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Abstract
The modern software development requires more efficient production methods than
ever before. It has been recognised that benefits can be obtained in software
development by using object-orientation. Testing, however, has gained less attention,
although it is still an important task in the software development to achieve such goals
as finding errors and quality.

The goal of this paper is to study how object-orientation affects testing as well as how
the testing techniques that are adapted for object-orientation can be used for test design
purposes. Utilisation of the Unified Modelling Language (UML) in testing is
introduced, and some practical solutions to avoid the obstacles of the testing of object-
oriented software are addressed as well. Moreover, these solutions are combined and a
test automation system (test driver implementation), which makes it easier to test the
object-oriented software, is presented.

Finally, the testing techniques that are studied, are applied to a demonstration system,
which is designed and implemented by using a CASE tool called Rhapsody. As
Rhapsody provides its own impact to testing and test design, it is shown how the
various UML diagrams are used for test design purposes in the context of Rhapsody.

Although object-orientation provides benefits for software development, it can be
argued that the testing of object-oriented systems is occasionally more difficult
compared to the testing of traditional systems. However, by planning tests carefully and
taking the special needs of the testing of object-oriented software into account, these
obstacles can partially be avoided. Furthermore, since the UML provides a notation to
express software designs, and as object-orientation emphasises functional testing, the
UML gives information for test design that should not be overlooked.
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List of symbols
Bug An error or a fault.

CUT Class Under Test.

CUT Component Under Test.

Component Any software aggregate that has visibility in development environment, 
r example a method, a class, an object, a subsystem, an executable.

Error A mistake made by a human.

Failure A failure occurs when fault is executed.

Fault A fault is the result from an error. A software fault is missing or incorrect 
code.

IUT Implementation Under Test.

LSP Liskov Substitution Principle.

MUT Method Under Test.

OUT Object Under Test.

SUT System Under Test.

Test case Collection of test inputs, execution conditions, and expected outcomes.

Test suite A set of related test cases.

Traditional software

Software that is written in an imperative language (e.g. C), 
designed by a functional decomposition, developed in a 
waterfall life cycle and separated into three levels of testing.

UML Unified Modelling Language.
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1. Introduction
It can be asserted that object-orientation was created in the late 1960's when the Simula
were introduced [1, p. 6], but only during the last decade object-orientation has gained
popularity. Many reasons can be enumerated for this. Nowadays, the software systems
are getting larger and more and more complex all the time, and managing these
complicated systems has become difficult. In addition, software has to be produced
quicker and more efficiently, which consequently emphasises software re-use. It is
recognised that object-orientation provides means for making software re-usable, and
moreover, it offers a solution for the problems of managing large and complex systems,
as it gives an ability to break down systems into smaller ones. Furthermore,
standardisations of C++ and the Unified Modelling Language (UML), and especially
Java programming language, have all led to an increasing acceptance of object-
orientation.

Despite all this favour that object-orientation has gained in recent years, testing has
become a neglected area. There are numerous books about developing and
implementing the object-oriented software, but only a few books concentrate on testing.
Although many software testing strategies and models have been proposed during the
last decades, they do not address the special needs of the testing of the object-oriented
software, since most of them focus on traditional software. Applying the traditional
software testing techniques and strategies to object-oriented development may be
inadequate, since the traditional software diverges greatly from the object-oriented
software. Apparently, the features that give object-orientation its strength, such as
encapsulation, inheritance, polymorphism, and dynamic binding, have an effect on
testing. Besides the differences, there are similarities that can be easily recognised. For
instance, state-based testing may be useful for object-oriented software, since the
objects preserve state information. In this paper, it is studied how object-orientation
affects testing, and some practical solutions to avoid the obstacles of the testing of
object-oriented software are presented as well. Based on these solutions, a test
automation system (test driver implementation) that takes the special needs of the
testing of object-oriented software into account, is presented.

In order to succeed, testing has to be designed. Traditionally, software design
documents as well as requirements and code are used for test design purposes. The
Unified Modelling Language has become the leading modelling language for object-
oriented analysis and design. Since the UML provides a notation to express software
designs, it gives a source of information for designing tests. Furthermore, the
standardisation of the UML has given a necessary foundation for software development
and design tools. Such a tool, called Rhapsody, is introduced in this paper. Although
Rhapsody is compliant with the UML, it provides its own impact test design, as it puts
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some constraints on the use of the UML. In addition, code generation from the UML
diagrams has � obviously � an effect on testing.

The objective of this paper is to study how the testing techniques that are adapted for
object-orientation can be used for test design purposes. Furthermore, utilisation of the
Unified Modelling Language in testing is introduced. Finally, the testing techniques,
that are studied, are applied to a demonstration system, which is designed and
implemented by using Rhapsody. As Rhapsody provides its own impact to testing and
test design, it is shown how the various UML diagrams are used for test design purposes
in the context of Rhapsody.

Although the UML supports various diagrams, the focus is on use case, sequence,
statechart, and class diagrams, since these are the diagrams supported by Rhapsody.
Moreover, C++ is used as an example language in the paper. However, some of the
examples are language independent and consequently can be adapted for other
programming languages such as Java.
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2. Software testing
Traditional software is a well-known area together with the testing of it. Understanding
the testing of traditional systems provides a good basis for testing the object-oriented
systems, as clearly, there are similarities. Although object-orientation does not alter the
purpose of testing, the testing is different from the technical perspective because object-
orientation provides new features and emphasises other features. Consequently, some
testing strategies need adaptation and some lose their effectiveness. These differences
are discussed in the second part of this chapter.

Traditionally, software design outputs (as well as code and requirements) are used for
driving the testing, as they give much of the information to test the system. For object-
orientation, the Unified Modelling Language (UML) has become de facto standard for
modelling the software systems. Since these diagrams provide inputs to test design, the
utilisation of UML models in testing is introduced at the end of this chapter.

2.1 Introduction to software testing

One of the goals of a software process is to produce high-quality software products. To
achieve this goal, different types of quality assurance methods are needed. Software
quality assurance activities encompass reviews, inspections, walkthroughs, and testing
[2]. Hence, software is tested, since judgement about quality and acceptability has to be
made [3, p. 3]. It can be argued that testing is a complex, challenging, and time-
consuming part of a software project. There is no short cut in testing, even though
automation can to some extend be applied to testing, and furthermore, testing is
necessary because mistakes that lead to system failures are made, and these failures
must be discovered [3, p. 3].

With these goals defined for testing, the definitions of testing can consequently be
provided. The first definition of testing, which emphasises quality, is:

Testing is the measurement of software quality [4, p. 20].

And since quality means the degree to which a system meets customer needs and
expectations, another definition of testing can be given:

Testing is establishing confidence that a program does what it is supposed to do [4, p.
20].



12

The third definition of testing limits the scope of testing and makes the finding of errors
the goal of testing. It emphasises the execution of code and limits the testing to running
an implementation. Testing of documents such as specifications is precluded.

Testing is the process of executing a program or system with the intent of
finding errors [5, p. 5].

In order to achieve the goals of testing, tests have to be planned and designed. To
accomplish this task, test design strategies are needed. These methods have traditionally
been black and white box strategies and their combination, a grey box strategy. In
addition to different types of test design strategies, we have to distinguish levels of
testing allowing us to define different objectives for each level. Thus, testing is different
at different levels; different types of errors are searched for at each level.

2.1.1 Levels of testing

Unit testing, integration testing and system testing are the levels of testing on a typical
software system [6, p. 20]. These levels of testing can be found in the waterfall model of
the software development life cycle: the levels of testing correspond to the levels of
design. Although this model has it drawbacks, it is useful to distinguish levels so we can
define different objectives for each level. The waterfall model with testing levels is
shown in Figure 1 [3, p. 159].



13

Figure 1. The V-model.

As it can be seen from the Figure 1 there is correspondence between design and testing
levels. Requirements specification, architecture design, and detailed design correspond
with system testing, integration testing and unit testing respectively. Test planning is
done on the correspondent level of design, and the results of testing are verified by
comparing them with equivalent design documents [7]. Although the primary goal of
testing is to find the faults in the implementation, faults in the requirements and design
can be found as well [8, p. 324].

Unit testing is the testing of the smallest testable piece of software, a module or a few
modules that are so tightly coupled that testing them individually is impractical. The
purpose of unit testing is to show that the unit does not satisfy its functional
specification and/or that its implemented structure does not match with the intended
design structure [6, p. 21]. Unit testing is usually done by the unit's originator.

To test a module, it is often necessary to simulate the outside world of the module. We
need to simulate those modules, whose services are used by the module to be tested,
using so called stub modules. These stubs use the subordinate module's interface, may
do some data manipulation and return. In addition to stub modules, we have to use test
drivers to provide test inputs, control and monitor the execution of the tests, and report
the results. Figure 2 depicts the unit test environment [2, p. 514].
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Figure 2. Module test environment.

Integration is a process in which components are aggregated to create larger
components. The main focus of integration testing is to test the interfaces between
components. We want to reveal the components' faults that cause inter-component
failures and show that even though the components were individually satisfactory, the
combination is incorrect or inconsistent [6, p. 21]. Integration testing is not the same as
testing integrated components, which is just a higher level of component testing.

System testing concerns issues and behaviours that can only be exposed by testing the
entire system. It is done to explore system behaviours, which cannot be carried out by
means of unit or integration testing. It often includes set-up, security, performance and
recovery testing and is done by an independent testing personnel. [6, p. 22, 9, p. 5]

2.1.2 Test case identification

There are two approaches to identify test cases: black box testing and white box testing.
Both of these test design strategies have several distinct test case identification methods,
called testing techniques [3, p. 7]. In addition to white box and black box testing, there
is a third testing approach: hybrid testing. Hybrid testing, commonly known as grey box
testing, combines white and black box testing.
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White box testing techniques are derived from the implementation and the structure of
the tested component, i.e. the source code. The source code is tested as extensively as
possible, e.g. by executing every statement at least once or executing every branch once
[9, p. 8]. White box testing is also called structural, clear box, glass box or
implementation-based testing.

In contrast to white box testing, black box testing techniques are based on
requirements, and therefore test cases are derived from the requirements. The purpose of
black box testing is to test the component to ensure if it meets its functional and non-
functional (e.g. performance) requirements. Synonyms for black box testing are:
functional, behavioural and responsibility-based testing.

The problem of these test design strategies is that neither of them can reveal all the
errors. With black box testing, the problem arises when trying to achieve a coverage
goal. It may be impossible to achieve sufficient coverage by looking at the component
as a black box, and the implemented features that have not been specified may therefore
never be revealed [3, p. 9].

White box approach eliminates the testing problem induced by black box approach, but
the problem with the white box test is that it only shows that the code does what it does,
and all the specified features that have not been implemented will never be recognised
[3, p. 9]. Thus, the best combination of black box and white box techniques would be to
start with the black box tests and use an appropriate coverage analysis tool to get
feedback about the test. Subsequently, if the coverage is insufficient, more tests should
be developed [10].

