

 

Figure 2. Discrete model states and state transitions.  The OPEN and CLOSED states 
represent normal operation with the valve open or closed.  DROPOUT represents sensor 
failure with the valve open.  Sensor failure with the valve closed is incorporated in the CLOSED 
state.  The RECOVER state and the three RISEj states are artificial states that enable position 
correction right after a sensor failure. 
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Table 2. Transition probabilities between discrete states.  The sum of elements on each row 

must be 1, and the element completing the sum to 1 is indicated as 1 − ⋯. 

 To state 

From state OPEN DROPOUT RECOVER CLOSED RISEj 

OPEN 1 − ⋯  𝑝𝐷(1 − 𝑝𝐶)  𝑝𝐶(𝑥, 𝑣)  

DROPOUT  𝑝𝐷𝑆(1 − 𝑝𝐶) 1 − ⋯ 𝑝𝐶(𝑥, 𝑣)  

RECOVER 𝑝𝐷𝑅(1

− 𝑝𝐶) 

 1 − ⋯ 𝑝𝐶(𝑥, 𝑣)  

CLOSED 𝑝𝑂   1 − ⋯ (1 − 𝑝𝑂)𝑝𝑅,𝑗 

RISEj 𝑝𝑅𝑅   𝑝𝐶𝑅(𝑥) 1 − ⋯ 

 

State estimation algorithm 

The continuous state variables could be estimated by a Kalman or H∞ filter as long 

as the system is in a known discrete state, but there is no similar closed-form 

solution for estimating the discrete state transitions [11, 12].  Marginalized particle 

filtering is an option, but requires substantial computational effort for good accuracy 

[13]. 

In order to minimize computational requirements, we apply assumed density 

filtering (ADF [12, p. 658]).  For each of the 7 discrete states, we maintain a single 

Gaussian state estimate over the continuous state variables (𝑤, 𝑥, 𝑣).  Denoting the 

discrete state by 𝑧, the posterior likelihood at a given time step 𝑘 is of the form  

 

Figure 3. Measured points in position-velocity coordinates (blue), from the first 5 ms of valve 
lift above 0.1 mm in datasets 1 and 4.  The ellipses represent a three-component Gaussian 
mixture model: each ellipse shows the 95% confidence interval of a bivariate Gaussian 
distribution.  The mixture model is used as prior probabilities for position- velocity combinations 
when leaving CLOSED state: each RISEj state corresponds to a separate Gaussian 
component. 
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𝑓𝑘(𝑧𝑘 , 𝑤𝑘 , 𝑥𝑘 , 𝑣𝑘) = ∑ 𝜋𝑘
(𝑖)

𝑁3 ((𝑤𝑘 , 𝑥𝑘 , 𝑣𝑘)|𝜇𝑘
(𝑖)

, 𝑆𝑘
(𝑖)

)
7

𝑖=1
, 

 

where 𝑖 runs over the discrete states, the weights 𝜋𝑘
(𝑖)

, means 𝜇𝑘
(𝑖)

 and covariances 

𝑆𝑘
(𝑖)

 are estimated, and 𝑁3(𝑢|𝜇, 𝑆) is the 3-dimensional Gaussian probability density 

function. 

For each discrete state 𝑖, the Gaussian parameters 𝜇𝑘
(𝑖)

 and 𝑆𝑘
(𝑖)

 are updated on 

each time step by a Kalman filter.  In OPEN, DROPOUT and CLOSED states, we 

assume a one-dimensional observation 𝑥 + 𝑤.  In the CLOSED state, we apply an 

additional artificial observation 𝑥  with fixed measurement value 0: this is a soft 

constraint keeping the position 𝑥 near zero [14]. 

During sensor dropouts, the model can only project the position forward at the 

last known velocity, and the uncertainty of position and velocity estimates increases.  

