Description of the co-
simulation platform for
NPP

Poria Divshali | Seppo Hanninen | Pasi Laakso
Timo Korvola | Robert John Millar

VTT TECHNOLOGY 382

beyond

the obvious

VTT TECHNOLOGY 382

D_escri?_tion of the co-
simulation platform for NPP

Poria Divshali, Seppo Hanninen, Pasi Laakso & Timo
Korvola

VTT Technical Research Centre of Finland, Ltd

Robert John Millar.

Aalto University, Finland

VTT

ISBN 978-951-38-8742-1
VTT Technology 382

ISSN-L 2242-1211
ISSN 2242-122X (Online)
DOI: 10.32040/2242-122X.2020.7382

Copyright © VTT 2020

JULKAISIJA - PUBLISHER

VTT

PL 1000

02044 VTT

Puh. 020 722 111
https://www.vtt.fi

VTT

P.O. Box 1000

FI-02044 VTT, Finland

Tel. +358 20 722 111
https://www.vttresearch.com

https://www.vtt.fi
https://www.vttresearch.com

Preface

This work was carried out in the project “COSI - Co-simulation model for safety and security
of electric systems in flexible environment of NPP”. The research partners of COSI project are
VTT and Aalto University. The work supported mainly by SAFIR2022, The Finnish Research
Programme on Nuclear Power Plant Safety 2019-2022, the GINO steering group, VIT and
Aalto University. The work is motivated by the practical and theoretical problems studied in
the project “ESSI- Electric systems and safety in Finnish NPP” of the previous SAFIR2018
programme.

The operating model of SAFIR2022 programme consists of a Management Board and four
research area steering groups (SG) working under its supervision, as well as reference groups
(RG) that are responsible for scientific and technical guidance of the projects. The
administration of the programme is conducted by the administrative unit and Programme
Director Jari Haméldinen. COSI project belongs to “SG1 - Plant Safety and system approach
safety” and “RG2 - Plant level analysis”.

A project-specific steering group has also been set up for the COSI project, which will, among
other things, direct research and resolves confidential issues related to the project, as the project
uses power plant self-generated electrical system, simulation models. The project-specific
steering group consisting of the following members: Seppo Harmaild (Chairman, TVO), Jyrki
Kykkédnen (TVO), Ari Kanerva (Vice-chairman, Fortum), Juha Eriksson (Fortum), Juha
Kemppainen (Fennovoima), Lauri Taivainen (Fennovoima), Monika Adsten (Energiforsk), Per
Lamell (Forsmark/Vattenfall), Kim Wahlstrém (STUK), Samuli Hankivuo (STUK), Liisa
Haarla (Fingrid), Minna Laasonen (Fingrid).

Thanks to Seppo Hérméld and Ari Kanerva for reviewing this report as official reviewer
appointed by SAFIR 2022 RG2; and Per Lamell and GINO steering group to review the report
and provide valuable comments and technical points. Thanks also the other member of the
project-specific steering group for their suggestions to steer the project.

Espoo 22.12.2020
Authors

Page 1 from 29

Contents

LO10) 1 11S) 111U 2
| 15 (0T L 1o 10) RO RPN 3
2. Co-simulation Implementationcccueeruieriierieeiie ettt ene 4
3. User Instruction of the First Version of Co-simulation Platform..............cccoccoeiiininnnnnee. 6
2.1, APTOS MOME] ...ttt ettt ettt e et e b e ebeeenaeeraens 7
2.2, SIMUINK MOEL......oiiiiiiiiiie ettt 8
B0 TR\] £ (0 4 1 1 4 PSP 9
I G o T0) B0 10 1< o USRS 9
5. CONCIUSIONSuviieiiiiieeiiieeiee e et e e et e eete e e tteeestbeeetseeesaeeessseesssaeesssseesasseesssaeessseeenssesensseennnns 15
RETETEINCE. ... ittt e et e e et e e etaeestbeesaseeesaseeesabeeessseeensseeens 16
ADPPEIAIX A Lottt et b ettt h et e h e bt et st e bt et 18
A.1. main body of the Master Program (PD_main.m).........cccccoeeieviienienieeiienreeieeene 18
A.2. Input data (PD_LayOout.m)cccooeeieiiieiiieiieeieecieeete et eve e e e e e e e ene 20
A.3. Create Data Structure (PD_DataStructure.m)cccecveeevieeriieeniieeeie e 22
A.4. OPC Setup (PDsS_OPC _SEtUP.IM) ...eeeeeiiieiiieeeiie ettt et e eteeeeiee e saeeesveeesnseeenveeens 24
A.5. Initializing simulators (PD_Initializing.m))........ccccoevviieiiieeniiieeie e 25
A.6. Data Exchange function (PD_DataExchange.m).........cc.cccoooiniiiiiiniiiiiinniiciee 26
A.7. Report Progress (PD_ProgRep.m)cooieiiiiiiiiiiiieceee e 27
A.8. Plot results (PD plotam)......coouieiiiiiieeeeee et 28

Page 2 from 29

1. Introduction

A holistic model of a nuclear power plant (NPP), or generally any power plant, includes several
domains with fundamentally different natures, such as thermomechanical loops, reactor
physical models, automation and control models, an on-site electrical system, and an off-site
transmission power system. From a conceptual point of view, this means that an NPP should
be considered as a system-of-systems.

Each of these domains has a very different nature (continuous, discrete, stochastic, etc.), with
different modelling assumptions. In this regard, significant efforts have been devoted to develop
multi-domain simulation environments. Among them, Apros, a comprehensive software
product for modelling and dynamic simulation of power plants, developed by VT T and Fortum
[1], is one of the successful efforts, which has been used in more than 30 countries for numerous
projects during the last 30 years. Although Apros is a powerful multi-domain simulation
environment, especially with regard to the thermal process, nuclear reactor, and automation; its
ability to model different dynamic events in power systems, e.g. asymmetrical faults, is
somewhat limited.

In general, developing a multi-domain simulation environment, which supports all necessary
domains, is not trivial to achieve due to the significant effort and expertise required. Models
from different domains often need to be dealt with using a different time scale, a model of
computation (MoC) and specialized solvers. Building a simulator capable of providing the
appropriate environments, correct MoC, solvers and properly coordinating them internally, is
expensive and maybe not worth the effort [2, 3]. Furthermore, domain-specific tools are usually
equipped with validated component libraries for that domain and the correctness of models are
verified by domain experts. Following these challenges, currently, there is no systematic way
to study precisely the interactions of different domains in an NPP and to analyse the effect of
these interactions on the safety of NPP.

However, analysis of operating experience and lessons learnt, which shall not be limited to
domain-specific events, is an important input in the safety enhancements of an NPP. Especially,
disturbances in electrical systems, both on-site and off-site, may influence the performance of
the thermomechanical system, without proper reaction of the protection system, and lead to
critical events endangering the safety. In this regard, loss of offsite power or loss of off-site
power combined with emergency diesel generator common cause failure (station blackout) are
not sufficient scenarios for the design basis. The plurality of relevant disturbances in electric
systems is much larger. The recent changes in the electrical grid, such as the increased role of
renewable energy sources, possible increased frequency of extreme weather conditions, and
implementation of digital control systems for electric systems, mean that the previously thought
design philosophy for electric systems of NPP may no longer be fully valid.

