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Abstract

As part of the European harmonisation of building codes, the determination of design
values for loads and materials is important and is the motivation for this research. This
report begins with a summary of the probabilistic basis of Eurocodes, analyses the
strength distributions of wooden materials, demonstrates the effects of different
distribution functions on the calculated safety level and shows some results of the
applications of reliability analysis.

When the number of experiments allows, determination of the 5% fractile of strength
should be based on the function fitting on the lower tail of the strength values, for
instance 10%. All smooth functions fitted to tail data gave good estimates of the 5%
fractile. When the 5% fractile was determined from a function fitted to all data, up to
5% error occurred (in one case 9%) when compared to a non-parametric estimate.
Three-parameter Weibull distribution gave, in all calculated cases, the 5% fractile
within an accuracy of £3%.

The result of structural reliability analysis depends strongly on the load and strength
distribution types used. When fitted functions are used in reliability analysis, it is
essential that the fit is good in the lower tail area, the lowest values being most
important. When fitted to the same data, a two-parametric Weibull distribution gives the
most pessimistic prediction for the tail, with a normal distribution being next, and
lognormal and three-parameter Weibull being the most optimistic. In an example, a two-
parameter Weibull gave a failure probability 10 times higher than that of a three-
parameter Weibull.

The analysis suggests that yy; = 1.2 to 1.3 is reasonable for timber structures when yg =
1.2 and yo=1.5.



Preface

This publication is the main documentation of VTT’s contribution to two projects:

e a Finnish prestudy on the Statistical Determination of the Strength of Wooden
Materials

e a Nordic project on Safety in Timber Structures.

The Finnish project was conducted by the authors, and supervised by a management
group headed by Jouko Silén (Stora Enso Oyj) as chairman, and having the following
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Nurro (Wood Focus Finland), [lmari Absetz (Tekes), Tuija Vihavainen (VTT Building
and Transport) and Alpo Ranta-Maunus as secretary (VTT Building and Transport).

The Nordic project is being carried out with collaboration between Lund University,
NTIL, SBI and VTT. Hans Jorgen Larsen is the project leader. Several organisations are
supporting the projects as stipulated in the Acknowledgements chapter.

This project is partly financed by the Nordic Industrial Fund. The Nordic Industrial
Fund - Centre for innovation and commercial development is an institution under the
Nordic Council of Ministers. The Fund initiates and finances cross-border research and
development projects aimed at the Nordic innovation system. Such projects are
expected to enhance the competitiveness of Nordic industry and reinforce Nordic
business culture while encouraging sustainable development in Nordic society. The
Nordic Industrial Fund works closely with the national research financing bodies. Its
secretariat is in Oslo.

The roles of the authors were as follows: Mikael Fonselius analysed the material
strength data and wrote Chapters 2 and 3. Juha Kurkela made the Excel macros for
analysis of fracture probabilities, and performed some of the calculations. Tomi Toratti
performed calculations using the Strurel programme and wrote the text concerning
system effect. Alpo Ranta-Maunus, who coordinated the work, wrote other parts of the
text and performed the other calculations.
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1. Introduction

Discussion on adequate safety levels in the design of buildings has been repeated from
time to time. Moreover, the question of the correct ratios of partial safety factors for
different building materials has risen again, now that the common European building
code is close to completion. Safety factors in building codes are traditionally based on
long-term experience. Also, Eurocode states that, as the most common method,
numerical values of partial safety factors can be determined on the basis of calibration
to the long-term experience of the building industry (EC1, annex C2). As an alternative,
the use of statistical evaluation based on probabilistic reliability theory is mentioned. An
international model code for probability-based assessment and design of structures is
under way by the (IABSE, CIB, fib, ECCS and RILEM) Joint Committee on Structural
Safety (Vrouwenvelder 2001) and the existing parts are available from
www.jcss.ethz.ch. However, it does not yet include information concerning timber
resistance. It is hoped that the assessment of the material strength data in this
publication will contribute to the completion of the JCSS code.

This work on the use of probabilistic methods in the development of timber building
codes, which is part of the Nordic project, covers a concise literature study as part of the
introduction with a special emphasis on Eurocodes, an analysis on material strength data
to which VTT has access, and some reliability analyses to demonstrate the effect of
selected distribution types and parameters on calculated failure probabilities. Also, a
calculation is performed to demonstrate the dependence of safety factors on the
coefficient of variation of strength.

1.1 Actions in Eurocode

In Eurocode 1, the characteristic value of a permanent action, G, is determined as the
mean value, if G does not vary significantly (COV < 0.05). Otherwise, Gy, is the 95%
fractile of the statistical distribution, which can be assumed to be normal.

The annual maximum values are used for variable actions and the characteristic value is,
in most cases, based upon a probability of exceedance of 0.02 of its time varying part
for a reference period of one year. This is equivalent to a mean return period of 50
years.

