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Preface  

Finland has a long tradition of maritime technological innovation. Back to 2017 when 

shipping industry was on the verge of digital transformation and decarbonization, a 

number of Finnish companies and research institutions had foreseen the strong 

urge for and the potential of maritime digitalization and decarbonization in the future 

shipping, and committed themselves to proactively advance, digitalize and promote 

the consortium expertise specifically in ship energy efficiency improvement and 

emissions reduction, which consequently gave birth to the INTENS project0F

1. 

From its inception, INTENS has been a blessing to the consortium partners and 

wider Finnish maritime cluster. It has given the INTENS partners a unique 

opportunity to dedicate enormous efforts to jointly research and develop industry-

leading novel solutions and innovations to address the major challenges faced by 

the global shipping industry. The special focuses have been put on seven trendy 

and highly potential research topics, i.e. emissions reduction, maritime data 

analytics, waste heat recovery, ship operation, hybridization and electrification, 

Arctic-specific solutions, and maritime information exchange and enrichment. 

Thanks to the great commitment, collaboration and hard work, the INTENS project 

has been a notable success. Specifically, over 60 novel software and hardware 

products have been developed and over 150 scientific publications and theses have 

been generated during the last three and a half years. Many of the results have led 

to significant research and business impacts, resulting in 26 new business and R&D 

projects with total volume of over 22 M€. Another 15 projects, with total volume of 

12 M€, are currently in the pipeline. 

Interactive research-industry co-innovation has been the other crucial factor in 

the INTENS’ success. Shipping is of a collaborative nature. Innovative collaboration 

is essential for maritime digitalization, decarbonization and automation. The 

INTENS consortium consists of 19 partners, covering the large part of the maritime 

technical value chain, which has been an advantage to larger extent than a 

challenge. The complementary consortium has provided us an ideal network for 

collaborative innovation, not only on paper but also in practice. It has been a great 

honour to lead such a highly committed and cooperative consortium. Besides actual 

research and development, considerable efforts have been put into knowledge 

sharing and technology transfer. A number of project internal meetings and 

 
1 INTENS - Integrated energy solutions to smart and green shipping (2018 - 2021), co-funded 

by Business Finland’s (formerly Tekes) Arctic Seas program (2014 - 2017) and the INTENS 
consortium. http://intens.vtt.fi  

http://intens.vtt.fi/
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workshops have been held regularly for knowledge sharing, co-learning and co-

innovation.  

The INTENS consortium has not been doing things alone and, instead, has been 

actively networked with other 20 national and international project consortia. 

Besides, the partners have been very active in participating in over 100 scientific 

and business events, which could have been doubled if there were not COVID-19 

pandemic. Especially, as a tradition, we have hosted three annual public seminars 

/ webinars to disseminate the achieved results, and their extended abstracts have 

been collected as proceedings available for the wider maritime community. This 

book is the third and last edition of the proceedings. Together with the 2019 edition 1F

2 

and 2020 edition 2F

3, they also act as the INTENS project final report to showcase part 

of the R&D results achieved during the project period. 

INTENS intensifies smart and green shipping by maritime digitalization and 

collaboration. Although the project itself has come to an end, the actual collaboration 

and co-innovation among the INTENS partners is continuing in many ways. The 

direct and indirect research and business impacts will be surely visible, not only 

generating scientific and technological innovations but also creating sustainable and 

globally competitive businesses, and hence strengthen Finland’s green and 

innovative global image in years to come. 
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Financier’s perspective 

“INTENS – Integrated energy solutions to smart and green shipping” is a joint action 

that was created to produce novel knowledge and technologies having a significant 

effect on the development of sustainable sea traffic and on the renewal of Finnish 

maritime industry. This is done by developing new technologies increasing the 

energy efficiency and decreasing the emissions caused by the vessels and their 

operations. INTENS combined two strong Finnish technology and competence 

area, namely digitalization and maritime industries in one action, which was an 

excellent base to create globally new technologies, competitiveness and export 

opportunities for Finnish companies. This was the main motivation for Business 

Finland (Tekes at the time when INTENS started) to make a financing decision for 

the joint action. 

INTENS brought together about 20 Finnish organizations in the same research 

and innovation action and supported also in this way the aim of Tekes / Business 

Finland to create and develop internationally competitive innovation and business 

ecosystems in Finland. Big number of participating organizations and large variation 

of studied technologies were seen as a great strength and possibility for INTENS 

but at the same time it also formed potential challenges, difficulties and risks for the 

joint action.  

Now three and half years later, we can see that main part of the aims and 

expectations that Tekes / Business Finland had for INTENS have been achieved. 

This can clearly be seen in the generated results, such as the three proceedings of 

the INTENS yearly public dissemination events, and heard from the feedback and 

experiences of the participants. A number of new products and product concepts 

based on the results of INTENS have been developed and launched by companies 

and a lot of new research results and new knowledge have been created. The co-

operation between partners have been active and fruitful for new achievements. 

None of the participants could have achieved the aims of the action alone; an active 

and real co-operation was needed. Thus, co-operation will go on to achieve new 

innovation and business results. 

 

 

Matti Säynätjoki 

Chief Advisor 

Business Finland 
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Industrial partners’ perspective 

Taking part in the INTENS project was a valuable chance for NAPA to explore how 

we use voyage optimization to solve an existing issue for our customers – how to 

rapidly decarbonize in the face of a climate emergency and strict rules from the IMO. 

In the past years, we have seen huge investments in clean technology from various 

stakeholders across shipping, intense debate about the best way to reduce 

emissions, and strong incentives from banks and cargo owners to prioritize clean 

shipping. We are now more aware than ever of the scale of the challenge, but the 

industry is more committed than ever to solving it. 

As experts in ship modelling and maritime data analysis, NAPA has devoted to 

create a completely new approach to collaborative and holistic voyage planning and 

monitoring, specifically for large merchant fleets, aiming to increase transparency 

and reduce conflicts of interest by connecting ship operators, charterers and crew 

to work on a single voyage plan. INTENS helped us make this a reality. As part of 

the usability and user experience research, NAPA utilized external experts to speed 

up the process and accumulate know-how in-house, resulting in a significant impact 

on our product development approach. Almost all the lessons learned during the 

project are taken into use in our product development activities today. Besides, we 

worked on a new generation of our routing algorithm. It now considers navigational 

restrictions, wind, sea and tidal currents, waves and swell, and water depth, giving 

users a highly detailed, real-time picture of the factors that will affect the voyage and 

how to manage them. Furthermore, we were able to collaborate with many partners 

within and outside the INTENS, both industrial and academic, and to develop a 

number of new commercial partnership opportunities. 

Overall, INTENS has moved us much further towards our goal. Through INTENS, 

our concept refinement and research progressed successfully, and our product, 

NAPA Voyage Optimization, has now been launched. Being part of INTENS has 

helped us create a platform that will allow more of the shipping industry than ever 

before to benefit from advanced voyage optimization and routing and, in turn, 

helping to mitigate one of the 21st century’s most difficult climate challenges. 

 

 

Pekka Pakkanen 

Executive Vice President 

NAPA Shipping Solutions 
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Research partners’ perspective 

The timing for the INTENS project has been excellent! When we started the project, 

the International Maritime Organization (IMO) had just set goals to reduce shipping’s 

total emissions by 50% by 2050 compared to 2008. Finding means to mitigate the 

global climate change has become an ever-increasing part of R&D for the shipping 

cluster to respond to the current and future requirements. Significant business can 

also be seen at the end of the path. 

During the past three and a half years, significant research and development 

resources have been allocated for finding new innovative solutions for smart and 

green shipping. It has been challenging but also extremely rewarding for such a 

committed industry-wide consortium consisting of a good number of research and 

industrial partners! The project provides excellent opportunities for the research 

partners and researchers to work closely with industrial partners to address the 

need and challenges faced by the consortium partners and the wider shipping 

industry in the everyday operations, and to develop innovative solutions to maritime 

digitalization and decarbonization. A large number of tangible R&D results and 

products have been achieved, which will further strengthen Finland’s global position 

as a technology-innovation leader in ship design, system integration, building and 

operation. The consortium has also been able to expand the community and 

strengthen the research project portfolio both nationally and internationally through 

a large number of new interesting initiatives. 

The visionary INTENS project has provided a great ecosystem networking 

between people and organizations, and also a unique platform for creating and 

advancing high-level expertise and new competences for the Finnish maritime 

cluster, which would not have been possible without the firm commitment and close 

collaboration within the consortium. The great co-operation has been successful 

and extremely inspiring! Although the INTENS project is now coming to the end but 

mutual activities will be surely continued for the benefit of all current and coming 

partners on an arduous journey towards smart and green shipping! 

 

 

Johannes Hyrynen 

Vice President 

VTT Technical Research Centre of Finland, Mobility and Transport 
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INTENS in numbers 

FACTS 

Duration 01.01.2018 – 30-06-2021 

Consortium partners 19 

Industrial partners 14 

Research partners 5 

Number of projects 10 

Industrial projects 9 

Public research project 1 

Budget ~13.3 M€ 

Industrial projects ~10.1 M€ 

Public research project ~3.2 M€ 

People involved ~200 

  

Achievements (realized) (progressing) (total) 

Product development (software & hardware) 59 8 67 

Scientific activities and outputs 

Scientific papers 63 22 85 

Scientific abstracts 26 8 34 

Theses (MSc & PhD) 13 10 23 

Books, chapters, reports, etc. 19 3 22 

Patents, invention disclosures, etc. 6 2 8 

Public seminars (No. / Presentations) 3/60  3/60 

Project workshops (No. / Presentations) 7/45  7/45 

Business activities (event, exhibition, etc.) 90 8 98 

Projects in collaboration (outside INTENS) 20 4 24 

New business and R&D projects    

Number 26 15 41 

Volume ~22 M€ ~12 M€ ~34 M€ 
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1. Prediction of on-board energy usage 
combining physics-based modelling and 
machine learning 

Mikael Manngård 3F

1a, Joachim Hammarström1a, Wilhelm Gustafsson4F

2b,  

Jari Böling1a, Jerker Björkqvist1a 

a Faculty of Science and Engineering, Åbo Akademi University 
b Meyer Turku Oy 

 

1.1 Introduction 

Global sustainability goals drive the maritime industries to improve the overall 

energy efficiency of ships. To use energy more efficiently, we first need to 

understand how energy is being utilized. In this work, a framework for predicting the 

distribution of energy onboard cruise ship is presented. Predictions are based on 

available route plans and weather forecasts. A physics-based model of the engine 

cooling and waste-heat recovery systems is used together with machine learning 

regression models to predict energy consumption and demand for the next 24 

hours. The proposed method is meant to give officers onboard cruise ships a tool 

for visualizing how their actions affect the onboard energy distribution ahead in time. 

The proposed method is meant as an aid for making informed decisions related to 

scheduling and operations which can improve the overall energy efficiency of the 

vessel. 

1.2 Process description 

The main components of the cruise ship considered in this case-study are four 4-

stroke medium-speed diesel gensets (DG), with a total shaft power of 48 MW, 

engine cooling systems, propulsion, and other on-board energy consumers. Excess 

heat from the engine cooling system is extracted by a waste-heat recovery (WHR) 

 
1 Contact: firstname.lastname@abo.fi 
2 Contact: firstname.lastname@meyerturku.fi 

mailto:firstname.lastname@abo.fi
mailto:firstname.lastname@meyerturku.fi
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system and used for fresh-water production.  Waste heat in exhaust gasses is used 

for steam conversion which is, for the most part, used for heating.  

The engine cooling system in the ship is divided into a high-temperature (HT) and 

a low temperature (LT) cooling circuit. The HT cooling circuit is used for engine-

jacket cooling, high-temperature charge-air cooling (HT-CAC) and for waste-heat 

recovery (WHR). The LT cooling circuit is used for cooling of the lubrication oil (LO) 

and for low-temperature charge-air cooling (LT-CAC). Excess heat that cannot be 

recovered via the WHR-system is transferred to the sea via a seawater heat 

exchanger (SW-HE). Thus, the engine cooling system, for the most part, can be 

considered a network of heat exchangers. 

1.3 Modeling framework 

Cruise ships act as small floating cities and have thus a more varying load compared 

to cargo vessels of a similar size [1]. It is reasonable to assume that the hotel load 

on cruise ships experiences a periodic behavior, with 24h periods and with periods 

corresponding to the port-to-port duration. Such patterns can be learnt from history 

data. Machine learning models are used to forecast the engine and hotel loads 

based on available route plans and weather forecasts. The distribution of energy 

onboard is modeled based on physics.  

1.3.1 Physics-based modeling 

The dynamic behavior of unit processes onboard a ship is modeled based on mass 

and heat balances. A model of an engine cooling system has previously been 

presented in [2] and has been validated against history data. The model was 

implemented in MATLAB & Simulink. A screen-capture of the cooling-system model 

for a single diesel engine is presented in Figure 1. The cooling system consists of a 

series of heat exchangers, heat sources, heat sinks and control valves. Heat 

exchangers are modeled based on a so-called ‘multi cell’ principle where the heat 

exchanger is discretized over its length and perfect mixing as assumed within a cell 

[2,3,4,5]. Ideal control valves are used in the model and PI-based control strategies 

are used to control the engine jacket, lubrication oil, CAC and LT water 

temperatures to the desired setpoints. 
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Figure 1. Physics-based model of the engine cooling system implemented in MATLAB & Simulink. 
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1.3.2 Machine learning models 

The machine learning is done with MATLAB’s Regression Learner app which 

supports linear regression models, regression trees, support vector machines 

(SVM), gaussian process regression (GPR) models and ensembles of trees, see 

e.g. [6]. Regression models were trained to  
(i) Predict the WHR temperature based on the planned cruising speed 

through water and seawater temperature.  

(ii) Predict the engine intake air temperature based on the ambient air 

temperature and the engine power. 

(iii) Predict the total engine power and propulsion power based on the planned 

ship speed through water. 

(iv) Predict the seawater temperature based on coordinates and date. 

(v) Calculate the WHR mass-flow rates based on the estimated number of 

running engines. 

The available data is split into training and validation data sets, where 21 days of 

data is used for training and ten days of data is used for validation. Various machine 

learning regression models were trained and compared based on the root-mean-

square error (RMSE) criteria. Overall, in this case study, the GPR, Bagged Trees 

and polynomial regression models resulted the lowest prediction errors. A selection 

of the trained regression models for the estimation of WHR temperature are 

presented in Table 1. 

Table 1. Root mean square error for various machine learning regression models for predicting 
the waste-heat recovery temperature (°C). 

Method Training RMSE Validation RMSE 

Bagged trees 1.05 2.62 

Ensamble models 0.97 2.66 

GPR 0.78 2.80 

SVM 2.49 2.90 

1.4 Results 

The power distribution on a 24-hour period where the ship enters and leaves a 

harbor is presented in Figure 2 (a). During the first 4.5 hours the ship is traveling at 

13 knots before entering the harbor. After 11 hours, the ship leaves the harbor after 

which it travels at full load at approximately 20.5 knots. The 24-hours-ahead 

predictions of onboard power distribution are presented in Figure 2 (b). Snapshots 

of the power distribution at various time points are presented in Figure 3. The 

predicted power distribution at the various time instances matches the measured 

power within a few percentage points. However, note that the total power at full load 

(16-24h) is overestimated by approximately 12%. Note also that 13-20% of the total 



 

17 

power is transferred to the sea at any given time. This suggests that it might be 

possible to achieve a significant improvement in overall energy efficiency by 

improve waste-heat utilization. Waste-heat utilization can either be improved by 

scheduling energy consuming tasks (if there are such) at times where there are 

excess heat available. Alternatively, designs that allow waste-heat to be converted 

into more usable forms could be considered for future vessels. For example, organic 

rankine cycle technologies [7,8] can be used to convert waste-heat into electrical 

power.   

 

 
 

Figure 2. (a) Power distribution based on data, (b) forecasted power used based on the actual 
route plan. 
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Figure 3. Measured (left) and predicted (right) power distributions at (a) 4h, (b) 8h, (c) 20h. 
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1.5 Conclusions 

A machine learning and physics-based method for predicting the onboard energy 

use has been proposed. The proposed method can predict the onboard power 

distribution 24-hours ahead in time with a prediction error of <3 %-units. Having 

access to accurate predictions of the onboard energy distribution allows crew and 

officers onboard to make informed decisions of how their actions affect the overall 

energy distribution on the ship. For example, optimized scheduling of energy 

consuming tasks based on the available predictions will result in an increased 

energy efficiency.  
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2. New design methods for low-carbon shipping 

Bogdan Molchanov1, Tran Lien1, Mia Elg5F

1  

Deltamarin Ltd 

 

2.1 Introduction 

2.1.1 Nomenclature 

AE Auxiliary engines 

BF Brute force search method 

CST Condensing type steam turbine 

EGB Exhaust gas boiler 

ESD Energy-saving device 

HT ORC High-temperature organic Rankine cycle unit 

IMO International Maritime Organisation 

KPI Key performance indicators 

LT / HT water Low/High-temperature cooling water 

ME Main engines 

NSGA Non-dominated sorting genetic algorithm 

SMCR Specified maximum continuous rating 

 

2.1.2 The complexity of the Ship Design Process 

The ship design process is inherently a complex problem, where several domain 

experts work as a team with a broad range of regulatory and client requirements to 

develop a vessel design that is safe and meets all desired design targets. The 

complexity is especially apparent in the early phases of the ship design when most 

of the trade-off decisions are made with little design knowledge available. Those 

decisions are needed to set constraints and narrow down the set of possible 

solutions.   