In these circumstances, the COSI project exploits the existing domain-specific simulation tools
and develops a co-simulation platform based on the existing domain-specific tools. This co-
simulation platform uses Apros to model thermal, reactor physical, and automation models.
Then, in order to simulate the on-grid and off-grid electrical system and analyse their

Page 3 from 29

interaction, the co-simulation platform creates an interface for co-simulation of Apros with
other power system tools, such as MATLAB/Simulink, PSCAD, and PowerFactory. In the first
version, Simulink will be the power system simulator that is connected to the co-simulation
platform. COSI Steering Group decided to study on-site electrical models from one of the
Fortum NPPs, which was developed using MATLAB/Simulink. After analysing the advantages
of the co-simulation platform, in this case, the project may develop further co-simulation
platform to support other power system simulator, e.g. PSCAD.

A co-simulation model for the safety and security of electric systems in the flexible environment
of NPP (COSI) project is part of SAFIR2022 programme for Nuclear safety. The project
focuses on the electrical system of nuclear power plants and related grid effects. The focus of
this project in WP1 has been to develop the abovementioned co-simulation platform. In the first
year, the architecture of the platform was designed and reported in [4]. Here, the development
of the first version of the co-simulation will be reported.

2. Co-simulation Implementation

In order to assess different systems using co-simulation, it is necessary to integrate the model
of computation (MoC) behind a model or a simulator. The MoC represents the interactions
between modules, components or phenomena and it is independent of the implementation
technology (i.e. sequential or parallel) and language (i.e. Matlab, Python) [5].

The energy domain simulators often employ Dataflow MoC due to the fact that they derive
mostly from sets of ordinary differential equations defining the state variables and the
environmental factors of a system (e.g. steady-state simulations, electromagnetic transients or
circuit simulations). However, ICT, market simulators and eventually control simulators often
use the Discrete Event or Finite State Machine MoC. The discrete models react to events that
occur at a given time instant and produce other events either at the same time instant or at some
future time instant in chronological execution order. Combining discrete event and continuous
simulation requires mixing different MoC, such as Discrete Events and Dataflow hierarchically.
In these circumstances, the co-simulation architecture design must address the following issues:

e Data Exchange layout among simulators

e Data Exchange Intervals

e Time step handling

e Data exchange Protocol among simulators
¢ Initialising

A detailed description of the architecture design for the co-simulation platform has been
reported in [4]. Figure 1 shows the final schematic of this architecture.

Page 4 from 29

Co-Simulation Platform Architecture

Master Program Electrical Models
(e.g. MATLAB or Python)

Electrical Models

[Act as OPC Client for connect to Apros J

Mechanical Models

(For Thermal and
automation model)

PowerFactory, ...

Act as OPC Server

Depending on which simulator a protocol B
is selected (e.g. TCP/IP for PSCAD)

Figure 1. The proposed co-simulation architecture for the COSI project

According to this architecture, the co-simulation platform includes a Master Program, which
can coordinate the co-simulation of different domains using domain-specific simulation tools.
This Master Program connects to the Apros using Open Platform Communications (OPC) data
connection. The connecting protocol could be different for other simulation tools that are
connected to this co-simulation platform. For example, for connecting PSCAD, the FMI-
Compliant Interface developed based on TCP/IP protocol developed in [5] can be used. In this
section, the implementation of the chosen architecture will be described.

The main part of the co-simulation platform is the Master Program, which indeed is the
implementation of the co-simulation architecture developed in [4]. The first version of the co-
simulation platform develops the Master Program in MATLAB/m-file environment. However,
it can be developed in any programing language that supports OPC data connection, e.g. Python.
The detailed code of this Master Program in MATLAB is available in Appendix A and can be
found as an open-source tool in [6]. The Master Program has the following main
sections/functions.

e Set Co-simulation parameters

e Define Input Layout

e Create Data Structure and OPC HOST
e Initialising

e Co simulation loop

e Data exchange

e Progress report and plot results

Page 5 from 29

The detailed code of these functions is given in Appendix A. The Master Code was developed
in such a way that the user of the co-simulation platform does not need to change the code.
However, the user needs to open Apros with administrator right, introduce the data layout and
set the co-simulation parameters.

The co-simulation parameters include the co-simulation time, the time step of each simulator,
the name of Simulink files that represent the electrical model (on-grid and off-grid), and the
name of file and variable, which used in the Master Program to save the Steady-State data after
initialising. The saving of initial data is accelerating the initialisation of the co-simulation
system to be ready for simulation. Table I lists the name of the parameters that need to be set
to configure the co-simulation.

Table I: The name of the parameters that need to be set to configure the co-simulation.

Variable Name Description ‘
CoSim.Ta Simulation Time Step in Apros
CoSim.Ts Simulation Time Step in Simulink

. . The time considers that electrical system reaches steady-state. Co-simulation start after
CoSim.SteadyTime

this time.
CoSim.Tend Stop time of co-simulation
CoSim.SimName The name of the Simulink file includes electrical system model.
CoSim.IC_File File Name that keeps the Initial Condition of Simulink
CoSim.IC Variable Name that keeps the Initial Condition of Simulink

In addition to these parameters, the user needs to define the co-simulation layout, as an input
file. The first version of the platform modelled Turbine Generator set and three different Pump-
motor sets (BasicPump, MotorPump, and CommonPump). The Master Program just needs to
have the name of the components that participate in the co-simulation and their initial
input/output variables. Table II lists the variables that are assigned these inputs.

The sample code for Layout data input is in Appendix A2.

3. User Instructions

In order to co-simulate NPP using the first version of the Co-Simulation Platform, the user
needs to perform the following steps:

Page 6 from 29

Table I1: The data layout inputs need to be modified in the co-simulation.