The design value of an action is calculated by:

Fy =y F,, =7 VE (1.1)



where F is the characteristic value of the action and F,, is the relevant representative
value of the action. y is the partial safety factor of the action, which takes account of
the possibility of unfavourable deviations of the action values from the representative
values and y is the combination factor, which is used when effects of simultaneously
occurring actions are combined. Each combination of actions should include a leading
variable or an accidental action. When a non-leading action is combined with the
leading one, the effect of the non-leading action is multiplied by .

Design values of effects of actions are expressed in general terms as:
E, =y EY WFi.a,, | (1.2)

where a,,,,, 1s a nominal value of geometric data and yg, is the partial safety factor
taking account of uncertainties in modelling the actions and in modelling of the effects
of the actions. In most cases:

Ed :E{}/FFrep’ad} (13)
with 5 =yss)r and where a,; is the design value of the geometrical data.
Eurocode recommends the following y values to be used in the design:

VG,sup =135 (Nordic recommendation 1.2)
Yo = 1.5 including ygq = 1.15

1.2 Resistance in Eurocode

Material strength is represented by a characteristic value defined as the 5% fractile
value. The structural stiffness parameters are represented by a mean value, except in the
case of instability.

The design value of a material property is expressed as:

X 1.4
X, =n—= (149

m

where X, is the characteristic value of the material property

7 is the mean value of the conversion factor taking into account the effect of the
duration of the load, volume, and scale effects, effects of moisture and temperature and
any other relevant parameters;



7, 18 the partial safety factor of the material property which takes account of the
possibility of unfavourable deviations of material properties from their characteristic
values and the random part of conversion factor 7.

The design resistance for material property i is expressed in the following form
provided that resistance is a linear function of material strength:

X, (L.5)
R, = LR{Xd,i;ad}: R{ﬁi i;ad}

Y ra M,i

where 7y1; = Yra * ¥, the random part of 7; is included in 7, ;, and yq is a partial
safety factor covering uncertainty in the resistance model, plus geometric deviations if
these are not modelled explicitly.

Lognormal or Weibull distributions are usually assumed for material and structural
resistance parameters and model uncertainties.

1.3 Reliability formulation

As the resistance (R) and the effect of action (E), against which R provides safety, are
random variables, the performance function, g, is also a random variable. A structure is
considered safe when

g=R-E>0 (1.6)

If the statistical distribution of the performance function is normal, the probability of
failure is given by:

P, = P(g <0) = D(-f) (1.7)

where @ is the cumulative distribution function of the standardised normal distribution.
Numerical values for S giving the probability of failure 10- are given in Table 1.

Table 1.1. Relation between [ and Py (prEN 1990 Annex C).

P; 107! 102 10° 10 107 10° 107

B 1.28 2.32 3.09 3.72 4.27 4.75 5.20




A simple traditional method of calculating f is FORM, the First-Order Reliability
Method, as given in many papers (Skov et al. 1976). It is valid for the normally
distributed action effect and resistance functions and gives:

ﬂ _ Rmean - Smean (18)
N 2 2
\Or + O¢

When the functions are lognormally distributed, Equation (1.8) is used as follows

_ lLlln,R - lLlln,S ~ log Rmean - log Smean (1 9)

p= 2 2 2 2
\VOmr TOms v Ve +Vs

When the main uncertainty comes from actions that have statistically independent
maxima in each year, the values of £ for a different reference period can be calculated
using the following expression:

(B, =[eB)] (1.10)

where £, is the reliability index for a reference period of n years and f, is the reliability
index for one year. Please observe that Equation (1.8) gives the survival probability.

According to the Eurocodes, the design values of action effects, £, and resistances, R,
should be defined such that the probability of having a more unfavourable value is as
follows:

P(E > E,) = ®(+a,p) (1.11)

P(R<R,)=D(—a,p) (1.12)

where s the target reliability index and oy and o are the first-order reliability method
weight factors. It is suggested that oz =-0.7 and o = 0.8 for common cases (= 3.8 on
a 50-year basis). Expressions for the calculation of design values of variables with
different probability functions are given in Table 1.2.

10



Table 1.2. Design values for different distribution functions (EC1: C3). u is the mean
value, o the standard deviation and V the coefficient of variation.

Distribution Design values

Normal wofic

Lognormal uexp(-affV) for V=o/u<0.2

Gumbel u-a! In[-In@(-af))] whereu = u-0.577/a; a =1/(cV6)

1.4 Safety levels and studies

Some building codes define the target safety levels as f-index values. It is said that
partial factors used in Eurocodes generally lead to a structure with a f-index value
greater than 3.8 for a 50-year reference period (4.7 for 1 year). Based on this target
reliability, a Nordic study was carried out to compare reliability levels of concrete, steel
and timber structures (SAKO). Input data are given in Table 1.3. It was concluded that

o the reliability level varies considerably with the ratio of variable load to total load,
having a maximum when the ratio is around 0.2,

e concrete structures have higher reliability levels than steel and glulam structures
when the characteristic variable load is less than the permanent load,

e glulam structures have higher reliability levels than steel and concrete structures for
load cases with dominating variable action.