To adjust the position after dropout based on velocity observations, we have 

augmented the system model with artificial RECOVER and RISEj states.  In these 

states, instead of position 𝑥 + 𝑤, the Kalman filter uses observations of velocity 𝑣, 

which are computed as (𝑠𝑘 − 𝑠𝑘−1)/∆𝑡 from observed sensor positions 𝑠𝑘 .  The 

velocity-based Kalman filter is not used in other discrete states, because it follows 

the apparent position 𝑠𝑘 too closely to be able to distinguish dropout states. 

At regular intervals, transitions between the discrete states are computed, 

updating the weights 𝜋𝑘
(𝑖)

 and approximating each resulting Gaussian mixture with 

a single Gaussian with updated parameters 𝜇𝑘
(𝑖)

 and 𝑆𝑘
(𝑖)

.  As the desired position 

estimate, the algorithm outputs the expected position 𝜇𝑘
(𝑖𝑀𝐿)

 from the maximum 

likelihood state 𝑖𝑀𝐿 = argmax𝑖  𝜋𝑘
(𝑖)

. 

15.6 Computational experiments 

We have performed parameter estimation for the algorithm first using only 

measurement data, and then using both measurement data and simulated data.  

The goal is to take advantage of simulated data to improve the performance of the 

algorithm on actual measured data sets. The data sets used for parameter 

estimation (training) and separately for testing are described in Table 3. 

Table 3. Training data for the two cases, and separate test data. 

Case Data usage Measured 

data sets 

Simulated data sets 

1. Measured data only Training 1 -  

2. Measured and simulated 

data 

Training 1 Spring 60% – 100% and 

dropout rate 3% or 5% 

Both cases Test 3, 4, 5, 6 Spring 10% – 50% 

or dropout rate 7% 
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To estimate the transition probabilities 𝑝𝐷 , 𝑝𝐷𝑆 , 𝑝𝐷𝑅 , 𝑝𝑂 , and 𝑝𝑅𝑅 , we applied 

Bayesian optimization with the mlrMBO software package [15, 16].  The parameter 

optimization was based on two objectives: the primary objective is the number of 

time steps on which the estimated discrete state 𝑖𝑀𝐿 matches the reference data, 

and the secondary objective is the mean squared difference between the estimated 

position and the reference position (second valve in measured data sets). 

15.7 Results 

A summary of the results for both cases is shown in Figure 4. Individual test results 

from training in the data-enriched case are visualized in Figure 5. 

In all measured data sets, the top of the lift curve deviated up to 19 % from the 

correct top height: the largest deviation occurred on measured dataset 5, which 

included controlled RPM variations. This was an improvement over our earlier 

algorithm in [8], which resulted in the deviations of up to 40 % on the same dataset. 

 

15.8 Discussion and conclusions 

The fault correction algorithm was able to detect and correct the dropouts 

reasonably well, but not perfectly.  Augmenting a limited amount of measurement 

data with simulated data in training improved the accuracy of state estimation in 

testing: thus, data enrichment was found useful here. However, we have found that 

 
 

(a) (b) 

Figure 4. a) Overall error measures after training, measured by mean position error in mm + 

1000 times mean mismatch in discrete state (1 for error).  Errors on measured data sets are 

shown on the left, and on simulated data sets on the right: case 1 testing (blue), case 2 testing 

(orange), case 1 training (grey), case 2 training (yellow).  Note that there is no grey bar on the 

right, since no simulated data sets were used in case 1 training. b) Error measures on 

simulated data sets with different spring loads and dropout rates. The outlined box indicates 

the data sets used for training. 

Spring 3 % 5 % 7 %

10 % 0,15 0,25 0,21

20 % 0,10 0,11 0,13

30 % 0,07 0,11 0,12

40 % 0,02 0,03 0,03

50 % 0,02 0,03 0,02

60 % 0,01 0,02 0,02

70 % 0,01 0,02 0,04

80 % 0,01 0,02 0,02

90 % 0,01 0,01 0,03

100 % 0,01 0,01 0,02

Mean error 0,04 0,05 0,05

Dropout rate
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training with a larger subset of measurement data eliminated the advantage of data 

enrichment, and for now, we were unable to create more varied simulation data. 

