
V
 T

 T

 T
 I

 E
 D

 O
 T

 T
 E

 I
 T

 A
2 0 6 8

Marko Palviainen, Timo Laakko & Juha Kolari

Visual WML – a development tool
for WAP applications

V T T R E S E A R C H N O T E S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2000

VTT TIEDOTTEITA – MEDDELANDEN – RESEARCH NOTES 2068

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2000

Visual WML
– a development tool for WAP applications

Marko Palviainen, Timo Laakko and Juha Kolari
VTT Information Technology

ISBN 951–38–5807–3 (soft back ed.)
ISSN 1235–0605 (soft back ed.)
ISBN 951–38–5808–1 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0865 (URL: http://www.inf.vtt.fi/pdf/)
Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2000

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Tietotekniikka, Käyttäjäkeskeinen tietotekniikka, Sinitaival 6, PL 1206, 33101 TAMPERE
puh. vaihde (03) 316 3111, faksi (03) 317 4102

VTT Informationsteknik, Användarorienterad kommunikationsteknologi,
Sinitaival 6, PB 1206, 33101 TAMMERFORS
tel. växel (03) 316 3111, fax (03) 317 4102

VTT Information Technology, Human Interaction Technology,
Sinitaival 6, P.O.Box 1206, FIN–33101 TAMPERE, Finland
phone internat. + 358 3 316 3111, fax + 358 3 317 4102

VTT Tietotekniikka, Palveluverkot, Tekniikantie 4 B, PL 1203, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 7028

VTT Informationsteknik, Internet, Teknikvägen 4 B, PB 1203, 02044 VTT
tel. växel (09) 4561, fax (09) 456 7028

VTT Information Technology, Networks, Tekniikantie 4 B, P.O.Box 1203, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 7028

Technical editing Maini Manninen

Otamedia Oy, Espoo 2001

3

Palviainen, Marko, Laakko, Timo & Kolari, Juha. Visual WML – a development tool for WAP
applications. Espoo 2001. Technical Research Centre of Finland, VTT Tiedotteita – Meddelanden –
Research Notes 2068. 55 p.

Keywords Wireless Markup Language, XML, Extensive Markup Language, Wireless Application
Protocol, WAP application development, mobile internet, Web services, usability

Abstract
The Visual WML system is a result of the WML-Browser project (March 1999 – April
2000) of VTT Information Technology.

The mobile Internet is said to provide the users location and time independent data
services – usage wherever and whenever. As the specifications are becoming more
stable in the near future, the diversity of the terminals will increase to fulfil the different
user needs. The increasing terminal diversity and the increasing population of the
mobile users will add the demand for more and more personal usage profiles. Personal
multimedia will be the key application area, and it also poses several challengies to the
usability of services and applications. Ideally, the future solutions are based on open
standards.

The Wireless Application Protocol (WAP) architecture provides an extensible
environment for application development for mobile communication devices.

With the advent of WAP technology, Internet services in a large extent are coming
within the reach of mobile users. At the same time, the variety of different kinds of
mobile terminals and networks are increasing. For instance, the forthcoming mobile
communication channels (GPRS, UMTS) will increase the transmission capacity, and
wireless local area networks (Wireless LAN) will offer fast and easy access to wired
internet, corporate and home environment LANs and their services. Hence, in particular,
tools for WAP application development are required.

Visual WML is a tool targeted for editing, creating and browsing WML (Wireless
Markup Language) documents. It is also possible to emulate different kinds of WAP
devices by utilizing User Agent Profiles.

4

Preface
This work was carried out in VTT Information Technology within the "WML Browser"
project between March 1999 and April 2000. The main goal of the project was to build
a software that is capable of browsing WML (Wireless Markup Language) and
emulating different WAP (Wireless Application Protocol) terminals, and allows the
WML developer to build and edit WML documents by using visual components. Also,
the project group decided to use the existing technologies and well-defined
specifications and standards as much as possible. The developed software was named
Visual WML.

WAP architecture enables the interconnection of the wireless data network and the
wired data network. WAP technology brings the Internet content and advanced data
services to digital cellular phones and other wireless devices. For integration, WAP
specifies a number of specifications that define the layers of the WAP protocol stack.
The highest layer of the WAP protocol stack is the WAP application environment
(WAE) that specifies different content formats and services for user agents, e.g. WAP
phones, to implement.

The most important content format of WAE is WML that is used for content browsing.
WML is an XML (Extensible Markup Language) application. XML provides an easy
and flexible way to describe and deliver a structured information over the WWW
(World Wide Web).

5

Contents

Abstract ... 3

Preface... 4

List of symbols.. 7

1. Introduction .. 9
1.1 Background.. 9
1.2 Wireless Application Protocol (WAP) .. 9
1.3 VTT WAP.. 10
1.4 Standards and Tools used... 11
1.5 Programming and hardware environment.. 11
1.6 System requirements.. 12

2. Visual WML components and architecture.. 13
2.1 Architecture.. 14
2.2 Components ... 14

3. Parsing and editing of an XML document ... 16
3.1 XML... 16

3.1.1 Applying XML ... 16
3.1.2 Document Type Definition... 17
3.1.3 Wireless Markup Language (WML) .. 18

3.2 Document Object model .. 19
3.3 SAX ... 20
3.4 XML parsing.. 20

4. WML Editor ... 21
4.1 Tree view ... 21

4.1.1 Implementation aspects .. 22
4.2 Card view... 24

4.2.1 Implementation... 25
4.3 Code view .. 27

4.3.1 Implementation aspects .. 27
4.4 Help Tool ... 27

4.4.1 Implementation... 28

5. Phone Editor... 30
5.1.1 Implementation aspects .. 32

6

6. WML browser – phone simulator .. 33
6.1.1 Technical implementation .. 34

7. User Agent Profile.. 36
7.1 Introduction.. 36
7.2 The architecture ... 37
7.3 UAProf schema and base vocabulary .. 37
7.4 RDF.. 38

8. Examples .. 39
8.1 Building a new WML deck.. 39
8.2 Adding elements .. 40
8.3 Attribute editing... 42
8.4 Adding actions ... 42
8.5 Saving .. 43

9. User requirements and design process ... 45
9.1 Methods ... 45

9.1.1 Design process.. 45

10. Conclusions .. 48
10.1 Overall evaluation results .. 48
10.2 Technical results .. 48
10.3 Future work.. 49

11. Summary .. 51

Acknowledgements... 52

References... 53

7

List of symbols

DOM Document Object Model

DTD Document Type Definition

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol [RFC2068]

UAPROF User Agent Profile [UAPROF]

UI User Interface

W3C World Wide Web Consortium

WAE Wireless Application Environment [WAEO]

WAP Wireless Application Protocol

WDP Wireless Datagram Protocol [WDP]

WML Wireless Markup Language [WML]

WSP Wireless Session Protocol [WSP]

WTP Wireless Transaction Protocol [WTP]

WTA Wireless Telephony Application [WTA]

WTLS Wireless Transport Layer Security [WTLS]

XML Extensible Markup Language [XML]

8

9

1. Introduction
The Visual WML system to be described in this report is an application development
tool for editing, creating, and browsing WML documents. It is also possible to emulate
a variety of devices by utilizing User Agent Profiles.

1.1 Background

The Visual WML system is the result of the "WML-Browser" project (March 1999 –
April 2000) of VTT Information Technology.