 
1 Contact: firstname.lastname@deltamarin.com 

mailto:firstname.lastname@deltamarin.com
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The early ship design phases are typically time-limited, meaning there is rarely 

enough time to develop a fully new concept from scratch – often the design team 

utilises reference vessel designs that are close enough to the set targets as a 

starting point, and then iterative design process is started until all requirements are 

met. This process is typically referred to as the ship design spiral due to its tendency 

to converge over several iterations into a satisfactory or superior design, depending 

on time invested in the process (dashed lines on Figure 1). Figure 1 suggests that, 

by shifting the design effort to the early stages of projects, more design knowledge 

is available at the time when decisions are locked, leading to a more efficient design 

process with fewer changes in the latter design phases and fewer associated costs 

(continuous lines on Figure 1).  

  

Figure 1. Design Knowledge vs Cost to make changes in early design phases. 

Modern design workflows make use of data analysis, parametric models and rapid 

prototyping, toolboxes, and databases to gain more design knowledge – some of 

these methods have been covered in [1], such as the DeltaWay method for ship 

initial concept design. Nevertheless, in addition to ship main parameter sizing, there 

is also a need to identify various processes that could increase ship sustainability. 

These processes, such as energy-saving devices (ESDs), are normally studied in a 

ship project in form of cost-benefit analysis, where energy simulations indicate the 

fuel-saving or emission reduction potential. During the early ship design phases, the 

time for these analyses is even more limited than for the ship's main system design 

and dimensioning. 

Together with VTT, we have studied frameworks of simulation-based 

optimisation [2]. The article at hand focuses on model-based multi-objective 

optimisation for increasing design knowledge at the early stages of the project.  This 

area of study is limited to finding a set of optimum solutions by maximising the ship’s 

energy efficiency and minimising capital and operational expenditures (CAPEX and 

OPEX) within a typical concept development project for a newbuild.  
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2.1.3 Multi-objective optimisation vs manual simulation approach 

The standard or manual design approach in the context of energy-efficiency 

modelling at Deltamarin consists of the steps listed below. Such a process is time-

consuming because it requires the designer to manually configure the model and 

parameters suitable for simulation and analyse all the results so as to find the most 

promising solutions. This process is typically limited to 10–20 simulations due to 

time constraints.  

 
1. Collect ship design requirements and targets 

2. Collect design documentation and operational data 

3. Configure energy flow model to represent the concept ship on an intended 

operational profile 

4. Set up a baseline against which alternative designs are compared (IMO 

targets, reference ship’s KPIs, “default design”) 

5. Configure tunable parameters for the model such as machinery capacities 

and combinations of ESDs or operational decisions – anything that can 

positively influence the energy efficiency of the newbuild 

6. Run simulations with alternative technology combinations that seem 

feasible based on the analyses of the base case and reference designs. 

7. Analyse and select cases with the best KPIs or study additional cases until 

enough feasible design alternatives are found  

8. Select the best case together with the client and the design team, and 

continue to the next phase 

Since ship design is a multi-domain problem with varying and sometimes conflicting 

targets, there exists a set of optimum solutions that represent the best trade-offs 

between the conflicting targets. Multi-objective optimisation can help find the best 

trade-off solutions for a given problem that is well formulated. Mathematically the 

multi-objective optimisation is defined by a set of functions to be minimised or 

maximised and a set of constraints imposed by physical, safety and design 

limitations.  

If the simulation model were connected to the optimisation routine, the simulation 

model would become a black box that takes tunable parameters as inputs, and 

outputs the required results for objective functions back into the optimisation 

algorithm. Figure 2 illustrates the schematic of the closed-loop cycle interaction of 

the simulation model and optimisation algorithm. In this way, several hundred to 

several thousand simulations can be performed and non-optimal solutions will be 

automatically filtered off. The designer gains both more time for analysis and richer 

and more accurate results to select from. The drawback of the optimisation is that 

configuration of the model might be time-consuming if new design targets and 

design alternatives are introduced. 
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Figure 2. The schematic process of using the parameterised simulation model as a part of the optimisation routine 
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With the optimisation-driven simulations, the design process changes as 

described below.  

 
1. –     5.  Same as for “Manual Simulations” 

6. Translate project goals, constraints and design alternatives into 

optimisation problems (Table 1) 

7. Select optimisation type and configure optimisation settings; run 

optimisation until a satisfactory coverage of the Pareto frontier is obtained 

8. Select best configurations with the team based on further analyses, 

experiences and client wishes; continue to the next phase 

Table 1. Project description translation into an optimisation problem 

In Project context: Examples: In Optimisation context: 

Design Targets Obtain high energy efficiency with the 

lowest possible CAPEX 

Objective functions 

Design alternatives Types of ESDs, their capacities, 

setpoints and number of units installed 

Decision variables 

Design 

requirements and 

constraints 

Limited deck space, 

maximum/minimum available 

machinery capacities 

Limits and constraint 

functions 

 

In this study, the non-dominated sorting genetic algorithm (NSGA-II) was selected 

for optimisation and the brute force search method (BF) was used for validation of 

the results. The non-dominated sorting genetic algorithm II, or NSGA-II algorithm, 

developed by Srinivas and Deb in 2002 is the improved version of NSGA, which 

was first introduced by Deb in 2001.  

Schematically, the NSGA-II algorithm first initialises the population based on the 

problem range and constraint. Once the initial population has been generated and 

evaluated, the sorting process starts. The algorithm will carry over the best-

performing solutions from previous generations to the next generation. The 

algorithm will preserve the diversity of the population by selecting not only the best 

solutions but also considering the density of solutions around each solution – 

preferring less dense options. The worse-performing solutions are replaced by 

offspring population from the better performing solution. In addition to crossover, 

the algorithm includes a mutation, which adds a small degree of randomness to 

offspring generation, thus increasing diversity and the chances of finding new 

solutions that would otherwise be impossible by crossover only. The full process is 

shown in Figure 3. 

Brute force search or exhaustive search is a very general problem-solving 

technique that works by systematically enumerating all possible candidates for the 

solution and checking whether each candidate satisfies the problem’s statement. 
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BF always guarantees to find a solution if it exists and is known for its simplicity in 

implementation. However, the implementation costs are proportional to the number 

of candidate solutions, which tends to grow very rapidly as the size of the problem 

increases. In Figure 3 at the bottom, the BF schematic shows all possible 

combinations of moving from point 1 through points 2, 3, and 4. 

 

 

 
 

 

 

Figure 3. Top: Schematic of the NSGA-II algorithm. Bottom: the brute force search method 
describing all possible solutions when moving from vertex 1 to other vertices 2, 3, and 4 with 
their corresponding costs. 
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2.2 Case description 

2.2.1 Case ship 

The case ship is a generic RoPax ship that is expected to run on LSHFO fuel on a 
typical route in the Baltic Sea. The ship particulars are shown in Table 2. It operates 
on the same operational profile all year round and spends 62% of its time in transit, 
3% in manoeuvring, and 35% in port. The machinery configuration with several 
optional ESDs for waste heat recovery is shown in Figure 4. In addition, battery 
capacity and shore charging (cold ironing) were also introduced into the study for 
the case ship. Each main engine is equipped with an exhaust gas boiler (EGB) and 
HT water heat is recovered after both main and auxiliary engines into a waste heat 
recovery circuit. The recovered steam and HT heat are prioritised for onboard 
consumers, and excess heat is available for waste heat recovery equipment.  

Table 2. Main particulars of the case ship 

Scantling, DWT 23,000 

Gross tonnage, GT 65,000 

Propulsion configuration Twin Skeg mechanical propulsion 

Main engine arrangement 2 x 4-stroke engines per shaft 

Main engine, SMCR 4 x 7,200 kW 

Auxiliary engines, SMCR 3 x 2,900 kW 

Shaft generators, SMCR 2 x 2,500 kW 

 

 

 

Figure 4. Ship route and annual speed distribution 
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Figure 5. Case ship waste heat recovery principal figure with four main engines (ME) and three auxiliary engines (AE), including various alternatives for 
waste heat recovery that were design variables in the optimisation task.
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2.2.2 Optimisation Problem 

The design goal is the same as reported in [2] to find the best trade-off solutions 

between ESDs’ Capex, fuel expenditures and engine running hours. In this case, 

the propulsion configuration is mechanical, so hours in operation for main and 

auxiliary engines were considered separately. The decision variables are shown in 

Table 3.  

The objective functions were formulated as shown below: 
1. Minimise the total Capex of ESDs, based on prices per kW or per unit as 

shown in Table 3. Cold ironing was assumed to be already installed, and 

only available capacity on the shore side could be varied.  

2. Minimise average annual fuel consumption by the main, auxiliary engines 

and boilers combined 

3. Minimise the total number of running hours for the main engines 

4. Minimise the total number of running hours for the auxiliary engines 

Table 3. Decision variables and limits for the optimisation problem 

Technology parameter Unit Limits Type Cost (Capex) 

Battery capacity kWh 0 – 10,000 real USD 1,000/kWh 

Battery c-rate - 1 – 3 integer - 

Main engine setpoint % of M/E 

SMCR 

80 – 90% real - 

Zero emission setpoint % of M/E 

SMCR 

20 – 40% real - 

Condensing steam turbine 

power 

kW 300 – 800  real USD 700 – 

1,000/kW 

Number of hot water-driven 

organic Rankine cycle 

units, 150 kW each 

# 1 – 6 integer USD 310,000unit 

Cold ironing capacity kW 0 – 10,000 real - 

 

 

2.3 Results and discussion 

Figure 6 shows the Pareto frontier of the optimisation objectives. The lower left part 

is a pairwise scatter against each other and the upper right part illustrates where 

the highest concentration of the pairwise plotted objectives. It shows the trade-off 

line between conflicting objectives. It can be seen that the benefit of investment in 

ESDs vs fuel consumption and the number of main engines online is highest up until 
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5 MUSD, while minimal investment is needed to bring utilisation of AEs down. To 

confirm how well the Pareto front was covered, the problem was discretised, and 

the brute force search method was applied, covering about 18,000 possible ESD 

equipment combinations. The comparison of Pareto front coverage by brute force 

and NSGA-II is shown in Figure 6 and 7. 

 

 

 
 

Figure 6. NSGA - II optimisation, optimum solution set only. Population size = 50, generation 
size = 100 



 

30 

 

Figure 7. NSGA-II vs brute force Pareto frontier coverage 
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Table 4. Comparison of brute force, NSGA-II and the traditional approach to energy-efficiency 
study 

 
 

 

As part of further analysis, three points representing low (~1 MUSD), medium (~6 

MUSD), and high (~12 MUSD) Capex were compared against bare hull design and 

against the designer’s selection from manual simulations. The results of the 

simulations are shown in Table 5.  

Large operational improvements are already possible with minimal investment 

(Low Capex scenario) by tweaking operational choices and installing minimal ESD 

capacity on board. The Mid Capex scenario is very close to the selected alternative, 

at a slightly higher cost but with better performance in other objectives.  The 

maximum investment leads to the best results. It can be seen that, with 10 MWh 

battery capacity, the number of main engines on-line drops significantly compared 

to other cases. This means that the battery was preventing 4 main engines from 

running simultaneously and switching the ship machinery into zero-emission mode 

at low engine speeds. For hotel load, the main saving was from enabling sufficient 

shore power capacity, which in this case came at no cost. The second largest 

improvement came from extending the operational limits of the auxiliary engines 

due to the presence of a battery in the system, allowing fewer engines to run at a 

time (Low Capex NSGA-II case). The final savings came from the battery taking 

over the hotel load at sea when MEs were running at peak capacity to supply 

propulsion load, and PTO mode was not possible.   

 



 

32 

Table 5. Comparison of base case and selection from manual simulations vs three solutions from the Pareto-frontier of NSGA-II  
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2.4 Conclusions 

This work focused on streamlining the optimisation process for the early design 

phases of the shipbuilding process, building on accumulated knowledge from 

INTENS activities. The goal was to apply optimisation to the selection of the ESD 

equipment for a RoPax ship where a balance between Capex and the vessel’s 

performance was sought.  

One finding of the study is that we already have all the pieces needed to 

implement optimisation in ship building projects, such as parametric models, design 

targets, domain expertise, optimisation algorithms and problems suitable for 

optimisation. The challenge is to connect all these pieces together into a workflow 

that can fit into the timeline of normal project work.  

The optimisation algorithms helped generate thousands of concepts that would 

be too time-consuming to define and analyse using the manual simulation 

approach, while Pareto-frontier visualisations have helped filter out less optimal 

solutions. In addition, the Pareto frontier makes it easier to understand how different 

targets correlate with each other. In the studied case, there is a clear trade-off 

between investment cost and energy savings while energy savings correlate almost 

linearly with the average number of main engines on-line.  The brute force method 

was implemented to verify solutions found by the NSGA-II algorithm. It was found 

that while generating the largest set of optimal solutions, BF in normal project work 

must be limited to a small number of decision variables. BF could be done to create 

a more refined search around the optimum points found using the NSGA-II 

algorithm.  

The results indicate that in the current ship design projects where the number of 

design variables starts to be large, optimisation brings more confidence and quality 

to the results. The amount of time spent by the designer in a typical round of manual 

energy simulations would equal the optimisation method but, in the case example, 

the optimisation led to better results in terms of the optimisation targets. The 

expertise of ship energy efficiency engineers is always required in setting up the 

optimisation problem and further developing the models, including a growing 

number of variables. Nevertheless, the optimisation method is a powerful addition 

to covering the entire design space, and we predict that this method will be required 

in the majority of new ship projects from the start. 
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3.1 Introduction 

Simulation experiments can be used by marine engineers to study the effects of 

design parameters on ship performance indicators.  Despite the growth of 

computational capacity, an exhaustive simulation of parameter value combinations 

is only possible in limited cases.  Simulation efforts can be effectively focused to the 

most promising parameter combinations by methods of simulation-based 

optimisation.  The faster and easier it is to perform simulation optimisation studies, 

the more effective tool they can make for the ship engineering process. 

Earlier in the INTENS project we have reported [1,2,3] optimisation experiments 

using a multiobjective genetic algorithm and a cloud-based simulation framework.  

As genetic algorithms can be relatively inefficient in the required number of 

evaluations, i.e. simulation runs, we have experimented with Bayesian optimisation 

as an alternative multiobjective optimisation method.  The goal was to compare the 

efficiency of Bayesian optimisation with genetic algorithms in ship energy system 

optimisation, using an updated version of the same optimisation case. 

3.2 Multiobjective black-box optimisation methods 

In engineering design, there are trade-offs between different objectives, such as 

cost, emissions, and ship performance.  Since there is no single solution that is best 

on all objectives, alternative solutions have to be carefully considered by the 

stakeholders to select the most suitable one.  The purpose of multiobjective 
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optimisation methods is to construct a wide variety of alternative efficient solutions 

that demonstrate different trade-offs between the objectives, for example designs 

ranging from low-cost low-performance designs to high-cost high-performance 

designs, with different emission profiles.  Specifically, we focused on methods of 

multiobjective simulation-based optimisation, in which the optimisation algorithm 

needs to carefully choose the inputs of each simulation run, in order to be effective. 

In multiobjective optimization, a solution is considered better than another 

(dominates the other solution), if it is better or at least equal in terms of all objectives; 

otherwise the two solutions are non-comparable.  A solution is called Pareto-optimal 

or efficient, if there is no better solution, i.e. the solution is not dominated by any 

other solution.  Instead of a single optimal solution, there is typically a very large set 

of Pareto-optimal solutions, which is called the Pareto front; see Figure 1. 

In challenging optimisation problems, it is usually not practically possible to 

determine the exact Pareto front, but instead the goal is to find a set of solutions 

that provides a good approximation of the exact Pareto front.  There are many ways 

to measure how good a proposed solution set is in multiobjective optimisation, with 

different advantages and weaknesses [4].  In this study, multiobjective optimisation 

methods were compared in terms of two well-known measures of solution set 

quality: hypervolume indicator and distance to reference Pareto front.  Although only 

minimisation objectives are discussed in this abstract, the same techniques apply if 

some objectives are to be maximised instead (such objectives can be simply 

negated). 

 

  

a) b) 

Figure 1. Comparing solution sets in a multiobjective optimisation problem with two 
minimisation objectives f1 and f2. Each round dot represents a single solution produced by 
some algorithm of interest.  On the left, the Pareto-optimal solutions are marked with larger 
dots.  Every other solution is worse on both objectives than some Pareto-optimal solution. 
a) The hypervolume of dominated objective space (shaded) extends from the reference point 
(at the crossing of the f1 and f2 axes in the figure) to the Pareto-optimal solutions.  A two-
dimensional hypervolume is equivalent to area, i.e. the shaded area. 
b) Distance to reference Pareto set. The crosses indicate a reference Pareto set, which 
dominates all algorithm solutions.  Blue lines indicate point-to-point distances from each 
reference Pareto point to the closest algorithm solution. The distance measure is defined as 
the mean distance from a reference Pareto point to an algorithm solution, equal to the mean 
length of the blue line segments. 
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Suppose that the optimisation problem is to find points in a multi-dimensional 

configuration space 𝑋 minimising the objectives 𝑓1, … , 𝑓𝑚, which are functions from 

𝑋  to the reals ℝ .  An optimisation algorithm must produce a solution set 

𝑆 = {𝑥1, … , 𝑥𝑛} in the configuration space 𝑋. Each solution 𝑥𝑖 ∈ 𝑋 has a vector of 

objective values 𝐹(𝑥𝑖) = (𝑓1(𝑥𝑖), … , 𝑓𝑚(𝑥𝑖)) ∈ ℝ𝑚.   Both quality measures in this 

study are defined using the set of objective vectors 𝐹(𝑆) = {𝐹(𝑥1), … , 𝐹(𝑥𝑛)}. 