If the spring load was reduced further than the data sets included in training, the 

accuracy of the algorithm deteriorated.  Applying a larger sensor dropout rate than 

found in the training data also reduced the accuracy of the algorithm, but the effect 

was small. 

 

 

Figure 5. Overview of valve lift curves (lift in mm over time in seconds) on data set 5 (above) 

and an individual lift curve (below), both from case 2 (combined measured/simulated training).  

The figures show the estimated valve position (red) over sensor signal (blue) and reference 

position (black). 
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More testing and validation is needed to make the algorithm ready for production 

use. In particular, further work is needed to detect complete failures of either the 

sensor or the estimation algorithm. 
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16.1 Introduction 

This chapter presents important steps towards a digital twin of a hybrid power 

generation system. The goal is to investigate the implementation of the digital twin 

concept and to build a digital twin of the existing laboratory equipment in the VEBIC 

engine research platform. It is also beneficial to explore the twin’s potential in the 

laboratory environment and the gained knowledge can be utilised for real ship 

systems later.  

In order to reduce GHG emissions and meet the global goals, shipping efficiency 

needs to be improved. Digital twins are predicted to have an important role when 

moving towards a smarter and greener shipping industry. The concept may possibly 

offer significant benefits such as improved energy efficiency and reduced 

emissions. This is because a digital twin could accelerate the development and 

optimization of the ship power and propulsion systems as well as operational 

practices such as speed optimization and route planning. However, before this 

becomes a reality, the digital twin concept must be explored and possible 

challenges must be identified and resolved. 

In this research, the first step was to develop the component models of the 

existing equipment in the VEBIC laboratory. The next step was to model the hybrid 

power generation system and then to convert the model into a real-time application. 

The electrical components were modelled with MATLAB/Simulink and the engine 

with GT-POWER. Simulink Real-Time was used for the real-time simulation. In 

order to be able to utilise the full potential of the digital twin, it is also important to 

investigate the connection and communication between the physical equipment and 

the virtual twin. A Speedgoat performance real-time target machine will be used for 

implementing the connection and it is designed to perform real-time simulations 

                                                           
1 Contact: firstname.lastname@uva.fi 
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together with Simulink and Simulink Real-Time. The Speedgoat target machine in 

VEBIC is also responsible for the engine control system. Later on, the real-time 

application will be run in parallel with the real-world counterpart and then it is 

possible to investigate the different ways of optimizing engine design and operation, 

as well as the integration of technologies such as energy storages, waste heat 

recovery and emissions reduction.  

16.2 Modelling the hybrid power generation system 
components 

In order to model the hybrid power generation system and create a digital twin, the 

components in the VEBIC engine laboratory had to be modelled first. The 

components were divided into two main entities: the internal combustion engine and 

the electrical equipment connected to the engine.  

16.2.1 Engine model 

The engine located in VEBIC laboratory is a 4-cylinder common rail medium speed 

diesel engine (W4L20). At the beginning of the project, Wärtsilä provided a GT-

POWER model of 4L20 engine which was used as a base model. However, the 

design of the 4L20 in the VEBIC laboratory is a non-commercial one, and the engine 

contains both marine and power plant components. Thus, time was invested in 

calibrating the engine model to ensure the simulations match the actual operation 

sufficiently and possible differences could be detected. Later, the validated engine 

model was used as a starting point for developing a mean value engine model.  

 Calibration and validation of the engine model 

The engine model calibration was started with the component calibration. The 

charge-air-cooler (CAC), the turbocharger and the cylinder were calibrated 

separately against measurement data. The data used in the calibration was from 

previous engine experiments measured in the VEBIC engine laboratory, where the 

load points had been 10%, 25%, 50%, 75%, 100% and 110%, and the engine was 

run at the nominal speed of 1000 rpm. In the calibration, the load points of 25%, 

50%, 75% and 100% were used. The components were decoupled from the engine 

model close to the points where temperatures and pressures are measured in the 

engine laboratory. These values were used as boundary conditions for the 

component models. In Table 1, the inputs, the calibrated parameters and the used 

calibration methods of the component models are presented. Before calibrating the 

cylinder model, the combustion profile of the engine was built. Three Pressure 

Analysis (TPA) method in GT-POWER was used to produce the burn rates for the 

combustion profile.  
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Table 1. Component calibration of the engine model. 