Table 1.3. Statistical distributions and coefficients of variation used for the base case in
the Nordic study.

Parameter Coefficient of variation Distribution
Concrete Steel Glulam timber type

Actions

Permanent

- Self-weight 0.06 0.02 0.06 Normal

- Other 0.10 0.10 0.10 Normal

Variable

- Environmental 0.40 0.40 0.40 Gumbel

- Imposed 0.20 0.20 0.20 Gumbel

Strength

Concrete 0.10 Lognormal

Reinforcement 0.04 Lognormal

Structural Steel 0.05 Lognormal

Glulam timber 0.15 Lognormal

Geometry

Effective depth 0.02 Normal

Beam depth 0.02 0.01 0.01 Normal

Beam width 0.02 0.01 0.01 Normal

Plate thickness 0.04 Normal

Model uncertainties

R-model 0.05 0.05 0.05 Normal

11



In connection with a revision of the Danish structural codes, a calibration of safety
factors was carried out. The target for the average [ was 4.8. The assumptions and
results (optimised partial factors) are summarised in Table 1.4 (Sorensen et al. 2001).

Table 1.4. Assumptions and old and optimised partial coefficients.

Fractile per ~ Coeff. of variation,  Distribution Partial coefficients
cent per cent old Optimised
Self-weight 50 Normal 1.0 1.0 (fixed)
concrete 6
steel 4
wood 6
Other permanent 50 10 Normal 1.0 1.0 (fixed)
Variable action 98 Gumbel
imposed 20 1.3 1.3
natural 40 1.3 1.5
Concrete 10/5" 15 1.58 1.49
reinforcement 0.1/5" 5 Log- 1.32 1.23
Steel 5 5 normal 1.42 1.29
Wood
structural 5 20 1.49 1.64
glulam 5 15 1.34 1.51
Model uncertainty 50 Normal
concrete 5
steel 3
wood 5

D0ld codes/new codes.

In the Swedish building code the target level is 4.3 for a one-year reference period or
3.3 for 50 years (safety class 2 structures). A calibration study of partial safety factors
was carried out based on the use of normal distributions of all stochastic variables
(lognormal for strength). The assumptions used in the analysis are collected in Table
1.5. As a conclusion, the study suggests that yy; is 1.15 for wooden materials under
special quality control, and 1.25 for other timber materials and connections
(Thelandersson et al. 1999).

Table 1.5. Input data in Swedish analysis.

Variable COV Characteristic value Partial factor
Permanent load G 0.05 Mean 1.0
Variable load Q 0.40 98% fractile 1.3
Bending strength f 0.20 5% fractile to be optimised
Geometrical variable a 0.02 Mean

Model reliability C 0.10 Mean

Foschi (Foschi et al. 1989) used a level of f = 3 as a target when analysing the
reliability of Canadian structures (30-year reference period). The target reliability level
in Canada and the USA seems to be lower than that adopted in the Eurocodes and many
European countries.

12



2. Strength distributions of Finnish timber
materials

2.1 Statistical distributions
2.1.1 Normal distribution

The probability density function of a normal distribution is given by

—(x—/;)z

e 20 (2.1)

f(x) =
oN2r
while the cumulative distribution function is given by

v —-p)

F(x)= lzﬂ _ie 20° gy (2.2)

(o3

where y 1s the mean and o is the standard deviation.

The normal distribution is valid for all values of x.

The cumulative distribution function, Equation (2.2), cannot be solved in closed form.
However, in many commercial computer programmes, Xg,.;. can be solved
numerically as a function of different fractiles of F(x), # and o. Furthermore, X, 18
given by

X fractile = M~ ko (2.3)

where £ is tabulated for the most frequently used fractiles, Table 2.1.

Table 2.1. Values of k for the most frequently used fractiles.

Fractile 0.001 0.005 0.010 0.025 0.050 0.100 0.250

Value of k 3.090 2.576 2.326 1.960 1.645 1.282 0.674

13



From a set of data (x,, x,, ... x,,) the estimate of the mean s, is given by

x.
n

where x; is the individual value and » is the number of x values. The estimate of the
standard deviation o, is given by

2
Gy = \/Z(xi _:uest) (25)

n-—1

If only some of the x values are used, for example 10% of the smallest ones, the
estimated mean and the estimated standard deviation is found by iteration.