The hypervolume indicator measures how much of the objective space ℝ𝑚 is 

dominated by the set of objective vectors.  The hypervolume is defined in terms of 

a reference point 𝑟  that provides an upper bound for the region of interest in 

objective space.  The reference point can be specified directly by the decision 

maker, or set dynamically based on the objective vectors of the solution set, for 
example at (max

𝑥∈𝑆
𝑓1(𝑥) , … , max

𝑥∈𝑆
𝑓𝑚(𝑥)).  The indicator is the hypervolume of the 

region 

{𝑦 ∈ ℝ𝑚 such that 𝐹(𝑥) ≤ 𝑦 ≤ 𝑟 for some 𝑥 ∈ 𝑆}, 

 

which is illustrated by shading in Figure 1a. 

Computing the distance to reference Pareto front requires a Pareto front of 

solutions 𝑅 that is close to the ideal Pareto front (the measure is also known as IGD, 

“inverse generational distance”).  When comparing multiple algorithms, such a 

Pareto front is easily constructed by joining the results of all the algorithm test runs, 

and then selecting the Pareto-optimal subset of the joined solution set, i.e. the best 

known solutions.  Even if the objectives are in incomparable units, a distance 

between objective vectors 𝑦 and 𝑦′ can be defined as 

 

𝑑(𝑦, 𝑦′) = max𝑘=1,…,𝑚wk|𝑦𝑘 − 𝑦𝑘
′ |, 

 

where the objective weights can be set e.g. by normalizing the ranges of the 

objectives with 

 

𝑤𝑘 = 1/(max
𝑥∈𝑅

𝑓𝑘(𝑥) − min
𝑥∈𝑅

𝑓𝑘(𝑥)). 

 

The distance from solution set 𝑆 to reference Pareto front 𝑅 is then defined as 

 
1

|𝑅|
∑v∈Rminx∈S 𝑑(𝐹(𝑣), 𝐹(𝑥)) . 

In other words, the indicator value is the mean distance from points of the reference 

Pareto front to the closest solution objective vector.  The measure is illustrated in 

Figure 1b. 

Both measures depend on arbitrary parameter choices; the choices noted above 

work reasonably in practice.  Both measures are well behaved in the sense that 

whenever an algorithm updates the solution set with a new Pareto-optimal solution, 

the hypervolume indicator either increases or stays the same, and the distance to 

reference Pareto front either decreases or stays the same. 
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3.2.1  Multiobjective Bayesian optimisation 

In simulation-based optimisation, the objective function values are known only for 

the configurations that have already been simulated.  In Bayesian optimisation, the 

behaviour of the objective functions at other points of the configuration space is 

modelled probabilistically, typically by Gaussian process models.  For any potential 

configuration, the probabilistic model provides an estimate of the objective values 

as a probability distribution, in such a way that the values at near-by points in 

configuration space (similar simulation inputs) are strongly correlated. 

In Bayesian optimisation the most promising evaluation points (i.e. the input 

parameters of the next simulation runs) are chosen by maximising a so-called 

acquisition function, for example the expectation of the improvement over the best 

currently known solution(s): this is illustrated in Figure 2.  The basic mathematics of 

Bayesian optimisation is well explained in [5], and recent research reviews can be 

found in [6,7].  To date, multiobjective Bayesian optimisation has received relatively 

little attention, and few Bayesian optimisation software packages support it. 

 

 

Figure 2. Example of one-dimensional Bayesian optimisation in a minimisation problem. The 
decision variable is on the x-axis and the function value on the y-axis.  Red dots indicate points 
at which the value of the objective function has been determined.  The black line is the 
estimated mean value, and the grey lines indicate the lower and upper confidence bound (95 
% confidence interval) of possible function values.  The red curve at the bottom indicates the 
expected improvement acquisition function: the next function evaluation is performed at the x-
value indicated by the vertical line, at which the expected improvement is the largest. 

The easy way to apply single-objective optimisation methods to multiobjective 

problems is to combine the multiple objectives into a single objective, for example 

as a weighted linear scalarisation ∑𝑘=1
𝑚 wk𝑦𝑘, or a weighted maximum (Chebyshev) 

scalarisation max𝑘=1,…,𝑚wk𝑦𝑘 .  Different points on the Pareto front can be then 

found by varying the weights.  Random weighted scalarisations were already 
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applied in the earliest multiobjective Bayesian optimisation algorithm, the ParEGO 

algorithm of Knowles [8].  It must be noted that with varying weights, the Chebyshev 

scalarisation can find the entire Pareto front, whereas the linear scalarisation is 

limited to a subset of Pareto-optimal points unless the Pareto front is convex. 

As an alternative to weighted scalarisation, the hypervolume indicator described 

above provides a natural objective for multiobjective optimisation.  Using a Bayesian 

model of the objective function, it is possible to estimate the expected hypervolume 

improvement (EHVI) from evaluating a given configuration, so that EHVI can be 

used as an acquisition function in multiobjective Bayesian optimisation [9]. 

3.2.2  Optimisation methods compared 

Seven different multiobjective optimisation methods were tested in the case study 

on two optimisation problem variants.  All algorithms were provided the same 

capability of 25 parallel simulations, i.e. the objectives of 25 solutions could be 

evaluated in parallel. A baseline for the comparison was provided by running a 

random search algorithm. 

 

Random The decision variables were selected from a uniform random 

distribution. 

 

Two different multiobjective genetic algorithms from the Opt4J library [10] were run.  

Both were configured with a population of 50 solutions (in experiments, populations 

of 30 or 40 performed significantly worse, and a population of 100 about the same 

as 50).  The initial population of 50 was generated from a uniform random 

distribution.  On each generation 25 new solutions were created using, as in [11], 

binary tournament selection and a cross-over probability of 90 %.  The algorithms 

differed in how a population of 50 solutions was then selected for the next iteration. 

 

NSGA2 NSGA-II of Deb et al. [11] selects solutions using a so-called 

crowding distance metric, aiming to find solutions that are evenly 

distributed around the Pareto front. 

 

SMS SMS-EMOA of Beume et al. [12] selects solutions using the so-

called S-Metric, maximising improvement in hypervolume with a 

penalty term for solutions inside the dominated hypervolume of the 

best current Pareto front. 

 

Four different multiobjective Bayesian optimisation algorithms were run.  All were 

initialised with 30 solutions selected from a uniform random distribution, to get 

sufficient accuracy from the first Gaussian process estimation step. The 

hyperparameters of the Gaussian processes were estimated automatically from 

data by all the algorithms (automatic relevancy determination).  Some algorithms 

performed better when the objectives were manually scaled to similar ranges: these 

are noted specifically below. 
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qParEGO A variant of the ParEGO algorithm of Knowles [8], in which the 

evaluations that are currently running in parallel are explicitly 

considered in the expected improvement acquisition function.  The 

implementation of the algorithm in the BoTorch library was used 

through its Ax front-end [13].  The objectives were scaled 

manually. 

EHVI Expected hypervolume improvement over a Gaussian process 

model, formulated in a differentiable form by Daulton et al. [9]  The 

implementation in the BoTorch library was used through its Ax 

front-end [13].  Due to performance reasons, the explicit 

consideration of parallel evaluations was disabled.  The reference 

point for hypervolume computation was provided manually. 

Dragonfly Another variant of the ParEGO algorithm [8], in which alternative 

acquisition functions are used in an adaptive manner.  The 

implementation is from the Dragonfly library [14,15].  The explicit 

consideration of parallel evaluations was disabled to improve 

performance.  The objectives were scaled manually. 

GRAMBO An experimental gradient-based multiobjective Bayesian 

optimisation algorithm. The algorithm was based on a 

differentiable formulation of the S-Metric [12], which combines 

hypervolume improvement with penalty terms for solutions within 

the dominated hypervolume, using the differentiable function 

sampling approach of Wilson et al. [17] and the hypervolume 

scalarisation approach of Zhang and Golovin [18].  Parallel 

evaluations were explicitly considered.  The reference point for 

hypervolume computation and the scaling of the objectives were 

set dynamically by the algorithm.  Other hyperparameters were 

adjusted manually during algorithm development, using variant B 

of the optimisation problem described in Section 3.3. 

3.3 Case description 

The engineering case concerns the retrofit of energy-saving and emission-reducing 

technologies on a generic 4000-passenger cruise ship with a diesel-electrical 

propulsion plant.  The retrofit options included battery capacity for reducing fuel 

usage and emissions, and several alternative technologies for waste heat recovery: 

organic Rankine cycle (ORC) units connected to either steam or high-temperature 

water circuits, condensing steam turbines, and back-pressure steam turbines.  The 

problem is to decide how many units of each technology to install at what capacity. 

Alternative designs were evaluated on three objectives: capital investment cost, fuel 

usage and main engine running hours.  The fuel usage objective is linked to CO2 

emissions. Engine running hours are relevant to maintenance requirements, and 

together with fuel usage can be linked to the operational cost of the design. 
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An energy system simulation model was implemented by Deltamarin in the 

Matlab Simulink environment.  The simulation followed a representative one-year 

profile of vessel propulsion and hotel power usage.  For optimisation purposes, we 

ran a compiled version of the model in a cloud computing environment, so as to 

enable parallel simulations. 

The case is an extended version of the one reported last year [3].  At that point, 

the simulation could fail on unexpected combinations of input parameter values, 

which caused difficulties for the optimisation process.  The model has now been 

updated to properly simulate all energy system configurations within the 

optimisation case study. 

3.3.1 Optimisation problem variants 

Two variants of the optimisation problem were defined, as condensing steam 

turbines and back-pressure steam turbines could not be simultaneously installed in 

the simulation model.  Here the variants are referred to as problem B and problem 

C.  The energy system retrofit options were specified in the optimisation by the 

following decision variables.  The “Problem” column indicates which variables were 

included in which problem. 

 

Variable Range Unit Description Problem 

batt_cap   0 – 10 000 kWh Total battery capacity installed B, C 

sorc_n 0 – 8 - Number of steam ORC units B, C 

htorc_n 0 – 8 - Number of high-temperature-water ORC 

units 

B, C 

bpst_n 0 – 4 - Number of back-pressure steam turbines B     

bpst_P   100 – 1000 kW Size of back-pressure steam turbines B     

cst_n 0 – 4 - Number of condensing steam turbines     C 

cst_P   400 – 1000 kW Size of condensing steam turbines     C 

 

The solutions were evaluated in terms of the following objectives.  All three 

objectives were to be minimized.  The “Reference point” column indicates the 

reference values used in the reported hypervolume computations. 

 

Objective Unit Description Reference point 

capex k€ Capital expenditure 17 500 

fuel kg/s Average fuel consumption over the entire 

operation profile 

1.21 

n_me - Average number of main engines in operation 2.75 

 

The capital expenditure was computed as 

capex = 1 k€/kWh ⋅ batt_cap  +  300 k€ ⋅ n_sorc  +  300 k€ ⋅ n_htorc 

       +  1 k€/kW ⋅ n_bpst ⋅ bpst_P  +  1 k€/kW ⋅ n_cst ⋅ cst_P 
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3.4 Results 

The progress of the algorithms is compared by hypervolume in Figures 9 and 10, 

and by distance to reference Pareto front in Figures 11 and 12.  The algorithms 

were stopped after 6 h or 1500 evaluations, whichever came first.  Figure 13 

illustrates Pareto fronts after 2 hours of optimisation. 

 

Figure 3. Hypervolume growth on problem B as a function of time in minutes (left) and number 
of simulation runs (right). 

 

Figure 4. Hypervolume growth on problem C as a function of time in minutes (left) and number 
of simulation runs (right). 
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Figure 5. Distance to reference Pareto set on problem B as a function of time in minutes (left) 
and number of simulation runs (right). 

 

Figure 6. Distance to reference Pareto set on problem C as a function of time in minutes (left) 
and number of simulation runs (right). 
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Figure 7. Comparison of Pareto fronts in terms of capex and fuel objectives after 2 hours of 
optimization on problem C.  The Pareto front of each algorithm is shown in a separate subplot.  
For comparison, every subplot includes black dots that indicate the best known Pareto-optimal 
solutions, as produced by any algorithm over 6 hours of optimization time. 

3.5 Conclusions from the algorithm comparison 

Overall, there were substantial differences in speed, accuracy and sample efficiency 

between the algorithms.  There were also clear differences in algorithm behaviour 

on the two variant optimisation problems, even though the problem variants were 

very similar.  Based on visual inspection of Pareto front plots such as Figure 13, the 

general shape of the objective function trade-offs was nevertheless found by all 

algorithms in 1–4 h.  The indicators in Figures 9–12 show that the best algorithms 

continue steadily improving even after 4 h, although these improvements were not 

very visible in plots such as Figure 13. 

As a simple example of a ship design issue, consider how to cost-effectively 

decrease fuel usage with minimal capital expenditure.  As can be seen in the 

leftmost parts of the capex-fuel plots of Figure 13, the region was not well explored 

by all algorithms.  The region was best covered in 2 h by GRAMBO, NSGA-II, and 

SMS, less well by Dragonfly and qParEGO, and there were significant gaps in the 

results of EHVI and Random. 

The Bayesian optimisation algorithms Dragonfly, qParEGO and GRAMBO 

started very strongly on some of the metrics, and less well on others.  EHVI was 

particularly problematic and may have needed more parameter tuning to perform 

well in this case study.  Compared to genetic algorithms, Bayesian optimisation 

algorithms generally needed fewer simulations for similar results, but except for 

GRAMBO they spent so much computation time to determine the next simulation 

inputs that they could not effectively use the available simulation capacity.  
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Moreover, Bayesian optimisation algorithms slowed down over time.  As the 

simulation time of the case model was on the order of 3–5 minutes, and 25 parallel 

simulations were in use, an optimisation algorithm should be able to pick the next 

evaluation point in approximately 10 seconds to be effective.  Of the Bayesian 

optimisation algorithms, only GRAMBO was able to reach this level of performance, 

due to the use of fast function approximations, but in the latter stages of optimisation 

runs GRAMBO lost efficiency due to the inaccuracy of the approximations. 

The Bayesian optimisation algorithms also needed more case-specific parameter 

settings and tuning effort compared to genetic algorithms.  For example, Dragonfly 

and qParEGO, which applied random weighted scalarisation, needed manual 

objective function scaling to perform well – and they still left some extremes of the 

objective function ranges sparsely explored. 

The NSGA-II algorithm, and to a lesser extent the SMS algorithm, are well 

established robust tools with many available software implementations.  Importantly 

they were able to provide competitive results with their default parameter values, 

and only minimal speed tuning was performed.  Overall NSGA-II and SMS 

performed similarly, but NSGA-II appeared to obtain better Pareto front coverage 

on problem B. 

Multiobjective Bayesian optimisation tools are still maturing, and the algorithms 

in the case study required several parameter adjustments to compete with NSGA-

II and SMS.  Nevertheless, it can be concluded that the best Bayesian optimisation 

tools can compete with genetic algorithms and beat them on specific metrics, 

especially if the simulation model is particularly slow, or computation time is strictly 

limited. 
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4.1 Introduction 

Signal classification has been utilized, for example, in clinical diagnosis and digital 

communication applications. Neural network-based approaches have been 

proposed for electroencephalography [1] and electrocardiogram signal 

classification to detect a cardiac arrhythmia, i.e., too fast, too slow or irregular heart 

rhythm [2]. [3] proposed a deep learning-based approach for signal classifier 

development to identify used modulation type and wireless technology. Authors in 

[4] proposed a support vector machine-based signal classification model 

development method for wireless signal identification. A new method for 

distinguishing radio frequency devices using signal classification was proposed in 

[5]. Marine domain applications of signal classification include, for example, fault 

diagnosis applications. In [6], a model is developed to classify healthy conditions, 

engine gain faults, shaft speed sensor and propeller pitch sensor faults. 

Here, a classification model is developed to classify exhaust gas economizers 

using measurement data. Random convolutional kernel transform method is utilized 

to convert the measurement data for the classifier training. Cross-validation (CV) is 

used to estimate model’s generalization performance. Hyperopt Python-library is 

used to evaluate different classifier types and hyperparameters within CV. The 

effect of input segment length, i.e., the length of time-series that the classification is 

based on, is evaluated by repeating the experiment with four different lengths from 

2h to 8h. 

 
1 Contact: firstname.lastname@vtt.fi 
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4.2 Exhaust gas economizer 

Maximum thermal efficiency of large maritime engines is practically around 50%, 

i.e., that amount of the energy contained in the fuel can be converted into usable 

form while the rest is dissipated as heat mainly via engine water  cooling systems 

and exhaust gases. Typically, the heat of the exhaust gases is utilized in steam 

production using exhaust gas economizers (as shown in Figure 1) to increase the 

efficiency of the energy conversion on a ship. Consequently, the higher efficiency 

leads to lower fuel consumption as well as decreased GHG emissions. 

 

 

Figure 1. Water tube exhaust gas economizer from Alfa Laval. (https://www.alfalaval.com/ 
products/heat-transfer/boilers/exhaust-gas-economizer/aalborg-xw/, 25.3.2021) 

4.3 Case study – classification of exhaust gas economizers 

The case study dataset contains measurement data from exhaust gas economizers 

with different capacities. There are eight exhaust gas economizers in total, including 

four economizers with 2500 kg/h mass flow capacity in the water side, two 

economizers with 920 kg/h and another two economizers with 680 kg/h capacities 

respectively. The exhaust gas economizers are group into two WHR subsystems 

with the same total capacity. In each subsystem, there are two economizers with 

2500 kg/h capacity, one with capacity of 920 kg/h and similarly one with 680 kg/h 

capacity. The largest economizers are used to recover heat from main engines of 

the ship, whereas the smaller ones make use of auxiliary engine exhaust gases to 

produce steam.  