Component 

model 

Inputs Calibrated parameter Calibration 

method 

CAC Inlet and outlet 

pressure and 

temperature 

CAC outlet temperature  Case dependent 

wall temperature 

(CAC)  

Turbocharger Inlet and outlet 

pressures and 

temperatures, 

turbine and 

compressor maps 

Air mass flow, compressor 

and turbine outlet pressure 

and temperatures, 

turbocharger speed 

Efficiency 

multiplier 

(turbine) 

Cylinder (TPA) Intake and exhaust 

pressure and 

temperature, 

cylinder pressure, 

injection data 

Brake power, BMEP, BTE, 

max. cylinder pressure, air 

and fuel mass flow rates, 

volumetric efficiency 

Flow area 

multiplier (intake 

valves), 

unburned fuel 

concentration 

(cylinder) 

Cylinder Inlet and outlet 

pressure and 

temperature, 

combustion profile, 

injection data, start 

of combustion 

Brake power, BMEP, BTE, 

max. cylinder pressure, air 

and fuel mass flow rates, 

volumetric efficiency  

Flow area 

multiplier (intake 

valves) 

 

Thereafter, the entire engine model was calibrated and validated. The validation 

parameters for the engine model were selected to be brake thermal efficiency 

(BTE), brake mean effective pressure (BMEP), maximum cylinder pressure and 

exhaust temperature before turbine. There were some differences in simulated 

results when comparing to measurements.  

Figure 1 presents the measured and simulated validation parameters after 

calibration. After flow area multiplier optimization, the simulated BTE and BMEP 

were close to measured values. The simulated maximum cylinder pressure 

appeared somewhat lower comparing to measurements. During the cylinder 

pressure signal processing, it was noted that the signal contained noise and spikes 

even after the averaging over the cylinders and cycles, thus the averaged signal 

was filtered. Due to averaging and filtering, some difference between the simulated 

and measured signal could be expected. The maximum cylinder pressure values 

were approved, since other cylinder results were close to the experiment data.  

The most noticeable differences were in the exhaust temperature before turbine. 

Even though the orifice diameter and discharge coefficient of turbine’s inlet pipes 

were decreased and the exhaust valve timing was slightly advanced, the simulated 

temperatures appeared lower compared to measurements. It was discovered that 

there were uncertainties with the temperature sensor during the measurements and 
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the sensors had been replaced afterwards when faults were detected. Thus, the 

measured temperatures cannot be considered as absolute values. However, the 

form of the simulated temperatures over the load points was consistent with the 

measurements. When the limitations set by the measurement uncertainties were 

considered, it was concluded that the simulations with the engine model emulated 

the measurements with sufficient accuracy. 

 

 

Figure 1. Measured (blue) and simulated (orange) validation parameters of the engine model. 

 Reduction into a mean value engine model 

The process to reduce the validated engine model into a mean value (MV) engine 

model was needed since it is a requirement for the engine model to run in real-time. 

The aim was to gain lower execution time but maintain sufficient accuracy over the 

used load points. In MV engine model, faster execution time is achieved with map 

based MV cylinder model and simplified flow systems. The most important 

parameters for the MV cylinder were selected to be IMEP, ITE, volumetric efficiency, 

exhaust temperature, maximum cylinder pressure and burned mass fraction of fuel 

at CA50. (CA, crank angle.)  