Parameter Name Description

A Cell array to keep the data of Turbine-Generator sets. Each raw keeps the data of one
set. The array has 4 columns as follows:

e Column I, name [type: String]: Keep the Generator Name in Apros

e Column 2, name [type: String]: Keep the Shaft Name in Apros

Layout GenSet e Column 3, Simulink Input (Pmech) [type: Float]: Initial mechanical power of
Turbine (W)
e Column 4 Simulink Output ([PE],[W]) [type: cell of Floats]: {Initial electrical
active power (W), Initial rotation speed (RPM)}
A Cell array to keep the data of Basic Motor-Pump sets. Each raw keeps the data of one
set. The array has 3 columns as follows:
e Column 1, name [type: String]: Keep the Pump Name in Apros
Layout.BasicMotor e Column 2, Simulink Input (Tmech) [type: Float]: Initial mechanical Torque of
Motor (KW)
e Column 3 Simulink Output (W) [type: Float]: Initial rotation speed of motor
(rad/sec) ®
A Cell array to keep the data of Motor-Pump (Motor Pump type) sets. Each raw keeps
the data of one set. The array has 3 columns as follows:
e Column 1, name [type: String]: Keep the Pump Name in Apros
Layout.MotorPump e Column 2, Simulink Input (Tmech) [type: Float]: Initial mechanical torque of
Motor (N.m)
e Column 3 Simulink Output (W) [type: Float]: Initial rotation speed of motor
(rps)
A Cell array to keep the data of Motor-Pump (Motor Common Pump) sets. Each raw
keeps the data of one set. The array has 3 columns as follows:
e Column 1, name [type: String]: Keep the Pump Name in Apros
Layout.ComPump N .\ .
e Column 2, Simulink Input (Tmech) [type: Float]: Initial mechanical torque of
Motor (N.m)
Column 3 Simulink Output (W) [type: Float]: Initial rotation speed of motor (rps)
Apros Model

The Master Program is designed so that the user does not need to make many changes in the
Apros model. After opening Apros with administrator right, the user needs to load the initial
value from Apros and keep the name of the components that are participating in the co-
simulation and their initial output. For example, the initial active power of the Shaft, or the
output torque of the pumps (see Table II). In addition, in this implementation user needs to
change the operation mode of Motor-pump (MC CALCULATION MODE)manually and put
it in 3. The later version will change this mode automatically.

Page 7 from 29

Besides, since the co-simulation platform runs the Apros model and Simulink simultaneously,
the user can see all the results in Apros as well. Therefore, they can follow the simulation results
(any variable) in the Apros Chart.

Simulink Model

The master program calls the Simulink model. The name is defined by the user as explained in
Table I. In order to have input and output from Simulink, the user needs to modify the Simulink
model so that the component uses the same name as in Apros. For example, the generator in
Simulink that needs to be coupled to a turbine set in Apros needs to have the same name as the
generator in Apros.

In addition, for all data transferring from Apros to Simulink (inputs), the user needs to put a
constant block with the name of “St.CN_VN”. Also, for all outputs from Simulink that is
intended to transfer through the Master Program to Apros, the user needs to put a scope, enable
log data to workspace with an array format, and set the variable as “CN_VN”. Here, CN is the
component name, according to Table II, and VN is the input/output variable name, according
to Table II. Table III shows the exact structure of the input/output variable name for different
co-simulation components, which need to be set by the user. Figure 2 shows the schematic of a
motor-pump component, which illustrates how it looks like in Simulink.

Table I1: Structure of an input/output variable name for the different co-simulation
components in Simulink. The values in () are examples

Component type Component name Input variable name Output variable name ‘
St.CN_Pmeach CN _PE (SGO1 _PE)
1 — — —
Generator CN (860D (St.SGO1-Pmech) CN_W (SGO1_W)

Motor (co-simulating of St.CN_Tmeach

N (BPO1 N_ WP (BP01
basic pump) CN (BPOD) (St.BPO1-Pmech) CN_WP (BPO1_W)
Motor (co-simulating of St.CN_Tmeach
MPO1 - F (MPO1
MotorPump) CN (MPOL) (St.MPO1-Tmech) ORI (AT
-si i t.CN T h
Motor (co-simulating of CN (CPOI) St.CN_Tmeac CN_WF (CPOI_W)

ComPump) (St.CP01-Tmech)

Page 8 from 29

Constant block for data

comming from the Master Program
(St.CN_VN)

StMPO1_Tmech

Scope for data transfering
to the Master Program
(CN_VN)

Motor-Pump

Tosls View Simulstion Help

0P ® - q- 8- FA-

4

4 Cenfiguration Propeties: MPOT_WF

Main Time Display Logging

[uimit data points to last:

MPO1
1400 kW

Fig 2. The schematic of a motor (name: MPO1) co-simulation component in Simulink with the
required setting.

Master Program

As mentioned in Section II, the co-simulation platform runs both simulators, Apros and
Simulink, and therefore the user does not need to run them separately. However, the user needs
to determine which component should be involved in the co-simulation, and how long the co-
simulation should last and what is the time step of each simulator. This information can be
defined in variables according to the details explained in Tables I and II.

4. Proof of concept

In order to verify the co-simulation platform, small thermomechanical and electrical models
have been used. The electrical model includes a Generator that through a unit transformer is
connected to the high voltage grids and through an auxiliary transformer provides energy for
three large motors. The generator coupled to a turbine shaft and motors coupled to the basic
pump, motor pump, and common pump in Apros.

Fig. 3 shows the Simulink model of the test case, where the mechanical torque of the generator
and motors comes from the Apros simulation (through the master program). It is important to
mention that modelling the power system in MATLAB/Simulink gives the ability to model
different types of dynamic events, such as single-phase faults, which are not possible when
using Apros alone. Using the co-simulation to study the detailed dynamic behaviour of
interaction of NPP and electrical system is the final goal of this project. However, the subject
of this report is to demonstrate the principle of the co-simulation in a simple case-study. Fig. 4
depicts the Apros model, where the electrical power measurement and rotational speeds come
from the Simulink model (through the master program).

Page 9 from 29

E> Send to Mster Program
:> Recieve from Master Program

E> Send to Mster Program
:> Recieve from Master Program

Figure 4. The Apros model of the test case

Page 10 from 29

In order to show that the co-simulation platform is working, a two-phase fault is modelled at
the motors’ terminals. This fault between phases A and B, having 0.45 Ohm resistance and not
grounded, happened in time 1.1 S, with the system reaching the steady-state condition before
time zero. This fault leads to a change in the voltage of the motors’ terminals, as can be seen in
Figure 5. In an unsymmetrical fault, the voltage change might not be large enough to be detected
easily by a conventional protection system. Regardless of the performance of the protection
system, here the fault is not cleared to show the full effect of interaction between
thermomechanical and electrical systems.

7000 r —B

6000 r

Voltage of Motor (v)
[B
=] =1
=] =1
L=} =

2000 1 L

1000 ' ' ' ' !
0 2 4 6 8 10
Time (s)

Figure 5. The voltage of the motors’ terminal

Figure 6 shows the current of the first motor, coupled with the basic pump from Apros. This
voltage change in the motors’ terminals causes the electrical torque of the motors and their
rotational speed to deviate. Figure 7 shows the rotational speed of these three motors. These
motors are almost similar in their electrical model and parameters, but they are coupled to three
different pump models in Apros.