The project's major aim was to develop a WML development tool for browsing and
editing WML documents. The initial goals and requirements included the following:

• to develop a WML browser tool

• to support the editing of WML documents

• to enable easy transforming of HTML documents to WML documents

• to simulate different kinds of mobile terminals based on the user agent profile
information.

The developed WML tool was later named "Visual WML".

1.2 Wireless Application Protocol (WAP)

The Wireless Application Protocol (WAP) architecture provides an extensible
environment for application development for mobile communication devices [WAPA,
WAEO].

With the advent of WAP technology, Internet services in a large extend are coming
within the reach of mobile users. Hence, in particular, tools for WAP application
development are required.

10

1.3 VTT WAP

One of the initial aims of the WML Browser project was to support other research
projects of VTT (cf. http://www.vtt.fi/tte/projects/WAP/). Figure 1.1 illustrates the
current WAP research and development system architecture.

Figure 1.1. WAP research and development system architecture.

VTT Information Technology has developed a WAP research and development system
which enables experimentation with new multimedia technologies and ideas, and their
implementations in the mobile user’s Internet environment before the method is
standardised and incorporated into commercial products. The system covers the entire
chain from content servers through presentation format and data transfer protocol
modifications to the user’s browser and terminal [WWW00,HCI99,LEP99]. It includes
the key components needed for the development and testing of new services as well as a
development tool for application developers.

The results of the WML browser project includes some major components of the WAP
client side shown in the figure.

WAP Client WAP Gateway

Content encoding

Terminal
Adaptation

Protocol Adaptation

Web Server

WAP
Applications

HTML
documents

HTML->WAP(WML)
Conversion

Web Content Proxy

HTML
Content

Adaptation

WAP Browser

H
T
T
P HTTP HTTP

Image
Format

ConversionWAP
Protocol

Stack

WAP
Protocol
Stack HTTP

WAP Proxy

Application
Development,

Simulation
and Testing

INTERNET/INTRANET

11

The first WAP terminals came onto the market in 1999, and in future the range of
mobile devices and users is likely to expand rapidly. However, this is dependent on the
Internet implementation being made sufficiently user-friendly and useful from the
perspective of both the service provider and the mobile user. Usability research is an
essential aspect of VTT’s WAP development work [WWW00] as also in this WML-
Browser project.

The modular structure of VTT Information Technology’s WAP architecture allows its
modification as the WAP specifications are continuously developed. This also facilitates
the transfer and timely exploitation of components in the changing environments of
partners according to their individual needs.

1.4 Standards and Tools used

The principal idea of the project was to use the existing technologies, and well-defined
specifications and standards as much as possible.

The WML version 1.1 (approved in June 1999) represents the culmination of WAP
Forum members' efforts to resolve technical issues and ambiguities in WAP Version 1.0
specifications. However, the version 1.1 is not backward compatible with the older
version 1.0 (April 1998). The developed Visual WML system supports the WML
version 1.1. A freely available validating XML parser [XML4J] for Java including
standard DOM interfaces for accessing the document has been used.

1.5 Programming and hardware environment

The JDK 1.2.2, Java development kit from Sun Microsystems, was used on the
Windows NT 4.0 platform to build the application. The user interface of the program
was implemented with Java Swing components. Visual WML is runnable anywhere the
Java virtual Machine, version 1.2.2, is installed.

The development work has made in Windows NT, but the system is also portable to
other operating systems. During the project the program was tested, successfully, on the
Linux platform (Red Hat 6.1).

12

1.6 System requirements

The following are the minimum requirements for a computer system to run
VisualWML:

– Windows NT 4.0, Windows 98 or Linux

– 200 MHz Pentium or faster processor.

– 64 MB of RAM or more.

–Display resolution 1024x768 or higher

– Java™ Runtime Environment 1.2.2 or later must be installed.

You need an Internet connection in order to test services available on the Internet. To
read HTML documents into VisualWML, you need an access to separate HTML to
WML conversion proxy server.

13

2. Visual WML components and architecture
Because the WML syntax (look at Chapter 3.1) is somewhat similar to HTML, it is
possible to create WML decks also with a standard text editor. But Visual WML makes
it much easier because of its visual user interface for defining elements and attributes,
which at the same time can be seen visualized in WML-browsers. A WML deck can be
seen in three different views (Figure 2.1). On the left a tree view, in the center a card
view and on the right the browser view of the deck is visualized.

Figure 2.1. WML-Browser main window.

Visual WML ensures that the edited deck syntax is valid at all times. WML-deck can be
loaded from local disc or from the web. It is also possible to import HTML pages,
because system uses VTT WAP Proxy to transform HTML to WML.

After the deck is imported, it can be edited and seen visualized in a phone simulator in
real time. In Visual WML it is also possible to define new phone models and simulate
decks in several different simulators at the same time. In the simulator views it is
possible to test deck's functionality too.

14

2.1 Architecture

Figure 2.2 shows the Visual WML architecture. On the main level Visual WML has tree
components, which are parser, editor and browser. The parser part (chapter 3) takes care
of WML document importing (and exporting too), the editor part (chapter 4) handles
WML-document editing and the browser part simulates (chapter 6) and visualizes the
current deck.

Figure 2.2. Visual WML architecture.

2.2 Components

Visual WML has been implemented with Java, and it's components (classes) have
divided in packages that are related to the Visual WML architecture (cf. Figure 2.2) as
shown in the Figure 2.3. WML-package takes care of controlling all the other packages
in parser, editor and browser parts. More detailed descriptions of these packages are in
chapters 3, 4 and 6, respectively.

Source XML

Phone Editor

Code

WML

DOM

Source & Error View

DTD

Parser Editor Browser

Help Tool

WML-
Browser

15

Figure 2.3. Visual WML packages.

Parser Editor Browser

Parser TreeTool

CardTool

CodeView

Help

Menus

PhoneEditor

PhoneSimulator
WMLBrowser

WML

16

3. Parsing and editing of an XML document
3.1 XML

The Extensible Markup Language (XML) [XML, LEV98] is the format for structured
documents and data on the Web. Also, XML is a simplified subset of the Standard
Generalized Markup Language [SGML].

XML uses markup tags (<...>), but unlike HTML, XML tags describe the content, rather
than the presentation of that content. HTML tag names are limited to a predefined set
and are primarily used to indicate how the enclosed text data is to be displayed. The set
of XML tag names are used to indicate what the enclosed data means. For example tags
like , <big> and <i> define the style for the text in HTML, they don’t tell much
about what kind of information they include.

In XML style sheets define the style of the document. With the extensible style sheet
language (XSL) [XSL] is possible to attach style e.g. fonts, spacing and font styles to
XML, and it is even possible to choose which elements are visualized.

XPointer [Xpointer] and XLink [Xlink] define a standard way to represent links
between resources. In addition to simple links, like HTML's <a> tag, XML has
mechanisms for links between multiple resources and links between read-only
resources. XPointer describes how to address a resource, XLink describes how to
associate two or more resources.

3.1.1 Applying XML

Almost all information we deal with every day can be represented as structured. When
things are well organized, it is easy to find the information you are looking for. Let’s
look at the following example (see Figure 3.1) of a simple product catalog which
contains a few products grouped into categories. Each product can be described with
certain attributes. It can be seen that the catalog has a structure which can be easily
represented in XML. With an appropriate application it is now it is easy to get or update
information about the products.