2.2 Testing of object-oriented systems

When the testing of traditional software and the testing of object-oriented software are
compared, some differences are recognised. The main differences are techniques in
software testing and difference of emphasis.

White box testing, which is based on internal knowledge about the code being tested, is
the one that makes the testing different. Nevertheless, the underlying principle of white
box testing to use implementation as a base of testing is the same for both testing. Black
box testing, in which test cases are derived from requirements, is very similar to object-
orientation systems compared to any traditional systems. For instance, numbers of black
box techniques can be applied to the testing of object-oriented systems. [10]
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There is also a difference of emphasis in traditional languages and object-oriented
languages. The most detailed level of object-oriented systems tends to be very simple
and small, which makes testing of these low-level components easier compared to
traditional equivalent of methods. However, object-oriented testing is a challenge at the
integration level. The lack of complexity at one level does not reduce the overall
complexity of the system. In effect, the complexity of methods is pushed to interfaces
between classes: there are many objects that interact in many ways. Thus, the interface
errors are more likely in object-oriented languages than in the traditional software.

The object-orientation provides new features like inheritance, polymorphism and its
enabling mechanism dynamic binding. Inheritance is a mechanism that allows one class
(the subclass) to incorporate the declarations of all or part of another class (the
superclass) [8, p. 1092]. Polymorphism is the ability to bind a reference to more than
one object [8, p. 77]. Clearly, these essential features of object-orientation pose a
challenge to testing. In addition, other features of object-orientation, such as
encapsulation which enables information hiding, and complicated interaction between
message sequence and state, lead to some problems in testing. A detailed discussion of
the effect of inheritance, encapsulation and polymorphism on testing is provided in later
sections.

2.2.1 Levels of testing in object-oriented software

Just like in traditional environments, there is a hierarchy of testing levels in the object-
oriented world as well. In addition to the hierarchy of testing levels, a rough
correspondence can be found between the traditional testing levels and the testing levels
of object-oriented systems.

Testing levels in the object-oriented world can be categorised into five levels. These
levels are class (small cluster), inheritance, integration/interaction, cluster, and system
testing. Individual classes and small clusters are the focus of the class scope testing. It
corresponds with the classical definition of unit testing. Inheritance testing is a new
level of object-oriented testing, so there is no analogy for inheritance in traditional
languages. [10]

The object-oriented world shares integration and interaction testing with the procedural
world, although it tends to be more complicated because there exist many objects there,
and the parameters of methods may themselves be objects with their own state
dependencies. Integration testing is not a separate "phase" in the object-oriented
development, but rather occurs throughout a project because of the nature of the object-
oriented development process (incremental development) [8, p. 326]. Clearly, each
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development increment requires integration testing. The purpose of the integration
testing is to stabilise the component, so that the component testing can be done.

Cluster testing in the object-oriented world corresponds to subsystem testing in
traditional languages. And finally, system testing is performed in the same way as in
traditional languages.

2.2.2 Encapsulation

Encapsulation is a technique that enables information hiding. The physical details of a
data structure, device interface, or other software component are not visible to other
modules [8, p. 1085]. The only way that the components can interact with each other is
through the interfaces. The definitions of interfaces and information hiding encourage
modularity of the programs and allow the software to be allocated to independently
developed units. But on the negative side, they cause testing problems for object-
oriented systems.

From the testing point of view, encapsulation has it pros and cons. It can prevent a few
bugs, which are quite common in traditional languages such as global data, and because
encapsulation improves the modularity, testing can be limited when changes are
applied. However, encapsulation can also present an obstacle to testing. Because of
encapsulation, object-oriented languages make it difficult to directly set or get the
concrete states, which are required by testing. To overcome this testing obstacle several
approaches are proposed [8, p. 72, 11]:

� Increase the visibility of the features by modifying the Class Under Test (CUT) and
by defining additional methods. The problem of this technique is that it indirectly
violates encapsulation and can change the initial behaviour of the CUT.

� Another approach is to use inheritance. The CUT is inherited by another class, in
which additional operations are defined. Then this new subclass is used to test the
original class. But this approach also has its problem: if the inherited features are not
visible to the subclass, all the superclass features cannot be tested and the using of
this method is futile.

� To use language-specific features is equally one way to test encapsulated features.
For example, C++ provides the concept of a friend class. By defining a friend, the
class under test allows one class (the friend class) to access and modify the features
of the CUT.
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� Assertions are similarly one way to overcome obstacles to monitoring the states of
objects. By means of assertions we can check anything that must be true in a certain
point of code.

2.2.3 Inheritance

Inheritance is a mechanism in object-oriented languages that allows one class (the
subclass) to incorporate the declarations of all or part of another class (the superclass).
The subclass can inherit the features of a superclass as such (extension), modify and
remove them (overriding), or add new features (specialisation). The advantage of
inheritance is that it makes it possible for the subclass to re-use the features of the
superclass, but on the other hand, it makes testing complex.

Because inheritance is a form of re-use and it weakens encapsulation, it can raise
problems in testing and cause some bugs [8, p. 72]. Also, the fact that the definitions of
the subclasses are distributed (deep and wide inheritance hierarchies), leads to bugs and
reduces testability.

Inheritance also poses a problem when deciding how much testing should be done for
subclasses. First of all, it seems wasteful to test the inherited characteristics twice
because of the re-use. Basically, inherited features cannot be trusted in any
circumstances and they require re-testing in the context of the subclass, although the
superclass has shown its reliability in some context [11]. In addition, new methods of
the subclass and the interaction among these methods should always be tested.

Even though inherited features require re-testing, the test cases of the superclass can, to
some extend, be re-used in the context of the subclass. These inherited test cases
provide a good starting point for testing and can be re-run in the context of the subclass
with some limitations. However, this is only a partial solution for testing the subclass
and needs an implementation of additional test cases unique to the subclass. Extra cases
are needed to test new features of the subclass and to ensure that they do not disturb the
correct behaviour of the original features. Table 1 outlines how much testing should be
done for this scope [8, p. 512].
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Table 1. Degree of testing for flattened class scope.

Extension Overriding Specialisation

Re-test method in
context of subclass

Minimal Full Full

Re-use superclass
method test cases

Yes Probably -

Implement new
subclass method

test cases

Maybe Yes Yes

A special case of superclass in inheritance hierarchy is an abstract class. Abstract
classes are classes that cannot be instantiated, and due to this there is clearly a difficulty
in testing. The simplest way to overcome this obstacle is to develop an instantiation to
test an abstract class. This can be achieved by defining a concrete subclass, in which
pure virtual functions are provided with dummy implementation, just for testing
purposes [10].

Instantiation can be also accomplished by making modifications to class under test. This
is illustrated in Figure 3.

Figure 3. The abstract class.

class A {

public:

//...

#ifndef TEST
    virtual void method1()=0 ;
#endif

//...
} ;
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2.2.4 Polymorphism

Polymorphism is the third essential part of the object-oriented paradigm. Polymorphism
is the ability to bind a reference to more than one object. Basically, it means 'many
forms'. The reason why polymorphism and dynamic binding are so important is because
they provide flexibility to object-oriented systems and allow the creation of extensible
programs that can be grown during the project when new features are desired. But just
like inheritance and encapsulation, it provides unique testing problems and bugs that
cannot be found from traditional languages [8, p. 68].

One can think that the equivalent statement for the polymorphism in the procedural
languages is CASE, but the difference is that the CASE statement explicitly enumerates
the cases, whereas the choices for binding in polymorphism are determinated at run-
time. Since the actual actions performed depend on run-time conditions, which is a
much more complex way than that determinated by traditional control flow constructs,
things come more complex in testing. It may be difficult, but not impossible, to identify
and exercise all actions and bindings.

Polymorphism and dynamic binding can cause both client and server to fail. Client (e.g.
message with polymorphic argument(s)) can fail in at least three ways: 1) client fails to
meet the preconditions of server object, 2) unpredictable binding occurs, and 3) a client
has been tested, but changes and extensions are applied to a server class [8, p. 439�440].
To expose all these interface faults, test suite for client requires that each binding to a
polymorphic server should be exercised at least once.

The server poses a problem if it fails to meet the Liskov Substitution Principle (LSP).
LSP states that methods that use pointers or references to a base class must be able to
use objects of derived classes without knowing it and causing a failure [12]. Hence, one
should verify that derived class's contracts are consistent with the contracts of all of its
superclasses [8, p. 514].

2.2.5 Test design strategies

Traditionally, black box (functional) testing is used in higher level of testing, and white
box (structural) testing is used in lower level testing. In the object-oriented world, the
balance shifts towards black box testing since it is hard to visualise code structure at
levels higher than individual methods. [10]

As mentioned earlier, the traditional white box approach is less applicable to object-
oriented software, because the methods are small and simple. Since most methods are
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very simple programs, the coverage of these methods can be easily obtained, and many
errors are not likely to be uncovered. Although it is easier to test methods in object-
oriented systems than in the traditional environment, the complexity has nevertheless
not disappeared, it is only pushed to interfaces between objects. So, it is not enough to
monitor which statements have been executed and which conditions and branching
decisions have been exercised, in addition we need to record:

� Inter-object message types and the characteristics of the parameters passed with
each message, and

� code coverage in every method in every class which has inherited it.

Tom McCabe sets one coverage metric for implementation-based testing at the class
level; he defines a safe class as follows:

A safe class is one where all methods have been tested to total branch coverage,
integration testing has been done with all objects on which the methods rely, every
method has been called at least once from every context of every call site (that is from
every instantiation in every sub-class) [10].

In contrast to white box testing, black box testing is much the same for object-
orientation systems as for any other development method. There are a number of black
box techniques that can be applied to object-oriented systems. Equivalence partitioning
and boundary value analysis can be applied at any level. In equivalence class testing
partitions are defined so that if any single test value from partition passes or does not
pass, then all other values in the partition are expected to pass or not pass [8, p. 402].
Boundary value analysis is used for strengthening the equivalence class testing. It
concentrates on the boundaries of equivalence classes, as they are often proved
troublesome.

State-based, in which test cases are derived from the statechart, is also particularly
appropriate to object-oriented systems, because objects contain state-information and
behaviour may be modelled at any scope by state machines. In addition, new black box
techniques are developed for the object-orientation. [10]

2.3  Utilisation of software modelling techniques in testing

The Unified Modelling Language (UML) is language for specifying, visualising,
constructing and documenting the artefacts of software systems and it has become de
facto standard for object-oriented modelling [13]. From testing perspective, the UML is
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interesting since as a modelling language it provides a source for test design. Sequence,
class, use case and statechart diagrams can be used to design tests. In addition activity,
collaboration, component and deployment diagrams are useful for testing purposes. But
on the other hand, these diagrams can be inadequate for testing and need extensions to
increase testability.