Page 11 from 29

700

—_—A
=]
c
600
<
— 500
e
(=]
el
=
=400
Q e
e
G
= 300
=
U \V_
200 1 |
100 — : ; : ; ; :
0 5 10 15 20 25 30

Time (s)
Figure 6. The current of the first motor, coupled to the basic pump from Apros

156 1

155 Motor 1, coupled to Basic Pump
Motor 2, coupled to Motor Pump

Motor 3, coupled to Common Pump

154 1

153 1

- -

(%] o

- %]
T

Motor Speed (rad/sec)
o
L=}

149 1

148 1

147

Time (s)

Figure 7. The rotational speed of motors, coupled to different pump models from Apros

The change in the rotational speed, change the torque of the mechanical pump, which can be
seen in the Apros Models. Figure 8 shows the pump output from Apros, which acts as an input
for Simulink. As Fig. 8 shown, in the basic pump model, the torque will be increased initially,
which may lead to instability.

Page 12 from 29

Motor 1, coupled to Basic Pump
Motor 2, coupled to Motor Pump
Motor 3, coupled to Common Pump

6600 r

6500 |

m)

: 6400 1

(=2}
w
(=
=

6200 1

o
—
=]
=]

Mechanical Torque (N
g
=]
=

5900 |

5800

Time (s)

Figure 8. The mechanical torque output of different pumps, coupled to almost similar motors
in Simulink

The simulated fault in the electrical system, a two-phase fault, creates disturbances in the motor

speed and pump’s torque as shown in Figs. 7 and 8. These disturbances lead to some other

changes in the mechanical loops. For example, Fig 9 shows the change in the mass flow of the
different pumps in the Apros model.

Mass flow

1170

=Motor 1, coupled to Basic Pump
==Motor 2, coupled to Motor Pump
= Nlotor 3, coupled to Common Pump| || 1145

1120

1085

1070

]

B45

820

89S
00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 7.2 76 80 84 B8 92 96 100

Figure 9. The mass flow of different pumps, coupled to almost similar motors in Simulink

Page 13 from 29

This fault creates a disturbance in the Turbine-Generator as well. Fig. 10 shows the voltage of
the generator terminal, that is not changing much. However, this disturbance can lead to a
disturbance in the generator speed and also to the mechanical power of the turbine-shaft in the
Apros model, as shown in Figs. 11 and 12.

x10*

1.64

-
o
(8]

—A

=y
(=2}
m

1.58 ¢

1.56 |

1.54 LT

1.52

Voltage of Generator Terminal (V)

—
(5]

1.48 : : : : : :
0 5 10 15 20 25 30
Time (s)

Figure 10. The voltage of the generator terminal

From Simulink

3004 ¢
3003
3002 [

3001}

pm

= 3000

2999

Speed {

2998 1

2997 |
2996 |
2995 : : : : : :
0 5 10 15 20 25 30
Time (s)

Figure 11. The generator speed

Page 14 from 29

]
[=]
[¥5]

2021

201 ¢

200

199 1

198 1

Mechanical Power of Turbine-shaft (MW)
[y

—
w
-

10 15 20 25 30 35
Time (s)

o
wm

Figure 12. The mechanical power of the turbine-shaft in the Apros model

This simple co-simulation test shows that the disturbance of an event in one simulator can be
transferred to another simulator using the co-simulation platform. This co-simulation allows
the user to study the detailed effect of the interaction of different domains in the NPP.

To show the effect of the co-simulation of different simulators, the co-simulation is compared
to the pure electrical system, when the mechanical torque is modelled as k*«?. In this type of
modelling, k is calculated for each pump-motor to have similar operating point pre-fault. Figure
13 shows the results mechanical torque of motors, which differ to those in Fig. 8 in dynamic
behaviour, showing the impact of different co-simulation methods, especially in the case of
basic pump models. This comparison shows that removing the exact model of a pump and
replacing it with a simplified mechanical torque leads to a slight loss in the accuracy.

5. Conclusions

This report details the first version of the co-simulation platform and explains how a user can
co-simulate an NPP using this platform. The first version of the co-simulation platform was
developed to study the interaction of thermomechanical system and electrical system (on-site
and off-site) using Apros and Matlab/Simulink. However, the platform is designed so that the
different simulators, especially power system simulators, can be added to the platform later.

Page 15 from 29

6600 r Motor 1, Co-simulation
Motor 2, Co-simulation
6500 - Motor 3, Co-simulation
"""""" Motor 1, Elec Simulator
=3 wol™ T~ | Motor 2, Elec Simulator
'..-_" 64001 O TN | e Motor 3, Elec Simulator
S 6300
o
S
= 6200 -
©
2
£ 6100 1
i)
=
8 6000
=
5900
5800 !
0 2 4 6 8 10
Time (s)

Figure 13. The mechanical torque of motors, solid lines: co-simulation result from Fig.8;
dash lines: pumps are modelled as k* «? (No co-simulation)

In order to show the performance of the platform, a small model of an electrical system,
including generators and three motors was developed in Matlab/Simulink, while the generator
and motors coupled to Turbine and pumps were modelled in Apros. Among different pump
models Apros, three of them, which are used more frequently in the modelling of NPP, have
been implemented in the first version of this co-simulation platform.

The simulation results show that co-simulation works. All involved tools have their normal
usage environment available that can be used to see simulation results and allow the user to edit
and change the settings in all simulators simultaneously. This way, the model and tools that are
developed in each domain-specific simulator, can be used directly by their domain expert, while
the co-simulation platform can analyse the interaction of these different domains without
simplifying the models of any of the domains.

Besides, the report compares the simulation results of the electrical system using co-simulation
with those obtained using just the power system simulator. The common method that is widely
used to study the electrical system, is to replace the pump model by a variable torque (k*@?),
and neglect the effects of the thermomechanical system. The comparison showed that this
variable torque can be an acceptable equivalent in the case of a basic pump model. However,
such a simplification cannot achieve the same results when more advanced pump models are
used.

Reference

1 “Apros - Dynamic Process Simulation Software for Nuclear and Thermal Power Plant
Applications,” http://www.apros.fi/en, accessed October 2020

Page 16 from 29

http://www.apros.fi/en

Johnstone, K., Blair, S.M., Syed, M.H., Emhemed, A., Burt, G.M., Strasser, T.I.: “Co-
simulation approach using PowerFactory and MATLAB/Simulink to enable validation

of distributed control concepts within future power systems,” in “CIRED - Open Access
Proceedings Journal” (2017), pp. 2192-2196

Latif, A., Shahzad, M., Palensky, P., Gawlik, W.: “An alternate PowerFactory Matlab
coupling approach,” in “Proceedings - 2015 International Symposium on Smart Electric
Distribution Systems and Technologies, EDST 2015” (2015)

Divshali, P., Hanninen, S., Laakso, P., Korvola, T.: “Architecture Design for NPP Co-
Simulation Platform” (VTT Technical Research Centre of Finland, 2020)

Hasanpor Divshali, P., Laukkanen, M., Kulmala, A., et al.: “Smart Grid Co-Simulation
by Developing an FMI-Compliant Interface for PSCAD,” in “CIRED 2019 Conference”
(AIM, 2019)

Poria Divshali: “Co-Simulation platform VO1 - master - Poria Divshali / SAFIR COSI -
GitLab,” https://gitlab.vtt.fi/poria.divshali/safir cosi/-/tree/master/Vosimulation
platform V01, accessed December 2020