Due to the unavailability of measurement data from the water side of the 

economizers, the water side mass flows were derived from other measurements 

using energy balance equation. For this purpose, a few assumptions were made. 

Specifically, the water was assumed to enter the exhaust gas economizer as 

saturated water and to exit it as saturated steam. Thus, the enthalpies of saturated 

water and steam at each time instance can be obtained using enthalpy tables and 

https://www.alfalaval.com/products/heat-transfer/boilers/exhaust-gas-economizer/aalborg-xw/
https://www.alfalaval.com/products/heat-transfer/boilers/exhaust-gas-economizer/aalborg-xw/
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pressure information of two boilers that the two subsystems mentioned above are 

connected to. Next, the heat flow from exhaust gas side to the water side, 𝑄̇𝑒𝑔, in 

each economizer is estimated using Equation 1. 

 

𝑄̇𝑒𝑔 =  𝑚̇𝑒𝑔 × 𝑐𝑝_𝑒𝑔 × (𝑇𝑒𝑔_2 − 𝑇𝑒𝑔_1) Equation 1 

 

where 𝑚̇𝑒𝑔 is the exhaust gas mass flow [kg/h], 𝑐𝑝_𝑒𝑔 is the specific heat capacity of 

exhaust gas (1 kJ/kg°C, assumed to be constant), and 𝑇𝑒𝑔_1  and 𝑇𝑒𝑔_2  are the 

exhaust gas temperatures before and after the economizer, respectively. 

The estimated heat flows and water side enthalpies are then used to compute 

the water side mass flows, 𝑚̇𝑤𝑠, using Equation 2. 

 

𝑚̇𝑤𝑠 =  
𝑄̇𝑒𝑔

ℎ𝑤𝑠_2−ℎ𝑤𝑠_2
  Equation 2 

 

where ℎ𝑤𝑠_1 and ℎ𝑤𝑠_2 are the enthalpies of water and steam, respectively. 

The computed water side mass flows are visualized in Figure 2. 

 

 

Figure 2. Computational water side mass flows in the exhaust gas economizers. ME and AE 
stands for economizers of main engine and auxiliary engine, respectively. 

The exhaust gas economizer identification was formulated as a classification 

problem by giving each economizer a unique class identifier and by labelling the 

measurement data with these identifiers. The labelled data was next split into 

development and independent testing datasets. 80% of the samples starting from 

the beginning of the time-series forms the development dataset, and the rest 20% 

forms the testing dataset. Both datasets were then split into overlapping segments 

(i.e., windows). To compare how the segment length affects the model performance, 

four separate versions of the datasets were created with segment lengths of 20, 40, 

60, and 80 time-steps respectively. In each case, the overlapping of successive 

segments was fixed to 50%. Next, the segments where the exhaust gas 
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economizers were practically not in use were removed by setting a minimum mass 

flow limit of 5 kg/h for the mean of values in the segments. 

Classifier development was done in Python environment. Five classifiers of 

different type were included in the model search. These included AdaBoost, k-

nearest neighbors, logistic regression, and random forest classifiers implemented 

in Scikit-learn library [7], and open-source CatBoost library [8] that is based on 

gradient boosting. The model’s generalization performance was estimated with 8-

fold cross-validation procedure. Sequential model-based optimization algorithm 

Tree of Parzen Estimators (TPE) implemented Hyperopt [9] was used within CV to 

find the best performing model. The TPE algorithm was initialized first with 50 

randomly chosen models and hyperparameter, followed by 50 guided iterations. 

Random convolutional kernel transformation (ROCKET) method [10] was used 

to convert the windowed measurement data into features to be used as input for the 

classifiers. In hyperparameter optimization, possible values for the number of 

kernels in ROCKET were 250, 500, …, 2500. Logistic loss function implemented in 

Scikit-learn library was used to rank the 100 models trained within CV, balanced 

accuracy scores (BACs) were computed for the models, and the one achieving the 

best logistic loss was reported. Here, Scikit-learn's implementation of BAC 

computation was used. Finally, a model with the best found hyperparameters was 

trained on the whole training dataset and tested using independent test dataset. 

4.3.1 Results 

AdaBoost classifier from Scikit-learn library obtained the highest CV score with all 

four input segment lengths. Therefore, the results shown in Table 1 represent 

accuracies of AdaBoost classifiers. As expected, the longer segment length resulted 

in higher score than short ones. This holds for BACs obtained from CV and on 

independent testing dataset. The CV score increases from 61.2% up to 80.4% when 

increasing the segment length from 2 hours to 8 hours. The BACs on independent 

testing dataset are slightly lower than the corresponding CV scores with the same 

segment length. This might be due to relatively small amount of training data, more 

difficult samples in the testing data or slight overfitting despite the CV. To confirm 

this, one could repeat the experiment multiple times, using different samples for 

development and testing each time. Naturally, suitable segment length depends on 

the application and the available data. 

Table 1. Balanced accuracy of AdaBoost classifiers computed in CV and on independent 

testing dataset. 

 Balanced accuracy 

Segment length CV Independent testing data 

20 (2 hours) 61.2% 53.6% (-7.6%) 

40 (4 hours) 64.7% 60.0% (-4.6%) 

60 (6 hours) 68.5% 66.0% (-2.4%) 

80 (8 hours) 80.4% 70.3% (-10.1%) 
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Economizer-specific recall and precision scores of the final AdaBoost classifiers 

trained with different input segment lengths are shown in Figure 3 and 4, 

respectively. Recall quantifies the fraction of true positive predictions among the 

number of true positive and false negative predictions, i.e., the fraction of correctly 

classified cases among the total number of examples in the dataset corresponding 

to that class. Precision quantifies the fraction of true positive predictions among the 

number of true and false positives, i.e., how often the prediction is correct when a 

specific class is predicted. 

There are clear differences between the recall and precision scores for different 

economizers. For example, recalls for EGEs 1, 4, and 6 are low with each segment 

length but recalls for EGEs 5 and 7 are above 80% and 90%, respectively. Recall 

for EGE 6 even decreases by increasing the segment length but on the other hand, 

the precision for EGE 6 increases. The average of economizer-specific recall scores 

shows that, in general, the recall increases by increasing the segment length. The 

same trend is seen in precision scores, although the average precision is 0.7% 

lower with 6-hour segments than with 4-hour segments. 

 

Figure 3. Economizer specific recall score of AdaBoost classifiers trained with different input 
segment lengths. 

 

Figure 4. Economizer specific precision score of AdaBoost classifiers trained with different 
input segment lengths. 
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4.4 Conclusions 

The generalization performance of models developed with four different input 
segment lengths was evaluated using CV procedure. With each segment length, 
AdaBoost classifier was found to be the most accurate in identifying the correct 
exhaust gas economizer. With segment length corresponding to 2 hours of real time, 
the generalization performance measured as balanced accuracy was 61.2%, 
whereas with the longest segment length that corresponds to 8 hours of real time, 
the BAC was 80.4%.The BACs on independent testing data were 7.6% and 10.1% 
lower compared those of CV. The results show that a classifier with acceptable 
accuracy can be developed for identifying exhaust gas economizers from 
measurement data, although there was relatively small amount of data available. 
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5.1 Introduction 

We present a summary of our research on ship energy system design and control 

optimization. The primary goal of the developed models was to produce solutions 

that alleviate the ongoing energy transition in the marine sector. The shipping sector 

is undergoing an energy transition that will last for multiple decades to come. This 

energy transition aims at reducing total greenhouse gas emissions from shipping by 

50 % by 2050, compared to values in 2008 (IMO, Strategy on the reduction of GHG 

emissions from ships, 2018). Growing environmental awareness of stakeholders 

and regulatory pressure are the driving forces behind this transition. 

Carbon dioxide, sulfur oxide, nitrogen oxide and particulate matter emissions of 

ships are regulated in MARPOL Annex VI (IMO, Index of MEPC resolutions and 

guidelines related to MARPOL Annex VI, 2020a). The emission of carbon dioxide is 

currently regulated by the so-called energy efficiency design index, which mandates 

that a certain energy efficiency level is reached by newbuilds. However, planned 

amendments to MARPOL Annex VI will consider the environmental impact of 

existing ships as well, incentivising retrofits that increase energy efficiency and 

carbon intensity reduction through operational measures (IMO, Draft amendments 

to the marpol convention would require ships to combine a technical and an 

operational approach to reduce their carbon intensity, 2020). Effective methods for 

energy efficient ship system design and their operation must be envisioned now 

because the ships built today will operate through the foreseen energy transition. 

Our research focuses on novel ship energy systems and their management. For 

the last century, ship energy systems have relied on internal combustion engines 

(ICE) to produce power required for propulsion and hotel loads. Introducing 

alternative power sources into the energy system, such as energy storages or fuel 
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cells (Baldi;Moret;Tammi;& Maréchal, 2020), or energy saving devices like waste 

heat recovery systems can be an effective way to increase the overall efficiency of 

the ship. Assessing the benefit of these systems requires the development of 

advanced tools. Our research demonstrates methods to assess the impact of these 

new systems and establishes novel control methods for future ship energy systems. 

5.2 System level design optimization 

Optimization-based approach to the assessment of ship energy system alternatives 

involves formulating the design problem as a mathematical optimization problem. A 

number of decision variables, which can be either discrete or continuous, define the 

design. The quality of the design is a function of the decision variables according to 

an objective function, which is typically a measure of cost. The decision variables, 

which influence the objective, are varied in order to attain the minimum of the 

objective function.  

The decision variables are categorized as either concerning the plant design (e.g. 

power rating of an electrical machine) or control design (e.g. motor torque). The 

plant design can be further divided to three interconnected layers: (i) connections 

between components (topology), (ii) component technology and (iii) sizing. Since all 

the four design levels are typically coupled and influence each other, a simultaneous 

analysis of these levels ensures that the optimal design is not excluded. 

Installation decisions of components in plant design optimization give rise to 

binary (yes/no) decision variables. The resulting problem is then inherently 

combinatorial and scales exponentially in the worst case as the problem size 

increases. Mathematical programming offers remarkable advantages for solving 

combinatorial problems. The solver codes allow exploitation of convexity structure 

in problems and the elimination of large part of the search space. This removes the 

need to exhaustively enumerate all the combinations of discrete choices. 

The authors have contributed to system level design optimization by formulating 

mixed integer linear programming (MILP) problems for simultaneous design and 

heat integration optimization (Ritari;Huotari;Tammi;& Narimanzadeh) and 

scheduling of low emission technology investments and vessel dockings 

(Ritari;Spoof-Tuomi;Huotari;Tammi;& Niemi). Both of these models take as an input 

measured operation profiles from case vessels. This ensures that the resulting 

problems are relevant for industry, but also lead to incorporation of hundreds of 

binary variables and large-scale combinatorial problems. However, despite the 

resulting complexity, convergence to a good solution is typically attained in a few 

seconds, which demonstrates the power of state-of-the-art solver codes for mixed-

integer programming problems. 

5.3 Ship energy system unit commitment optimization 

Energy system control can be divided into unit commitment and lower level control. 

The goal of unit commitment is to come up with a high-level strategy for the energy 
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system, answering questions such as: “Should generating set nr. 3 start in 5 

minutes?”. On the contrary, lower level control ensures that the plan laid out by unit 

commitment is carried out efficiently, usually with traditional control engineering 

approaches. The research discussed here is focused on the unit commitment 

problem of complex energy systems. 

Ship energy systems with ICEs as the sole energy providers are typically 

controlled via rule-based control systems, which encode actions to measured 

values. An example could be to start a new generating set when a certain power 

demand threshold is reached. Such methods are robust and simple to create but 

suffer from scaling issues when the underlying system becomes more complicated. 

For example, introducing an energy storage into the energy system decouples 

energy production from demand in the time domain, making control of such a 

system infeasibly complex for rule-based approaches. 

Novel solutions to the unit commitment problem in complex energy systems tend 

to rely on mathematical optimization (Kanellos, 2013), (Anvari-

Moghaddam;Dragicevic;Meng;Sun;& Guerrero, 2016), (Paran;Vu;El Mezyani;& 

Edrington, 2015), (Van Vu;Gonsoulin;Diaz;Edrington;& El-Mezyani, 2017), 

(Haseltalab;Negenborn;& Lodewijks, 2016). An off-line control approach was taken 

in (Kanellos, 2013) and (Anvari-Moghaddam;Dragicevic;Meng;Sun;& Guerrero, 

2016), where a linear optimization model is solved assuming that the future demand 

profile is known. On-line approaches based on mathematical optimization were 

studied in (Paran;Vu;El Mezyani;& Edrington, 2015), (Van 

Vu;Gonsoulin;Diaz;Edrington;& El-Mezyani, 2017) and (Haseltalab;Negenborn;& 

Lodewijks, 2016) by formulating a model predictive control (MPC) model of the 

energy system. In MPC models, a prediction of power demand for example is used 

to optimise the instantaneous response of the energy system. This procedure is 

repeated continuously to increase the accuracy of the model. However, previous 

research into this topic usually assumed some a priori knowledge of the future 

power demand profile or then used a short prediction horizon. Optimal and 

automatic creation of a rule-based expert system for the unit commitment of a ship’s 

energy system was studied in (Radan, 2008). 

Our research on the topic of ship energy system unit commitment focused on 

developing online control methodologies that did not depend on a known future 

power demand profile. A self-learning reinforcement learning algorithm was 

implemented in (Huotari;Ritari;Vepsäläinen;& Tammi, Q-Learning Based 

Autonomous Control of the Auxiliary Power Network of a Ship, 2019), where control 

responses were learned based on previously measured data. MPC was utilised in 

(Huotari;Ritari;Vepsäläinen;& Tammi, Hybrid ship unit commitment with demand 

prediction and model predictive control, 2020) where the future power demand 

profile was estimated based on the predicted future speed profile of the ship. To 

support the MPC model, a convex model for the optimization of a ship’s high-fidelity 

speed profile was the subject of most recent research. In addition to these models, 

an optimisation model concerning the use of a Flettner rotor for additional propulsion 

was developed in (Maruccia, 2019) and a convex optimisation model of a fuel cell 
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ferry for the purpose of unit commitment and speed profile optimisation was 

formulated in (Katzenburg, 2021). 

5.3.1  Reinforcement learning 

Reinforcement learning (Sutton & Barto, 1998) is a subgroup of machine learning, 

where an agent learns to adopt actions in an environment that maximize a numerical 

reward signal. The environment is formulated as a collection of possible states and 

actions in those states, formally called a Markov Decision Process (MDP). Numeric 

rewards are assigned to each state in the MDP, which simulates the benefit of 

reaching that state. The agent learns in this environment through trial and error, by 

trying out actions in different states and updating its knowledge about the 

environment using a value function: 

𝑣𝜋(𝑠) =  ∑ 𝜋(𝑎|𝑠) ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 +  𝛾𝑣𝜋(𝑠′)],

𝑠′,𝑟𝑎

 

Where 𝑣𝜋(𝑠) is the value of state s when following a sequence of actions given by 

policy 𝜋(𝑠), a is a possible action to take, r is the reward for reaching state s and s’ 

is the next state reached by choosing action a in state s. 𝜋(𝑎|𝑠) is the probability of 

choosing action a in state s, γ is a discount factor of future rewards and 𝑣𝜋(𝑠′) is 

value, or expected cumulative sum of rewards, of the next state s’. Because the 

value function is iterative, through multiple iterations the agent learns the true value 

of each state, which depends on the immediate reward for reaching that state, and 

the expected cumulative rewards attainable from that state onwards. If the true 

value of each state is known, it is easy to derive an optimal control policy by 

selecting an action that leads to the state with the highest value. The benefit of 

reinforcement learning is that it is very flexible in terms of what can be modelled, 

and it has been previously used to control tasks that were previously impossible 

with other methods (Silver, ym., 2016). Furthermore, compared to dynamic 

programming, from which the methodology is originally derived from, reinforcement 

learning models do not have much computational overhead once the model has 

been trained. However, the models are notoriously difficult to train and sensitive to 

hyperparameter tuning.  

For the purposes of ship energy system unit commitment, the energy system of 

a ship was modelled as an MDP in (Huotari;Ritari;Vepsäläinen;& Tammi, Q-

Learning Based Autonomous Control of the Auxiliary Power Network of a Ship, 

2019), where the states represented different legs on a journey, and the actions 

were chosen to be the on/off switching of generating sets. The rewards structure of 

states was based on fuel consumption at a certain state, with massive negative 

rewards assigned to undergoing a black-out. The model was trained based on data 

recorded from real journeys of the ferry Silja Serenade that operates in the Baltic 

Sea. The reinforcement learning model was successfully trained for the task of unit 

commitment of four generating sets, operating them close to optimal without 

undergoing black outs. The research demonstrated the applicability of the method 
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to the task, although more complex energy systems would require the use of 

methods that are still being researched. 

5.3.2  Model predictive control 

The unit commitment model developed in (Huotari;Ritari;Vepsäläinen;& Tammi, 

Hybrid ship unit commitment with demand prediction and model predictive control, 

2020) combined the use of rule-based control, power demand prediction via 

machine learning and MPC. As a case study, the energy system was modelled to 

contain generator sets, a battery, and a fuel cell as power producers. Furthermore, 

the control system was given an additional goal of minimising the usage of fossil 

fuels near coasts. The resulting model performed unit commitment of the complex 

energy system near optimally. 