2.3.1 Use case diagram

A use case diagram shows the relationship among actors and use cases [13]. What are
perceived, are the system tasks important from the user's point of view. Use cases
provide some of the information for system testing representing many kinds of system
requirements, for example functional requirements, allocation of functionality to
classes, user interfaces, and user documentation [8, p. 276]. But then again, use case
diagrams need extensions and definitions of additional information to increase
testability.

Binder points out four limitations of use cases necessary for system test design. First,
the domains of each input and output variables are not included in the UML. Second,
input/output relationships among use case variables are likewise not part of the UML. In
addition, relative frequencies of each use case and sequential dependencies among use
cases are absent in the UML. [8, p. 280�281]

To make use case diagrams more beneficial for testing purposes, we have to pay
attention to those four limitations and provide extra information necessary for testing by
defining extended use cases. To construct extended use case, we define variables that
participate in determining the response of use cases and their domain constraints. Once
the operational variables (i.e. abstract states of the system under test, explicit
inputs/outputs, environmental conditions) are specified, logical relationships among
variables are modelled leading to an operational relation for each use case. Finally, the
relative frequency of each use case is defined.

2.3.2 Class diagram

Class diagrams are used to construct the static structure of the model. They represent
various static relationships among classifier elements, e.g. classes. Despite the name
'class diagram', the model may also contain interfaces, packages, relationships, and even
instances, such as objects and links [13].
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Class diagrams show different types of relationships among classifiers. These
relationships are for example generalisation (e.g. a superclass generalises a subclass),
association, and aggregation. Where association represents a loose binding between
classifiers, aggregation relationships identify classifiers that are essential parts of
another classifier. The relationship can be so tightly coupled that the contained classifier
will be created and destroyed along with the container.

To develop tests based on the information provided by the class diagram, the
concentration is mainly on associations among classes. To test associations, it is tried to
verify the implementation of the associations between classes, because the
implementation may contain several kinds of faults. Faults related to association can be
for instance missing link, wrong link, and incorrect multiplicity: the implementation
rejects a legal combination or accepts an illegal combination. [8, p. 286]

2.3.3 Sequence diagram

Sequence diagrams show interaction arranged in time sequence [13]. In sequence
diagrams, time progresses from top to bottom (vertical dimension) and the horizontal
dimension represents different objects. Sequence diagrams are typically, but not always,
used to design the collaboration of objects to implement a use case.

Sequence diagrams provide information to design tests for the subsystem (system)
scope. Although the sequence diagram provides information to design tests, it is not a
highly testable model as such and needs to be first transformed into a control flow graph
(see 3.2.1.). When the flow graph is completed, we can develop test cases. Each of these
test cases is basically a possible entry-exit path in the control flow graph, and execution
of these paths will reveal bugs in the implementation. However, there are two
significant details that are usually absent in sequence diagrams: bindings to
polymorphic servers, and exception-handling paths. These paths should equally be
included in the test suite. Furthermore, sequence diagram does not always depict all the
scenarios of the use case. Consequently, this makes sequence diagrams less useful for
test design as all the flows of executions cannot be tested. [8, p. 290, p. 585�587]

2.3.4 Statechart diagram

A statechart diagram is a graphical presentation of a state machine. Statechart diagrams
describe the behaviour of the model elements such as classes, subsystems, use cases,
actors, operations, or methods, and are highly applicable to object-oriented analysis and
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design since the behaviour of objects can be modelled by state machines at any scope
[13]. 

Statechart diagrams also provide necessary information needed in testing. But
sometimes this information is not so clearly available and needs to be searched out by
testers: all possible events, for instance, are not explicitly defined at each state. On the
other hand, the UML definition of statechart diagrams allows drawing nontestable and
ambiguous statecharts. To make statechart diagrams more suitable for testing purposes,
extensions are needed. The FREE (Flattened Regular Expression) state model is defined
to meet these testing requirements [8, p. 204].

Although the FREE state model has definitions and restrictions not found in the UML,
the FREE state model can be constructed using the UML [8, p. 204]. If the UML state
model follows the FREE model definitions and restrictions, it is already testable, if not,
testers have to close this gap by transforming the UML model into the FREE model.
However, the FREE model is not absolutely necessary, but any behaviour model will do
if it provides the same information.

The FREE state model can be developed as follows [8, p. 242]:

� Validate the model using the checklists,

� expand the statechart, and

� develop the response matrix.

The validation of the model is part of reviews and inspections and it focuses on the
structure, state names, guarded transitions, subclass behaviour, and robustness of the
state model. Using these methods is strongly recommended, since they will discover
faults in the early stages of software development process and will also ease testing.

Expanding the statechart means that one has to flatten the statechart. For inheritance,
flattening is accomplished by combining the statechart diagrams of the superclasses
with the statechart diagrams of the subclasses. Let us suppose, we have a class hierarchy
where a superclass and a subclass are modelled as a state machine. To generate a
complete test suite for the subclass, we have to expand the statechart diagram of the
subclass by combining it with the statechart diagram of the superclass. As a result, this
model shows explicitly all the possible states and transitions for the subclass. In
addition, expanding the statechart involves the orthogonal states (i.e. concurrent (and)
states) and nested states to be flattened to make the statechart diagrams more testable.
These flattened views explicitly show all the possible states and transitions, but are still
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not adequate for testing purposes, since the responses must be specified in a more
detailed way.

Where an expanded statechart diagram visualises transitions and states, a response
matrix shows responses generated by a state machine. All the implicit responses have to
be specified in the response matrix so that all event responses may be tested.
Developing a response matrix concerns issues of how to define implicit responses from
the incompletely specified state model. Usually there are two interpretations: "do not
allow any events that are not explicitly represented" or "ignore events that are not
explicitly represented" [8, p. 225].
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3. Test design
Test cases are designed in parallel with the corresponding software development phase.
The test case design is started from the top of the system as the system scope tests are
developed first and accomplished, when tests have been planned for the individual units.
Unlike the test case design, test cases are executed from bottom to top. First, the small
components are tested and it is verified that they meet their intended behaviour. Next,
the larger components are assembled from the smaller components and these are tested.
This incremental process, in which smaller components are used to build larger
components, is continued until the system scope is reached. When the system scope is
attained, the whole system is finally tested.

In this chapter, some methods to design tests for various levels of the software testing,
are given. First, the method scope testing techniques are provided. This concerns issues
of how to select test values and how to cause a particular path to be taken (i.e. achieve
coverage). After the method scope tests are designed (or at least planned), the message
sequences are tested within a class. The purpose of the class scope tests is to verify the
interactions of the methods, which cannot be done by testing the individual methods in
isolation.

Class testing may interleave class and integration testing, as it is sometimes futile to the
test classes apart from their servers. Thus, the integration process among classes should
be considered, when class scope testing is planned. The third part of this chapter gives
some integration testing strategies for levels higher than individual classes. And finally,
system scope testing technique is presented.

3.1 Selecting test values

Most of the testing is, basically, choosing the inputs and evaluating the outputs. The
definitions of inputs should lead to efficient testing and yet, keep the test suites small.
The traditional techniques for choosing the inputs have been equivalence class
partitioning and boundary value analysis. These two methods are also effective for
object-oriented testing, although some extensions are furthermore needed. The
Category-Partition strategy combines the elements of the equivalence class partitioning
and boundary value analysis, and it could be used on any method or testable function at
any scope. The One-by-One Selection Criteria provides a straightforward and effective
way to detect domain errors. The Category-Partition and the One-by-One Selection
Criteria techniques are discussed in later sections.
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Equivalence class testing is a partition (i.e. any subset of all possible inputs)
identification strategy. An equivalence class is a partition defined so that if any single
test value from partition passes or does not pass, then all other values in the partition are
expected to pass or not pass. Therefore, identifying the equivalence classes is the key to
successful testing.

Suppose we have one input variable, a month, which has a range defined as 1 � month �
12. This gives us three different partitions, one valid: 1 � month � 12, and two invalid:
month < 1 and month > 12. Once the partitions have been identified, test cases are
derived by using one element from each equivalence class [3, p. 75]. Test cases for the
month are shown in Table 2.

Table 2. Test cases for input variable month.

Test case ID Month

TC1 5

TC2 15

TC3 -5

But if we choose the classes more carefully (by thinking the number of days in a
month), we will be dealing with different classes: a month has 30 days, a month has 31
days, and a month is February. As a result, the idea of equivalence class testing is
generally effective, but does not provide firm guidelines for choosing classes.

When an equivalence class is limited within a range, boundary value analysis can be
used to strengthen the equivalence class partitioning. Boundary conditions are often
proved troublesome, and the values that lie at the boundaries of the equivalence classes
are chosen. Input variable values at their minimum and maximum, just above minimum
and just below maximum are selected. Also, a nominal value should be chosen [3, p.
58].

To generate test cases using the boundary value analysis, all but one value are held at
nominal values, and the remaining variable is assumed the minimum, just above
minimum, just below maximum, maximum, and nominal. This should be repeated for
all input variables, and so, one ends up with 4n + 1 test cases (n is number of input
variables). If a more exhaustive test suite is wanted, every possible combination of input
variables is used (the number of test cases is 5n). [3, p. 59�60]
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Boundary value analysis can be also extended: one simply adds test cases that are
slightly below minimum and above maximum. This testing is called robustness testing.
Figure 4 illustrates a normal use of the boundary value analysis. An extended use of
boundary value analysis is depicted in Figure 5.

Figure 4. Test cases using boundary value analysis.

Figure 5. Test cases using extended boundary value analysis.

When these techniques are used in the object-oriented world, some additional
information is needed. One needs to consider explicit inputs (i.e. message parameters),
class variables, and the state of the object when defining partitions. The explicit inputs
can be applied in a similar way in both traditional and object-oriented world. However,
this is true only with the primitive data types: integer, floating-point, Boolean, and
string. In the object-oriented world, message parameters can be more complex data
types, i.e. objects, with their own state dependencies, than in the traditional
environment. If global and system environmental variables can affect the output or they
can be changed, they should be also examined.

3.1.1 Category-Partition

Testing methods in isolation is impractical, because inter-method (intra class)
interaction is not simultaneously tested. However, classes are tested by sending
messages to them one at a time, and a class test suite therefore consists of method tests.
To test methods, one needs to consider classes as a whole. It is necessary to consider all
the elements that determinate the function's response. In object-orientation (at the

min max

min max
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method scope), they are class, global and system environmental variables, message
parameters, and state of the object [8, p. 421].