Page 17 from 29

https://gitlab.vtt.fi/poria.divshali/safir_cosi/-/tree/master/Vosimulation

Appendix A

The detailed code of the Master Program in MATLAB is available in this Appendix, and also
can be found as an open-source tool in [6]. The Master Program includes the main body
(PD_main.m) and 7 functions as follows:

A.1.main body of the Master Program (PD_main.m)

clear

clc

close all
warning off

%% Set File names && Initial Parameter

CoSim.Ta=0.1; % Apros Time Step
CoSim.Ts = 50e-6; % Simulink Time Step

CoSim.SteadyTime = 20; % if there is no initial data for electrical
% systems, Simulink is run for CoSim.SteadyTime s
% to reach the steady-state (just one time)
CoSim.Tend = 15; % Stop Time, Notice start time in co-simulation is 0

CoSim.SimName = 'PD_OnSiteElectricalGrid_Sample’; % Simulink file name
CoSim.IC_File = 'StedyState’; % Initial Condition File Name
CoSim.IC = 'OperP’; % Initial Condition variable Name

%% Define Input Layout
% Co-simulation layout (File) need to be updated for co-simulation of a
% new NPP

Layout = PD_Layout();

%% Create Data Structure and OPC Host
% This Function create data Structure for both Simulink and Apros

DataStruc = PD_DataStructure(Layout);
OPC_Host = PD_OPC_setup(DataStruc);
connect(OPC_Host);

%% Initializing All Simulators

[St,Results] = PD_Initializing(DataStruc,0PC_Host,CoSim);

% Initializing Simulink

open(CoSim.SimName)

set_param(CoSim.SimName, FastRestart','off’,'SaveFinalState','on’,...
'SaveFormat','Array’,'FinalStateName','FinalState',...

Page 18 from 29

'SaveCompleteFinalSimState','on’,'LoadInitialState’, off');
try
load([CoSim.IC_File num2str(CoSim.SteadyTime) ".mat']);
disp('Start from Steady-state')
eval(['IntState = ' CoSim.IC ;'])
catch
disp('Initializing Simulink, Please Wait")

SimulinlkOut = sim(CoSim.SimName,'StartTime','0’,...
'StopTime',num2str(CoSim.SteadyTime));
IntState = SimulinlkOut.get('FinalState');

eval([CoSim.IC ' = [ntState;']);
save([CoSim.IC_File num2str(CoSim.SteadyTime) ".mat'],CoSim.IC);
end

set_param(CoSim.SimName, LoadInitialState','on’,...
'InitialState’,'IntState’,'FastRestart','on")

[tmN = size(DataStruc.Aprinp,1) + size(DataStruc.AprOut,1) + ...
size(DataStruc.AprExt,1) + 2; % Item Number in OPC
OPCTemp = read(OPC_Host.Group);
AprintTime =OPCTemp(ItmN).Value; % The internal time when Apros start
% Co-simulation

%% Co Simulation

disp('Start Co-simulation ...")

Time = CoSim.SteadyTime;

IttrCnt = 1;

while Time < CoSim.SteadyTime + CoSim.Tend
% Run Apros
Do =['do ' num2str(CoSim.Ta)];
write(OPC_Host.Group.Item(ItmN-1),Do);

% Run Simulink

t_sim = tic;
SimulinlkOut = sim(CoSim.SimName,'StopTime',num2str(CoSim.SteadyTime...
+[ttrCnt*CoSim.Ta));

IntState = SimulinlkOut.get('FinalState");

% wait until Apros finnish the task

OPCTemp = read(OPC_Host.Group,'device"); %

AprTime = OPCTemp(ItmN).Value - AprintTime;

while abs(AprTime - Time + CoSim.SteadyTime - CoSim.Ta) > 1e-6
pause(CoSim.Ta/2)
disp('puase 0.1")
OPCTemp = read(OPC_Host.Group,'device'); %

Page 19 from 29

AprTime = OPCTemp(ItmN).Value - AprintTime;
end

% Data Exchange and Keeping Simulation Results
[St,Results] = PD_DataExchange(CoSim,DataStruc,SimulinlkOut,OPCTemp...
,OPC_Host,St,Results);

% Report the progress
PD_ProgRep(Time,CoSim.SteadyTime,CoSim.SteadyTime+CoSim.Tend,...
CoSim.Ta,10,1);

% Next itteration
Time = Time + CoSim.Ta;
IttrCnt = IttrCnt + 1;

end

%% Plot
PD_plot(DataStruc,Results)

%%

% reset Matlab OPC:
disconnect(OPC_Host);
opcreset;

set_param(CoSim.SimName, FastRestart','off")

A.2.Input data (PD_Layout.m)

function Layout = PD_Layout()

% This Function defins Co-Simulation Layout (indicate all components that
% participating in co-simulations, e.g. pump-motor sets and

% turbine-generator sets.

% Also, any variables that needs to monitor/log in master program.

Layout.GenSet = {};
Layout.BasicMotor = {};
Layout.MotorPump = {};
Layout.ComPump = {};
Layout.log_Simulink = {};
Layout.log_Appros ={};

%% Generators Model

% Layout.GenSet = { 1)Generator Name, 2) Shaft Name, 3) Inputs, 4)Output;
%

% ¥

% 1)Generator Name : Exact Name in Appros and Simulink

% 2) Shaft Name : Exact Name in Appros and Simulink

Page 20 from 29

% 3) Inputs: G_Pmech_...: Initial Mechanical power of Turbine (MW)
% 4) Output: [4-1) G_PE_... 4-2)G_W_... |

% 4-2)G_PE_...: Initial electrical active power (W)

% 4-1)G_W._...: Initial rotation speed (RPM)

Layout.GenSet = {'SG01' 'SGO1_SH' 200.4 [202e6 3000]};

%% BasicPump Model

% Layout.BasicMotor = { 1) Name, 2) Inputs, 3)Output;

%

% ¥

% 1) Name : Exact Name in Appros and Simulink

% 2) Inputs: St.BP_Pmech_...: Initial Mechanical Power (kW) of Motor
% 3) Output: BP_WP_...: Initial Speed of Motor (%)

Layout.BasicMotor = {'BP01", 1035.66, 98.534};

%% MotorPump Model

% Layout.BasicMotor = { 1) Name, 2) Inputs, 3)Output;

%

% b

% 1) Name : Exact Name in Appros and Simulink

% 2) Inputs: St.CP_TmechO...: Initial Mechanical Torque of Motor (N.m)
% 3) Output: CP_WH...: Initial rotational Speed of Motor-frequency (rps)

Layout.MotorPump = {'MP01", 6468.91, 24.6459};

%% CommonPump Model

% Layout.ComPump = { 1) Name, 2) Inputs, 3)Output;