The optimization model used in MPC was formalised by modifying the model 

developed in (Ritari;Huotari;Halme;& Tammi, 2020). The operating principle of the 

model was the following: 

 
1. predict future power demand profile 

2. optimise unit commitment for the rest of the journey 

3. take the first action in the optimised unit commitment plan and 

4. return to step 1. 

The future power demand profile prediction was formulated as a novel combination 

of Gaussian process modelling (Rasmussen, 2006) and Bayesian ridge regression 

(Bishop, 2006). The prediction was formatted based on the future speed profile of 

the ship, which was assumed to be known throughout the journey. Since the 

optimization interval was set at 5 minutes, i.e. the frequency of going through the 

steps listed above, the model needed some simple control logic to follow between 

optimization steps. A rule-based control logic was developed for this task. 

Since actual measured power demand profiles for the studied ship were 

available, the performance of the model could easily be tested against fully optimal 

control. The fully optimal control reference was attained by feeding the model the 

actual power demand profile, rather than the predicted one. It was demonstrated 

that the developed MPC model operated near optimally by saving 11.8 % in fuel 

consumption compared to 12.6 % savings with fully optimal control. These savings 

were calculated by comparing the control result to the actual measured ship 

operation data. Fossil fuel consumption near coasts was reduced by 68 % on 

average. 

Since the developed MPC model relied on an estimate of the ship’s future speed 

profile, current research was focused on ship speed profile optimization. For this 

purpose, a convex optimization model was developed as an extension to existing 

speed profile optimization methods. The results showed that the convex model 

reduced computational load of speed profile optimization significantly, and 

increased the fuel saving potential of the produced speed profile. Furthermore, the 

resulting optimised speed profile was continuous, while previous research on the 
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subject had mostly focused on methods that produce a discrete speed profile 

(Thalis;Harilaos;& Li, 2020). This is important especially in the context of using the 

speed profile for future power demand estimation. 

5.3.3  Convex optimization 

While solving general nonlinear programming (NLP) problems is very challenging, 

formulating an optimization model in a convex manner allows efficient and reliable 

solving of large scale and complex NLPs. During the last decade, algorithms and 

modelling tools for convex optimization have almost reached the level of linear 

programming. This modelling paradigm has gained popularity in many engineering 

optimization applications, in particular in optimal control problems (OCPs), although 

applications in the maritime field have been scarce. 

In his MSc thesis, Katzenburg (Katzenburg, 2021) formulated an optimal control 

problem of fuel cell ferry. Convex models of vessel dynamics, fixed pitch propeller 

and fuel cell were demonstrated. This large-scale nonlinear programming problem, 

which incorporated over a hundred thousand variables and constraints, was solved 

under a few seconds with a standard desktop computer. 

5.4 Discussion and conclusion 

The optimization and machine learning based design and control methodologies 

discussed in this work enable the transition from conventional ship design based on 

heuristics, design rules and estimations, towards a systematic exploration of the 

design space. Formal optimization procedures have the promise of obtaining the 

best design instead of only a workable system that satisfies basic requirements. 

Given the increasingly strict environmental constraint facing the shipping industry, 

the adoption of advanced design methodologies is urgently called for. Optimized 

system attains the lowest cost, which is essential for scaling the low emission 

technologies and delivering the reality of a sustainable green shipping future. 

Most optimization tasks in ship design are characterized by a combination of 

distinct decisions, represented by binary variables, and complex interactions 

described by nonlinear functions. These problems belong to the class of mixed-

integer nonlinear programming (MINLP) problems, which are in general difficult to 

solve or even intractable. However, solution techniques for MINLP problems are 

constantly improving, and significant advances have been demonstrated in recent 

years. A particular subclass of MINLP, convex MINLP, shows great promise for 

many real-world optimization tasks in ship design. Convex MINLP is a versatile 

modelling paradigm with a number of advantageous properties, including availability 

of solver algorithms that guarantee convergence to the global optimum and the 

minimal tuning effort required.  

Ship energy systems with multiple different types of power producers are 

expected to play a role in the ongoing maritime energy transition (DNV-GL, 2018). 

However, multiple power sources require significantly more advanced decision-
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making systems in terms of unit commitment control. We presented three distinct 

and novel methodologies for this purpose: a machine learning model based on 

reinforcement learning, a predictive model where unit commitment was optimised 

utilizing mixed integer linear programming, and a convex optimisation model that 

included the longitudinal dynamics of the vessel. These models were developed 

based on measured operational data of actual ships. Furthermore, we introduced a 

novel convex optimisation model for the optimisation of a ship’s speed profile under 

a fixed schedule. The developed models presented in this paper form a cohesive 

ensemble of methods for supporting the ongoing maritime energy transition. 

References 

[1] IMO. 2018. "Strategy on the reduction of GHG emissions from ships,". 

[Online]. Available: http://www.imo.org/en/MediaCentre/HotTopics/GHG/ 

Pages/default.aspx. [Accessed 27 August 2020]. 

[2] IMO. 2020. "Index of MEPC resolutions and guidelines related to MARPOL 

Annex VI,". [Online]. Available: https://www.imo.org/en/OurWork/ 

Environment/Pages/Index-of-MEPC-Resolutions-and-Guidelines-related-to-

MARPOL-Annex-VI.aspx. [Accessed 7 December 2020]. 

[3] IMO. 2020. "Draft amendments to the marpol convention would require ships 

to combine a technical and an operational approach to reduce their carbon 

intensity,". [Online]. Available: https://www.imo.org/en/MediaCentre/Press 

Briefings/pages/42-MEPC-short-term-measure.aspx. [Accessed 7 August 

2020]. 

[4] F. Baldi, S. Moret, K. Tammi and F. Maréchal. 2020. "The role of solid oxide 

fuel cells in future ship energy systems," Energy, vol. 194.  

[5] A. Ritari, J. Huotari, K. Tammi and A. Narimanzadeh.  2020. "Optimization of 

heat integrated ship systems," Integrated Energy Solutions to Smart And 

Green Shipping: 2020 edition, vol. 380, pp. 80-88.  

[6] A. Ritari, K. Spoof-Tuomi, J. Huotari, K. Tammi and S. Niemi. 2021. "Lifecycle 

optimization of ship energy system configurations under gradually tightening 

emission constraints," Manuscript in progress.  

[7] F. Kanellos. 2013. "Optimal power management with GHG emissions 

limitation in all-electric ship power systems comprising energy storage 

systems," IEEE Transactions on power systems, vol. 29, pp. 330-339.  

[8] A. Anvari-Moghaddam, T. Dragicevic, L. Meng, B. Sun and J. M. Guerrero. 

2016. "Optimal planning and operation management of a ship electrical power 

system with energy storage system," Annual Conference of the IEEE Industrial 

Electronics Society, vol. 42, pp. 2095-2099.  

[9] S. Paran, T. Vu, T. El Mezyani and C. Edrington. 2015. "MPC-based power 

management in the shipboard power system," IEEE Electric Ship 

Technologies Symposium (ESTS), pp. 14-18.  

http://www.imo.org/en/MediaCentre/HotTopics/GHG/
https://www.imo.org/en/OurWork/
https://www.imo.org/en/MediaCentre/Press


 

62 

[10] T. Van Vu, D. Gonsoulin, F. Diaz, C. Edrington and T. El-Mezyani. 2017. 

"Predictive control for energy management in ship power systems under high-

power ramp rate loads," IEEE Transactions on Energy Conversion, vol. 32, pp. 

788-797.  

[11] A. Haseltalab, R. Negenborn and G. Lodewijks. 2016. "Multi-level predictive 

control for energy management of hybrid ships in the presence of uncertainty 

and environmental disturbances," IFAC, vol. 49, pp. 90-95.  

[12] D. Radan. 2008. Integrated control of marine electrical power systems, NTNU, 

Fakultet for ingeniørvitenskap og teknologi.  

[13] J. Huotari, A. Ritari, J. Vepsäläinen and K. Tammi. 2019. "Q-Learning Based 

Autonomous Control of the Auxiliary Power Network of a Ship," IEEE Access, 

vol. 7, pp. 152879-152890.  

[14] J. Huotari, A. Ritari, J. Vepsäläinen and K. Tammi. 2020. "Hybrid ship unit 

commitment with demand prediction and model predictive control," Energies, 

vol. 13, no. 18.  

[15] A. Maruccia. 2019. Optimisation model for a ship's hybrid energy system with 

a Flettner rotor, MSc thesis. Aalto University, Espoo, Finland.  

[16] N. Katzenburg. 2021. Convex programming for optimal control of a fuel cell 

hybrid ferry, MSc thesis. Aalto University, Espoo, Finland.  

[17] R. Sutton and A. Barto. 1998. Introduction to reinforcement learning, 

Cambridge: MIT press.  

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, J. Van Den Driessche, 

I. Schrittwieser, V. Antonoglou and M. Panneershelvam et al. 2016. "Mastering 

the game of Go with deep neural networks and tree search," Nature, vol. 529, 

p. 484.  

[19] A. Ritari, J. Huotari, J. Halme and K. Tammi. 2020. "Hybrid electric topology 

for short sea ships with high auxiliary power availability requirement," Energy, 

vol. 190.  

[20] C. E. Rasmussen. 2006. Gaussian processes in machine learning, MIT Press.  

[21] C. M. Bishop. 2006. "Pattern recognition and machine learning," Springer, pp. 

152-158. 

[22] Z. Thalis, P. Harilaos and D. Li. 2020. "Ship weather routing: A taxonomy and 

survey," Ocean Engineering, vol. 213.  

[23] DNV-GL. 2018. "Assessment of selected alternative fuels and technologies," 

DNV-GL-Maritime. 

 



 

63 
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6.1 Introduction 

INTENS project offered a great platform to develop different concepts around hybrid 

vessels, which, in this case, referred to a battery assisted vessels. We will present 

the reader two different concepts in this topic: Hardware-In-the-Loop (HiL) testing 

and computer application development. HiL makes it possible to connect real 

components and machines with simulation models. With computer application 

development, results from virtual vessel simulation can be made more appealing. 

First part of this extended abstract will focus on HiL and the second part on the 

application development. Conclusions and list of references are given in the end. 

6.2 Hardware-in-the-loop 

Hardware-In-the-Loop, commonly known as HiL, offers an efficient way to test a 

component or a machine as part of a larger system. The idea of HiL is to connect 

real components with simulation models. In this paper, an internal combustion 

engine (ICE) is operating in a closed loop with a model of virtual vessel propulsion 

system. HiL concept introduces more realistic operation conditions to test engine’s 

functionalities compared to a test where constant load is given to an engine.  

HiL concept was developed together with VEBIC, which is a platform for research 

and innovation hosted by University of Vaasa. In parallel, there were Wärtsilä 

internal activities around this topic and the test results presented in this paper are 

from the test conducted in Wärtsilä laboratory. 

 
1 Contact: firstname.lastname@wartsila.com 
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The aim of the HiL testing is to make the engine to believe that it is operating in 

a real vessel. This can be done by simulating the vessel power train and connecting 

the simulation model to engine’s loading system. As stated before, HiL concept 

consists of two main parts: the hardware under test and the virtual model of the rest 

of the system. Figure 1 illustrates the schematics of the HiL concept presented in 

this paper.  

 

 
 

Figure 1. Schematics of HiL concept. 

 

The simulation part of the HiL included virtual vessel model and a controller. 

Purpose of the controller is to request correct load from the frequency converter 

(FC) during the HiL test. Engine is acting as the hardware and the generator and 

the FC are needed to load the engine.  

To conduct a successful HiL test, certain requirements need to be met. Firstly, 

the hardware, in this case an ICE, needs to have a proper testing environment. In 

this case, the engine was locating in a test cell in the engine laboratory of Wärtsilä.  

Secondly, the HiL test needs a suitable simulation model of the rest of the system, 

meaning the system where the ICE is operating. Thus, a simulation model of virtual 

vessel power train was developed. The virtual vessel consisted of gearbox, 

controllable pitch propeller (CPP), hull, drive, electric generator/motor (G/M), battery 

and hotel grid model. Figure 2 below shows the single line diagram of the modelled 

virtual power train.  
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Figure 2. Single line diagram of modelled, virtual vessel power train. 

 

The model itself was built by using one rotating mass modelling principle: all the 

inertia of the rotating parts is reflected to a single point in the shaft line where the 

system rotational speed is resolved. If, for example, a pitch value, meaning the 

angle of the propeller blades, is changed, there is an instant response on the system 

rotational speed.  

Thirdly, the simulation model needs to run real-time. This gives requirement to 

the model itself but also to a platform where the simulation model is running. In this 

test, the vessel power train simulation model was created in Simulink and exported 

as a Functional Mock-up Unit (FMU). FMU is an executable unit which is in 

accordance with Functional Mock-up Interface (FMI) standard. The FMI standard 

defines a container and an interface to exchange dynamic models irrelevant from 

the source software [1]. The virtual power train FMU model was running on a 

computer, which had, beside Windows, a real-time executed platform.  

As fourth requirement, the simulation model needs to communicate with the 

system where the component is tested, which can, for example, be a laboratory 

automation system. The communication should work with short enough latency: if 

the latency is too long, the closed loop interaction will not work as the model and 

real hardware would operate in different phases.    

After all the requirements were fulfilled, a HiL test was conducted. In the test, a 

predefined virtual vessel operation profile was executed, and it lasted 500 s. Figure 

3 illustrates the load and rotational speed of the engine during the HiL test.   
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Figure 3. Engine load and rotational speed during the HiL test. 

There is variance on both the load and rotational speed, due to weather conditions, 

or more precisely, wave conditions in the virtual model. Simulation model included 

wave model to represent the forces waves put on the propeller. There is a moment 

between 330 s and 400 s where the load is more balanced. During this time the 

electric motor and the battery is taking the load fluctuations and engine can operate 

on more stable load. The next figure, Figure 4, shows the virtual G/M power output 

during the test.   

 

 

Figure 4. Electric generator/motor load in virtual vessel during the HiL test. 

The G/M assists the ICE during the first 220 s of the test. After that the G/M delivers 

power towards drive as the propulsion power was decreasing. From 330 s onwards, 
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the G/M is smoothing the power and engine is operating on more stable load. Virtual 

vessel accelerated first half of the test before stabilizing to 8-9 kts. Figure 5 shows 

the virtual vessel speed during the test. 

 

 

Figure 5. Virtual vessel speed during the HiL test. 

To conclude the HiL part, it can be stated that this type of new testing is possible to 

do on large ICEs. HiL offers interesting use-cases, for example, to showcase engine 

functionalities to customers or to tune engine control parameters already before the 

engine is delivered to a vessel. It can also verify the fuel consumption in certain 

hybrid operation modes: multiple predefined operation profiles can be run in HiL to 

compare the actual fuel consumption of each profile. 

6.3 Visualization of virtual vessel operation 

The second part of the paper introduces the development done on visualizing the 

virtual vessel operation. As a starting point, there are great engineering tools to 

develop and simulate different systems. However, often these tools lack simplified 

view to visualize the modelled system and results so that colleagues outside the 

engineering department or customers could quickly get an understanding of what 

the results are telling. Within INTENS project, two standalone applications were 

developed to visualize more clearly the results from system simulation of vessel 

power trains.  

Activities in this task were done together with 3D Studio Blomberg and Gambit. 

Aim was to create standalone applications which could bring results from simulation 

models into more appealing view. In both cases, the principle of how the application 

was developed, was the same: simulation model of the virtual vessel was exported 

as an FMU or multiple FMUs and then user interface and backend of the application 

were developed to run and obtain results from the set of FMUs.  
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The first part the text goes through the work done together with 3D Studio 

Blomberg and visualization of virtual fishing vessel operation. The second part 

explains the work done with Gambit and visualizing virtual ferry operation.  

6.3.1 Visualization of virtual fishing vessel operation 

To begin with, a simulation model of virtual fishing vessel was developed in 

MATLAB/Simulink. The virtual installation consisted of simulated engine, gearbox, 

controllable pitch propeller (CPP), electric generator/motor (G/M), drive system, 

battery and hotel grid. Configuration of the virtual fishing vessel is shown in Figure 

6.  

 

 

Figure 6. Configuration of virtual fishing vessel. 

The complete system model was then exported from Simulink as a single FMU. 3D 

Studio Blomberg developed the application to send and receive data from the 

exported FMU. The application was developed with Unity [2] and there was a python 

package running the FMU. The user has the possibility to define the operation 

profile: operator can decide when main engine is started or stopped; when to 

operate purely with battery; when to accelerate the vessel or when to increase the 

hotel load request. Figure 7 illustrates how the user interface looks on the 

application.  
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Figure 7. Virtual fishing vessel application. 

6.3.2 Visualization of virtual ferry operation 

Visualization of ferry operation was done together with Gambit. In this task, the 

simulation model was further developed to cover a larger system. This time the 

virtual vessel model included two mechanical propulsion lines, drive systems and 

three auxiliary generating sets. Figure 8 below presents the configuration of the 

virtual ferry.  

 

 

Figure 8. Configuration of virtual ferry. 
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In this task, the gearbox model was developed in AVL Cruise and rest of the 

simulation models in MATLAB/Simulink. All the individual simulation models were 

then exported as FMUs. The FMUs were connected in AVL Model.CONNECT. 