These parameters will determine the MV cylinder performance through the maps 

produced with Neural Network training (NNT) in GT-POWER. For the NNT, a design 

of experiments (DoE) was performed to produce a wide range of variables. As the 

experimental design method, Latin hypercube was selected since it efficiently 

scatters the experiment points evenly over the specified input ranges. The range of 

each input variable can comprise a wider range than what is required to qualify for 

the operating conditions of the MV model. [1] The variables that were seen to have 

most impact on the selected parameters were boost pressure and temperature, 

back pressure, injection timing and injected fuel mass. The DoE input variables and 

their ranges are presented in Table 2.   
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Table 2. DoE input variables and ranges (bTDC, before top dead centre).  

Variable Range 

Boost pressure (bar) 1.3-5.0 

Boost temperature (K) 330-530 

Back pressure (bar) 1.3-3.9 

Injection timing (deg bTDC) 14.5 - 9.0 

Injected fuel mass (mg/cyl) 420-1490 

 

As a part of the reduction, flow components were merged as simplified bigger 

entities and the aim was to decrease the number of volumes but to maintain the 

physical behaviour of the system. Later, pressure drops between the merged 

volumes, heat transfer and engine friction need to be calibrated and the MV engine 

model need to be validated against the simulations with the full engine model. 

Therefore, it needs to be noted that the MV engine model can only be validated for 

the load points used in the previous steps. This restriction was accepted due to the 

limited measurement data in use. In addition, since these are the most common 

points used in the laboratory, it was seen as the possible starting point of the DT. 

Nevertheless, extensive engine experiments with various load points and speed 

would be beneficial and could be used to increase the operating range of the model. 

Refinements and changes may still occur in the reduction process of the MV model 

as the work progresses. 

16.2.2 Modelling of the electrical equipment 

In the VEBIC engine laboratory, there are advanced electrical equipment that 

includes an induction generator (asynchronous), a frequency converter, 

transformers, a gen-set automation system and a data acquisition system. The 

toolbox Simscape and the Specialized Power Systems were used for the modelling 

of the electrical equipment and an example model, “Wind Farm – Synchronous 

Generator and Full Scale Converter (Type 4) Average Model”, was used as the base 

model. In order to match the laboratory equipment, the base model was modified. 

The major changes were: 

 The synchronous generator was replaced by an asynchronous generator.  

 The uncontrollable diode bridge and the average DC-DC converter were 

replaced with a fully controllable insulated-gate bipolar transistor (IGBT) 

bridge that supports bidirectional power flow. 

o IGBT converter is represented as an average converter. 

 A generator-side converter control system was added. 

 A battery energy storage system (BESS) was added and connected to 

the DC-link in the converter. 

Consequently, the proposed model consists of a squirrel-cage induction generator 

(SCIG), an averaged back-to-back converter, a BESS, a transformer and a grid. The 
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inputs to the SCIG are rotational speed and torque, both of which are coming from 

the internal combustion engine. The SCIG, converter and BESS are connected to 

the main ac grid via a 690 V/ 20 kV, 2 MVA transformer. The frequency converter 

allows the engine to run at variable speed, which can possibly offer advantages 

such as reduced fuel consumption, reduced emissions, reduced noise, as well as 

reduced engine thermal and mechanical loading [2]. The frequency converter 

consists of force-commutated IGBT inverters and rectifiers which are connected 

back-to-back with a common DC-link in between. The converter is a voltage source 

converter that enables bidirectional power flow, which is required for the SCIG, since 

a SCIG requires a magnetizing current. The back-to-back converter has two 

separate control systems, the grid-side converter control system and the generator-

side converter control system. The grid-side converter control system could be 

utilized from the base model. Both control systems are implemented by the means 

of vector control in the arbitrary direct-quadrature (dq) reference frame. Additionally, 

there are filters on the grid-side in order to reduce harmonics. Only passive filters 

are used here, and their values are calculated based on the voltages, powers and 

the frequency in the grid. Due to the real-time simulation requirement, the model 

complexity needs to be considered. Consequently, the average converter type was 

used and no switching models or (pulse width modulation) PWM modulators were 

included. Switching requires sample times that are too small for the computational 

power available. The BESS does not physically exist yet, but it is included in the 

model in order to be able to simulate hybridization. The interest of modelling the 