%

% b

% 1) Name : Exact Name in Appros and Simulink

% 2) Inputs: St.CP_Tmech0...: Initial Mechanical Torque of Motor (N.m)
% 3) Output: CP_WHf...: Initial rotational Speed of Motor-frequency (rps)
Layout.ComPump = {'CP01", 6338.3, 48.4549};

%% Extra Log
% Simulink output name (Variable name in logging page of Scope (Type Array));
% Layout.log_Simulink={'Name 1';

% 'Name 2';
% o
% b

Layout.log_Simulink={'BP01_V';
b

% Apros output name (Not Complete Yet but must be defined by OPC);
% Layout.log_Simulink={'Component Name 1' 'Property name 1';

Page 21 from 29

% ‘Component Name 2' 'Property name 2';

% .
% b
Layout.log_Appros = {MP01"' 'PU12_ACTIVE_POWER'

5

A.3.Create Data Structure (PD_DataStructure.m)

function Structure = PD_DataStructure(Layout)
% This Function create data Structure for both Simulink and Apros (OPC)

SimPar = {}; % Parameters act as Sim Input without Apros Output
SimInp = {};

SimOut = {};

SimExt = {}; % Extra log

AprPar = {};

Aprlnp = {};

AprOut = {};

AprExt = {}; % Extra log

%% Generator Parameters

for Cnt = 1: size(Layout.GenSet,1)
Name = Layout.GenSet{Cnt,1};
Sh_Name = Layout.GenSet{Cnt,2};

CntSimlInp = size(SimInp,1) + 1;
CntSimOut = size(SimOut,1) + 1;

% Inputs

SimInp{CntSimInp,1} = ['St." Name '_Pmech'];
SimInp{CntSimInp,2} = Layout.GenSet{Cnt,3}(1,1);
AprOut{CntSimInp,1} = [Sh_Name ''SH_POWER'];
AprOut{CntSimInp,2} = Layout.GenSet{Cnt,3}(1,1);

% Outputs
SimOut{CntSimOut,1} = [Name '_PE' |;
SimOut{CntSimOut,2} = Layout.GenSet{Cnt,4}(1,1);

AprInp{CntSimOut,1} = [Name ''ES_GE_ACTIVE_POWER']; %[Name '_PE!SP_VALUE']

Aprinp{CntSimOut,2} = Layout.GenSet{Cnt,4}(1,1);

SimOut{CntSimOut+1,1} = [Name '_W'];
SimOut{CntSimOut+1,2} = Layout.GenSet{Cnt,4}(1,2);

Aprinp{CntSimOut+1,1} = [Name "'ES_GE_SPEED_OF_ROTATION']; % [Name

'"_'WISP_VALUE']
Aprinp{CntSimOut+1,2} = Layout.GenSet{Cnt,4}(1,2);

SimOut{CntSimOut+2,1} = [Name '_W'];
SimOut{CntSimOut+2,2} = Layout.GenSet{Cnt,4}(1,2);

Aprinp{CntSimOut+2,1} = [Sh_Name ''SH_SHAFT SPEED']; % [Name ' WISP_VALUE']

Page 22 from 29

Aprinp{CntSimOut+2,2} = Layout.GenSet{Cnt,4}(1,2);
end

%% BasicPump Parameters
for Cnt = 1: size(Layout.BasicMotor,1)
Name = Layout.BasicMotor{Cnt,1};

CntSimlInp = size(SimInp,1) + 1;
CntSimOut = size(SimOut,1) + 1;

% Inputs

SimInp{CntSimInp,1} = ['St." Name '_Pmech'];
SimInp{CntSimInp,2} = Layout.BasicMotor{Cnt,2}(1,1);
AprOut{CntSimInp,1} = [Name ''"PU11_ACTIVE_POWER'];
AprOut{CntSimInp,2} = Layout.BasicMotor{Cnt,2}(1,1);

% Outputs
SimOut{CntSimOut,1} = [Name '_WP"' |;
SimOut{CntSimOut,2} = Layout.BasicMotor{Cnt,3}(1,1);
Aprinp{CntSimOut,1} = [Name '_PU1!P_SPEED_OLD']; %|[Name
' PU1!P_SPEED_OLD']; [Name ""PU11_SPEED_SET_POINT'];
Aprinp{CntSimOut,2} = Layout.BasicMotor{Cnt,3}(1,1);
end

%% Motor-Pump Parameters
for Cnt = 1: size(Layout.MotorPump,1)
Name = Layout.MotorPump{Cnt,1};

CntSimlInp = size(SimInp,1) + 1;
CntSimOut = size(SimOut,1) + 1;

% Inputs

SimInp{CntSimInp,1} = ['St." Name '_Tmech' |;
SimInp{CntSimInp,2} = Layout.MotorPump{Cnt,2}(1,1);
AprOut{CntSimInp,1} = [Name ''"PU12_PUMP_TORQUE'];
AprOut{CntSimInp,2} = Layout.MotorPump{Cnt,2}(1,1);

% Outputs
SimOut{CntSimOut,1} = [Name '_WF'];
SimOut{CntSimOut,2} = Layout.MotorPump{Cnt,3}(1,1);
Aprinp{CntSimOut,1} = [Name '_MC1!MC_MOTOR_SPEED']; % [Name
'_MO1!MO1_SPEED']; [Name ''"PU12_MOTOR_SPEED'] [Name
' MC1!MC_MOTOR_SPEED'];
Aprinp{CntSimOut,2} = Layout.MotorPump{Cnt,3}(1,1);
end

%% Common-Pump Parameters

for Cnt = 1: size(Layout.ComPump,1)
Name = Layout.ComPump{Cnt,1};

Page 23 from 29

CntSimlInp = size(SimInp,1) + 1;
CntSimOut = size(SimOut,1) + 1;

% Inputs

SimInp{CntSimInp,1} = ['St." Name '_Tmech'];

SimInp{CntSimInp,2} = Layout.ComPump{Cnt,2}(1,1);

AprOut{CntSimInp,1} = [Name '_PU1!PU2_TORQUE']; %[Name
' MO1!MO1_TORQUE'];

AprOut{CntSimInp,2} = Layout.ComPump{Cnt,2}(1,1);

% Outputs
SimOut{CntSimOut,1} = [Name '_WF'];
SimOut{CntSimOut,2} = Layout.ComPump{Cnt,3}(1,1);
Aprinp{CntSimOut,1} = [Name '_PU1!PU2_SPEED']; % [Name '_WFISP_VALUE'[;
AprInp{CntSimOut,2} = Layout.ComPump{Cnt,3}(1,1);
end

%% Extra Log
SimExt = Layout.log_Simulink;
for Cnt = 1: size(Layout.log_Appros,1)
AprExt{Cnt,1} = [Layout.log Appros{Cnt,1} 'I' Layout.log_Appros{Cnt,2}];
end

%% Output
Structure.SimPar = SimPar;
Structure.SimInp = SimInp;
Structure.SimOut = SimOut;
Structure.SimExt = SimExt;
Structure.AprPar = AprPar;
Structure.Aprinp = Aprinp;
Structure.AprOut = AprOut;
Structure.AprExt = AprExt;