2.1.2 Lognormal distribution

The probability density function as well as the cumulative distribution function of a
lognormal distribution is given by replacing the value of x by the value of Inx in
Equations (2.1) and (2.2).

The lognormal distribution is valid for x > 0.

For a lognormal distribution, Equation (2.3) is changed to
—k
X fractile = efina ™ Cnx (2.6)

The estimate mean 4, , and the estimate standard deviation o, shall be calculated for
Inx instead of for x in Equations (2.4) and (2.5).

2.1.3 Two-parameter Weibull distribution

The probability density function of a two-parameter Weibull distribution is given by

f(x) = %x’“e(;] 2.7)

while the cumulative distribution function is given by

14



¥ a
F(x)=1-e (ﬂ] (2.8)
where « is the shape parameter and /£ is the scale parameter.

The two-parameter Weibull distribution is valid for x > 0. For x = 0, the density function
£(0) = 0 and the cumulative distribution function F(0) = 0.

By rearranging Equation (2.8) to the form
Inx=Ing+ lln(— In(1 - F(x))) (2.9)
a

the logarithm of x can be solved using the linear regression equation
Inx = 4+ Bln(-In(1 - F(x))) (2.10)

where the constant 4 gives an estimate for Inf and the slope B gives an estimate for 1/c.
The value of F(x) is found by ranking the x values in ascending order and dividing the
rank number #,,,;, by the number of x values n,,,. Finally, the inverse of two times the
number of x values is subtracted from the value obtained. Hence, F(x) is given by

Fxy = trank 1 @.11)
Mior 2N

If only some of the x values are used, for example 10% of the smallest ones, the
estimated shape and scale parameters are found using the same regression analysis
method.

2.1.4 Three-parameter Weibull distribution

The probability density function of a three-parameter Weibull distribution is given by

S(x)= ﬁ(x —g)*! e_(ﬂ"’"J (2.12)

while the cumulative distribution function is given by

15



_[ x—¢ ]“
F(x)=1-e \F7¢ (2.13)
where « is the shape parameter, S is the scale parameter and ¢ is the location parameter.

The three-parameter Weibull distribution is valid for all x > & For x = ¢, the density
function f{ &) = 0 and the cumulative distribution function F(¢&) = 0.

From a set of data as well as from a part of those data, the estimated shape, scale and
location parameters are found by iteration.

2.1.5 Non-parametric distribution

The cumulative distribution function of a non-parametric distribution is found by
ranking the x values in ascending order and dividing the rank number #n,,,; by the
number of x values n,,,. The inverse of two times the number of x values is subtracted
from the value obtained. Hence, F(x) is given by Equation (2.11).

2.2 Sawn timber

2.2.1 Data

The data used represents sawn spruce (Picea abies) and pine (Pinus silvestris). Spruce
was sampled from six different locations in Finland as well as from one location in
Sweden. Pine was sampled from one location in Finland as well as from one location in
Sweden. Both spruce and pine were randomly sampled from ungraded lots of sawn
timber.

Prior to testing, all sawn timber was machine-graded using a Raute Timgrader machine.
Raute Timgrader is a traditional bending machine. The load to bend a timber member to
a pre-set deflection is measured along the member length at intervals of about 100 mm.
The smallest load value describes the weakest cross-section of the member and gives
the basis for grading.

16



Table 2.1. Sawn timber used in the analysis. The width, b, depth, h, moisture content, ®,
density, p, bending strength, f, and modulus of elasticity, E, are the mean values of each
series.

Species | Series | Number b h ® p f E Data source
mm mm % kg/m3 N/mm2 N/mm2
Spruce S-1 589 42 146 14.7 448 45.2 13000 VTT 1995
Spruce S-2 150 72 221 14.6 415 38.1 10800 VTT 1996
Spruce S-3 149 35 97 14.6 457 46.9 12800 VTT 1996
Spruce S-4 172 45 172 12.2 435 42.8 11900 VTT 1997
Spruce S-5 167 35 120 11.4 456 443 12200 VTT 1997
Spruce S-97 122 45 95 11.5 497 39.6 - TRATEK 1990
Spruce S-98 80 45 145 11.0 479 42.0 - TRATEK 1990
Spruce S-99 79 45 190 10.3 462 34.0 - TRATEK 1990
Pine P-1 188 42 146 13.6 508 48.5 12800 VTT 1995
Pine P-97 100 45 95 15.0 471 37.9 10400 | TRATEK 1986
Pine P-98 99 45 145 15.3 475 38.1 10100 | TRATEK 1986
Pine P-99 100 45 190 15.1 477 38.8 10000 | TRATEK 1986

Additionally, all sawn timber sampled from Finland was visually graded according to
the Nordic grading rules given in INSTA 142. This grading was carried out by a person
responsible for the practical training of graders. Furthermore, the grading was carried
out in laboratory facilities with no time limit.