17

Figure 3.1. A little product catalog coded in XML.

3.1.2 Document Type Definition

DTD [DTD] (Document Type Definition) describes the legal structure of an XML
document. It is optional, but its use is recommended, especially if XML documents are
used in an application that reads documents from several content editors.

Product catalog

Monitors:
Sony Multiscan ($500)
Nokia Multigraph ($550)
…

Keyboards:
Keytronic Wintronic
($50)

 ...

<?xml version="1.0"?>
 <catalog> <!-- This is the root element -->
 <category id="monitors">
 <product>

<id>12234</id>
<model>Nokia Multigraph 477x</model>
<price>$500</price>

 </product>
 <product>

 <id>123456</id>
<model>Sony Multiscan</model>
 <price>$550</price>
 </product>
 </category>
 <category id="keyboards">

<product>
 <id>134</id>
 <model>Keytronic

wintronic</model>
 <price>$50</price>

 </product>
 </category>
</catalog>

18

<!-- Typical usage:
<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog> ... </catalog>
-->

<!ELEMENT catalog (category)+>
<!ELEMENT category (product)*>
<!ATTLIST category id CDATA #REQUIRED>

<!ELEMENT product (id, model, price)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT model (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Figure 3.2. The DTD for the catalog document shown in Figure 3.1.

For example (see the above figure), DTD declares which elements can be the children
of an element and which attributes an element can have.

For defining the structure of an XML document, it is necessary to use symbols in DTD.
For example (category)+ means that the catalog element must have one or more
category elements and (product)* means that the category element can be empty or
have one or more product elements. The product element must have three children in
the following order: id, model and price.

Attributes are also defined in DTD. For instance, the category element has an attribute
named id, whose type is CDATA. The REQUIRED keyword means that the attribute
must always be used. Note that it could be possible to leave out the id attribute and put
it as a child element of a category element, in the same way as the product element's id
attribute.

3.1.3 Wireless Markup Language (WML)

Wireless Markup Language (WML) [WML] is an application of XML. Hence, all the
rules explained in the earlier sections about XML hold true also in WML. Let's look at
the following example of Figure 3.3:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
 "http://www.wapforum.org/DTD/wml12.dtd">
<wml>
 <card ordered="true" newcontext="false">
 <p align="left">
 This is an example

An another sample.

 </p>
 </card>
</wml>

Figure 3.3. A sample WML document.

19

The code is somewhat similar to HTML, but is not as complex. In particular, WML is
optimized for mobile usage and terminals, and has additional features, for instance, to
support the navigation. All the elements are declared in DTD (wml12.dtd). The result in
a user's device should look like the following (Figure 3.4).

Figure 3.4. Visual presentation of the above example (Figure 3.3) by Visual WML.

3.2 Document Object model

The DOM (Document Object Model) [DOM] is a programming API for XML (and
HTML) documents. It defines the logical structure of documents and the way to access
and manipulate a document. The World Wide Web Consortium (W3C) has defined the
DOM specifications in OMG IDL (Object Management Group, Interface Definition
Language) [OMGI].

DOM enables programmers to create and build documents, navigate their structure, and
add, modify and delete elements and content in a standard way. One important objective
for the Document Object Model is to provide a standard programming interface that can
be used in a wide variety of environments and applications. The DOM can be used with
any programming language.

The DOM specification has currently two levels. The level 1 specification defines basic
interfaces in the Core specification and HTML features in the HTML part. Level 2
defines interfaces for CSS, events, filters, iterations and range. The level 2 proposal is
still waiting for its acceptance as a W3C recommendation.

An XML-DOM parser must implement the DOM interfaces in order to provide a
standard way for clients to access XML documents (see Section 3.4). When an XML
parser reads an XML document, it builds a DOM tree in the memory. The DOM tree
consists of a root node, nodes and leaf nodes. These nodes can be manipulated with the
DOM interfaces that the XML-DOM parser implements.

20

The Node interface is the primary data type for the entire Document Object Model. It
represents a single node in the document tree. Almost all the other interfaces extend the
Node interface and inherit its methods e.g. Element, Document and Attr interfaces, but
not all methods are appropriate in inheriting interfaces and they can return null pointers
or cause exceptions.

3.3 SAX

SAX [SAX], the Simple API for XML, is a standard interface for event-based XML
parsing, developed collaboratively by the members of the XML-DEV mailing list. SAX
allows application writers to write applications that use XML parsers, but are
independent of the parser used.

The SAX mechanism processes XML data in the form of a text stream and alerts the
application whenever something interesting is encountered. An event-based API reports
parsing events (such as the start and the end of elements) directly to the application
through callbacks.

3.4 XML parsing

A software module that reads XML documents is called an XML processor or, more
commonly, an XML parser. The DOM-based XML processor is used to read XML
documents and to provide access to their content and structure by implementing DOM
interfaces. For high-speed processing of the XML, the SAX parser is appropriate e.g.
with SAX events you can do some filtering for documents.

There are a great variety of parsers in the market for different languages and for
different document types. When choosing a parser, it is necessary to do some planning.
When doing software, which is very time critical, a parser for C language should be
chosen.

However, Java itself provides an easy programming environment and the portability for
an application. For instance, Java provides an URL class loader mechanism that enables
downloading of Java code and dynamic object creation.

The IBM’s XML4J [XML4J] is an XML parser for Java that was used in the project,
because it provides many advanced features. It is important that the parser conforms to
the XML 1.0 Recommendation and associated standards and specifications (DOM 1.0,
SAX 1.0, and Namespaces). The parser version discussed in this report is the XML4J
2.0.11 [XML4J].

21

4. WML Editor
4.1 Tree view

The tree view of the editor shows WML elements as a tree structure (Figure 4.1). In the
tree view it is possible to add and remove WML-elements. It is also possible to use edit
commands (cut, copy and paste) to manipulate the tree. The view is synchronized with
the other editor views - the card view and code view (see Section 4.2 and 4.3) and
browser windows. So, all the changes can be seen in real time in other windows.

Figure 4.1. Adding WML element in tree view.

Visual WML takes care of WML document validity so that it is not possible to do edit
operations that are against DTD. For example, if you want to add a new WML-element
Visual WML shows which elements it is possible to a particular place.

Also, Visual WML forces the user to define implied attributes and childrens to the
added element. If the user adds a text element in the tree view the text string can be
edited in a special text editor. The text editor has normal edit operations and it is also
possible to load text files from disc to the text element.

22

4.1.1 Implementation aspects

Javax.swing.JTree class does the implementation of the tree view of an XML
document. With the JTree, you can display hierarchical data such as XML documents.
A JTree object doesn't actually contain data, it simply provides a view of the data. The
data can be stored in the DefaultTreeModel class, which you can dynamically edit and
that data can the JTree use for displaying. The TreeCellRend class is used for
customizing a JTree's display, e.g. you can add your own icon's in the tree leafs.

Look at the figure 4.2 that represents a simple UML class model of the JTree related
classes. As you can see the JTree class has methods such as collapse() and expand(),
these methods has only to do with the visual view of the data.

Figure 4.2. The class hierarchy of the Tree View implementation.