A.4.0PC Setup (PD_OPC_setup.m)

function out = PD_OPC_setup(Str)

% % Create OPC Setup based on the Data Structure

% 1) Input variables then 2) output variables and 3) later Extra output
% 4)Finally last two items are General Apros CoomandData

% Create the OPCDA object - daobj1
daobj1 = opcda('localhost’, 'VTT.AprosOPCCOMDAserver.1');

% Create the Group object - grp1

[tmN = size(Str.Aprinp,1) + size(Str.AprOut,1) + size(Str.AprExt,1) + 2;
grpl = addgroup(daobj1, num2str(ItmN));

set(grp1, 'LogFileName', 'opcdatalog.olf');

Page 24 from 29

%% Input Variable

ItmCnt = 0;

for Cnt = 1: size(Str.Aprinp,1)
eval(['itm' num2str(ItmCnt+Cnt) '=additem(grp1," Str.Aprinp{Cnt,1} '"");'])
eval(['set(itm' num2str(ItmCnt+Cnt) ', "DataType", "double");'])

end

%% Output Variable

ItmCnt = Cnt;

for Cnt = 1: size(Str.AprOut,1)
eval(['itm' num2str(ItmCnt+Cnt) '=additem(grp1,"" Str.AprOut{Cnt,1} '");'])
eval(['set(itm' num2str(ItmCnt+Cnt) ', "DataType", "double");'])

end

%% Extra Result from Appros

ItmCnt = ItmCnt + Cnt;

for Cnt = 1: size(Str.AprExt,1)
eval(['itm' num2str(ItmCnt+Cnt) '=additem(grp1," Str.AprExt{Cnt,1});'])
eval(['set(itm' num2str(ItmCnt+Cnt) ', "DataType", "double");'])

end

Lay.log_Appros = {'CM_YD11D001B' 'PU12_MOTOR_SPEED'};

%% Appros Control

% Create the Item object - itm(ItmN-1)

eval(['itm' num2str(ItmN-1) '=additem(grp1,"OPC_INI!OPC_COMMAND");1)
eval(['set(itm' num2str(ItmN-1) ', "DataType", "char");'])

% Create the Item object - itm(ItmN)
eval(['itm' num2str(ItmN) '=additem(grp1,"ECCO!SIMULATION_CURRENT_TIME");"])
eval(['set(itm' num2str(ItmN) ', "DataType", "double");'])

%%

if nargout > 0
out = [daobj1];

end

A.5.Initializing simulators (PD_Initializing.m))

function [St,Results] = PD_Initializing(Str,0PC_Host,CoSim)
% This Function initializ all Input/Output variables for all simulators

%% Simulink
% Initial Parameters
for Cnt = 1: size(Str.SimPar,1)

eval([Str.SimPar{Cnt,1} '=" num2str(Str.SimPar{Cnt,2}) ;']);
end

Page 25 from 29

% Initial Inputs
for Cnt = 1: size(Str.SimInp,1)

eval([Str.SimInp{Cnt,1} '=" num2str(Str.SimInp{Cnt,2}) ';']);
end

% Initial Output
Results.SimTime = [];
Results.SimOut = [];
Results.SimExt = [];

%% Apros (OPC)

% Initial Inputs

ItmCnt = 0;

for Cnt = 1: size(Str.Aprinp,1)
write(OPC_Host.Group.Item(ItmCnt+Cnt),Str.Aprinp{Cnt,2});

end

% Initial Output

ItmCnt = ItmCnt + Cnt;

for Cnt = 1: size(Str.AprOut,1)
write(OPC_Host.Group.Item(ItmCnt+Cnt),Str.AprOut{Cnt,2});

end

Results.AprTime = [];

Results.AprOut = [];

Results.AprExt = [];

% Initial Time
% ItmN = size(Str.Aprinp,1) + size(Str.AprOut,1) + size(Str.AprExt,1) + 2;
% write(OPC_Host.Group.Item(ItmN),CoSim.Tstart);

A.6.Data Exchange function (PD_DataExchange.m)

function [St,Results] =
PD_DataExchange(CoSim,Str,SimulinlkOut,0PCTemp,0PC_Host,St,Results)
% This Function exchange data between Simulink and OPC (Apros)

% and saves the results of Apros and Simulink in each Data exchange

% interval

%% From Simulink 2 Appros (Appros Inp)

eval(['tempT=SimulinlkOut." Str.SimOut{1,1} '(:,1);']);

Results.SimTime = [Results.SimTime ...
(tempT-CoSim.SteadyTime*ones(size(tempT)))'];

tempResult = [];

for Cnt = 1:size(Str.Aprinp,1)
eval(['temp=SimulinlkOut." Str.SimOut{Cnt,1} '(:,2);']);
write(OPC_Host.Group.ltem(Cnt),mean(temp)); % temp(end) or mean(temp)

Page 26 from 29

tempResult = [tempResult;temp'];
end
Results.SimOut = [Results.SimOut tempResult];

%% saving Extra Simulink Results

tempResult = [];

for Cnt = 1:size(Str.SimExt,1)
eval(['temp=SimulinlkOut." Str.SimExt{Cnt,1} '(:,2);']);
tempResult = [tempResult;temp'];

end

Results.SimExt = [Results.SimExt tempResult];

%% From Appros 2 Simulink (Appros Out)
Results.AprTime = [0 Results.AprTime] + CoSim.Ta;

tempResult = [];
SN_OPC = size(Str.Aprinp,1); % Starting number of OPC
for Cnt = 1:size(Str.SimInp,1)
eval([Str.SimInp{Cnt,1} '="...
num2str(OPCTemp(SN_OPC+Cnt).Value) ;']);
tempResult = [tempResult; OPCTemp(SN_OPC+Cnt).Value];
end
Results.AprOut = [Results.AprOut tempResult];

%% saving Extra Apros Results
tempResult = [];
SN_OPC = size(Str.Aprinp,1) + size(Str.AprOut,1); % Starting number of OPC
for Cnt = 1:size(Str.AprExt,1)
tempResult = [tempResult; OPCTemp(SN_OPC+Cnt).Value];
end
Results.AprExt = [Results.AprExt tempResult];

A.7.Report Progress (PD_ProgRep.m)

function [Prg] = PD_ProgRep(CrntStp,FrstStp,LstStp,DItStp,PrntStp,PrntMd)
% This function calculate the progrees and print if PrntMd is not equal 0

if PrntMd ~=0
StpN = floor((LstStp - FrstStp)/DItStp);
Prnlndx = ceil(1:PrntStp*StpN/100:StpN);
if Prnlndx(1,end) ~= StpN
PrnIndx = [PrnIndx StpN];
end

Eps = 0.001*DltStp;
CrntStpN = floor((CrntStp+Eps - FrstStp)/DItStp);

[Lia,Locb] = ismember(CrntStpN,Prnlndx);

Page 27 from 29

if Lia
disp([num2str(PrntStp*(Locb-1)) ' % Progress'])
end
end

Prg = CrntStpN/StpN*100;

A.8.Plot results (PD_plot.m)
function PD_plot(DataStruc,Results)

%% Plot From Simulink

Fig = figure('InvertHardcopy','off’,'Color',[1 1 1]);
Axes = axes('Parent’,Fig);

xlabel('Time (s)','FontWeight','bold")
ylabel('Parameters’,'FontWeight','bold")

set(Axes,' FontSize',12,'FontWeight','bold");
legend(Axes,'show");

title('From Simulink','FontSize',13,'FontWeight','bold")
hold on

for Cnt = 1:size(Results.SimOut,1)

plot(Results.SimTime,Results.SimOut(Cnt,:),'DisplayName',...