It should be noted that the visual grading was not carried out as a part of the production
process, where the time for grading is greatly limited, but in laboratory facilities.
Secondly, the grader had a higher skill level than most graders. Hence, the visually
graded timber is representative for applications of the grading rules but certainly not
representative for applications of practical grading.

After grading, all the timber specimens were loaded in edgewise bending to failure
according to the test method given in EN 408. In addition to bending strength and
modulus of elasticity (true), density and moisture content were determined.

Before analysis, all individual bending strength values were adjusted to a reference
depth of 150 mm according to EN 384. Furthermore, all individual modulus of elasticity

and density values were adjusted to a moisture content of 12% according to EN 384.

A summary of the data used in the analysis is given in Table 2.1.
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2.2.2 Analysis of spruce with a depth of 150 mm

The reference depth given in EN 384 and Eurocode 5 is 150 mm for sawn timber.
Hence, the reference spruce material is represented by series S-1 and S-98 given in
Table 2.1. Since detailed background information on series S-98 is not available, this
series was, for now, excluded from the analysis.

In series S-1, the depth of all the 589 specimens was about 146 mm which is close to the
reference depth. Hence, the effect of size on bending strength did not affect the results.
The mean moisture content of the specimens was 14.7% while the standard deviation
was 1.5%. This resulted in somewhat lower bending strength values than for specimens
of 12% moisture content.

The bending strength, £, is plotted against the modulus of elasticity, £, in Figure 2.1.
Using linear regression analysis the relationship is given by

£ =-2.66+0.00392E (2.14)

The coefficient of correlation (r) is 0.804. In Figure 2.1 and Equation (2.14) the bending
strength as well as the modulus of elasticity given from the tests were used without any
depth or moisture content adjustments.

80

601

40

Bending strength (N/mm2)

201

0 5000 10000 15000 20000

Modulus of elasticity (N/mm2)

Figure 2.1. The relationship between bending strength and modulus of elasticity for
spruce with a depth of 150 mm, series S-1. The linear regression line and the 90%
confidence interval are included.
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Table 2.2. Density, p, bending strength, f, and modulus of elasticity, E, for spruce with a
depth of 150 mm, series S-1.

Graded Number E
Mean COoV Mean COV Mean COV
kg/m’ % N/mm’ % N/mm’ %
Ungraded 589 448 9.0 45.2 25.2 13000 18.8
Visually 367 455 8.2 49.4 19.8 13700 15.7
Machine 496 456 7.6 47.5 21.6 13600 15.4

All the specimens were analysed as ungraded, visually graded and machine-graded. The
density, bending strength and modulus of elasticity of these data sets are summarised in
Table 2.2. In addition, the tail data represented by 10% of the weakest specimens were
analysed.

The bending strength was modelled using normal, lognormal and two- as well as three-
parameter Weibull distribution functions. The estimated parameters of these functions
are given in Table 2.3. Furthermore, the model and the data are plotted in Figures 2.2—
2.4. The estimated bending strengths at different fractiles are given in Table 2.4.

Since the number of specimens is high enough, 367 for visually and 496 for machine-
graded specimens, it is reasonable to use the 5% fractile given by the non-parametric
distribution as the reference value. The estimated values divided by the reference value
are given in Table 2.5. Based on these ratios the following conclusions can be drawn:

o The lognormal distribution, modelled from all the data, overestimates the 5%
fractile of bending strength by about 5%.

o The normal and two- as well as three-parameter Weibull distributions, modelled
from all the data, result in good estimates for the 5% fractile of bending strength.

o The normal, lognormal and two- as well as three-parameter Weibull
distributions, modelled from 10% of the weakest specimens, result in good
estimates for the 5% fractile of bending strength.

To compare the tails of the used models to the non-parametric distribution, the
estimated fractile values are divided by the corresponding non-parametric values,
Table 2.5. The confidence of this analysis may be criticised since only two values are
below the 0.5% fractile. However, the following conclusions may be considered:
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o The lognormal distribution, modelled from all the data, overestimates the
bending strength values for the tail fractiles below 5%.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the bending strength values for the tail fractiles below 5%.

° The three-parameter Weibull distribution, modelled from all the data, results in
good estimates for the bending strength values for the tail fractiles below 5%.

. The normal, lognormal and two- as well as three-parameter Weibull
distributions, modelled from 10% of the weakest data, result in good estimates
for the bending strength values for the tail fractiles below 5%.

Table 2.3. The modelled distribution functions for spruce with a depth of 150 mm, series S-1.