The Category-Partition technique was developed for generating black box tests for
parameterised functions [14], and it has been adapted to the object-oriented system in
[8, p. 419]. The Category-Partition strategy is a straightforward technique to construct
test cases for methods in the object-oriented systems. The first step is to identify input
and output variables of Method Under Test (MUT). Class, global and system
environmental variables, message parameters and state of the object should be
considered in analysing the variables. Second, these elements are classified into
categories, which are similar to equivalence classes, and then categories are partitioned
into specific test values (choices). Choices can be identified by using the One-by-One
Selection Criteria, boundary value analysis, or considering special cases. Once
categories are partitioned into choices, constraints are determinated among choices
(choices may be mutually exclusive or inclusive). And finally, test cases are generated
by producing a cross product of all choices. [8, p. 422�423, Ostrand]

The Category-Partition technique is similar to equivalence class testing with boundary
value analysis. It therefore suffers from same inadequacies of heuristic approach.
Identification of categories (equivalence classes) and choices (e.g. boundary values) is
an intuitive method: different testing persons may end up with different categories and
choices. The test suite can also become unpractically large, since the size of the test
suite is cross product of all choices minus some constraints.

3.1.2 The One-by-One Selection Criteria

The basic idea of the One-by-One Selection Criteria (The Simplified Domain-Testing
Strategy [15]) is to detect a domain error by determining whether a border shift has
occurred. To detect a border shift, one needs to sample the potential displaced areas.
This can be accomplished by using one on point and one to two off points for each
domain boundary. [15]

The selection rules for choosing on and off points are simple. For inequality borders
(>=, <=,  >, <), one on and one off point are required. The requirement for choosing an
off point is that it should be as close to the on point as possible; for integers, this
dimension is one [15]. Table 3 illustrates the choosing of the on and off points for
inequality borders.
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Table 3. On and off points for inequality borders.

Boundary condition On point Off point

x < 10 x = 10 x = 9

y <= 10 y = 10 y = 11

For equality or nonequality borders (==, !=), one on point and two off points are
needed. Again, the points should be as near each other as possible [15]. Table 4 depicts
the on and off points for an equality border.

Table 4. On and off points for an equality border.

Boundary condition On point Off points

z == 10 z = 10 z = 9, z = 11

One on point and one off point is needed for nonscalar types, i.e. for Booleans,
enumerations, and strings. The nonscalar types either conform to the condition or not.
Thus, on point is a value that makes the condition true and off point is the one that
makes the condition false. [8, p. 411�412]

If a complex data type, that is object, participates in an input domain, one needs to
model its boundaries by defining abstract state invariants. An abstract state invariant is a
Boolean statement that determinates the state of the object. For example, the variable
iBalance determinates the state of Account class. If iBalance is below zero, then
Account is in the Overdrawn state, else (iBalance >= 0) it is in the Open state. Hence,
the abstract state invariants for Account class are: iBalance < 0 for Overdrawn and
iBalance >= 0 for Open. The selection rule for on and off points is that the condition for
the invariant is made true once and false once, on and off points respectively. Table 5
illustrates this as follows:
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Table 5. On and off points for Open state.

Boundary condition On point Off point

Account.isOpen iBalance = 0 iBalance = -1

The nominal values are chosen after the on and off points to complete the test suite.
These values can be developed by guessing, by thinking special cases, or by using a
random algorithm. The restriction for choosing nominal values is that the same values
should be avoided, since they will decrease the possibility of revealing unexpected bugs.
On points should not be used either.

To generate test cases using the One-by-One Selection Criteria, we apply the same
approach as in the boundary value analysis: the size of the test suite is the sum of the
choices plus one. Test cases for conditions x < 10, z == 10 and Account.isOpen (tables
3�5) are shown in Table 6.
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Table 6. Test case matrix.

Test cases

Variable Condition Type 1 2 3 4 5 6 7 8

x < 10 On 10

Off 9

Nom -99 -15 0 5 -115 4

y == 10 On 10

Off 9 11

Nom 10 10 10 10 10

Account isOpen On 0

Off -1

Nom 900 541 878 101 555 55

Accept value no yes yes no no yes no yes

The One-by-One Selection Criteria is an algorithmic selection method of test inputs,
and therefore it is more straightforward than any intuitive technique. However, the
identification and developing of state invariants can be time-consuming if the
Implementation Under Test (IUT) uses many objects. But when invariants are defined,
test cases for IUT can be developed very rapidly using the One-by-One Selection
Criteria.

3.2  Code coverage

One fundamental question of software testing is to determine when to stop testing. Code
coverage metrics provide one criterion for this. As a metric, code coverage is the
percentage figure of the parts of an implementation exercised by our tests. It can be, for
example, measured how many statements and branches have been taken.
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By examining the source code, the paths that have to be travelled to achieve a sufficient
code coverage are chosen. Typically, the paths that have not been executed by our black
box tests are chosen to be travelled. However, since the methods in the object-oriented
software tend to be small, the coverage of these methods can be easily obtained by black
box tests, and little or no work has to be done to achieve the test stopping criteria.

The same coverage criteria that are used for traditional environments can be applied to
object-oriented methods. In effect, testing is much the same at the most detailed level,
the method level. On the other hand, the complexity of the object-oriented systems lies
in the interfaces rather than in the methods, and there exist only proposals for coverage
metrics for levels higher than individual methods [10].

3.2.1 Method scope coverage

The traditional white box techniques to achieve the method scope coverage still apply to
object-oriented systems since the object-oriented methods are procedural code. All the
code coverage metrics use some form of control flow graph at the method scope. Thus,
one needs to understand the white box-based testing to use code coverage information.

Statement, branch (decision), condition, multiple condition, decision/condition and path
coverage are the coverage metrics used at the method level. These coverage metrics
have to be produced by coverage analyser tools, since a manual instrumentation is an
error-prone and highly time-consuming process. Statement coverage is achieved when
each statement of the method has been executed. Branch coverage is met when each
predicate (i.e. Boolean condition or conditions) has been evaluated as false and true.
Condition coverage requires that each condition has to be evaluated as true and false at
least once. Decision/condition coverage combines branch and condition coverage. To
meet multiple condition coverage, each condition in predicate has to be executed as
false and true. Path coverage is achieved when each entry-exit path of a method has
been executed.

Sometimes it is necessary to construct a control flow graph and analyse the graph to
determine how to achieve the coverage goal as our black box tests have failed to
achieve sufficient test stopping criteria. The control flow shows which program
segments (i.e. set of statements signifying that if one statement is executed then all the
other statements must be executed) may be followed by others. The control flow graph
is constructed by using nodes and edges. Nodes are derived from code segments, and
edges are the connections between nodes. Control flow graphs for common control
structures are shown in Figure 6 [3, p. 118].
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IF-ELSE

SWITCH-CASE

//...
if (predicate)

//...

else
    //...

//...
switch (selector)

case value_1:
//...
break;

default:
//...

case value_2:
//...
break;
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WHILE

DO-WHILE

FOR

Figure 6. Control flow constructs.

//...

while (predicate)

//...

//...

do
    //...

while (predicate)

//...
for (init;

     predicate;

     step;)
         //...
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3.2.2 Code coverage tools

In contrast to the manual instrumentation, which is an error-prone and highly time-
consuming process, code coverage tools provide metrics that can be considered
accurate. The coverage tools work by adding probes into the source code (or object
code) through a process called instrumentation. Once the source code is instrumented,
the probes capture the visit during the execution and record it in a log for later analysis.
In addition, coverage analysis tools analyse and summarise the log. They count different
probe messages and report the different coverage metrics.

The instrumentation needed to measure the coverage can itself cause failures and hide
the faults by modifying the control structure of the system under test. It can also cause
the program running low since the size of the code is increased due to the
instrumentation [16, p. 201]. To avoid these problems, the test suite should be re-run on
the uninstrumented implementation.

Code coverage analysis plays an important role in the software testing since it can find
gaps and redundancies in black box test suites [3, p. 9]. But achieving any coverage
goals never guarantees the absence of the bugs. For example, branch coverage requires
that each branch is executed once. However, there may be hundreds of data
combinations that can cause the same branch to be taken, and testing one set of data is
not enough. On the other hand, a thorough testing requires that all paths should be tested
for all possible inputs and states [10]. Hence, an exhaustive testing is an impractical
task.

3.3 Class scope testing

Previous discussions have concerned method level and inheritance level testing,
separately, and these separately from the class testing. However, the class (or small
cluster) corresponds with the classical definition of a unit and therefore, class scope
testing should bind these two elements together with the inter-method (intra class)
testing.

Once it is proved that a class is minimally operable, which can be accomplished by class
scope integration, one can proceed with the class testing. At the class level, one can gain
benefit from UML statechart diagrams as they show in which order messages can be
sent.
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3.3.1 Integration testing within class

As stated earlier, the purpose of integration testing is to stabilise the component so that
the component testing can proceed smoothly. At the class level, the component to be
stabilised is a class, and the integrated parts are methods of the class. The class scope
integration plan should show how to develop and test methods and demonstrate that
class is ready for a more thorough testing (i.e. class testing). The traditional integration
techniques, Big Bang and Bottom-up, can be adapted for these purposes [8, p. 643].

The traditional definitions of Big Bang and Bottom-up emphasise how the program
structure is built using modules. The Big Bang technique states that all the modules are
combined simultaneously and the entire program is tested as whole [2, p. 515]. This
method is usually found ineffective, since the error tracking can be an impossible or at
least difficult task. However, the method can be used at the class level in the object-
oriented system if the class is small and simple, and a few intra class dependencies exist
as well [8, p. 355].

The Bottom-up takes a more sophisticated approach to the integration than the Big Bang
by using incremental integration. The Bottom-up integration process starts from the
lowest level of the decomposition tree, then the next level is tested, and finally, the
highest level of the tree is tested [2, p. 517]. Within class it means that the methods are
coded and minimally tested, in the following order: 1) constructor method, 2) accessor
method, 3) Boolean method, 4) modifier method, 5) iterator method, and 6) destructor
method. Each step also requires that private, protected and public methods are tested, in
this order, since the public methods usually depend on the private and the protected
methods [8, p. 356]. The Bottom-up integration strategy for class scope is not necessary,
but developing and testing in small increments eases the debugging and the error
tracking.

3.3.2 Class testing

After it has been shown that a class is ready for more extensive testing, class testing can
begin. The class testing focuses on exercising methods in various sequences, since the
intra class visibility can cause similar bugs compared to the global data in traditional
languages [8, p. 444]. If testing is limited to the method scope, these bugs will never be
revealed. However, testing the method interactions does not always focus explicitly on
the correct input/output, and classes typically implement features that are not shown by
the behavioural model. Hence, it is necessary to interlace the test suites of the methods
with the testing of the method interactions.
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The statechart diagrams can be used to represent the behaviour of the classes, and the
valid message sequences can be derived from these diagrams. By testing all the
transitions explicitly shown in the statechart diagram, a basic level of conformance is
achieved. A better approach is to achieve all-round-trip coverage, since all-transition
coverage does not require particular sequence, and any sequence that exercise each
transition once will be sufficient.