The loadDocument(Document document) method starts the building process by calling
the setDocument method in the TreeModel class. The org.w3c.Document is gone
through node by node in the TreeModel class while building the DefaultTreeModel
structure.

The TreeModel class constructs a tree data structure by using the MutableTreeNode
interface, which is very similar to the org.w3c.Node. The TreeNode represents a single
node in a tree view and defines the requirements for an object that can be used as a tree
node in a JTree. The subclass MutableTreeNode defines the requirements for a tree
node object that can change by adding or removing child nodes, or by changing the
contents of a user object stored in the node.

23

The MutableTreeNode insertElementNode(Node newNode, MutableTreeNode where, int
w) method (see Figure 4.3) is called every time when a new element is encountred.
Before this method the root element must be inserted in the TreeModel and after that the
root element is passed to this method, e.g. insertElementNode(Node theFirstChild,
MutableTreeNode theRoot, int childCountofTheRootElement).

All elements are gone through in this method and every element is passed in the
insertNode(String what, MutableTreeNode where, int index) method where a new node
(MutableTreeNode) is made. The insertNodeInto(node, where, index) method inserts a
new node in the TreeModel. The text nodes also use this method, but before they must
be handled in the insertTextNode method.

The nodeMap and the treenodeMap (HashTable) are used for making the relationship
between the MutableTreeNode and org.w3c.Node. For example if you like to know
which node in the JTree corresponds to the org.w3c.Node, use the nodeMap's
get(Object obj) method as the following Node node = (Node)nodeMap.get(treeNode).
The treenodeMap is used for getting the corresponding JTree node. This way it is easy
to edit simultaneosly the data the TreeModel and the org.w3c.Document holds.

MutableTreeNode insertNode(String what,MutableTreeNode where)
{
 MutableTreeNode node = new DefaultMutableTreeNode(what);

insertNodeInto(node, where, index);
return node;

}

MutableTreeNode insertElementNode(Node newNode, MutableTreeNode where)
{

int w = where.getChildCount();
 String name = Makename(newNode);

 MutableTreeNode element = insertNode(name, where, w);
 nodeMap.put(element, newNode);
 treenodeMap.put(newNode, element);

NodeList children = newNode.getChildNodes();
 int len = (children != null)?children.getLength():0;

for (int i = 0; i < len; i++)
{

Node node = children.item(i);
switch (node.getNodeType())
{
 case Node.TEXT_NODE:

 insertTextNode(node, element,
 element.getChildCount());

 break;

 case Node.ELEMENT_NODE:
 insertElementNode(node, element);

 break;
 }

 }
 return element;
 }

Figure 4.3. A piece of code of the TreeModel's building process.

24

4.2 Card view

The card view visualizes WML elements and attributes. In the card view the deck is
visualized as a tapped panel, which has one card in every panel (Figure 4.4). In the card
view it is possible to do all the same operations (add, remove, cut, copy elements and
edit text elements in text editor) which are possible in tree view. The card view differs
from the tree view because in the card view the values of element attributes can be
changed too.

Figure 4.4. Card view. On the left show mode is all elements and on the right show
mode is one level.

The card view has tree different view modes. Modes are all elements, one level and one
element. So it is possible to see all elements, one level in hierarchy or one element on
the card view at same time. This is an important feature especially if the deck is very
long. In Figure 4.4 on the right card view's show mode is one level. On the left is shown
parent level and arrows show child level elements. By clicking these it is possible to
move lower or higher level in hierarchy.

4.2.1 Implementation

Figure 4.6 shows the card view architecture. CardPanel is a JTabbedPane, which
contains cards. Card is one card (JPanel) in CardPanel and it contains current card
WML elements and drawing and control methods for elements. It inherits class named
CardFunctionality, which contains control methods for attributes editing and methods

25

for handling different show modes. Card contains WMLElements which is a pointer to
all card WML elements. Object WMLElement is a unit which contains a single DOM
element (is WML element or text). It has coordinate information and methods for
coordinates counting for WMLElements.

It uses classes in packages (Anchors_images_timers, Decks and cards, Text_formatting,
Tasks, Events, User_input and Variables) for drawing and handling different kind of
WML elements attribute coordinates. For example CardBase (Figure 4.5) contains
image of current WMLElement, coordinates of attributes and methods to get attributes
basis on coordinates. Each class in these packages has same structures as in this
CardBase example. CardBase inherits methods from class ElementBase, which has
methods for attribute and text drawing and methods for handling coordinates.

Figure 4.5. One element (card) base in package Decks and cards.

CardBase
• Contains element image
• Contains coordinates for

attributes
• Attribute get methods

26

Figure 4.6. Technical implementation of card view.

WMLElement
• Contains DOM element
• Handles element coordinates
• Drawing methods for single element
• Handles element attribute coordinates
• Element text formatting (bold,italic,...)

ElementBase
• Methods for

element attribute
texts drawing

• Methods for handling
elements attribute
coordinates

• Methods for getting
attributes from element

CardPanel
• Contains cards
• Add and remove cards
• Handle card updates

Card
• Contains WMLElements
• Control methods for

elements
• Drawing methods for

elements

CardFunctionality
• Control methods for

attributes editing
• Handles different card

show modes (all,one
level,one element)

Anchors images timer
• ABase
• AnchorBase
• ImgBase
• TimerBase

Decks and cards
• AccessBase
• CardBase
• HeadBase
• MetaBase
• TemplateBase

Events
• DoBase
• OnEventBase
• PostFieldBase

Tasks
• GoBase
• NoopBase
• PrevBase
• RefreshBase

Variables
• SetvarBase

Text_formatting
• BigBase
• BoldBase
• BrBase
• EmphasisBase
• ItalicBase
• pBase
• SmallBase
• StrongBase
• TableBase
• TdBase
• TrBase
• UndelinedBase

User input
• FieldsetBase
• InputBase
• OptGroupBase
• OptionBase
• SelectBase

Text
• TextBase

27

4.3 Code view

In the code view (Figure 4.7) it is possible to edit WML-code as in normal text editor.
After changes are made it is possible to save and recompile the deck. If there were
errors in the code, code view shows in which rows in the WML-code the errors are.

Figure 4.7. Code view.

4.3.1 Implementation aspects

Code view is implemented (in class ViewWMLCodeFrame) using java classes JFrame,
JTextArea and JList. JFrame contains both code and error part. Code part is JTextArea
and error part is JList, which contains errors. When error is clicked Listlistener is
activated and right place will be scrolled in JTextArea. Both the code and error come
from parser.

4.4 Help Tool

The Visual WML system has XML-based help pages. With the help tool (Figure 4.8), it
is possible to get infomation about the usage of the system, and explanations of different
WML-elements and attributes. Also, it is possible to find attributes and elements with
index search. The help provides descriptions of all elements and attributes and also there
can be found examples how to use these elements.

28

Figure 4.8. Help tool.

4.4.1 Implementation

The WmlHelp is the main class and it has sub components the HelpTree and the
StyledTextPane that do the actual displaying (Figure 4.9), all components use the Java
standard Swing architecture.

The HelpTree provides a view to the structure of a help document. While the user
traverses the tree the StyledTextPane shows the help information in that particular node.
The super class JTextPane supports embedded components such as JLabels and the
styled text, and it uses the document interface for holding its data.

29

Figure 4.9. The class hierarchy of Help Tool.