Distribution function (no. of cases) | Data Parameters in the distribution function
y7, o a p £
Ungraded (589)
Normal All 45.25 11.40 - - -
Normal Tail 47.69 12.62 - - -
Lognormal All 3.775 0.292 - - -
Lognormal Tail 4.130 0.517 - - -
Two-parameter Weibull All - - 4.464 49.60 -
Two-parameter Weibull Tail - - 3.205 68.24 -
Three-parameter Weibull All - - 3.748 49.35 7.02
Three-parameter Weibull Tail - - - - -
Visually graded to C24 (367)
Normal All 49.41 9.78 - - -
Normal Tail 46.09 7.60 - - -
Lognormal All 3.880 0.205 - - -
Lognormal Tail 3.909 0.242 - - -
Two-parameter Weibull All - - 6.329 53.04 -
Two-parameter Weibull Tail - - 9.524 45.97 -
Three-parameter Weibull All - - 3.137 52.70 21.48
Three-parameter Weibull Tail - - - - -
Machine graded to C30 (496)
Normal All 47.48 10.27 - - -
Normal Tail 44.07 7.98 - - -
Lognormal All 3.836 0.226 - - -
Lognormal Tail 3.895 0.284 - - -
Two-parameter Weibull All - - 5.714 51.26 -
Two-parameter Weibull Tail - - 8.475 43.90 -
Three-parameter Weibull All - - 3.155 50.95 17.95
Three-parameter Weibull Tail - - 4.466 47.93 12.82
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Table 2.4. The modelled bending strengths for spruce with a depth of 150 mm, series S-1.

Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100
Ungraded (589)
Normal All 10.0 15.9 18.7 26.5 30.6
Normal Tail 8.7 15.2 18.3 26.9 31.5
Lognormal All 17.7 20.5 22.1 27.0 30.0
Lognormal Tail 12.6 16.4 18.7 26.6 32.1
Two-parameter Weibull All 10.6 15.1 17.7 25.5 30.0
Two-parameter Weibull Tail 7.9 13.1 16.2 27.0 33.8
Three-parameter Weibull All 13.7 17.3 19.4 26.2 30.2
Three-parameter Weibull Tail - - - - -
Non-parametric All 3.9 153 20.0 27.5 30.4
Visually graded to C24 (367)
Normal All 19.2 24.2 26.7 333 36.9
Normal Tail 22.6 26.5 28.4 33.6 36.4
Lognormal All 25.7 28.6 30.1 34.6 37.2
Lognormal Tail 23.6 26.7 28.4 335 36.6
Two-parameter Weibull All 17.8 23.0 25.6 33.2 37.2
Two-parameter Weibull Tail 22.3 26.4 28.4 33.7 36.3
Three-parameter Weibull All 24.9 27.3 28.7 33.6 36.7
Three-parameter Weibull Tail - - - - -
Non-parametric All 20.9 27.0 29.1 33.1 36.3
Machine graded to C30 (496)
Normal All 15.7 21.0 23.6 30.6 343
Normal Tail 19.4 23.5 25.5 30.9 33.8
Lognormal All 23.0 259 27.4 32.0 34.7
Lognormal Tail 20.4 23.7 25.4 30.8 342
Two-parameter Weibull All 15.3 20.3 22.9 30.5 34.6
Two-parameter Weibull Tail 19.4 23.5 25.5 30.9 33.7
Three-parameter Weibull All 21.6 24.1 25.6 30.8 34.1
Three-parameter Weibull Tail 20.3 23.5 254 30.9 34.0
Non-parametric All 20.6 22.9 26.0 30.5 339
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Table 2.5. The ratio of modelled to non-parametric bending strength values for spruce
with a depth of 150 mm, series S-1.

Distribution function (no. of cases) | Data Model per non-parametric
0.001 0.005 0.010 0.050 0.100

Visually graded to C24 (367)
Normal All - 0.90 0.92 1.01 1.02
Normal Tail - 0.98 0.98 1.02 1.00
Lognormal All - 1.06 1.03 1.05 1.02
Lognormal Tail - 0.99 0.98 1.01 1.01
Two-parameter Weibull All - 0.85 0.88 1.00 1.02
Two-parameter Weibull Tail - 0.98 0.98 1.02 1.00
Three-parameter Weibull All - 1.01 0.99 1.02 1.01
Three-parameter Weibull Tail - - - - -
Non-parametric All - 1 1 1 1

Machine graded to C30 (496)
Normal All - 0.92 0.91 1.00 1.01
Normal Tail - 1.03 0.98 1.01 1.00
Lognormal All - 1.13 1.05 1.05 1.02
Lognormal Tail - 1.03 0.98 1.01 1.01
Two-parameter Weibull All - 0.89 0.88 1.00 1.02
Two-parameter Weibull Tail - 1.03 0.98 1.01 0.99
Three-parameter Weibull All - 1.05 0.98 1.01 1.01
Three-parameter Weibull Tail - 1.03 0.98 1.01 1.00
Non-parametric All - 1 1 1 1
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Figure 2.2. Cumulative distributions of bending strength for ungraded spruce with a

depth of 150 mm, series S-1.
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Figure 2.4. Cumulative distributions of bending strength for machine-graded spruce

with a depth of 150 mm, series S-1. The spruce was graded by Raute Timgrader to the
European strength class C30.
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2.2.3 Analysis of spruce