All-round-trip coverage is obtained when every sequence of specified transitions
beginning and ending in the same state is exercised at least once. Thus, it will achieve
all-transition coverage. If a higher level of confidence is needed, then all the events in
all the states should be tested. With these test cases it is tested that there are not any
illegal transitions present, and some of the error handling code is also tested [8, p. 253,
10].

State-based testing, in which test cases are derived from the statechart, would become
simpler if all the classes place constraints in past messages (e.g. application control
classes), current content of the object (e.g. container classes), or both (e.g. problem
domain classes). However, there are classes that accept any message in any state. These
classes typically implement basic data types [8, p. 444].

To test classes which do not constrain messages, a different approach is needed. The
basic idea of testing these classes is that one sets the Object Under Test (OUT) to a test
case by using modifier methods or constructor and then checks that the OUT is placed
in the correct state with a trusted inspector. And then, all accessor messages are sent and
it is verified that they report correct values and that the class state is unchanged. The test
cases can be developed by using the One-by-One Selection Criteria.

Kim and Wu present a similar class scope testing technique based on data bindings. In
their approach, data bindings between the methods of a class are used to derive the
message sequences. As each data member of a class can be considered as a shared
variable among member functions, the testing order of the member functions of a class
can be defined by define-use relationships of data members. As a result, each define-use
pair forms a message sequence.

3.4 Integration testing

Integration testing concerns issues of how the program structure is built using
components, and which interfaces of these components should be exercised [8 p. 629].
Integration testing strategies can be applied within every scope in the object-oriented
world. At the class scope, parts to be integrated are methods, instance variables, and
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message parameters; at the cluster scope, a cluster is a component of classes, and at the
system level, subsystems are integrated. Because integration testing does not directly
test the responsibilities of the component under test, the actual test cases should be
developed using appropriate testing techniques. For example, the test cases can be
derived from sequence diagrams.

In traditional languages, the architectural design outputs drive the integration testing.
The purpose of the architectural design is to develop a modular program structure and
represent the control relationships between modules [2, p. 389]. By following this
physical structure of the system, modules can be assembled and tested to create larger
components, this thereby finally leading to the testing of the whole system. In the
object-oriented languages the dependency analysis becomes more complicated and
difficult, since, in addition to module call paths, there exist many kinds of dependencies
between components. At the cluster and class scope dependencies result, for instance,
from the following: inheritance, aggregation, message passing, and objects used as
message parameters.

The dependency analysis should bind the different types of component dependencies
together. The dependency tree does not show an inheritance hierarchy or message
passing paths. Instead, it shows client/server relationships [8, p. 636]. The dependency
tree can be developed by using a class diagram. Alternatively, the UML component
diagram could be used for developing the dependency tree if the component diagram is
sufficiently detailed.

The dependency tree forms the basis of integration testing in the object-oriented
languages just like the decomposition tree does it for traditional languages. It shows
explicit dependencies between components and therefore the assembling order of the
system can be derived from the dependency tree. Thus, it can be used to support
Bottom-up, Top-down and Collaboration integration.

3.4.1 Bottom-up integration

All the traditional integration orders (Bottom-up, Top-down, Big Bang, and Sandwich)
presume that the units are separately tested before the integration testing can begin, and
thus the goal of the integration testing is to test the interfaces among units [3, p. 178]. In
the object-orientation, attempting to test classes in isolation is sometimes futile, since
the servers of the class under test have to be replaced with controllable stubs. This turns
out to be often too difficult and complex task [8, p. 644]. The Bottom-up integration
takes a different approach to testing. It interleaves the integration testing and the
component testing.
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The Bottom-up integration process starts from the bottom of the dependency tree by
testing the leaf-level components. Then, the next level of the dependency tree is coded
and tested with the appropriate test strategy. At this stage, the previous level
components are interleaved with current components, and so the interfaces between the
client and servers should be also exercised by the test cases of the client components.
And finally, a root-level component is used to exercise the entire system. [8, p. 653�
658]

The benefit of this approach is that it reduces stubbing compared to the traditional
approach, since the upper level components are tested with real components and not in
isolation as is done in traditional unit testing. On the negative side of this approach, the
driver does not directly exercise the inter-component interfaces, but it exercises the
responsibilities of the component under test. This may be inadequate to achieve all the
component interactions. In addition, stubs are sometimes needed to throw the
exceptions and return values as it gets more difficult to generate desired conditions from
the upper levels of the dependency tree. Also, the driver development and maintenance
is a significant flaw in the Bottom-up integration.

3.4.2 Top-down integration

Just like Bottom-up integration, Top-down integration interleaves the component testing
and integration testing. It tries to achieve stability by adding components in the control
hierarchy order, beginning from the top-level of the dependency tree. Where the
Bottom-up integration testing suffers from the large amount of drivers, only a single
driver is needed for Top-down integration. Since the next lower level of the component
under test has to be stubbed, the stub development and maintenance are the most
significant costs of the Top-down integration.

The Top-down developing and testing procedure starts from the highest level of the
dependency tree, and by stubbing, the lower level services are provided to the highest
level. Then, the stubs are removed and the lower level is coded and tested with
appropriate stubs. As the lower level components are tested, the same driver can be used
to exercise the lower level components and upper level components again, providing
regression testing to ensure that new errors have not been introduced. [8, p. 663�668]

As this approach to Top-down integration interleaves component testing and integration
testing, it may be difficult to exercise the lower level component sufficiently. Every
integration increases the distance between the test driver and the components being
integrated, and attaining the high coverage for components under test becomes difficult.
The traditional approach to Top-down avoids this major disadvantage of the pure Top-
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down integration: the components are tested in isolation with an appropriate test
strategy, and the integration testing concentrates purely on exercising the interfaces
between components.

The advantage of the Top-down integration is that the cost of the driver development is
reduced as test cases can typically be re-used to drive the lower level tests. And in
addition, at every stage in the process, one has a working system.

3.4.3 Collaboration integration

Collaboration integration organises integration to support a particular collaboration (e.g.
system function) and presumes that the participants of a collaboration are minimally
operable (i.e. they have passed their component scope tests) [8, p. 670]. In effect,
Collaboration integration is similar to Big Bang integration: the participants of a
collaboration are not exercised separately.

The Collaboration integration test process is started by developing the dependency tree.
As the dependency tree is developed, the collaborations are mapped to the dependency
tree until all components and interfaces are covered. Then, the interfaces are tested by
exercising one collaboration at a time. The test suite can be developed for the scope of
the integration, for example by using a sequence diagram. [8, p. 671�675]

Collaboration integration is similar to Big Bang integration, and so the participants in
collaboration are put together at once. This approach to integration testing suffers from
the inadequacies of non-incremental integration testing. As every component in an
integration is equally suspect when a failure has occurred, debugging can be difficult.
With the incremental integration testing, most recently added components are likely to
be buggy. Furthermore, it may be difficult to exercise the lower level component
sufficiently with Collaboration integration. Every layer in the dependency tree increases
the distance between the test driver and the components being integrated, and attaining
the high coverage for lower level components becomes difficult.

The exit criterion for integration testing is that all interfaces and components are
exercised. Sometimes it may not be necessary to exercise all the collaborations to obtain
the interface coverage if a few collaborations exercise all the interfaces. Since interface
coverage may be achieved with a few test runs without exercising all the collaborations,
it may result that some interface bugs are missed. However, Collaboration integration
test cases will probably be re-used and expanded to test these uncovered collaborations,
for instance in the system scope testing.
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Jorgensen and Erickson propose a similar approach for the object-oriented integration
testing [18]. The integration is accomplished by identifying Method/Message paths
(MM-path) for each Atomic System Function (ASF). MM-path is a sequence of method
executions linked by messages, and an atomic system function is an input port event,
followed a by set of MM-paths, and terminated by an output port event. The ASF is
visible at the system boundary, and thus the ports constitute the boundaries of the
system. Below, Figure 7 illustrates ports, ASFs and MM-paths.

Figure 7. Object network for integration testing.

3.5 System scope testing

As previously proposed, sequence diagrams can be used to test the collaborations of
components at the integration level, demonstrating end-to-end functionality. Although
all collaborations shown in the sequence diagrams could be tested during the integration
testing, there may still exist gaps in the test suite. Sequence diagrams are obligated to
show a possible scenario of use cases, where proper implementation of a use case may
require several scenarios. Thus, a more thorough testing is needed, and system scope
testing becomes necessary.
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On the other hand, system testing means more than demonstrating that the system
implements all the required functional capabilities. Additional testing is needed after the
functional test cases are derived from the system requirements. These test cases address
the non-functional capabilities of the system, such as configuration and compatibility,
stress, performance, concurrency, recovery, and human-computer interaction testing [8,
p. 742].

3.5.1 Use case testing

Use case diagrams can be used to drive the system scope testing. Use cases express
most of the system requirements in object-oriented development, and due to this, system
scope test cases can be constructed from these requirements. Nevertheless, use case
diagrams are seldom test-ready, and more testable use cases are needed. The extended
use cases provide this extra information for system scope testing.

To develop extended use cases one needs to define:

� Operational variables,

� domain constraints for each operational variable,

� operational relation for each use case, and

� the relative frequency of each use case.

Operational variables are variables that participate in determining the response of a use
case. In short, they can be explicit inputs/outputs, state of the system, or environmental
conditions. Different environmental conditions can be identified by considering the
interaction between the system and actor, and those that are likely to produce a different
system behaviour are selected. [8, p. 724�731]

After the domain for each operational variable is defined, logical relationships among
operational variables are developed, this thereby leading to an operational relation. An
operational relation is a decision table, in which each row is a variant and each column
is an operational variable. The test cases are generated from the operational relation: one
true and one false test case is required for each variant.

Binder uses the relative frequency of each use case to determinate that reliability is
maximised: those use cases that are used most often are tested more thoroughly than the
others. However, two different approaches can be also identified. First, the use cases
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that pose the highest risk to the project are tested most heavily. Alternatively, the use
cases that are critical to the operation of the system are tested more thoroughly.

The benefit of developing test cases based on extended use cases is that the
development of the extended use cases will find errors and omissions in the design, and
thus, developing the extended use cases from the outset is preferable. Another
advantage of deriving test suites from the use cases is that use cases reflect the user
point of view, which is often effective in revealing omissions.
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4. Test automation
So far, only one activity of the test process (i.e. test design) is discussed. In addition to
test design, the test process encompasses test case implementation, execution and
comparison between actual outcomes and expected results. These remaining activities
of the test process are described in the first part of this chapter.

Object-orientation makes testing difficult, emphasises regression testing and creates
unique errors that cannot be found from traditional languages. Hence, a test driver
implementation should take these special needs of the testing of object-oriented
software into account. A test driver implementation for object-oriented software is
presented in the second part of this chapter.

4.1 Test process

The test process includes a number of distinct activities each of which addresses a
different development phase of test cases. The test process encompasses test design, test
case implementation, execution, and comparison between actual outcomes and expected
results. These activities can be considered sequential. Test design is accomplished
before test case implementation, and a test case must be implemented before it can be
run, and run before its actual outcomes are compared to expected results [19 p. 14]. The
activities of the test process are illustrated in Figure 8.