The HelpDocument class gets and parses the WML help document, which is encoded in
XML. The History class is used for caching the nodes of the document while the user
traverse the tree.

WmlIndexDialog provides a mechanism for searching the information in the WML help
document. The IndexDialog builds a familiar index search dialog, which an application
writer can subclass and do his implementation with a data he wish to use. The
attributeDialog is only for displaying the attribute information of a particular element
and it uses the StyledTextpaneforDialog.

30

5. Phone Editor
With the phone editor tool (Figure 5.1) of Visual WML it is possible to define and edit
WAP phone models. Also, it is possible to see in real time what the browser looks with
the new edited settings (cf. Figure 5.3).

Figure 5.1. Phone editor.

Phone editor settings are divided in the three main categories, which are the User Agent
Profile (UAPROF), the element settings, and the simulator settings part. In UAPROF
part it is possible to define browser general settings like a vendor, model, etc. and, also,
it is possible to define what are the features the browser supports (for example, it is
image or sound capable and it's screensize, character and colordepth settings too). It is
also possible to import and export UAPROF files.

In element settings part, it is possible to define font styles to different elements. Before
font styles can be selected, the device's fontlist must be selected from fontlist selector
(Figure 5.2). In the simulator settings there are settings such as background and
textcolor. Also it is possible to set event buttons (onenterforward and onenterbackward)
visible and enable edit in the browser view.

31

Figure 5.2. Fontlist selector.

Figure 5.3. Browser screen with settings defined in Figure 5.1.

32

5.1.1 Implementation aspects

PhoneEditor technical implementation is shown in Figure 5.4. Class PhoneEditor is a
JFrame which contains visual java swing components, like JTextFields, JComboBoxes,
etc. These can manipulate phone settings (in class PhoneSettings). In phone editor
UAProfiles can be imported or exported. Class UAProfManager takes care of these
tasks. In phone editor it is possible to define current phone fontlist and that is possible in
font selector dialog (class FontSelector).

Figure 5.4. PhoneEditor class hierarchy.

PhoneEditor
• Contains PhoneSettings
• Methods for:

-UAProf settings
-Phone element settings
-Phone simulator settings

• Import/Export settings to disc
• Import/Export UAProf settings

FontSelector
• Methods for import/export

device's fontlist
• Fontlist visualization methods

UAProfManager
• Methods for import/export

UAProf from dics
to PhoneSettings

• Methods for manipulating
UAProf

PhoneSettings
• Contains single phone settings:

-UAProf settings
-Element settings
-Simulator settings

• Methods for import/export to
disc

• Methods for set/get settings
variables

33

6. WML browser – phone simulator
Browsing is possible in the browser view of the Visual WML main window or in the
separate phone simulator (browser) windows (Figure 6.1) of the system. In the WML
browser view, there is a control panel on the top.

Figure 6.1. Visual WML browser part on the left. On the right is a simulator window.

Browser window represent WML elements with text and icons. It is possible to edit
these texts if editable mode is selected. Element's functionality is possible to test by
clicking the element icons. For example by clicking a go element icon (which is
represented with an arrow) it is possible to navigate to new deck. Browsers are
synchronized to other parts of Visual WML and all edit operations, which are made to
deck, are updated to the others Visual WML windows. It is possible to test events such
as a timer event with these icons. On the right in the browser window is bar which
makes it possible to scroll rows. For testing onenterbackward and onenterforward
events there are two buttons on bottom of window.

34

By writing a URL it is possible to load new locations (WML or HTML pages which are
transformed to WML) to browser. In this panel there are also buttons which make it
possible to move in navigation history between decks and cards.

6.1.1 Technical implementation

In Figure 6.2 WMLBrowser and Phone architecture are shown. Both have PhoneScreen,
which implements phone simulator visualization. Difference between phone and
browser part is that the browser contains PhoneControlPanel (panel which have buttons
and location field) and AnimationPanel (which contains animated Visual WML logo)
too.

To make visualizations PhoneScreen uses PhoneSettings class, which contains current
phone (or browser) settings (fonts, screensize, etc...). PhoneScreen makes
phoneElements from WMLElements and visualizes them in rows. PhoneScreen inherits
class PhoneFunctionality which contains methods for WML elements functionalities
and WML tasks. It has also methods, which make it possible to edit texts in simulator
window. Class PhoneFunctionality contains variables (class Variable), which takes care
of variables defined in WML deck.

35

Figure 6.2. WML-Browser and Phone architecture.

PhoneSettings
• Contains:

-UAProf settings
-Element settings
-Simulator settings

• Methods for import/export to
disc

• Methods for set/get phone
settings

PhoneScreen
• Contains:

-PhoneElement rows
-PhoneSettings

• Methods for:
-constructing element rows
-paint
-scroll
-mouse control

PhoneFunctionality
• Contains:

-Variables
• Methods for:

-WML element functionalities
-WML tasks
-Editing in PhoneScreen

PhoneElement
• Contains:

-coordinates
-font
-icon/image for element

• Methods for:
-element size counting
-drawing

Variable
• Contains:

-name
-value

• Methods for:
-variable add/remove
-parsing variables from string
-substitituting variables
 to string

WMLBrowser
• Contains:

-PhoneScreen
-PhoneControlPanel
-AnimationPanel

Phone
• Contains:

-PhoneScreen

36

7. User Agent Profile
7.1 Introduction

The WAP architecture has brought the World Wide Web to mobile devices. In the near
future there will very probably be a wide range of mobile terminals with different
capabilities and characteristics. Also, there may be available a variety of different kinds
of alternative network connections (mobile and wireless local area networks) for a
mobile device. The consequence of this is that clients may receive content that they
cannot display or store or the content can take too long to download over the network to
the client. How to adapt the content to these devices (and networks)?

The Composite Capabilities/Preferences Profile (CC/PP) framework [CC/PP,CC/PP_R]
creates a structured format for how a client device tells an origin server about its
capabilities and preferences (Figure 7.1). For expressing a user agent’s profile the
CC/PP uses Resource Description Framework (RDF) [RDF], which is an application of
XML and which defines a simple model for describing interrelationships among
resources in terms of named properties and values. The User Agent Profile (UAProf)
[UAPROF] uses the CC/PP model to describe the characteristics of a user agent by
defining a set of components and attributes.

Device profiles
(CC/PP; UAProf)

Web-Server
(WML, HTML)

WAP-Gateway

W SP
request

WSP
response

WAP
Devices

HTTP
request

HTTP
response

Figure 7.1. The User Agent Profile use case.

37

7.2 The architecture

The WAP User Agent Profile specification [UAProf] enables the end-to-end flow of a
User Agent Profile between the WAP client, the intermediate network points, and the
origin server. Capability and Preference Information (CPI) is transmitted in the headers
of WSP [WSP] and HTTP1.1 (with HTTP Extension Framework) protocols. WAP
gateway translates the WSP requests into HTTP 1.1 requests.

The CPI consists of information from the device hardware, user agent software, and
user preferences and network characteristics. The device may not have all this
information, but it may publish a single URI that point's e.g. to the device manufacturer
and the WAP gateway resolves that URI and retrieves the information from the
manufacturer host. The WAP gateway forwards the request from the client to the origin
server and includes the profile information in HTTP header (see Figure 7.1). On the way
to the origin server the profile may pass through one or more proxies. The origin server
extracts the profile information and resolves all indirect references to information stored
at other network elements. Then, the origin server formats the requested content into the
appropriate format using the UAPROF and generates the HTTP response. The WAP
gateway translates the HTTP response into the WSP response.