Model.CONNECT offers a platform to connect simulation models irrelevant from 

their origin software [2]. After the configuration was built in Model.CONNECT and 

tested that all functionalities work, it was exported as System Structure and 

Parameterization (SSP) package. SSP defines systems consisting of one of more 

FMUs. It includes the parametrization of all models and the parameterization file 

can be transferred to another simulation tool [3]. SSP package requires a tool to run 

it as SSP includes only the FMUs and an xml-file. To simulate the package, a python 

script was developed. Basic python packages were used to read the xml-files and 

to simulate the FMUs, PyFMI package was used. This package makes it possible 

to simulate and interact with FMUs [4].  At this stage, it was possible to run the whole 

virtual vessel model of a ferry with python script. 

Once the python script was ready, Gambit developed browser-based application 

to run the virtual vessel model. Backend of the application was done with Flask [5] 

which interacted with the script created to simulate the FMUs. Frontend was created 

with React [6]. In this application, it was not possible to define new operation profile 

as the simulation was run with predefined operation profile. User interface of the 

virtual ferry application is shown in the Figure 9.   

 

 

Figure 9. User interface of virtual ferry application. 

To conclude the visualization part, FMU-based simulation models, together with 

experts from software development, introduce unlimited number of possibilities to 

develop applications to visualize virtual vessel operation. There are many 

technologies to choose from and we have presented a way to do this with FMUs 

and python combined with proper frameworks for user interface. New, simplified 
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user interfaces bring out more clearly the operation of hybrid vessels which is more 

appealing to show e.g. to customers.  

6.4 Conclusions  

We presented the reader two concepts around hybrid vessels: Hardware-In-the-

Loop, better known as HiL, and application development to visualize virtual vessel 

operation. To conduct HiL tests, certain requirements need to be fulfilled: proper 

testing environment for the component; simulation model of the rest of the system; 

platform to run simulation real-time; and low latency communication between 

simulation and component testing environment. HiL brings value, for example, in 

showing how the engine works in hybrids setups, tuning the engine control 

parameters or comparing the actual fuel consumption in different hybrid operation 

modes.  

The other part of the paper focused on application development to visualize 

virtual vessel operation. We illustrated a technological selection how to build such 

an application: simulation model is generated into a set of FMUs and user interface 

is built around it. Visualization of virtual vessel operation aims to show the operation 

of virtual vessels in more understandable way. 
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7.1 Introduction 

This chapter presents steps towards real-time simulation of a combined engine and 

electrical equipment model in Simulink Real-Time (RT). This is a continuation of 

earlier work of Digital-twinning the engine research platform in VEBIC [1]. In this 

research, the goal was to build a digital twin of the engine research platform in 

VEBIC. When moving towards a digital twin, one of the first essential steps was to 

have a real-time capable model of the research platform. Real-time simulation 

capability was necessary for running the model and its real-world counterpart in 

parallel. The parallel simulations are needed to establish the model ability to 

emulate the real operation in the engine laboratory. 

7.2 Modelling the hybrid power generation system 

Earlier modelling work covered the validation of a GT-Power model of a 4-cylinder 

common rail medium speed diesel engine (W4L20) and electrical equipment 

consisting of an induction machine, a frequency converter and a battery in Simulink. 

The real-time capability of the electrical component models has already been 

established [1]. In this section, the engine model’s conversion to real-time and the 

coupling between the engine and electrical equipment models are covered.  

7.2.1 Fast Running Model of the 4L20 engine 

For real-time capable simulations, the execution time of the 4L20 GT-Power model 

was required to be decreased. The selected route to cover faster simulation time for 

the engine model was selected to be Fast Running Model (FRM). Reason for this 

decision was that the FRM conversion process was relatively simple and some 
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details could be kept in the model. Furthermore, real-time capability could be yet 

achieved with this format [2]. In addition, the map-based approach in Mean Value 

(MV) modelling, which was earlier considered [1], would have required more 

measurement data that was available at this point. Basically, the reduction process 

from detailed engine model to FRM covers the first the steps of MV conversion. 

Thus, the simplifications of FRM process should be carried out first to see whether 

the model’s simulation time is reduced to an acceptable level or additional 

simplifications are still needed. Throughout the process, the manuals provided in 

the GT-ISE software were followed and the conversion steps and their order were 

performed as recommended [3]. 

 Conversion from detailed engine model to FRM 

The FRM converter tool in the software was used and subsystems, which were pre-

defined from the flow-components, were merged and simplified in terms of either 

speed or accuracy. All created subsystems, i.e., exhaust manifold, exhaust pipes, 

intake manifold, compressor outlet pipes (including CAC) and intake pipes, were 

simplified in terms of accuracy respectively. Afterwards, the exhaust manifold was 

simplified in terms of speed to further decrease the simulation time of the model. 

Since combustion profile was already used in the detailed model, simplifications for 

combustion or cylinders were not required during FRM conversion process. 

Calibration was embedded in the step-by-step reduction process and performed 

after merging the volumes when needed. Depending on whether the pressure lost 

or temperature wanted to be calibrated, the optimization parameter was selected to 

be either the subsystem’s orifice diameter or heat transfer multiplier respectively. 

The calibration was performed for a single case which was the highest load point. 

The optimized value resulted in the calibration was used for all load points. In Figure 

1, the FRM is presented after the conversion process has been carried out.  

Figure 1. The FRM of the 4L20 engine. 
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 Validation and real-time capability 

After the model was converted into the FRM, the simulation results were compared 

to the results with the detailed engine model. The parameters observed were the 

parameters used previously in the detailed 4L20 model validation, i.e., BMEP, BTE, 

maximum cylinder pressure and exhaust temperature before turbine [1]. Simulation 

results of both models are presented in Figure 2.  

 

 

Figure 2. Simulation results of detailed 4L20 engine model (blue) and FRM (orange). 

 

It was expected that, during the simplifications and reduction process, increasing 

the simulation speed would cause the accuracy of the results somewhat deteriorate. 

It was aimed that the errors between the simulation results of FRM and detailed 

model would remain inside ± 5 %. When the results presented in Figure 2 were 

observed more closely, it was noticed that the exhaust temperature before turbine 

at 25 % load point was outside of the desired error range. Since calibration was 

performed only for the highest load point, it can cause larger errors for the lower 

load. Thus, it should be noted that a closer, case dependent and multi-objective 

calibration could produce more accurate results. However, in this case, the case-

dependent calibration method was not a suitable option, as case-dependent inputs 

had to be replaced before real-time simulations. The model was accepted with this 

limitation for the intended use. 

After the FRM conversion, the real-time capability of the model was observed. 

The last step to implement the model to real-time simulations and to be connected 

in Simulink, was to change the license type into GT-SUITE-RT. Simultaneously, the 

FRM accelerator tool in the software was used to implement settings that would 

decrease the simulation time. Some small modifications were performed to enable 

the model work as before the change. In addition, some case-dependent values 

were replaced by functions or tables in order to smooth the coupling with Simulink. 

The real-time factor, which presents the model’s real-time capability, was 

approximately 0.35. This was sufficient since the model should be able to 

performance in real time with planned implementation already with average factor 

of 0.5-0.6 [4]. 
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7.2.2 Combining the engine and electrical equipment model in Simulink 

After model’s real-time readiness was confirmed, the links between the two software 

were created. Inputs for the FRM were decided based on the inputs used earlier in 

the engine model and the available signals from engine laboratory’s data acquisition 

system that could be used in parallel simulations. These input parameters for the 

engine model were reference engine speed, ambient temperature and pressure. 

One limitation was injected fuel mass that was earlier used as input for the engine 

model. This parameter was not continuously measured from the engine and 

therefore could not be used as an input for the model. Nevertheless, since reference 

load was used as control signal in the engine laboratory it was decided to be used 

in the FRM as well. A brake power controller was added to the model and used as 

input instead of injected fuel mass. This did not have major effects on the simulation 

results. The biggest difference was in BMEP with 50-100% load points where the 

relative error was approximately -1.4 %. The main output from the engine model to 

the electric equipment models in Simulink was brake torque which was used as 

input to the electric machine. In addition, BMEP, cylinder pressure, burned mass 

fraction of fuel at CA50 (CA, crank angle) and exhaust temperature at turbine inlet 

were used to observe the engine model performance.  

In Simulink, the engine model was imported using the GT-SUITE specific library 

and in particular the block GT-SUITE-RT. In that way, the engine model was 

represented as an s-function. The combined model in Simulink is presented in 

Figure 3.  
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Figure 3. The combined engine and electrical equipment model in Simulink. 
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7.3 Simulation of the combined engine and electrical 
equipment model in Simulink 

After the engine model was imported to Simulink, the whole model could be 

simulated. The model was simulated for 200 seconds in order to demonstrate its 

functionality. Four load points were included in the simulation by using load 

reference (kW) as input. The other constant inputs were the engine speed reference 

(rpm), ambient temperature (K) and ambient pressure (bar). As stated earlier, the 

outputs from the engine model included in Simulink were BMEP (bar), cylinder 

pressure (bar), brake torque (Nm) and exhaust temperature before turbine (K). The 

brake torque (Nm) was an input to the electric machine. The speed reference (rpm) 

was also an input to the speed controller. In addition, the reactive power reference 

was an input to the frequency converter. Table 1 presents the inputs to the engine 

model and how they vary with time for the simulation case presented here. 

Table 1.  Events during the simulation. 

Time (s) Speed reference 

(rpm) 

Load  

reference (kW) 

Ambient 

temperature (K) 

Ambient 

pressure (bar) 

0 1000 848.2 301.7 1.02 

50 1000 637.7 301.7 1.02 

100 1000 426.6 301.7 1.02 

150 1000 213.9 301.7 1.02 

 

The simulation results are presented in Figure 4 and Figure 5. Figure 4 shows the 

outputs from the engine and Figure 5 the outputs from the electrical equipment. The 

outputs from the electrical equipment were chosen from a point located after the 

frequency converter and before the 690 V / 20 kV transformer. For this case, four 

outputs were chosen: the active power output (kW), the power factor cos (φ), the 

690 V bus RMS currents (A) and the grid frequency (Hz). The electrical outputs 

were validated against measurement data and the engine outputs were the same 

as the outputs for the FRM when simulated in GT-SUITE.  
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Figure 4. The engine measurement outputs in Simulink. 
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Figure 5. The electrical equipment measurement outputs in Simulink. 
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7.4 Real-time simulation and future work 

Subsequently, when the combined model had been successfully simulated on the 

development computer, next step was to convert it into a real-time application and 

run it on the target PC using Simulink Real-Time. However, the GT-SUITE-RT block 

caused several problems in the compiling phase. After an extensive investigation, it 

was possible to compile the GT-SUITE-RT block and obtain a real-time application 

for the combined model. The electrical equipment model was already earlier proved 

to be real-time capable. The engine model was proved to be real-time capable, but 

it required a large sample time, which was not optimal for the output accuracy.  

Figure 6 shows the engine model outputs when running on the target PC as a real-

time application, with a sample time of 1 s. As it can be seen, the average task 

execution time (TET) for this model on the specific computer used was 0.807 s, and 

the large sample time caused the cylinder pressure output to fail.  

 

 

Figure 6. Engine model run on the target PC in Simulink Real-Time. Scope 1 is BMEP (bar), 

scope 2 is brake torque (Nm), scope 3 is cylinder pressure (bar) and scope 4 is exhaust 

temperature before turbine (K). 

 

The whole combined model was not real-time simulation capable on the target PC. 

The target PC was however an old PC with lower computational power than the 

Speedgoat. Therefore, next step is to investigate how to get the combined real-time 

application running on the real Speedgoat Performance Real-Time Target Machine. 
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It was concluded that more computational power is needed in order to be able to 

use a smaller sample time for the engine model and to run the whole combined 

model as a real-time application. 
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8.1 Introduction 

It is not possible to have diesel engines or propeller drives with actual propeller and 

environment in the LUT laboratory. However, setups with different electrical 

networks, battery energy storage system (BESS) and frequency converter driven 

motors can be constructed. Therefore, it was constructed two distribution networks, 

one AC-network connected to BESS and another DC-network. The construction and 

testing of AC-network already started during the FESSMI13F

2 research project. 

Hybrid vessel emulator system consists of real hardware and virtual simulators. 

The main hardware components are electric network, generators and battery 

energy storage and controllers. Diesel motors are emulated with electric motor 

drives where dynamics of diesels are simulated. Also propeller drives and loading 

are emulated with motor drives and with power electronics. 

The purpose of the emulator setup is A) to verify simulation models, B) to test 

energy balancing and control of vessel hybrid power train when battery energy 

storage is used, C) to test different normal operation modes and fault cases and D) 

to demonstrate the combination of the vessel control and scheduling optimization in 

real time. 

More general is the research of the HIL simulation itself, which concentrates on 

finding the benefits, limitations and dynamic performance of hardware-in-loop 

simulation (HIL) in a complex power train system. 

The laboratory level demonstration systems offer tools to verify the simulation 

results and to understand model uncertainties and technical challenges existing in 

a real marine hybrid system.  

 
1 Contact: firstname.lastname@lut.fi 
2 FESSMI - FUTURE ENERGY STORAGE SOLUTIONS IN MARINE INSTALLATIONS - is a 

Business Finland co-funded research project. 

mailto:firstname.lastname@lut.fi
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8.2 Emulator setup 

HIL systems have been used for years for a rapid prototyping in different 

applications [1,2,3,4,5]. The HIL system under investigation combines the 

Hardware-In-the-Loop simulations and Power-In-the-Loop simulations. Most of the 

studies present their setups and demonstrate the performance by giving 

experimental results. The properties of the electric drives as a load emulator have 

been discussed in a few studies [1,6,7]. In the HIL concept, an actual drive under 

test (DUT), or some components of it, are used as a part of simulation setup. The 

actual application motor drive can be tested on the real-time simulation of 

mechanics and of an electric motor drive that emulates this mechanics. 

In this research, the emulators are used as part of robust vessel power system 

demonstration. The system consists of hybrid power system emulator itself, 

communication path, database for power system, a simulator and optimization. A 

simulator was designed to analyse problems in control. An optimization algorithm 

calculates the usage of generators, battery energy storage and propulsions.  

The vessel operates according to the optimized route plan which changes due to 

different operation conditions. In the demonstration, the emulator reads the 

operational plan from the database (MySQL), sends the measurement data and 

status of devices to a database using OPC-UA communication protocol between 

emulator and python script which writes and reads the database data using a native 

MySQL connector. The communication with Matlab is implemented using Matlab 

engine by MathWorks Inc. The idea behind the setup is described in Figure 1.  

 

 

 
 

Figure 1. The emulator setup for the connection with optimization and simulation. 
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8.2.1 Hardware-in-the-loop emulation 

Hardware-in-the-loop (HIL) emulator setup is divided into two parts: AC-network 

emulator and DC-network emulator. They are further described in the following 

sections. 

 AC- network emulator hardware 

The AC- network and power train emulator was constructed originally for testing the 

dynamic performance and control of the hybrid power train in Wärtsilä LLC-type 

(Wärtsilä Low Loss Concept). In LLC concept, the network is divided into two 

parallel networks connected together with a transformer that provides 30 degrees 

phase shift between parallel networks. In this concept, 12 pulse diode rectification 

can be done directly from these two sections without two secondary windings fed to 

propeller drives. When diesel gensets are connected evenly to both sections, the 

transformer between sections can operate in no load conditions. The LLH-concept 

is a modification of LLC, in which the three winding transformer is for the connection 

of a battery energy storage system (BESS).      

The emulator hardware, presented in schema of Figure 2, includes a LLH-

concept network, battery energy storage, one propulsion emulator with actual motor 

drive and propulsion load emulator drive (110-kW induction motor and 315-kW 

induction generator). The diesel genset emulator in the first parallel network section 

consists of a 200-kW/800-kW induction motor that emulates diesel and an 800-kVA 

synchronous generator. Diesel dynamics is modelled in an industrial PC embedded 

with PLC controllers. In the second network section there exists a 4-quadrant 

network inverter, which can at the same time emulates both propeller loads and 

diesel gensets. 

 

Figure 2. A laboratory setup for testing a power train of a future hybrid vessel. The main 
components in addition to network itself are a genset emulator unit *C1, a propulsion emulator 
*C2 , a battery energy storage C3 and a multi-purpose emulator *C4. 
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 DC- network emulator hardware 

The DC network emulator of Figure 3 is a smaller scale emulator than the AC 

network emulator, but more complex. The DC network emulator consists of two 

diesel genset emulators. In the first emulator a 55-kW induction motor is used as a 

diesel genset emulator. This motor is connected to synchronous generator (110 

kVA) feeding the DC network via diode rectifier. Another multi-purpose emulator can 

be used as a combined diesel genset and propulsion emulator. It consists of two 

back-to-back connected 5.5-kW induction machines. One machine is connected to 

mains via 4Q-inverter setup so that it can be used as a load (generator) as well as 

a motor. Similarly, the 4-kW setup is as a main propeller load emulator. The setup 

does not include actual battery energy storage but, instead, uses a grid inverter to 

emulate battery. Battery characteristics can be programmed as emulator code in 

the main controller or battery energy storage of AC-setup can be used in parallel 

with the emulator when the battery energy storage is connected with mains instead 

of vessel network. In this case, emulator code calculates scaling between voltages 

and currents of actual BESS and emulated one.  This way, the battery emulator can 

emulate both controlled BESS and BESS that is directly connected to DC vessel 

net-work. It is worth mentioning that emulation is not restricted to battery storage 

and other storages such as super capacitor or flywheel storages can be emulated 

as well. The DC- and AC-network emulators share same main controller, DAQ and 

supervisory control. 