The first activity, test design, involves designing test cases based on the responsibilities
of component under test. Test cases based on code analysis and suspicions are also
added to a test suite. And finally, expected results for each test case are developed. The
expected outcomes include explicit outputs or things that are created or changed. Also,
things that should not be changed or things that should be deleted should be included in
the set of the expected outcomes. The test case design should be carried out parallel
with the associated development activity before the software to be tested has been built.
For example, extended use cases will be developed as soon as nontestable use cases are
available.
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Figure 8. Test process activities.

After the design is completed, test scripts are implemented. A test script is a program
typically written in a procedural language that executes the test suite. If manual testing
is indicated, a test script is merely a test procedure, and no other software, besides to the
software under test, is needed. A test script may implement one or many test cases, set-
up environment, bring the software under test to the required pre-test state, compare the
resulting outputs, and finally do some clear-up procedures. To save some time later, the
test case building activity can be prepared in advance before the software to be tested
has been built.

In the third activity, test cases are executed using the test scripts. For manual testing, a
tester will enter the inputs, observe outcomes and make notes about any problems as
they occur. For automated testing, a testing personnel starts the test tool and tells it
which test cases to execute. Test execution can be done only when the software to be
tested is ready.

At the final stage of the test case development life cycle, outcomes of each test case are
compared to expected results. As stated earlier, the comparison of the test outcomes
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can be done only after the test case is executed. This is not always the case. Typically,
the comparison of some outputs, such as messages sent to a screen, is done in parallel
with the execution. On the other hand, some comparison is done after the test case is
executed. As a result, comparison automation needs to use a combination of these two
approaches.

If actual and expected results are equal, the software under test has passed a test case; if
they are different, the software has not passed a test case, and this thereby results in
debugging of the software results. Sometimes it is not the software under test that has
failed, but rather, test suite is executed in a wrong sequence, expected outcome was
incorrect, test environment was set-up incorrectly, or test was incorrectly specified.
Consequently, the outcomes should be verified, since the comparison tool cannot say
whether the output is correct or not. The tool can only compare the outputs and flag the
differences. It is the testing personnel who have to verify that the results being
compared are correct. [19, p. 17]

4.2 Test driver implementation

Any aspect of the test process can be automated, but only a few of those are truly
amenable to automation, and since test automation contributes an extra overload to
testing, a careful judgement is needed. Typically, those parts of the test process that are
repeated most often are automated. Also, the nature of the test process activity makes
one activity more useful than the other for test automation.

Test design is intellectual work at least in selecting the inputs and outputs. A tool does
not have imagination to select the proper values, and everything must be spelled out in
great detail. In the other end of the test process, testing is much more straightforward
and less intellectual than test design. This makes test case execution and comparison
more amenable to test automation.

Typically, test case design is done once, but the execution and comparison often. For
instance, object-orientation emphasises re-testing because of inheritance, incremental
development life cycle, and re-use [20]. When a test case fails and the error is fixed, we
may then also want to re-run the test case to ensure proper behaviour. Test cases must
also re-run for an instrumented and uninstrumented code, or in embedded systems,
where software is developed in a host and then transferred into a target, regression
testing is needed. Thus, we automate test case execution and comparison. Figure 9
illustrates an automated test environment.
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Figure 9. The automated test environment.

It is already shown that object-orientation makes testing difficult, emphasis regression
testing and causes unique errors that cannot be found from traditional languages.
Moreover, testing of a component typically requires a driver that can simulate the
messages sent to CUT as there is no user interface to provide test inputs for the CUT.
The object-oriented test automation should provide answers to these testing problems.
Hence, the test automation system has to make it possible to:

� Observe the states of the class under test, and

� re-use the test cases of the superclasses.

To re-use the test cases of the superclasses, Firesmith proposes that the original
inheritance structure should be duplicated: as each new class to be tested is derived, a
corresponding test driver class is derived. The advantage of this approach is that derived
classes of test drivers use inheritance to obtain, extend and modify the test cases of their
base classes [20]. However, it does not address the issue of how the states of the class to
be tested are observed, nor does it demonstrate how the test cases are implemented. On
the other hand, it provides a good basis for our test driver implementation.

The test driver implementation takes the difficulties of the testing of object-oriented
software into account and combines the solutions that were presented in the earlier
sections (see sections 2.2.2., 2.2.3. and 2.2.4.). Hence, it overcomes the obstacles that
are caused by encapsulation and information hiding by providing a view to the private
and protected features of the class under test. The test driver implementation equally
gives a concrete solution of how to re-use the test cases of the superclasses in order to
diminish the effort of re-testing. As it provides an ability to re-use the test cases of the
superclass, it can be verified that the derived class's contracts are consistent with the
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contracts of all of its superclasses (i.e. subclass is a type of superclass), and thus, it is
checked that the server classes are LSP compatible. Furthermore, extended features can
be re-tested in the context of the subclass by using the test driver implementation. The
test driver implementation is depicted in Figure 10.

Figure 10. Duplicated test driver hierarchy.

As it can be seen from the figure, test cases are implemented as methods. For instance,
there are five test cases for A::method1. These test cases are implemented in ATester.
ATester::method1LSPTC1 and ATester::method2LSPTC2 are used to verify LSP
compliance and can be re-used in CTester to test that C is LSP compatible with A.
However, ATester::methodTC1, ATester::methodTC2 and ATester::methodTC3 cannot
be re-used, since the method1 is overridden in C. Thus, new test cases are needed
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(CTester::methodTC1 and CTester::methodTC2). On the other hand, A::method2 is re-
used as such in C and so the test case from ATester can be re-used in the context of
CTester. The purpose of the superclass Tester is to make it possible to record the result
from each test case into a file for later analysis.

To observe the states of a class under test, we take advantage of the concept of a friend
class in C++. Using a friend class we have an access to all variables of the CUT
avoiding the obstacles of encapsulation. We have an ability to examine CUT's private
data (i.e. get the states of the CUT) to verify its correct implementation. In addition, we
have an ability to initialise its private data (i.e. set the states of the CUT) to a force
particular path to be taken. The friend class also gives access to protected and private
methods to ensure that they are fully tested.

Another approach to overcome the obstacles of encapsulation is to make modifications
to the class under test (Figure 11). On the negative side, this approach requires more
work than using a friend class and indirectly violates encapsulation. By making
modifications to the class under test, one grants access to encapsulated features for all
the classes in the system. Instead, using a friend class, the driver is the one who has
access to the features of CUT.

class A {

#ifdef TEST
public:
#endif
          int x,y ;

#ifdef TEST
public:
#else
protected:
#endif
          method1() ;

#ifdef TEST
public:
#else
private:
#endif
          method2() ;

//...
} ;

Figure 11. The modified class.
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5. A case study
In this chapter, the proposed techniques are put into practice, and for this purpose, a
demonstration system is built. The system is designed and implemented in the
Rhapsody environment, since it supports the full life cycle of software development
from requirements to testing. Rhapsody supports the software design by providing
various UML diagrams. It equally supports implementation by generating code from the
UML diagrams and testing by showing the animated diagrams.

5.1 Rhapsody

Rhapsody (Figure 12) is a visual development environment for real-time embedded
systems. It enables software engineers to model the system with the Unified Modelling
Language. Use case diagrams, class diagrams (object model diagrams in terms of
Rhapsody), sequence diagrams, statechart diagrams and activity diagrams are supported
by Rhapsody. However, it does not support implementation diagrams such as
component and deployment diagrams. Furthermore, Rhapsody makes it possible to
verify the intended behaviour of the system much earlier in the development life cycle
by generating code from design and testing the system as it is built.

Use case diagrams in Rhapsody are fully compatible with the UML. They capture the
high-level functionality of the system and give the designer the ability to depict the
standard relationships between actors and use cases or among use cases. Extension
points, generalisations, includes and associations can be shown in Rhapsody's use case
diagrams. At the implementation phase, there is not much use of use case diagrams, as
Rhapsody does not generate code from the models. Nor can they be used in the test case
execution phase.

Typically, the use case diagram itself does not show all the information to implement
the use case, but the description of the use case must be put into another document. This
extra information describes for instance the name of the use case, actor(s), pre-
conditions, post-conditions, possible errors, flow of the execution, and purpose of the
use case. In Rhapsody, the description of the use case can be merged into the use case
diagram thus avoiding unnecessary documentation.

Sequence diagrams are used to give an example of a use case. The scenario of the use
case can be either a "black box" sequence, in which messages between the system and
its environment are illustrated, or a "white box" sequence, which shows the internal
interactions within the system. The sequence diagrams in Rhapsody show one possible
scenario of the use case. Only one entry-exit path exists in the diagram, as there are no
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Figure 12. A view of Rhapsody.

conditional or iterated messages. This eases the test case design since one does not have
to identify different flow paths from the model, and as a result, one test case is derived
from each sequence diagram. This, however, is not an effective way to test the
collaborations of the classes. The complete implementation of a use case may require
several scenarios, and testing one of them is not enough. Thus, one needs to develop a
complete model where each scenario is depicted in a separate diagram and then overlay
these diagrams to develop the test suite for the system/subsystem scope.

At the design phase, when an instance line or message is drawn in a sequence diagram,
Rhapsody checks whether the message or class already exists, and if not, they are
created according to the information given by a user. At the testing phase, the actual
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trace of the execution can be captured and compared to the specification. In addition to
the interactions of the objects, the values of the arguments of the methods are shown in
the animated sequence diagrams. Thus, animated sequence diagrams provide a
possibility to check inter-object messages and values of the arguments passed with each
message. This may be useful at the integration phase.

Class diagrams are used to show the static structure of the system. In Rhapsody, they
depict classes, packages and relations that exist among classes such as dependencies,
generalisations, associations, aggregations, and compositions. Also, active objects (i.e.
objects that run in their own thread) can be illustrated in the class diagrams. Rhapsody
generates low-level code including relations, multiplicities of the objects, and threads
from the model, and by generating code from the diagram, it reduces the effort to
implement the system structure. Because it provides operations to handle multiplicities
and the relations of the classes, Rhapsody speeds up the implementation of the system.
On the negative side, if you do not know how to use, or mistakenly misuse generated
operations using them is subtle to new errors and failures.

Statechart diagrams provide the most detailed view of the behaviour of classes. They
define the behaviour of classes by specifying how they react to events and operations.
Combined with the code generation in Rhapsody, statechart diagrams provide a high-
level, iconic programming language, which hides the low-level implementation of the
statechart. In animated mode, Rhapsody highlights the transition taken and the state
entered, providing a view to the encapsulated features of the class under test.