The UAProf may be cached in the WAP gateway. The WAP gateway applies the profile
on all requests from the client, and, further, it may also add information to the profile
such as additional network information.

7.3 UAProf schema and base vocabulary

The schema for the User Agent Profile's has five key components that are
HardwarePlatform, SoftwarePlatform, BrowserUA, NetworkCharacteristics and
WapCharasteristics. Each of these resources has a collection of properties that describe
the component. The HardwarePlatform describe the hardware characteristics of the
terminal device such as screen size, model etc. The SoftwarePlatform has properties that
describe the operating system software such as OSVersion etc. The BrowserUA has a
collection of attributes to describe the HTML browser application. The
NetworkCharasteristics has information about the network’s capability e.g. current
network bearerservice and a supported security. The WapCharacteristics has properties
to describe WAP capabilities on the device e.g. WmlDeckSize and WapVersion.

The following example (Figure 7.2) describes the HardwarePlatform component. The
schema uses RDF model that is described in the next subsection 7.4.

38

<rdf:Description ID="HardwarePlatform">
 <rdf:type resource="http://www.w3.org/TR/PR-rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#Component"/>
 <rdfs:label>Component: HardwarePlatform</rdfs:label>
 <rdfs:comment>

The HardwarePlatform component contains attributes that describe
the device's hardware characteristics, such as display size,
character set, alpha-numberic capable,etc.

 </rdfs:comment>
</rdf:Description>

Figure 7.2. The component definition of the HardwarePlatform.

In the next example (Figure 7.3), ImageCapable, VoiceInputCapable and Keyboard are
properties that override the default ones.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema1.0#">

<rdf:Description ID="TerminalHardware">
 <prf:Component>
 <rdf:type resource=

"http://www.wapforum.org/UAPROF/ccppschema1.0/#HardwarePlatform"/>
 <prf:Defaults rdf:resource="http://www.xyz.com/profiles/1234" />

 <!-- override the ImageCapable property and add
VoiceInputCapable and Keyboard properties -->

 <prf:Imagecapable>Yes</prf:Imagecapable>
 <prf:Keyboard>predictive</prf:Keyboard>
 <prf:VoiceInputCapable>Yes</prf:VoiceInputCapable>
 </prf:Component>
</rdf:Description>
</rdf:RDF>

Figure 7.3. A snippet of a profile.

7.4 RDF

The Resource Description Framework (RDF) [RDF] is being developed by the World
Wide Web Consortium (W3C). Its aim is to provide the foundation for metadata
interoperability across different resource description communities. RDF provides
interoperability between applications that exchange metadata and is targeted for many
application areas including resource description, site-maps, content rating, electronic
commerce etc.

RDF uses XML as a common syntax for the exchange and processing of metadata. The
RDF syntax is used to store instances of the RDF model into machine-readable files and
to communicate these instances among applications. In this work, for parsing RDF the
SiRPAC [SIRPAC] parser is used.

39

8. Examples
This chapter provides examples of creating and manipulating a WML deck using the
Visual WML system.

8.1 Building a new WML deck

The following steps illustrate how to build a new WML deck and how to add elements
to it.

First, go to the File menu and click on the new Deck item. After that the program asks
you to specify the file name, you must type the name on the File Dialog box (see Figure
8.1). After that click on the save button. Now you have created a new WML deck and
the program should look like in the Figure 8.2.

As you can see there is just two elements in your WML document, which are the card
element and the up most WML element.

The card element is a required element in a WML document, it devides a WML deck
into the single units that are shown on the device's screen one of each time.

Figure 8.1. File dialog.

40

Figure 8.2. A new WML deck.

8.2 Adding elements

You can easily add new elements in your document without doing any grammatic
errors. The only way to add elements is to use the right-most (or secondary) mouse
button. Let's start with adding a p element in the card element (see Figure 8.3). First
click (right button) on the card element in the tree view and choose the menu item add
child -> formatting -> p and click on the p menu item. Now you should have succesfully
add a new element in your document. If you want to display something in the card0, you
must add a text node. Click on the p element and choose a menu item add child -> text
and click on it, now the text editor should appear. With the text editor you can edit text
nodes of your document. Write e.g. "Hello" and close the text editor (File->close), note
that you don't have to save anything. Now the text is in the document. You could have
done the previous add operations the same way on the card view, just try it.

41

Figure 8.3. Adding a p element.

The next step is to add another card element to the document. Now we can try the add
after menu item, which add elements to the same level. If you like to put a new card
element before card0 you should use the add child menu item on the root element. Add
the card element as shown in the Figure 8.4.

Figure 8.4. Adding a card element.

42

8.3 Attribute editing

You can specify a new attribute or chance its value on the card view (in the middle of
the program). Let's add a new value for the card element's (card0) id and title attributes
(see figure 8.2). The id attribute is necessary if you want to navigate between cards. Just
click on the text field and write e.g. "card0" (id) and "Hello card" (title).

Do the same for the card1 (id = "card1" and title = "Buy card") and add the p element
and e.g. the text "Bye!".

Now your program should look like in the Figure 8.5. Look how the WML Browser (on
the right) keeps updated as you edit the document.

Figure 8.5. All together.

8.4 Adding actions

Let's put some action into our example deck. The do element specifies an action e.g.
when user click on the button. The do element requires a child element e.g. go element
that is used for indicating a resource. Add do element after text element in the Hello
card (see Figure 8.6).

43

The program asks you to specify type attribute for the do element, this is because the
type attribute is required. You can get some help about the do element attributes by
clicking on the help? button. Add a new value "accept" and press enter. Then you must
choose a child element go and after that you must specify the href, put value "#card1"
and press enter. Now you have made a WML deck with some functionality. You can try
how your first deck works in the WML Browser. When you are in the first card, click on
the arrow and look what happens.

Figure 8.6. An required attribute.

8.5 Saving

Before saving you must note that the current version of the program supports the WML
version 1.1 and the DTD it uses is located at the WAPForum. If you want to use a local
DTD, open the source editor by choosing Options->View WML Code (see Figure 8.7).

Replace the text "http://www.wapforum.org/DTD/wml_1.1.xml" with "wml.xml". Then
choose File->save and Recompile Deck.

44

The normal saving operation can be done by choosing File->saveDeck in the main
program. This example is in the samples directory, named "myDeck".

Figure 8.7. Code View.

45

9. User requirements and design process

The goal of the usability evaluation was to identify the usability problems of the Visual
WML system of the WML Browser project.

Our usability framework included effectiveness, efficiency and satisfaction as defined in
ISO standard ISO 9241-11 [ISO98].

Effectiveness is the accuracy and completeness with which users achieve specified
goals. Thus effectiveness defines if the system includes the right functions. The
effectiveness of Visual WML defines how well the user can edit and preview WML
files.

Efficiency defines the resources expended in relation to the accuracy and completeness
with which users achieve goals. Thus efficiency defines how fluently the user can use
the functions of the system. The efficiency of Visual WML defines how fast the user
can create and edit WML code and how much effort is required of the user to do it.