BESS is because, in the shipping sector, the use of an energy storage can 

contribute to fuel consumption savings and emission reductions by reducing the 

load variations for the gen-set [3]. Additionally, it may also be possible to reduce 

installed power and the battery can act as back-up supply in case of an engine 

failure. However, the addition of a BESS causes additional challenges, such as the 

need for a control strategy that is capable of maximizing the fuel consumption 

reduction and emissions reduction by charging and discharging the battery at 

appropriate times. [2] The continuous developments in battery technology and 

lithium-ion technology also make battery hybrid solutions appealing. In this model, 

the BESS consists of a lithium-ion battery, a DC-DC converter and a battery 

management system (BMS). The optimization of the sizing and control for the BESS 

was not in the scope of this study and therefore it was implemented in a simple way 

at this stage. The lithium-ion battery is a built-in block from Simscape Specialized 

Power Systems library, and it calculates the state-of-charge (SoC). The BESS is 

connected to the DC link through a DC-DC converter, which is represented as an 

average DC-DC converter. The proposed model with control system functionalities 

was validated on the development computer with MATLAB/Simulink simulations. 

The validation showed that the different control systems operated together in the 

requested way. 
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16.3 Real-time setup and further steps towards digital twin 

When the model is working on the development computer, the next step is to confirm 

that it is capable of real-time simulation. The real-time simulation behavior can be 

evaluated on the development computer first, to see if the model is likely to be real-

time capable. However, the only way to ensure real-time capability is to convert the 

model into a real-time application and run the application on the target PC. The 

computational power of the target PC ultimately determines if the application is real-

time viable. A real-time viable model must use a fixed-step solver and the step size 

needs to be adjusted according to the computational power available. The step size 

needs to be small enough to maintain simulation accuracy, but a too small step size 

will cause CPU overloading.  

The real-time simulation capability validation was made for the electrical 

equipment model. Thus, after the model functionalities were validated, the model 

was converted into a real-time application and it was transferred to the target PC. 

In order to test the real-time capability, the application was run on the target PC for 

30 hours. During this time, the average task-execution time (TET) on the target PC 

was 7.6x10-6 s while the used sample time was 5x10-5 s. Accordingly, the simulation 

did not cause CPU overloading. 

As noted, the MV format is necessary for the engine model to operate in real-

time and to develop the DT of the hybrid power generation system. Once the MV 

format is established and the engine model’s run time has been reduced, changes 

are still needed for the model to run in real-time. However, there is specific license 

GT-SUITE-RT where conversion to real-time can be performed. Additional steps 

are not required for the electric equipment models, since they are already real-time 

capable. Afterwards, appropriate links are used to connect the GT-POWER engine 

model with Matlab/Simulink environment. These links are used to export and import 

data between the two software, i.e. create inputs and outputs between the models. 

The sequence of the steps to build the hybrid power generation system model is 

presented in Figure 2.    

 

 

Figure 2. Planned steps to create the hybrid power generation system model. 

After the engine model and the electrical equipment model are combined in 

Simulink, the real-time capability of this new combined model needs to be verified. 

When the real-time application of the hybrid power generation system is working, it 

can be run in parallel with the real-world equipment in VEBIC and their behaviors 

can be compared. The setup for establishing the connection is presented in Figure 
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3. In the VEBIC research platform, there is a Speedgoat Performance real-time 

target machine and this machine is working together with Simulink in order to 

perform real-time simulations. The Speedgoat machine is used for establishing the 

connection between the model and the physical equipment. The DT needs 

measured data from the physical twin. Hence, the application is running on the 

target PC, which is communicating with the Speedgoat target machine through 

MODBUS. Additionally, the software CANape will be used for monitoring signals 

and for changing parameter values during real-time simulations.  

 
Figure 3. The connection setup in VEBIC. Modified from [4]. 
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