In Rhapsody, classes with statecharts are called reactive classes. Reactive classes can
accept asynchronous messages, i.e. messages that happen over time, and synchronous
messages, i.e. messages that happen immediately. Asynchronous messages are called
events and synchronous messages are called triggered operations. The usage of the
triggered operations corresponds to the usage of instance functions in C++. These can
return value (this is what events cannot do) and accept parameters, and the client waits
until the operation is completed (synchronous communication). The difference is that
the triggered operation is included in the statechart framework and the instance
functions are not.

Classes can also have primitive operations (instance functions in C++). These are the
operations whose bodies must be defined instead of letting Rhapsody generate code for
them. Contrary to triggered operations and events, which are accepted only when shown
explicitly in the statechart diagram, primitive operations are accepted in every state.
Furthermore, primitive operations cannot trigger a state transition. Instead, timeouts and
messages, such as triggered operations and events, are used to trigger a transition from
one state to another in the statechart.
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5.2 The example system

To put the proposed techniques into practice, an example system is built. A simple
distributed system is constructed for this purpose. The system follows the so called
client/server-system architecture providing clearly two distinct subsystems, the client
and the server. The client sends messages, e.g. through the computer network, to the
server and the server responds to them accordingly. In addition, the client and the server
must use a protocol to communicate with each other and to provide a reliable
connection. Figure 13 shows an example of the client/server architecture.

Figure 13. Client/Server architecture.

5.2.1 Requirements

The main function of the example system is to enable the client user to download files
from the server's repository through a TCP/IP connection. The more specific problem
statement for the file download system is following:
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A server user creates a file name repository, where all the names of the files that can be
downloaded by the client(s) are put into. The server user can add, remove and update
these file names. After the repository is created, and at least one file name exists in the
repository, the server user is able to enable the reception of the connections.
Furthermore, the server must be able to handle five sessions simultaneously.

The connection to the server is initiated by the client user. After the connection is
established, the client user may select the file and download it. Alternatively, she/he
may shutdown the connection or may download the repository again.

From the above problem statement, use cases for the entire system are built (the use
case diagram for the example system is illustrated in Appendix 1). Typically, after many
revisions, the use cases are settled, and the development of the extended use cases is
started. First, the operational variables are defined. For instance, the operational
variables of the download file use case are: status of the client (connected/not
connected), status of the server (respond/not respond), file to be downloaded
(valid/invalid), and status of the file names (one selected/none selected). Next,
operational relation is developed for the use case, and the test cases are generated from
the operational relation: each variant requires one true and one false test case.
Operational relation for the download file use case is shown in Table 7. Table 8
illustrates the correspondent test cases.

Table 7. Operational relation for the download file use case.

Variant Status of the
client

Status of the
server

File to be
downloaded

Status of the
file names

1 Not connected Do not care Do not care Do not care

2 Connected Do not care Do not care None selected

3 Connected Not respond Do not care One selected

4 Connected Respond Valid One selected

5 Connected Respond Invalid One selected



56

Table 8. Test cases for the download file use case.

Test cases Operational Variables

Status of the
client

Status of the
server

File to be
downloaded

Status of the
file names

1 Not connected Do not care Do not care Do not care

2 Connected Respond Valid One selected

3 Connected Do not care Do not care None selected

4 Not connected Do not care Do not care None selected

5 Connected Not respond Do not care One selected

6 Connected Respond Valid One selected

7 Connected Respond Valid One selected

8 Connected Not respond Valid One selected

9 Connected Respond Invalid One selected

10 Connected Not respond Invalid One selected

A similar way to enumerate test cases is to use Category-Partition: when operational
variables and their test values (choices) are defined, test cases are generated by a
producing cross product of all choices minus some constraints. To detect domain errors,
the One-by-One Selection Criteria should be used. Test cases based on suspicions
should be also included in the test suite.

A better approach to define extended use cases would be to consider them as the use
cases are developed, since they not only give you a better understanding about the
problem but also make the use cases more complete and stable. If the system is
implemented from the original use cases after which the extended use case tests are
applied to the system, these may reveal bugs in the design. Alternatively, these design
omissions are revealed at the implementation phase, and programmers may improvise
these ambiguities and omissions as they are found.

On the other hand, an experienced system designer would probably include this
information in the use case description and thereby the test cases are derived from the
description. These test cases include, for instance, the expected flow of events, all



57

possible error conditions and possible violations in the pre-conditions. However, it is a
good practice to speak in terms of extended use cases as they provide a systematic way
to define test suites for the use cases.

5.2.2 Scenarios and the structure of the system

After the use case diagram is constructed, scenarios of use cases are created by using
sequence diagrams. This is done in parallel with the development of the static structure
of the system (class diagram). Rhapsody provides means for the parallel development of
sequence diagrams and class diagram, because it checks whether the message or class
already exists when an instance line or message is drawn in a sequence diagram, and if
not, they are created according to the information given by a user.

Since Rhapsody does not support iterated or conditional messages, a sequence diagram
presents only one scenario of a use case. Then it is up to the designer whether she/he
wants to depict all the collaborations in separated diagrams. And the more sequence
diagrams are illustrated, the better it is for test design purposes.

The download file use case of the demonstration system encompasses at least five usage
scenarios. It is useless to illustrate all these scenarios for testing purposes, because all
the collaborations are tested at the system level. Nevertheless, as Rhapsody supports
animated sequence diagrams, in which a trace of execution is shown, it is useful to draw
scenarios to test the interface faults. These interface faults include for instance missing
methods, wrong method called, and wrong parameters used in a method call. A
sequence diagram of the request file list use case, which was used prior to use case tests,
is illustrated in Appendix 2. With this test case, it was verified that the use case is stable
enough for extensive testing.

The class diagram of the system (shown in Appendix 3) can also be used in testing
purposes. It depicts client/server dependencies at the subsystem and at the system level
providing information useful for integration testing, since dependency trees can be
developed from the models by inspection. Figures 14 and 15 illustrate the example
system's dependency trees.
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For the example system, the file server is tested in top-down order, and the file client is
tested in bottom-up order. The whole system is tested using Bottom-up integration.
Another approach could be that the subsystems, the file client and the file server, are
developed and tested in isolation, after which integration testing is carried out using
Collaboration integration. This turned out to be futile exercise, since the file server is
developed and tested first, providing trusted component for the file client. However, if
the subsystems are developed in parallel, the Collaboration integration may be useful.

Besides depicting the integration process, a few subsystem and system level test cases
can be developed from the class diagram. These tests verify the associations of the
classes shown in the class diagram. For instance, it should be tested that the server can
handle five connections simultaneously.

5.2.3 Objects behaviour

At the final phase of the design, the behaviour of the classes is developed using
statechart diagrams. The operations that are not part of the statechart and are not defined
in early part of the design are also developed. This is often accomplished by functional
decomposition of the public operations [21, p. 275].

Events, triggered operations and primitive operations clarify the test case development
from a state model in Rhapsody. If the event or triggered operation is not defined in the
particular state, it is simply ignored and discarded, and due to this, there are no implicit
transitions present. Furthermore, there are no illegal transitions, since the code is
generated from the diagram. Basically, one can trust this implementation and discard
testing every message in every state. Testing all the transitions explicitly shown in the
statechart diagram would be sufficient.

The statechart diagram in Rhapsody provides a high-level programming language, and
specifying the object behaviour using a statechart diagram denotes rather implementing
than designing the behaviour. Hence, deriving the test cases from the model signifies
white box testing and the testing shows that the code does what it does; this is not
necessarily what it is supposed to do. On the other hand, the action parts of transition
are still implemented by the user. These action statements may include complicated
control flow paths or they are simply a few statements of code with no conditional
branching. In either case, the action statements should be tested. Testing all transitions
would once again be sufficient, as it might result in that all control flow paths within the
actions would be executed.
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Rhapsody eases the test case design for inheritance hierarchies. In order to make
statecharts testable, they have to be flattened. For inheritance, flattening is accomplished
by combining the statechart diagrams of the superclasses with the statechart diagrams of
the subclasses. In Rhapsody, the statechart diagram of the superclass is inherited by the
subclass, i.e. the statechart of the subclass (Appendix 5) is initially a clone of the
statechart of the superclass (Appendix 4).

For the example system, message sequences within the class ClientConnection
(Appendix 4) were developed using the technique described in the section 3.3.2. to
achieve all-transition coverage. In addition, test cases for the methods were developed
using Category-Partition. As stated, the effort of testing message sequences within a
class is diminished because of code generation. Consequently, some of the sequences
that would have resulted from the flatting of the nested states could be left out, as the
code generation of Rhapsody is not the aim of the testing. Testing every message at
every state could be precluded as well.

Category-Partition is an effective means to find errors within methods [8, p. 419]. It
could also be used to enumerate tests for use cases. The negative side is that the test
case design is laborious. After identifying the variables and their values, constraints and
combinations between values have to be identified. This has turned out to be a complex
task as the number of choices increases. Thus, some sort of tool support for enumerating
the test cases would be useful.

The One-by-One Selection Criteria is useful for methods that include a domain
constraints for input parameters (e.g. have pre-conditions). For the example system,
there is a method called Coder::encodeMessage whose specification requires that input
parameters meet the following assertions:

assert (_dataLength <= MAX_DATA_LENGTH) ;
assert (_dataLength >= MIN_DATA_LENGTH) ;
assert (_msgID == VERIFY_CONNECTION ||
        _msgID == REQUEST_FILE_LIST ||
        _msgID == REQUEST_FILE ||
        _msgID == CLOSE_SESSION);

This presentation provides enough information to build a correspondent test case matrix
(Appendix 6). If Category-Partition had been applied for this method, it would have
given a much larger test suite for the method. And in addition, constraints and
combinations between values would have to be identified, which is not an easy task.
Hence, the One-by-One Selection Criteria offers an effective way to enumerate test
cases when there are well-defined domains for input parameters.
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5.2.4 Unit testing

The duplicated test driver hierarchy was used for implementing the test cases. The test
driver hierarchy was found to be effective for finding inheritance-related faults. It
revealed omissions of virtual declarations in the polymorphic superclass and omissions
of methods that should have been defined in the subclass (missing override). This is due
to the fact that the test cases of the superclass are used in the context of the subclass
using dynamic binding. And since tests were automated, tests could be easily re-run
in the context of the subclass (CodedClientConnection) revealing these inheritance-
related errors.

Testing of the message sequences within the class ClientConnection did not find any
state-related faults. However, two explanations can be given for this. Firstly, the code
generation from the statechart diagram obviously causes fewer bugs, and secondly, the
state space of the ClientConnection was simple. Thus, it can be argued that when the
state spaces of classes become more complex, testing of message sequences within
classes are more important, and effective as well.

The strength (and the flaw) of Category-Partition is that it is a heuristic approach. For
the example system, there was a method which was tested using Category-Partition. It
turned out that achieving any coverage metrics would not have revealed an error, but
instead, selecting a test case using Category-Partition uncovered an error.