 

The main controller of the emulator setup is an industrial PC. The propulsion 

emulator and the battery energy storage have their own programmable controllers 

so that they can execute, if set so, their own emulator algorithms in a distributed 

manner but all the emulations can be calculated in the main controller as well. The 

distributed emulations are required only if very fast dynamics is emulated. At the 

moment, all emulations are executed in main controller which limits the control cycle 

of load emulator to 1-2 milliseconds and of battery energy storage control to 300 

milliseconds. The emulations can be implemented by programs written using C- or 

IEC61131-3 languages. In addition, Simulink models can be translated to IEC 

61131-3 function blocks using PLC Coder from Mathworks Inc. or compiled using 

Beckhoff TE1400 TwinCAT 3 target for Matlab/Simulink. The latter option enables 

one to visualize simulations in real-time. The emulation results can be graphically 

displayed in real time and recorded with 1 millisecond time resolution. 
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Figure 3. Hardware and software components of the DC-network hybrid power drive emulator. 
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8.3 Use cases 

The first use case combines two objectives: A) Emulator is used to verify the 

simulation model behaviour, specifically if control works similarly in real network and 

in Simulink, and B) to demonstrate the possibility to analyse control problems as a 

digital twin of real vessel power system. Another use case is presented for 

demonstration purposes: a connection between emulator and database and 

Matlab/Simulink was created. When some rare event, such as generator fault, 

occurs at vessel (emulator), the vessel status information is relayed to 

Matlab/Simulink environment where fault and restoration can be simulated and new 

operation plan for hybrid power train can be optimized and sent back to vessel. 

Figure 4 presents a Simulink simulation model for vessel power distribution network 

(PDS). The model can be used for simulating vessel power balance e.g. in different 

fault scenarios. Parts of the simulation model can also be used in the emulator, such 

as the power balance controllers and diesel engine models. 

 

 

 
 

Figure 4. Simulation model for vessel power distribution network containing models for diesel 
gensets, propulsion load, hotel load, battery energy storage system and LLH transformers. 
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Example use case with setup of Figure4 using AC-emulator. The main controller 

calculates the control block (Pref_block) which sends references to the genset 

blocks for calculating diesel dynamics (for both Gensets of Figure 4.) The calculated 

torque of the diesel engine of GENSET1 is given as reference to AM1 of Figure 2 

and generator SG creates the power network. After that, the calculated torque of 

diesel of GENSET2 is set as reference to the C4 emulator which starts feeding the 

lower branch of network of Figure 2. Recorded propulsion load data from an actual 

vessel is given as a reference to back-to-back propulsion emulator C2 (Figure 2) in 

case of propulsion1 block of Figure 4.  The propulsion2 block is executed as 

simulation in main controller and the calculated power taken by propulsion motor is 

added as a reference to multi-purpose emulator C4. The results of hardware 

emulator and simulator are compared in order to verify the dynamic properties 

introduced by the BESS. 

 

Example use case with setup for route planning. This use case is still under 

development (the optimization part has not been actually tested in a system 

described in section 2, Figure 1). In this case example, a route plan and ship 

equipment are imaginary. The case specifications cover the required parameters 

and setting up of the optimization problem. The route plan is calculated in 

optimization computer (cloud server LUT). The route plan is divided into distance 

steps and an optimization algorithm is used to determine the optimal way of 

producing power, deploying energy storage systems and controlling propulsion. The 

data is sent via database connection back to the main controller of the emulator and 

driving of emulator is executed similarly to what is explained in the first use case 

description. An example of re-optimized route plan after a generator failure is shown 

in Figure 5. 

 
Figure 5. An example of re-optimized route plan after failure of one generator half-way on the 

trip. 
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9.1 Introduction to Digital Twin 

In the recent years, the term ‘Digital Twin (DT)’ has attained increasing attention 

and has become one of the cutting-edge research topics in both academia and 

industry. In principle, a Digital Twin is a digital or a virtual rendition/ counterpart of a 

physical system or process. Adding to this definition, Grieves and Vickers [1], the 

people who first use this term, describe the three major inherent characteristics for 

a Digital Twin that it must consist of a physical product, a virtual representation of 

that product and a bi-directional data transfer between them. This bi-directional data 

connection enables a mutual or two-way communication between the physical 

system and its virtual counterpart. It was Grieves [2], who described this two-way 

communication as ‘mirroring’ or ‘twinning’ hence leading to the epithet ‘Digital Twin.’ 

In addition to these features, Jones et al. [3] have summarized the additional 

characteristics of a Digital Twin, such as Physical and Virtual environments, State, 

Realization, Metrology and Twinning rate. 

The prime motive of building a Digital Twin is to monitor the system/process’ 

performance and present control methodologies for its operation through the two-

way communication between the physical system and its virtual counterpart. The 

application of Digital Twins is now being widespread, such as in aerospace, 

automotive, buildings, healthcare, marine, powerplants and other process 

industries. GE is using them to monitor wind turbines [4], Fingrid for power grid 

monitoring [5] and Akselos for the hydropower plant at the Turlough Hill, Ireland [6]. 

The digital twins can be done for single component or large systems. There are no 

standards or norms for digital twins [7] and all twins are made from scratch to certain 

purpose. Therefore, it is extremely hard to get detailed view what is meant by digital 

twins used in industry. Especially, the quality and amount of data collected from the 

 
1 Contact: firstname.lastname@lut.fi 

mailto:firstname.lastname@lut.fi
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physical product and the details of models used in digital twin are very hard to find. 

Clearly, close cooperation between industry and academia would be needed. 

9.2 Digital Twin for Marine Industry 

9.2.1 Principles of Digital Twin 

With the ongoing Industry 4.0, energy savings and thereby achieving improved 

energy efficiency have been one of its substantial goals in which data-driven 

methods seems to play a significant role. Teng et al. [11] classifies the data-driven 

energy savings method into four steps: (i) data acquisition, (ii) data pre-processing, 

(iii) data modelling and analysis and (iv) industrial implementation. Out of these 

steps, real-time data acquisition remains to be a challenging one with respect to 

Digital Twin construction according to Uhlemann et al. [8]. An online adaptation of 

Digital Twins for a driveline in a marine thruster without any sensor at the point of 

interest has been studied and the challenges with respect to such adaptation has 

been discussed by Nikula et al [9]. Similarly, the use of Digital Twin to do online 

error and correction of data from a heat exchanger for a marine energy vessel 

subsystem has been proposed by Manngård et al [10].  

9.2.2 Digital twin for Waste Heat Recovery Power Cycle 

The power cycle-based waste heat recovery system could be one of the potential 

areas where the Digital Twin could be utilized especially in a marine industry where 

Organic Rankine Cycles (ORC) could be a potential technology enhance energy 

efficiency in the future. In such environments, the data-driven energy savings 

method could offer significant increase in its cycle efficiency by continuously 

assessing its system performance through building a physics-based dynamic 

model.  

For generating digital twin for waste heat recovery system used in marine sector, 

the starting point has been Organic Rankine Cycle power system in the laboratory 

of fluid dynamics, LUT. The physical system uses exhaust gases of diesel engine 

to generate electricity. This entire WHR can be termed as a small scale and high-

temperature ORC system where the power range of the WHR from the exhaust 

gases is between 100-200 kW and that of the ORC is 5-10 kW. The general layout 

of the digital twin and connections are shown in Figure 1. 
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Figure 1. Layout and connections of digital twin for WHR ORC. 

 

The digital twin is build based on dynamic model of the cycle consisting of major 

components, (i) the high-speed turbogenerator consisting of a supersonic radial 

turbine, a Barske type main feed pump and a generator all being connected to the 

same shaft, (ii) the heat exchanger components such as the condenser, evaporator, 

and recuperator, and (iii) a pre-feed pump. All the heat exchanger components are 

of the plate & shell type. Matlab-Simulink environment has been chosen to create 

the dynamic model where the components are modelled using first principles that 

enables the data transfer between the physical system to the virtual counterpart and 

the reverse data transfer could provide information about operating the cycle with 

the optimal inputs to achieve a higher cycle efficiency.  

Models describing the behaviour of system are particularly important to have well 

working digital twin. CoolProp has been utilized for calculating fluid thermodynamic 

and transport properties. In creating the virtual entities/counterparts, all the 

components are modelled using a block modelling approach in Simulink by 

categorizing them as the turbogenerator, heat exchanger components and pre-feed 

pump separately. The components have been modelled mathematically using a 

reduced order modelling approach. The models used in the digital twin are based 

on thermodynamic behaviour of the components and the mechanical behaviour of 

the components are not considered at this stage. Only exception is the inertia of the 

moving parts i.e., the turbine shaft.  

9.3 Dynamic Model as an Avenue towards Digital Twin 

Incorporating Digital Twin for power plant environments demands monitoring, fault 

diagnosis and predictive maintenance of power generation equipment and power 

control centers, and real-time operational control of the power grid. Through the 

integration of transient data from the dynamic model of a power plant, Digital Twin 

will have the potential to respond to changes in control environment during its start-

up, peak performance, shut-down and other off-design conditions. As per General 

Electric (GE), the Digital Twin provides insights into speed, stability, emissions, and 
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stresses as well as predicting the limitations of the plant with configuration and 

operational changes. Moreover, accurate data collection from the physical model 

will help in realizing a high-fidelity mapping of the virtual interface or entity.  

9.3.1 Purpose of digital twin 

The digital twin developed is based on thermodynamic models of the ORC. This 

means that the digital twin can be used for estimating performance of the waste 

heat recovery system at the different operation conditions and help design a system 

for marine environment. The choice was natural although the technology is still 

under development. The life cycle of the parts cannot be estimated or evaluated 

using the designed digital twin. However, the mechanical digital twin of the 

turbogenerator can be added later since 3D models of the turbine is available. Using 

accurate models for components and for thermodynamical properties is important 

for digital twin used for performance estimation and system design. However, this 

inherently leads to time consuming simulations and the capability to used digital twin 

real time is not feasible. If the digital twin will be used for real-time control or life 

cycle and maintenance evaluation the models used should be simpler and 

computationally more efficient.  

9.3.2 Twinning & Communication 

A physical-to-virtual twinning methodology has been followed here, where the state 

of the physical product has been transferred to and realized in the virtual 

environment. Figure 2 shows its corresponding process. As mentioned earlier, the 

real-time data acquisition is challenging. However, in our present study, the 

turbogenerator’s efficiency and the inlet pressure, as a function of the rotational 

speed, have been fed as an input to the virtual counterpart which helps calculate 

the cycle’s performance parameters.  

 

Figure 2. Physical-to-Virtual Twinning Process. 
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9.4 Summary & Scope for Future Works 

In a digital twin, the data must be constantly exchanged and updated between 

systems. With the chosen approach of one-way (physical-to-virtual) connection 

currently being in the developmental phase, live and continuous transfer of the 

states from the physical-to-virtual environment is not yet accomplished. Therefore, 

both the physical and virtual environment are working as a stand-alone entity. The 

communication or data transfer from the physical system and its virtual counterpart 

includes sensor data and status data. This data collection from the physical system 

or twin facilitates the accomplishment of the digital twin. Once that live data transfer 

is established, then the realization phase will become complete in this one-way 

connection. On the other hand, the virtual-to-physical communication through the 

flow of information or processes from the digital twin to the physical system requires 

the measurement of the state or the parameters in the virtual twin also called as the 

metrology phase [3] to be established. Apart from the conventional control routine 

feature of a Digital Twin where the change in the state of a system (physical or 

virtual) is transmitted through one of the above-mentioned communication 

processes and utilized to synchronize the corresponding state/parameter in its 

counterpart as stated from the literature, the existing control routine of a power cycle 

can be made to operate in an optimal mode by utilizing the information transfer from 

the virtual twin model through the metrology phase. This can be only achieved once 

the virtual twin-to-physical system communication is established, which is yet to be 

modelled and demands a great effort. But a digital twin could also work with a one-

way physical-to-virtual connection as per the definition of Grieves. 

In this work, a framework on Digital Twins and how it can be utilized for power-

cycle based waste heat recovery energy systems have been presented. Although 

there lies a diversification in the interpretation of the definition for Digital Twin, 

especially pertaining to the energy industry, an attempt has been made to 

incorporate Digital Twins for an ORC based WHR power cycle by integrating the 

transient data from the dynamic model built from the physical-to-virtual twinning 

process. In the upcoming work, we aim for a two-way communication between the 

physical and the virtual counterpart to make the Digital Twin model complete for our 

ORC power cycle that could be applied for a marine based WHR system in the 

future. 
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10.1 Introduction 

The need to improve energy efficiency and reduce emissions has been a driving 

force in the marine industries during the last years. Aftertreatment systems (ATS) 

are depending on the fuel (diesel oil, natural gas) and its quality (Sulfur content) 

(Figure 1). The main focus has been on the emission reduction of SOx and NOx in 

marine applications but oxidation catalysts for CO and hydrocarbons (HCs) are 

applied also for low-sulfur fuels. NOx emissions have been reduced with ammonia 

(urea) on sulfur-tolerant Selective Catalytic Reduction (SCR) and Ammonia Slip 

Catalysts (ASC). 

 

Figure 1. ATS in marine applications. 

 

Natural gas with very low sulfur content (thus, low SOx) is a good alternative to 

conventional heavy-oil liquid fuels. Methane produces less carbon dioxide (CO2) 

emissions compared to diesel HCs and the particulate matter emissions are very 

low with natural gas, but it is a strong greenhouse gas (GHG effect 25xCO2) and its 

emissions have been limited. Methane oxidation in lean exhaust gas requires the 

use of expensive Platinum Group Metal (PGM) catalysts. High-loaded, palladium-
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rich methane oxidation catalysts (MOC) are the best, but they are often sensitive 

particularly for the sulfur deactivation [1, 2]. 

Sulfur can be regenerated from the catalyst surface at elevated temperatures. 

Marine engines are operating in lean conditions and very high temperature is then 

required to decompose sulfates. However, sulfates can be decomposed at lower 

temperatures in stoichiometric or rich conditions. The catalyst performance has 

been restored by the regenerations in enriched gas mixtures in earlier studies [3,4]. 

The SOx traps were demonstrated in INTENS project, which had a task to protect 

MOC against sulfur poisoning.   

10.2 Experimental 

Sulfur poisoning of Pd-rich MOCs was simulated in synthetic gas bench (SGB) using 

lean exhaust gas conditions (λ=1.8, 100 ppm SO2). Sulfur was adsorbed by 

catalysts at 400°C and 550°C, simulating a higher adsorption of SO2 and the use 

conditions at pre-turbo position. Desulfation regeneration was examined at 550°C 

by a regeneration feed mixture, where  was rich (0.99). Sulfur is accumulated on 

the surface as sulfates either on the active sites or porous support. Sulfate 

adsorption is depending on SO2 oxidation rate to SO3 (thus, SO4) and the bond 

strength between SO4 and metal cations on catalysts. When MOCs are usually 

alumina-based catalysts, the strength of Al-SO4 (aluminium sulfate) is a base line 

for SOx adsorbent comparisons. SO2 oxidation on noble metals is much faster than 

on base metal catalysts. Therefore, adsorbent catalysts or materials were examined 

with and without noble metals. 

The SCR and ammonia slip catalyst functionality was investigated by SGB and 

engine experiments. Due to medium temperature operation window, high sulfur in 

fuels and catalyst costs, the SCR has been based on vanadium/TiO2-WOx catalysts. 

The SCR functionality was investigated in steady-state condition with fixed or 

varying NH3/NOx ratio. Catalysts were investigated as fresh or hydrothermally aged. 

The feed gases in SGB simulations are summarized in Table 1. 

Table 1. Feed gases in experimental simulations. 

 

Compound Lean NG

MOC test

MOC

Sulfation

MOC

Regeneration

SCR

NO, ppm 500 500 500 1000

NO2, ppm - - - -

Methane, ppm 1500 1500 3000 -

Ethane, ppm 300 300 500 -

Propane, ppm 100 100 100 -

Acetaldehyde ppm 150 150 150 -

CO, ppm 1200 1200 4000 -

Oxygen, % 10 10 0.91 10

CO2, % 7.5 7.5 7.5 -

Water, % 8 8 8 10

NH3, ppm - - - 1000

SO2, ppm - 100 - -

Nitrogen Bal. Bal. Bal. Bal.

λ 1.78 1.78 0.99 lean

Space velocity, h-1 50.000

varying

50.000

varying

50.000 50.000
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10.3 Results 

10.3.1 Development of MOC 

Sulfur durability is a key development target for MOC. Even if desulfation is possible 

at elevated temperatures, the base sulfur tolerance of MOC in use is essential to 

extend time periods for regenerations. Development had resulted in improved 

concepts, which are similar as fresh state but stand better sulfur in use. The new 

concepts showed a particular stability in sulfur containing NG exhaust gas 

conditions: T50 of 470°C with MOC1 dev, when 530°C with REF (Figure 2). MOC 

development and durability studies will be continued based on the new concepts. 

 

Figure 2. Methane light-off temperatures as fresh, hydrothermally aged (HT700/20H) and 

sulfated (HT700/20h + sulfation with 100 ppm SO2 for 1h at 400°C) with new developmental 

MOCs in comparison to the reference MOC (SGB experiments. Lean MOC feed, 50.000 h-1). 