Satisfaction is the extent to which users are free from discomfort, and attitudes towards
the use of the product.

In our project we have evaluated also the usefulness of the program. Usefulness and
usability predict the acceptance of the services.

9.1 Methods

9.1.1 Design process

Our human-centred design process consisted of four kinds of activities as described in
ISO standard 13407 “Human-centred design processes for interactive systems” [ISO99]:

� understand and specify the context of use

� specify the user and organisational requirements

� produce design solutions

� evaluate designs against requirements

46

Initial user requirements

Software requirements

Design and implementation

Visualisations

Prototypes

Expert evaluation
Design walkthrough
User evaluation

Evaluation

WAP applications

Iteration

Literature study
Analysis of corresponding products
Scenarios

Figure 9.1. The design process of WML Browser project.

Figure 9.1 describes the design process of WML Browser project. Initial user
requirements and context of use were based on a literature survey of current research
results, analysis of corresponding products and scenarios of typical use cases.

We could only define draft user requirements in the beginning of the design process.
Our design process allowed us to identify new user requirements and feed them back
into the process throughout the whole life cycle of the project. Design rationale has been
very essential in this kind of design process because the WML specification work is still
going on and new WAP devices and software development environments are constantly
released. We have to keep track of the changes in user requirements and how we were
able to respond to the requirements.

Evaluation has been a continuous activity during the requirements definition and design
phases of the project (Figure 9.2). The aim of the evaluation was to find usability
problems, to understand the reasons for the problems and to give feedback and new
ideas to the design. In this way we could assure that the usability problems were
identified and fixed as early as possible.

47

Figure 9.2. Feedback from users was taken into account during the whole development
process.

One usability expert was present throughout the development of the system. He gave
input to UI design decisions whenever it was needed. Additional design walkthroughs
with three usability experts were also held. This means meetings where the users,
application field experts, designers and usability experts together evaluate design
solutions to get feedback and to generate new ideas.

A small-scale user trial with 3 users was held during the project. At later stages of the
software, feedback from actual users were used in developing the system.

48

10. Conclusions
10.1 Overall evaluation results

Our test users found the program useful, especially in comparison with text-based
editors. The visual representation clarified the hierarchical structure of the document.
Support for multiple phone simulators was also a popular feature.

The main problems in Visual WML were not necessarily the usability of existing
functions, but rather lack of support for some basic functions. The Undo function
seemed to be one of the main concerns and it is currently under development.

Interaction with the program was somewhat hindered by delays in system feedback.
After the user clicked a function there was often a short pause before the function took
place. The Java platform is the reason for some of the hitches. In the current version the
response times have improved.

Some of the user feedback dealt with organisation of functions in the menu bar. It
became apparent that actual use of the editor required a different organisation of
functions than what seemed appropriate during development. For instance, more menu
items were added under "View" option and some of the terms were changed. Keyboard
shortcuts were added for each menu item. In general, user wished for quite extensive
keyboard support.

The rough preview of how the document looks in several different phone models was
appealing to the users. However, the interaction logic of the mobile browsers varies a lot
and this makes if difficult to design a user interface that would work well on different
platforms.

Visual WML has been updated and developed during the project according to feedback
from the users and the comments from usability experts.

10.2 Technical results

Visual WML is a good example of how the utilizing of (new and/or just developing)
open, standard technologies (such as Java, XML, DOM, CC/PP) enable an easy and fast
way to make such an efficient tool. The Java architecture enables an easy object
management and provides a large amount of classes for building graphical user
interfaces, network programming and data processing. Java enables very efficient way
to process XML.

49

Figure 10.1. Visual WML logo and the project team.

XML has proved its functionality and flexibility for storing and delivering infomation in
Web. WML is one prove of the extensibility of XML. The most important feature of
WML is that it is not dependent on a specific user interface, like HTML, which enables
the use of WML in various different devices with different input and output capabilities.

During the project, the WAP specifications have developed significantly. For instance,
there exists now a WAP UAPROF specification as a part of WAP1.2.

The project team members (Figure 10.1) had actively followed the specification work
done within WAP-forum, and also attended the working group meetings of some key
areas. The active following of the specification work provided a good basis for new
ideas, and their timely implementation before the actual specifications are publicly
available. A good example of that was the very early utilization of the WAP UAPROF
and W3C CC/PP specification work.

10.3 Future work

Our future plans include, for instance, to further study the adaptivity and personalization
of services. For that UAPROF [UAPROF] is a very promising way to describe terminal
and network properties.

50

We are planning to concentrate on future personal multimedia aspects in WAP. In that,
we would like to realize support to new content types (such as audio and video, MPEG-
4, MPEG-7) on our WAP development environment, and to elaborate new multimedia
applications. The development of new wireless network solutions (such as GPRS,
UMTS, Wireless LAN) will directly support WAP multimedia applications.

We would also like to extend the operating environment. This work could possible
include porting and optimising the code to other (mobile) operating systems like EPOC,
Windows CE and PalmOS.

Also, we are especially interested in mobile usability aspects, and the system will be
used for different kinds of usability tests.

51

11. Summary
Visual WML is a tool targeted for creating, editing and browsing WML (Wireless
Markup Language) documents. It is also possible to emulate different kinds of WAP
(Wireless Application Protocol) devices by utilizing User Agent Profiles.

The WAP architecture provides an extensible environment for application development
for mobile communication devices. WAP WML is an XML (Extensible Markup
Language) application. XML provides an easy and flexible way to describe and deliver
structured information.

The increasing terminal diversity and the increasing population of the mobile users will
add the demand for more and more personal usage profiles. At the same time, the
forthcoming mobile communication channels (GPRS, UMTS) will increase the
transmission capacity, and wireless local area networks (Wireless LAN) will offer fast
and easy access to wired internets and services. All this poses challengies to application
development, and hence, new tools for WAP application development are required.

52

Acknowledgements
The work described in this document has been done within the WML-Browser project
of VTT Information Technology during March 1999 – April 2000.

One of the initial aims of the WML Browser project was to support other WAP research
projects of VTT. Because there were no suitable WAP browser tools available when the
early WAP projects (WAP-Proxy, WAP-stack, and APRO) of VTT were in progress,
there was a need to start a new project that concentrates on the WAP client-side browser
tools. The VisualWML team members are enumerated in Figure 10.1.

Visual WML has benefited from the technical help and advice of several persons from
VTT, and the other WAP projects (http://www.vtt.fi/tte/projects/WAP/). Kari
Severinkangas has implemented many parts of the VisualWML, and his Engineer's
Study [SEVE00] provided a good source for parts of this document. Also, the technical
advice and comments from the companies participated the above mentioned WAP
projects have been very helpful.

53

References

[CC/PP] Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation
http://www.w3.org/TR/NOTE-CCPP/

[CC/PP_P] CC/PP exchange protocol based on HTTP Extension Framework.
http://www.w3.org/TR/NOTE-CCPPexchange

[CC/PP_R] Composite Capabilities/Preference Profiles: Requirements and
Architecture.
http://www.w3.org/TR/2000/WD-CCPP-ra-20000228/

[DOM] Document object model (DOM).
http://www.w3c.org/DOM/

[DTD] Document Type Definition. The design of the XML specification
DTD available at http://www.w3.org/XML/1998/06/xmlspec-
report-19990205.htm - AEN39

[HCI99] Kaasinen, E., Aaltonen, M. and Laakko, T. Defining User
Requirements for WAP Services. HCI'99 International, 8th
International Conference on Human-Computer Interaction, August
22–27, 1999, Munich, Germany.