DataStruc.SimOut{Cnt,1},'LineWidth',2)
end

%% Plot To Simulink

Fig = figure('InvertHardcopy','off’,'Color',[1 1 1]);
Axes = axes('Parent’,Fig);

xlabel('Time (s)','FontWeight','bold")
ylabel('Parameters’,'FontWeight','bold")
set(Axes,'FontSize',12,'FontWeight','bold");
legend(Axes,'show');

title("To Simulink','FontSize',13,'FontWeight','bold")
hold on

for Cnt = 1:size(Results.AprOut,1)

plot(Results.AprTime,Results.AprOut(Cnt,:),'DisplayName’,...

DataStruc.AprOut{Cnt,1},'LineWidth',2)
end

%% Plot Extra Simulink

Fig = figure('InvertHardcopy','off’,'Color',[1 1 1]);
Axes = axes('Parent’,Fig);

xlabel('Time (s)’,'FontWeight','bold")
ylabel('Parameters’,'FontWeight','bold")
set(Axes,'FontSize',12,'FontWeight','bold");
legend(Axes,'show");

title("Extra Simulink','FontSize',13,'FontWeight','bold")

Page 28 from 29

hold on

for Cnt = 1:size(Results.SimExt,1)

plot(Results.SimTime,Results.SimExt(Cnt,:),' DisplayName',...

DataStruc.SimExt{Cnt,1},'LineWidth',2)
end

%% Plot Extra Apros

Fig = figure('InvertHardcopy','off','Color',[1 1 1]);
Axes = axes('Parent’,Fig);

xlabel('Time (s)’,'FontWeight','bold")
ylabel('Parameters’,'FontWeight','bold")
set(Axes,'FontSize',12,'FontWeight','bold");
legend(Axes,'show");

title('"Extra Apros','FontSize',13,'FontWeight','bold")
hold on

for Cnt = 1:size(Results.AprExt,1)

plot(Results.AprTime,Results.AprExt(Cnt,:), DisplayName',...

DataStruc.AprExt{Cnt,1},'LineWidth',2)
end

Page 29 from 29

VTT

Series title and number

VTT Technology 382

Title

Description of the co-simulation platform for NPP

Author(s)

Poria Divshali, Seppo Hanninen, Pasi Laakso, Timo Korvola, & Robert John Millar

Abstract

In the first year of the COSI project, WP1, the architecture of a co-simulation
platform for power plants was designed. This architecture provides the
possibility of studying the interaction among thermomechanical and automation
processes, on-site electrical grids, and off-site transmission system for a power
plant. Following the proposed architecture, in this year, WP1 starts to develop
the first version of the co-simulation platform. In this regard, the architecture is
developed further to solve some remaining issues, e.g. initialising, and then the
first platform implemented using MATLAB/m-file.

The initial survey of simulation tools in the COSI project shows that most of the
nuclear power plants in Finland use Apros as the simulation tool for
thermomechanical and automation processes. However, since Apros cannot
simulate the detailed electrical system events, e.g. unsymmetrical faults such as
a single phase-earth fault in the electric system, the detailed electrical power
system models are simulated in different simulation tools while neglecting the
interaction of them with thermomechanical and automation processes.

To solve this challenge, the first version of the co-simulation platform includes a
"Master Program" developed in MATLAB (m-file) environment to co-simulate
Apros with power system simulators. Apros supports Open Platform
Communications (OPC) and through this protocol, the Master Program can
connect, read, write, and control Apros. Connecting to other power system
simulators needs other appropriate protocols, which depend on the simulator's
features. However, in the first version, Simulink will be the only power system
simulator which is connected to the Master Program. The benefit of the co-
simulation platform in different events will be studied in the third year of the
project. In the case of a substantial benefit, the project will develop further this
co-simulation platform to other power system simulator, e.g. PSCAD in the
future.

In order to prove the appropriate working of the architecture, small
thermomechanical and electrical models have been developed. The preliminary
results show that the co-simulation platform works as expected in the operation
of APROS and power system simulators. The large-scale co-simulation using the
exact NPP component models and off-site transmission power grids are done in
WP2 and will be reported in the related deliverable.

ISBN, ISSN, URN

ISBN 978-951-38-8742-1

ISSN-L 2242-1211

ISSN 2242-122X (Online)

DOI: 10.32040/2242-122X.2020.T382

Date

December 2020

Language

English

Pages

19 p. + app. 12 p.

Name of the project

COSI: Co-simulation model for safety and security of electric systems in
flexible environment of NPP

Commissioned by

Keywords Co-simulation, Nuclear power, Electric systems, Thermomechanical
system.
Publisher VTT Technical Research Centre of Finland Ltd

P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111,
https://www.vttresearch.com

https://www.vttresearch.com

Description of the co-simulation platform for NPP

In the first year of the COSI project, WP1, the architecture of a co-
simulation platform for power plants was designed. This
architecture provides the possibility of studying the interaction
among thermomechanical and automation processes, on-site
electrical grids, and off-site transmission system for a power plant.
Following the proposed architecture, in this year, WP1 starts to
develop the first version of the co-simulation platform. In this
regard, the architecture is developed further to solve some
remaining issues, e.g. initialising, and then the first platform
implemented using MATLAB/m-file.

The initial survey of simulation tools in the COSI project shows that
most of the nuclear power plants in Finland use Apros as the
simulation tool for thermomechanical and automation processes.
However, since Apros cannot simulate the detailed electrical
system events, e.g. unsymmetrical faults such as a single phase-
earth fault in the electric system, the detailed electrical power
system models are simulated in different simulation tools while
neglecting the interaction of them with thermomechanical and
automation processes.

To solve this challenge, the first version of the co-simulation
platform includes a "Master Program" developed in MATLAB (m-
file) environment to co-simulate Apros with power system
simulators. Apros supports Open Platform Communications (OPC)
and through this protocol, the Master Program can connect, read,
write, and control Apros. Connecting to other power system
simulators needs other appropriate protocols, which depend on
the simulator's features.

ISBN 978-951-38-8742-1

ISSN-L 2242-1211

ISSN 2242-122X (Online)

DOI: 10.32040/2242-122X.2020.T382

VTT beyond the obvious