5.2.5 Integration testing

The file server subsystem was tested using the Top-down integration strategy. Since the
next lower level of the class under test had to be stubbed, the stub development caused
the most significant cost of the integration. The stub development is not reasonable for
some classes, since developing a stub causes a load that is equally great as in
constructing a real class. A reasonable approach, without a tool support for stub
development, is to postpone testing classes in isolation until the server class is
constructed. The negative side of this approach is that it makes error tracking complex,
and if testing is postponed on many levels it may be difficult to cause desired conditions
to happen.

The strength of the Top-down integration was that in every stage in the process, there
was a working system (the server, in our case). But when the testing proceeded to lower
levels, attaining the high coverage for components under test became difficult. Thus,
some classes which lie at the bottom of the dependency tree, were forced to be tested in
isolation using a separate driver.
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The file client was tested in reversed order compared to the file server, i.e. in bottom to
up order. This diminished the effort to implement the stubs, because the classes were
tested with the real classes, not with the stubs as it was done in Top-down integration.
However, as the integration increased the distance between the tested classes and the
classes being integrated, it was difficult to force the already tested classes to cause
desired conditions. Hence, some stubs were needed.

The driver implementation caused the most significant cost of the Bottom-up
integration. And as the driver cannot be re-used, it is tempting to postpone testing. But
once again, the debugging is laborious because you do not know whether it is the class
that was recently developed that caused the fault or the class whose testing was
postponed.

Another flaw in Bottom-up integration is that if the interfaces of the low-level
components are not stable and complete, testing of these components thoroughly before
the interface is made robust, is useless. For instance, when the upper level is developed
and changes are applied to the interfaces below (because of bad design), testing of the
low-level components would have been futile as new test cases had been developed due
to the changes in the interfaces.

Circular dependency also caused a testing problem. It forced the classes to be integrated
in groups, making effective unit testing harder. Alternatively, stubs could be used to
enable isolation testing.

5.3 Conclusions

In order to catch the errors in an early state of the software development and achieve
extensive testing, one has to focus on one class at a time. However, in most cases testing
classes in isolation is impractical, as both driver and stub development cause an
overload that is just not acceptable. The solution for class testing is to interleave class
and integration testing and test classes within a cluster. On the other hand, a thorough
testing of class level functionality for larger components is a complex task as well, since
some stubs and drivers are still needed. Moreover, interleaving integration and class
testing makes class testing even harder, as one does not only focus on class level faults,
but integration faults between classes have to be addressed as well. As a result, there is
no single way to perform class and integration testing, and thus, every object-oriented
system requires a careful judgement of how the testing is performed.

Testing cannot be accomplished effectively without a proper software design. There
have to be design documents to provide inputs for test design. For object-orientation,
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the Unified Modelling Language provides effective means for this. In addition to
finding faults in the implementation, test design is also effective in finding bugs in
software design. The extended use cases are the most concrete example of this, as they
do not only provide a systematic way to develop test cases, but they equally make test
cases more complete and consistent.

Although the UML models give useful information for test design, one significant
limitation is nevertheless recognised. In most cases, the UML models are nontestable,
and the testing personnel have to turn nontestable models into testable ones. To make
use case diagrams more testable, extended use cases must be developed. For sequence
diagrams, different control flow paths must be recognised. And for statechart diagrams,
flattened views have to be constructed. A better approach is that they are made testable
during the design. But in the case of statechart diagrams, orthogonal states and substates
provide a compact description of the behaviour of the classes. This is contrary to the
flattened view, which may lead into spaghetti and blurred diagrams, when the number
of states and transitions increase. Hence, this is the trade-off between design and testing
that one has to accept.

Some object-oriented design tools, such as Rhapsody, contribute their own impact to
test design and testing. For instance, test case development from a sequence diagram is
an easy task, since one test case is derived from each diagram. But then again, depicting
all scenarios requires a lot of work. This makes sequence diagrams less useful for test
design, as it may be that all the collaborations are not depicted. On the other hand,
sequence diagrams are useful in the test case execution phase in Rhapsody, since they
can be used to capture the system trace, and furthermore, the actual trace can be
compared to a specification.

Code generation from a statechart diagram eases the test case development. One tests all
the transitions shown explicitly in a diagram to execute action statements and discard
testing every message in every state, as one can rely on the fact that the state machine is
implemented correctly by Rhapsody. With code generation, there also rises an
interesting issue of testing statechart diagrams, since effective testing relies on black
box testing, and in Rhapsody, deriving test cases from a statechart partly signifies white
box testing because of code generation. And if a statechart is tested too thoroughly, one
may end up testing the Rhapsody's code generation. This is not what is wanted.
Alternatively, we should redirect the effort that we spare using code generation towards
the validation of the model.

Table 9 outlines how the different UML models can be used at the various levels of
testing. These models are chosen according to what are supported by Rhapsody and
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what was studied, even though diagrams such as activity, collaboration, component and
deployment diagrams are useful for testing purposes.

Table 9. Utilisation of the UML in testing.

Level of
testing

Use case
diagram

Sequence
diagram

Statechart
diagram

Class
diagram

Class Primary1

Integration Top-down
Collaboration2

Top-down
Collaboration3

Top-down
Bottom-up4

Integration
order and

associations5

System Primary6 Secondary7 Secondary8

1. Message sequences can be derived from the model. If all-roundtrip coverage is required, the
diagram should be flattened.

2. Although a use case diagram does not show interfaces of components being integrated, the test
cases can be developed using extended use cases.

3. Useful if the test cases, derived from the model, exercise interfaces to be tested.
4. Class scope testing may interleave integration testing among classes and class level testing.
5. Dependency tree can be developed from the model. Furthermore, valid associations can be

derived from the diagram.
6. Extended use cases.
7. Useful if all the scenarios of a use case to be tested are depicted.
8. Also system behaviour can be modelled as a state machine.

As it can be seen from Table 9 there is not much use of the UML diagrams at the lowest
level of testing (i.e. method testing), but techniques, such as Category-Partition and
One-by-One Selection Criteria with the object-oriented aspect, are used. And although
the UML models are nontestable and require a definition of additional information in
some cases, the UML gives a source of information to software testing that should not
be overlooked.
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6. Summary
The purpose of this paper was to find out how object-orientation affects testing �
especially test design � as well as how the Unified Modelling Language can be used for
test design purposes. Furthermore, detailed instructions to design tests were given, and
practical solutions to avoid the obstacles of the testing of the object-oriented software
were presented as well. Some of the testing techniques, which were studied, were
applied to a demonstration system. The system was designed and implemented by using
a CASE tool called Rhapsody, as it provides its own impact on test design and testing.

It was argued that testing is a complex, challenging and time-consuming part of a
software project. And this is still true with the object-oriented world: object-orientation
does not make faults disappear. On the contrary, it provides some unique errors and
faults that cannot be found from traditional languages and occasionally makes testing
harder. Inheritance, integration to more extent, polymorphism, dynamic binding, and the
increased number of interfaces make the testing of object-oriented systems more
difficult compared to the traditional systems.

Encapsulation also presents an obstacle to testing. It hides the information necessary to
testing, since the information of the classes is only available through the interfaces.
However, using a driver that has access to protected and private features of CUT neatly
avoids this obstacle. In C++, this problem is avoided using a concept of friend class.
The positive side of encapsulation is that it prevents bugs common to traditional
languages, and by increasing the modularity, testing can be limited.

The lowest level of testing in the object-oriented systems tends to be a simple task,
because the methods are small and simple, and the coverage of these methods can be
easily obtained. Although this is an important strength of object-orientation, as it
provides means to break down large and complex systems into smaller ones, the
complexity has not disappeared: it is only pushed to interfaces.

The black box approach is the primary strategy to develop test cases for object-oriented
software, and there are numbers of traditional techniques that can be used for object-
oriented systems. In contrast to black box testing, the white box approach is less
applicable for the object-oriented systems. Because of the fact that there are increased
numbers of interfaces and because objects communicate with messages, messages and
their contents should somehow be recorded. Rhapsody provides means for this. In the
testing phase, a sequence diagram can be used to capture the system trace, and
furthermore, the actual trace can be compared to a specification.
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In this paper, three levels of software testing were introduced: class testing, integration
testing, and system testing. Class testing was mapped to the traditional definition of unit
testing. In object-orientation at the class level, one does not only have to test methods
and interactions of these methods, but inherited features should equally be tested in the
new context. Moreover, it should be tested that the subclass is substitutable for the
superclass (i.e. a subclass is a type of superclass). However, the effort of re-testing can
be diminished by using the test cases of the superclass. The duplicated driver hierarchy
provides a capability for this.

Object-oriented integration testing concentrates on testing components' interfaces as it
does in the traditional software. However, Top-down and Bottom-up interleaves
integration testing and class testing, which makes class testing even harder, as one does
not only focus on the class level faults, but also integration faults between classes have
to be addressed. The testing of the object-oriented system is still much the same when
non-functional capabilities of the system are concerned. On the other hand, use cases
provide a new object-oriented view for testing functional capabilities of the system.

Effective testing cannot be accomplished without a proper software design. There must
be complete, stable and robust design documents before the test design may begin.
Preferably, the testing point of view should be taken into account in the design phase by
making the UML models testable. For use cases this works well, but for the statechart
diagrams it is not always reasonable to flatten the view, as the flattened view may lead
to spaghetti diagrams. And for the sequence diagram, it is reasonable to depict different
scenarios in the same model, as it provides a more compact and comprehensive view of
the use case.

The UML diagrams can be used at the various levels of testing. At the class scope,
statechart diagrams are useful as they show the intended behaviour of the classes, and
the valid message sequences can consequently be derived from these diagrams. But in
Rhapsody, deriving the test cases from the diagram partly denotes white box testing
because of code generation. More importantly, it should be verified that the
specification is correct.

At the integration level, the test suite can be developed using sequence diagrams. But
then again, using Rhapsody as a modelling tool, the benefit for test design is diminished
since sequence diagrams depict only one scenario of a use case. This is not an effective
way to test the collaborations of classes that implement a use case. One can also gain
benefit from the class diagrams at the integration level, since dependency trees can be
developed from these diagrams by inspection. In addition, valid associations can be
derived from the model.
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Use case diagrams can be used to test the functional capabilities of the system.
However, use cases are seldom test-ready and extensions are thereby needed. Extended
use cases provide this extra information for system scope testing. At the lowest level of
testing (i.e. method testing), there is not much use of the UML diagrams. Instead,
techniques such as Category-Partition and One-by-One Selection Criteria with the
object-oriented aspect are used.
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Appendix 1
Use case diagram of file download system
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Appendix 2
Sequence diagram of request file list use case
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Appendix 3
Class diagram of file download system
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Appendix 4
Statechart diagram of ClientConnection
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Appendix 5
Statechart diagram of CodedClientConnection
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Appendix 6
Test case matrix for Coder::encodeMessage
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