[ISO98] ISO 9241-11. International standard. Ergonomic requirements for
office work with visual display terminals – Guidance on Usability.
1998.

[ISO99] ISO 13407. International standard. Human-centred design processes
for interactive systems. 1999.

[LEP99] Leppänen, J., Laakko, T. and Kylänpää, M. Prototype development
for the WAP application. In ACTS Mobile Communications
Summit, Sorrento 8th – 11th June 1999.

[LEV98] Leventhal, M., Lewis, D. and Fuchs, M. Designing XML Internet
Applications. Prentice Hall, 1998.

[OMGI] OMG IDL Syntax and Semantics.
http://www.ti5.tu-harburg.de/Manual/OMG/CORBA/index.htm

54

[RDF] Resource Description Framework (RDF) Schema Specification
http://www.w3.org/TR/1999/PR-rdf-schema-19990303/

[RDF_M] Resource Description Framework (RDF) Model and Syntax
Specification
http://www.w3.org/TR/PR-rdf-syntax/

[RFC2068] Fielding, R. et al. Hypertext Transfer Protocol – HTTP/1.1. January
1997. ftp://ftp.isi.edu/in-notes/rfc2068.txt

[SAX] Simple API for XML http://www.megginson.com/SAX/index.html

[SEVE00] Severinkangas, Kari. Visual WML – An XML tool for WAP.
Thesis, Häme polytechnic, Riihimäki, 2000.

[SGML] Information Processing – Text and Office Systems – Standard
generalized Markup Language (SGML). ISO 8879:1986.

[SIRPAC] Simple RDF Parser & Compiler
http://www.w3.org/RDF/Implementations/SiRPAC/

[UAPROF] Wireless Application Group. User Agent Profile Specification.
Version 22-June-1999. Available at http://www.wapforum.org/

[WAEO] Wireless Application Protocol. Wireless Application Environment
Overview. Version 1.1, 16-June-1999. Available at
http://www.wapforum.org/

[WAPA] Wireless Application Protocol. Architecture Specification. version
30-Apr-1998. Available at http://www.wapforum.org/

[WBXML] WAP Binary XML Content Format. Version 1.1, 16-June-1999.
Available at http://www.wapforum.org/

[WML] Wireless Application Protocol. Wireless Markup Language
Specification, Version 1.1, 16-June-1999. Available at
http://www.wapforum.org/

[WMLScript] Wireless Application Protocol. Wireless Markup Language Script.
Version 1.1, 17-June-1999. Available at http://www.wapforum.org/

55

[WSP] Wireless Application Protocol. Wireless Session Protocol
Specification. Version 1.1, 28-May-1999. Available at
http://www.wapforum.org/

[WWW00] Kaasinen, E., Aaltonen, M., Kolari, J., Melakoski, J. and Laakko, T.
Two Approaches to Bringing Internet Services to WAP Devices.
The Ninth International World Wide Web Conference (WWW9),
May 2000, Amsterdam

[XLink] XML Linking Language (XLink) Version 1.0
W3C Candidate Recommendation 3 July 2000
http://www.w3.org/TR/2000/CR-xlink-20000703/

[XML] Extensible Markup Language (XML) 1.0. W3C Recommendation
10-February-1998. http://www.w3.org/TR/1998/REC-xml-
19980210

[XML4J] A validating XML parser written in Java.
http://www.alphaworks.ibm.com/tech/xml4j

[XPointer] XML Pointer Language (XPointer) Version 1.0
W3C Candidate Recommendation 7 June 2000.
http://www.w3.org/TR/2000/WD-xptr-20000607

[XSL] Extensible Stylesheet Language (XSL) Version 1.0
W3C Working Draft 18 October 2000.
http://www.w3.org/TR/2000/WD-xsl-20001018/

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Research Notes 2068
VTT–TIED–2068

Author(s)
Palviainen, Marko, Laakko, Timo and Kolari, Juha

Title
Visual WML – a development tool for WAP applications

Abstract
This work was carried out in the research project "WML Browser" of VTT Information
Technology between March 1999 and April 2000. The main goal of the project was to build a
software that is capable of browsing WML (Wireless Markup Language) and emulating different
WAP (Wireless Application Protocol) terminals, and allows the WML developer to build and
edit WML documents by using visual components. Also, the project group decided to use the
existing technologies and well-defined specifications and open standards as much as possible.
The developed software was named Visual WML.
WAP architecture enables the interconnection of the wireless data network and the wired data
network, and WAP technology brings the Internet content and advanced data services to digital
cellular phones and other wireless devices. At the same time, the variety of different kinds of
mobile terminals and networks are increasing. For instance, the forthcoming mobile
communication channels will increase the transmission capacity, and wireless local area
networks will offer fast and easy access to wired internet, corporate and home environment
LANs and their services. Hence, in particular, tools for WAP application development are
required.
Visual WML is a tool targeted for editing, creating and browsing WML documents. It is also
possible to emulate different kinds of WAP devices by utilizing User Agent Profiles.

Keywords
Wireless Markup Language, XML, Extensive Markup Language, Wireless Application Protocol, WAP application
development, mobile internet, Web services, usability

Activity unit
VTT Information Technology, Tekniikantie 4 B, P.O.Box 1203, FIN–02044 VTT, Finland

ISBN Project number
951–38–5807–3 (soft back edition)
951–38–5808–1 (URL: http://www.inf.vtt.fi/pdf/)

T9SU00001

Date Language Pages Price
December 2000 English 55 p. B

Name of project Commissioned by
WML Browser

Series title and ISSN Sold by
VTT Tiedotteita – Meddelanden – Research Notes
1235–0605 (soft back edition)
1455–0865 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Background
	1.2 Wireless Application Protocol (WAP)
	1.3 VTT WAP
	1.4 Standards and Tools used
	1.5 Programming and hardware environment
	1.6 System requirements

	2. Visual WML components and architecture
	2.1 Architecture
	2.2 Components

	3. Parsing and editing of an XML document
	3.1 XML
	3.1.1 Applying XML
	3.1.2 Document Type Definition
	3.1.3 Wireless Markup Language (WML)

	3.2 Document Object model
	3.3 SAX
	3.4 XML parsing

	4. WML Editor
	4.1 Tree view
	4.1.1 Implementation aspects

	4.2 Card view
	4.2.1 Implementation

	4.3 Code view
	4.3.1 Implementation aspects

	4.4 Help Tool
	4.4.1 Implementation

	5. Phone Editor
	5.1.1 Implementation aspects

	6. WML browser – phone simulator
	6.1.1 Technical implementation

	7. User Agent Profile
	7.1 Introduction
	7.2 The architecture
	7.3 UAProf schema and base vocabulary
	7.4 RDF

	8. Examples
	8.1 Building a new WML deck
	8.2 Adding elements
	8.3 Attribute editing
	8.4 Adding actions
	8.5 Saving

	9. User requirements and design process
	9.1 Methods

	9.1.1 Design process
	10. Conclusions
	10.1 Overall evaluation results
	10.2 Technical results
	10.3 Future work

	11. Summary
	Acknowledgements
	References