10.3.2 Sulfur durability and regeneration of methane oxidation catalysts 

When MOC is sulphated in exhaust gas, lean SOx trap (LST) was applied to protect 

MOC and collect SOx during lean periods. During regeneration periods SOx is 

removed from LST and should pass MOC downstream. The effect of LST should be 

compared as an additional unit or it replaces MOC volume. Even if LST increases 

the volume and causes pressure drop, it is cheaper than the PGM-rich MOC with 

the same total volume. The cost equivalency (investment, use) for volumetric ratio 

of MOC/LST is a base for design (Figure 3). 

 

Figure 3. Lean SOx trap and MOC in lean natural gas exhaust purification. 
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The screening results at 400°C and 550°C showed that SOx was adsorbed well on 

LSTs. There were also differences by LSTs in the regeneration at 550°C with =1. 

SO2 adsorption increased in the presence of a low amount of platinum in all the 

examined compositions. However, it existed wide differences by LST types which 

conditions were requires for SO2 release. Methane conversion remained on a higher 

level with the combinations of LST and MOC in the presence of SO2 containing feed 

gas (Figure 4). A saturation was detected by longer experiments (4 hours, 

corresponding about 400 h in use conditions) and then SO2 started to come through. 

SOx deactivates methane oxidation due to sulfate accumulation and the presence 

in gas phase. 

 

 

Figure 4. Methane conversion during sulfation on LST + MOC. 

 

These results confirmed the potential utilization of SOx traps to improve MOC 

efficiency. However, further development, regarding the composition and sizing, is 

needed to optimize LST+MOC systems for real applications.  

10.3.3 NOx removal with vanadium SCR catalysts 

Vanadium-SCR catalysts (V2O5/TiO2-WO3) are the mainstream for marine 

applications, where temperatures are mainly 300-400°C, high-sulfur fuels are used 

and the catalyst cost is critical. Originally Dinex has prepared metal substrated V-

SCR catalysts even if the same catalyst compositions can be added on ceramic 

substrates too. The activity and hydrothermal (HT) durability are dependent on 

vanadium concentration (range of 1 - 4 wt-%) in TiO2-WO3 based supports [5]. 

Higher V2O5 loadings (>3 wt-%) result in improved low temperature activity but lower 

HT durability. SCR catalysts with low V2O5 loading (<2 wt-%) are developed for high 

temperature applications. New types of metal vanadates have been also 

investigated for marine applications. Metal vanadates are less harmful for human 

health than conventional vanadium salts in manufacturing process. 
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Mechanically durable metal subtracted SCR catalysts are a good alternative to 

ceramic or extruded catalysts also in pre-turbo location, where the vibration, 

temperatures and pressure are high. Pre-turbo installation enhances the catalyst 

light-off and is a way to reduce the volume. Properties and preparation process of 

metal substrates were also developed in the project. When emission catalyst 

coatings are usually porous base metal oxides, the adhesion is more challenging 

on flat metal alloy (Al-Cr) surfaces than on porous ceramic substrates. Therefore, 

an oxide layer has been created on thin metal foils to improve adhesion of coatings 

and oxidation resistance. Heat treatments at 700-950°C with varying times have a 

direct effect on oxidation layer formation rate, composition and thickness, as well as 

on tensile strength and adhesion. It was possible to form fast at high temperatures 

porous, protecting Al2O3 layers but too high diffusion amount of metal atoms up to 

top foil surface decreased also the foil strength and did not improve more the 

adhesion. Based on the SEM, XRF, adhesion and mechanical strength analysis (at 

University of Jyväskylä and University of Oulu), the pre-treatment conditions were 

optimized, which resulted in changes and cost savings in manufacturing conditions. 

In addition, the corrosion resistance of metallic foils was confirmed to be good in the 

presence of ammonia, NOx and SOx by laboratory studies at VTT Tampere. 

V-SCR catalyst was, without Pt, very poor both for NH3 and CO oxidation in NH3 

only feed even at high temperatures (Figure 5). A small amount of Pt, 2, 5 or 15 

g/cft, mixed into V-SCR coating, increased the oxidation activity of aged catalysts 

significantly up to over 95% with 15 g/cft Pt. However, that loading was too high, 

resulting in high NOx and N2O formation. 

 

 

 

Figure 5. NH3 conversions on aged (HT600/20h) V-SCR catalyst and PtV-ASC with 2, 5 and 

15 g/cft Pt in laboratory simulations in NH3 only feed gas (100.000 h-1). N2O (open circle) 

showed for 15 g/cft Pt. 
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11.1  Introduction  

The emissions from ships can be a significant source of air pollution in coastal areas 

and port cities and can have negative impact on human health and climate. 

Therefore, the International Maritime Organization (IMO) has implemented 

regulations to reduce emissions from ships. To answer these requirements 

emission reduction technologies are needed, namely fuel technologies, combustion 

technologies and/or exhaust gas aftertreatment technologies [1]. One solution is to 

use natural gas (NG) as a fuel. With liquefied natural gas (LNG) utilization, both SOx 

and NOx regulations of IMO can be achieved without any need for aftertreatment. 

In addition, particle emissions from natural gas combustion are low and, in practice, 

no black carbon is formed from NG combustion [2]. Moreover, CO2 emission is lower 

with the NG use compared to diesel fuels, because NG is mainly composed of 

methane with a higher H/C ratio compared to diesel. The hydrocarbon emissions, 

on the other hand, are higher with NG compared to diesel fuels [3–6]. Because 

natural gas is mainly methane, most of the hydrocarbon emissions is also methane.  

Three different gas engine groups are used for marine applications, namely lean 

burn spark ignited engines, low pressure dual fuel engines and high-pressure dual 

fuel engines [7]. For dual fuel engines, the natural gas and air mix is ignited with a 

small diesel pilot injection. In addition, the diesel can be utilized as the main fuel 

(back-up fuel) if LNG is not available, making this dual fuel concept the most popular 

one in marine applications. According to Sharafian et al., [8] LNG utilization in high-
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pressure dual-fuel (HPDF) engines, which are used only for large low-speed 

oceangoing vessels, can reduce greenhouse gas (GHG) emissions by 10% 

compared to their HFO-fuelled counterparts. While, the current deployment of 

medium speed low-pressure-dual-fuel (LPDF) cannot reliably reduce GHG 

emissions. This is primarily due to the high levels of methane slip from these 

engines.  

One option to reduce methane emissions is the use of oxidation catalyst. In order 

to oxidize methane, a highly efficient catalyst is needed. The challenge in the 

development of methane oxidation catalyst is the catalyst deactivation since as little 

as 1 ppm SO2 present in the exhaust has already been found to inhibit the oxidation 

of methane [9,10]. 

In this study the emissions from one medium speed LPDF are investigated and 

utilized as a starting point to study the performance of one methane oxidation 

catalyst (MOC). In addition to MOC only, in this study, we combine a sulphur trap 

or SOx trap, utilizing it at the upstream of the MOC, to see its capability to protect 

the MOC against sulphur poisoning. 

11.2 Experiment 

Experiments were conducted, prior to current work, in a marine engine laboratory. 

The engine was a Wärtsilä Vasa 4R32, a four-cylinder medium-speed 4-stroke 

marine engine that was retrofitted to enable operation with natural gas in dual fuel 

(DF) mode. Taking the emission results as a reference, the present study was 

conducted with a smaller engine, namely a passenger car gasoline engine that was 

modified to run with natural gas. The engine and test facility operation targeted in 

producing similar exhaust gas matrix with the marine engine (Figure 1 A). The test 

engine with the test facility was presented in detail by Murtonen et al.[11].  

The NG was from Nord Stream and was high in CH4 content (>95%). The sulphur 

content of the gas was below 1.5 ppm. The lubricating oil utilized for medium speed 

LNG engines was selected and used in this smaller test engine as well. Methane 

oxidation catalyst (MOC) utilized platinum-palladium as active metals. The SOx trap 

utilized platinum as the catalyst. 

Additional SO2 was fed into the exhaust (see Figure 1B) in part of the ageing 

tests contributing to a 1 ppm increase in the exhaust gas while any sulphur from the 

natural gas and lubricating oil led to a SO2 level of approximately 0.5 ppm in the 

exhaust gas. Altogether, three similar experimental campaigns were conducted. 

Two tests were done with the MOC only, one with additional SO2 and the other 

without SO2 addition. The third test was conducted with SOx trap installed in front of 

the MOC (including the additional SO2 in the exhaust gas). 
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Figure 1. The experiment setup. 

 

The experiments were conducted over a 180-hour ageing at the selected driving 

mode with exhaust temperature adjusted to 550⁰ C and exhaust flow to 60 kg/h. 

The engine was running without stops and once a day regeneration was done by 

turning the engine to stoichiometric condition for 5 minutes’ time. 

Emission measurements were done at both the upstream and downstream of the 

catalyst system (see Figure 1). This included a Horiba PG-250 analyser used to 

measure NOx, CO, CO2, and O2. Online SO2 emissions were determined by a 

Rowaco 2030 1 Hz FTIR Spectrometer. A MicroGC was used to measure the 

hydrocarbons and hydrogen (H2). In addition, multiple gaseous components were 

measured continuously by two Gasmet FTIR spectrometers simultaneously at the 

upstream and downstream of the catalyst system. 

11.3 Results and discussion 

The earlier measured exhaust gas matrix from one medium speed dual fuel marine 

engine run with NG in two different engine loads is presented in Table 1. Comparing 

these values to the values of present study’s selected driving mode (Table 1), we 

see that these are in the same order of magnitude. 

Table 1. Engine out exhaust gas composition from one medium speed dual fuel marine 
engine run with natural gas as the main fuel and with the test engine of MOC studies. 

Engine out CO CO2 NOx O2 CH4 C2H6 C2H4 HCHO 

 ppm vol% ppm vol% ppm ppm ppm ppm 

Marine engine 85% load 342 5,5 337 10,9 1823 41,8 7,2 44,7 

Marine engine 40% load 650 5,3 380 11,1 3750 89,0 23,1 76,0 

Test engine for MOC studies 549 8,0 226 6,5 970 14,6 30,3 55,7 
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The MOC was found to achieve methane conversion near 70-80% in the beginning. 

The conversion was, however, found to decrease over time rather quickly, but the 

regeneration, done once a day, was found to recover the catalyst efficiency. This 

can be seen from Figure 2, where the methane conversion calculated from the 

simultaneously measuring FTIR devices’ methane results are presented roughly for 

a two-day period. After the second regeneration, i.e. at the 44-hour point, all the 

catalysts resulted in similar methane conversions. The conversion after the 

regeneration decreases more quickly in the case of ‘MOC+SO2’ than for the two 

other cases (‘MOC only’ and ‘trap+MOC’) that seem to behave very similarly. After 

the regeneration the conversion is recovered, in all cases, and similarly to earlier 

day, the conversion after the regeneration (68 hours) decreases more quickly in the 

case of ‘MOC+SO2’ than for the two other cases. The methane conversion is 

approx. 10-15 percent higher when the trap is placed at the upstream of the MOC, 

meaning there are more active sites for methane to convert in the MOC downstream 

the trap. This indicates the SO2 level inside the MOC is lower when trap is involved 

compared to the MOC-only case.  

 

 

Figure 2. Methane conversion based on two simultaneously measuring FTIRs. 

The regeneration, recovering the catalyst efficiency for methane oxidation, already 

indicates SO2 is most probably released from the catalyst during the regeneration 

and the SO2 measurement confirms this. In each case, during the 5-minute 

regeneration a release of SO2 was detected with the FTIR at the downstream of the 

catalyst. The total SO2 amounts released over the 5-minute regeneration periods 

are collected to Table 2. If we look at for example the third regenerations (Table 2), 

we see that in the case of “MOC-no SO2”, 0.33 g SO2 was released while in the 

case of “MOC + SO2” 0.54 g SO2 was released. In the case of “trap + MOC” the SO2 
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released during the regeneration was 1.52 g (see Table 2), indicating roughly that 

the “trap” is contributing to the release with SO2 amount of 0.98 g. This means that 

the trap is collecting at least the same amount of SO2. In addition, this SO2 release 

indicates that the trap itself is regenerating at the same time as the MOC. These 

results are discussed in more detailed in Lehtoranta et al. [12]. 

Table 2. The SO2 amounts (g) released during regenerations. *Note. 4.reg was done after 
weekend. In case of Italic labelled values, engine driving mode was not exactly as intended. 

  

hours 

  

  

MOC only, 

 w/o SO2 add 

MOC only, 

 with SO2 add 

trap+MOC, 

 with SO2 add 

20 1.reg 0.35 0.51 1.29 

44 2.reg 0.18 0.54 1.51 

68 3.reg 0.33 0.54 1.52 

140 4.reg* 0.35 0.58 2.26 

164 5.reg 0.09 0.52 2.00 

188 6.reg 0.21 0.51   

 

Currently, LNG is a viable marine fuel deployed to substantially reduce pollutant 

emissions (NOx, SOx and particles) from ships. The use of LNG has therefore a 

notable effect on air quality and human health. In addition, LNG can provide 

reduction in GHG emissions if methane slip is controlled. This methane slip 

challenge needs to be solved to maximize LNG’s potential to contribute to climate 

neutrality. The present study shows that the MOC can play a role here. As it is an 

after-treatment system, it has potential for both new vessels and retrofits of existing 

vessels. However, further studies are needed to find the optimized solution for MOC 

and performance on different engine loadings as well as in transient loading relevant 

in vessel operation. 
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12.1 Introduction 

Low temperature combustion (LTC) at leaner mixture conditions is a promising 

technique for reducing harmful emissions [1,2]. This study presents our recent 

analysis investigating the effect of different injection strategies on ignition delay time 

(IDT) and heat release rate (HRR) behavior for Reactivity Controlled Compression 

Ignition (RCCI) engine conditions. This is a continuation of our previous work, where 

we investigate the effect of a single injection strategy on ignition and HRR 

characteristics under the same conditions [3]. We use large-eddy simulation (LES) 

with detailed chemistry modeling in order to investigate the mixing and ignition 

characteristics of high-low reactivity mixture blends obtained with different injection 

strategies at RCCI conditions. A compression heating model is utilized to account 

for the ambient temperature and pressure increase due to compression effects.  A 

diesel surrogate (n-dodecane) is injected into a homogeneous air-methane mixture 

with various different double-injection strategies.  In total, we investigate 3 different 

injection strategies by adjusting the first and second injection timings (SOI1,SOI2): 

1) adjusting the SOI1 with keeping SOI2 constant, 2) adjusting the SOI2 while 

keeping SOI1 constant, and 3) adjusting the injected mass split between two 

injections. 

 
1 Contact: firstname.lastname@aalto.fi 
2 Contact: firstname.lastname@wartsila.com 
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12.2 Methodology 

12.2.1 Numerical Methods 

The gas-phase flow is governed by the compressible Navier-Stokes equations with 

Favre filtering, using OpenFOAM-8 CFD solver [4]. The pressure implicit splitting of 

operators (PISO) method is used for pressure-velocity coupling. An implicit 

turbulence modeling approach is used by using a dissipative discretization scheme 

for the convection terms. 

The injected high-reactivity liquid diesel spray is modeled using Lagrangian 

Particle Tracking (LPT) method. A no-breakup model is used with a constant droplet 

diameter, with the assumption that the injected particles have already undergone 

the droplet breakup process. A validation analysis for this assumption is provided in 

Figure 1 by comparing our numerical results against the experimental Engine 

Combustion Network (ECN) Spray A data available in literature. 

For combustion modeling, we use our in-house model called DLBFoam [5] in 

order to speed up the chemistry reaction rate calculation. DLBFoam utilizes a 

dynamic load balancing model and an analytical Jacobian formulation with improved 

ordinary differential equation (ODE) solution routines. A skeletal n-dodecane 

oxidation chemical mechanism developed by Yao et al. [6] (54 species, 269 

reactions) is used.  

 

 

Figure 1. The vapor liquid penetration profiles obtained from simulations (line) and compared 
against the available experimental ECN spray data (symbol) for different operating conditions. 

12.2.2 Compression Effects 

In order to take the compression effects into account during compression stroke at 

RCCI conditions, we utilize a compression heating source term approach in the 

governing flow equations following the works [7] and [8]. The derivation of the 

source term is described in Equations 1 and 2. A schematic describing our 

numerical domain along with the validation of the compression heating model is 

presented in Figure 2. 
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(1) 

 
(2) 

 

 

(a) 

 

(b) 

 

Figure 2. (a) A schematic of the numerical setup used in the simulations (b) Motored pressure 
with compression heating model (red) and a 0D homogeneous reactor (blue) under same 
compression conditions. 

12.2.3 Investigated Conditions 

A double injection n-dodecane configuration is adopted with an injection pressure 

of 50 MPa, and with keeping the injected mass constant (~1.1 mg). As mentioned 

previously, 3 different double-injection strategies are adopted, the details of which 

are given in Figure 3. 
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Figure 3. The 3 different injection strategies utilized in the study. 

 

12.3 Results and Discussion 

The temporal evolution of the HRR in CAD space along with a 3D visualization of 

each case is given in Figure 4. From the results, the following observations can be 

made: 1) for Case 1, the increase in dwell time between two injections leads to 

increased reactivity stratification, reducing the peak HRR value and increasing 

combustion duration; 2) for Case 2, while spatial stratification is observed for 

different injection strategies, the peak HRR value appears unaffected by adjusting 

the SOI2; 3) for Case 3, while increasing the mass split ratio of SOI1 leads to higher 

level of reactivity stratification, it reduces the temporal stratification and leads to 

higher peak HRR values. 
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Figure 4. Top: the temporal evolution of HRR as a function of CAD for Cases 1 (left), 2 (middle) and 3 (right). Bottom: A 3D visualization of the same cases 
at their corresponding IDT+0.2 ms time instances. 
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