In series S-1 to S-99, the depths of the 1508 specimens were between 95 and 221 mm.
The tested bending strength values were adjusted to a reference depth of 150 mm
according to EN 384. Since this adjustment is not complete the effect of size on bending
strength will affect the results for both ungraded and visually graded spruce. The effect
of size on bending strength will not affect the results for machine-graded spruce since
the complete effect of it was already considered when the machine was approved. The
mean moisture content of the specimens was 13.3% while the standard deviation was
2.0%. This results in somewhat lower bending strength values than for specimens of
12% moisture content.

All the specimens were analysed as ungraded, visually graded and machine-graded. The
density, bending strength and modulus of elasticity of these data sets are summarised in
Table 2.6. In addition, the tail data represented by 10% of the weakest specimens were
analysed.

The bending strength was modelled using normal, lognormal and two- as well as three-
parameter Weibull distribution functions. The estimated parameters of these functions
are given in Table 2.7. Furthermore, the model and the data are plotted in Figures 2.5—
2.7. The estimated bending strengths at different fractiles are given in Table 2.8.

In estimating the 5% fractile of the 986 machine-graded specimens, Figure 2.7, the same
conclusions as those drawn for spruce with a depth of 150 mm can also be drawn. The
conclusions were:

. The lognormal distribution, modelled from all the data, overestimate the 5%
fractile of bending strength.

. The normal and two- as well as three-parameter Weibull distributions, modelled
from all the data, result in good estimates for the 5% fractile of bending strength.

. The normal, lognormal and two- as well as three-parameter Weibull

distributions, modelled from 10% of the weakest specimens, result in good
estimates for the 5% fractile of bending strength.
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Table 2.6. Density, p, bending strength, f, and modulus of elasticity, E, for spruce,

series S-1 to S-99.

Graded Number E
Mean COoV Mean COV Mean COV
kg/m’ % | Nmm> % | N'mm® %
Ungraded 1508 451 9.7 43.1 27.1 12400 19.8
Visually 781 447 8.8 473 21.2 13000 18.1
Machine 986 465 8.4 47.8 21.0 13400 15.3

The following conclusions can be drawn for estimation of the tails of the models used,
Figure 2.7:

. The lognormal distribution, modelled from all the data, overestimates the
bending strength values for the tail fractiles below 5%. This is the same
conclusion as that drawn for spruce with a depth of 150 mm.

° The two-parameter Weibull distribution, modelled from all the data,
underestimates the bending strength values for the tail fractiles below 5%. This
is the same conclusion as that drawn for spruce with a depth of 150 mm.

. The normal and three-parameter Weibull distributions, modelled from all the
data, result in good estimates for the bending strength values for the tail fractiles
below 5%.

o The normal, lognormal and two- as well as three-parameter Weibull

distributions, modelled from 10% of the weakest data, result in good estimates
for the bending strength values for the tail fractiles below 5%. This is the same
conclusion as that drawn for spruce with a depth of 150 mm.
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Table 2.7. The modelled distribution functions for spruce, series S-1 to S-99.

Distribution function (no. of cases) Data Parameters in the distribution function
7 o a g £
Ungraded (1508)
Normal All 43.10 11.68 - - -
Normal Tail 42.26 11.21 - - -
Lognormal All 3.721 0.309 - - -
Lognormal Tail 4.049 0.544 - - -
Two-parameter Weibull All - - 4.167 47.47 -
Two-parameter Weibull Tail - - 3.610 54.22 -
Three-parameter Weibull All - - 3.705 47.30 4.27
Three-parameter Weibull Tail - - - - -
Visually graded to C24 (781)
Normal All 47.30 10.03 - - -
Normal Tail 45.22 8.30 - - -
Lognormal All 3.833 0.220 - - -
Lognormal Tail 3.921 0.288 - - -
Two-parameter Weibull All - - 5.882 50.96 -
Two-parameter Weibull Tail - - 8.197 45.42 -
Three-parameter Weibull All - - 2.994 50.60 19.81
Three-parameter Weibull Tail - - 7.536 45.81 2.18
Machine graded to C30 (986)
Normal All 47.79 10.01 - - -
Normal Tail 45.44 8.53 - - -
Lognormal All 3.844 0.220 - - -
Lognormal Tail 3.944 0.305 - - -
Two-parameter Weibull All - - 5.882 51.52 -
Two-parameter Weibull Tail - - 8.197 45.11 -
Three-parameter Weibull All - - 3.338 51.25 17.50
Three-parameter Weibull Tail - - 3.165 54.19 16.51
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Table 2.8. The modelled bending strengths for spruce, series S-1 to S-99.

Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100
Ungraded (1508)
Normal All 7.0 13.0 15.9 23.9 28.1
Normal Tail 7.6 13.4 16.2 23.8 27.9
Lognormal All 15.9 18.6 20.1 24.8 27.8
Lognormal Tail 10.7 14.1 16.2 23.4 28.6
Two-parameter Weibull All 9.0 13.3 15.7 23.3 27.7
Two-parameter Weibull Tail 8.0 12.5 15.2 23.8 29.1
Three-parameter Weibull All 10.9 14.6 16.7 23.6 27.7
Three-parameter Weibull Tail - - - - -
Non-parametric All 6.9 12.8 16.6 23.9 28.0
Visually graded to C24 (781)
Normal All 16.3 21.5 24.0 30.8 34.4
Normal Tail 19.6 23.8 25.9 31.6 34.6
Lognormal All 23.4 26.2 27.7 322 34.9
Lognormal Tail 20.7 24.0 25.8 314 349
Two-parameter Weibull All 15.7 20.7 23.3 30.8 34.8
Two-parameter Weibull Tail 19.6 23.8 25.9 31.6 34.5
Three-parameter Weibull All 229 25.1 26.4 31.2 343
Three-parameter Weibull Tail 19.6 23.8 25.9 31.6 34.5
Non-parametric All 20.1 23.5 25.3 31.6 34.5
Machine graded to C30 (986)
Normal All 16.9 22.0 24.5 313 35.0
Normal Tail 19.1 23.5 25.6 314 34.5
Lognormal All 23.7 26.5 28.0 32.5 35.2
Lognormal Tail 20.1 23.5 25.4 313 349
Two-parameter Weibull All 15.9 20.9 23.6 31.1 35.1
Two-parameter Weibull Tail 194 23.6 25.7 314 343
Three-parameter Weibull All 21.8 24.4 26.0 314 34.7
Three-parameter Weibull Tail 20.8 23.6 25.3 31.3 35.0
Non-parametric All 21.2 22.8 25.6 313 349
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Figure 2.5. Cumulative distributions of bending strength for ungraded spruce, series S-
1 to §-99.
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Figure 2.6. Cumulative distributions of bending strength for visually graded spruce,
series S-1 to §-99. The spruce was graded to class T2 and better given in INSTA 142. T2
corresponds to the European strength class C24.
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Figure 2.7. Cumulative distributions of bending strength for machine-graded spruce,
series S-1 to §-99. The spruce was graded by Raute Timgrader to the European strength
class C30.
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2.2.4 Analysis of spruce and pine

In series S-1 to S-99 and P-1 to P-99, the depths of the 1995 specimens were between
95 and 221 mm. The tested bending strength values were adjusted to a reference depth
of 150 mm according to EN 384. Since this adjustment is not complete the effect of size
on bending strength will affect the results for both ungraded and visually graded spruce.
The effect of size on bending strength will not affect the results for machine-graded
spruce since the complete effect of it was already considered when the machine was
approved. The mean moisture content of the specimens was 13.6% while the standard
deviation was 1.9%. This results in somewhat lower bending strength values than for
specimens of 12% moisture content.

All the specimens were analysed as ungraded, visually graded and machine-graded. The
density, bending strength and modulus of elasticity of these data sets are summarised in
Table 2.9. In addition, the tail data represented by 10% of the weakest specimens were
analysed.

The bending strength was modelled using normal, lognormal and two- as well as three-
parameter Weibull distribution functions. The estimated parameters of these functions
are given in Table 2.10. Furthermore, the model and the data are plotted in Figures 2.8—
2.10. The estimated bending strengths at different fractiles are given in Table 2.11.

In estimating the 5% fractile of the 1327 machine-graded specimens, Figure 2.10, the
same conclusions as those drawn for spruce with a depth of 150 mm can also be drawn.
The conclusions were:

. The lognormal distribution, modelled from all the data, overestimates the 5%
fractile of bending strength.

. The normal and two- as well as three-parameter Weibull distributions, modelled
from all the data, result in good estimates for the 5% fractile of bending strength.

. The normal, lognormal and two- as well as three-parameter Weibull

distributions, modelled from 10% of the weakest specimens, result in good
estimates for the 5% fractile of bending strength.
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Table 2.9. Density, p, bending strength, f, and modulus of elasticity, E, for spruce and
pine, series S-1 to §-99 and P-1 to P-99.

Graded Number
Mean COoV Mean COV Mean COV
kg/m’ % N/mm? % N/mm? %
Ungraded 1995 460 10.5 429 28.6 12100 22.0
Visually 902 458 10.9 48.4 21.9 13200 18.0
Machine 1327 475 9.5 47.8 223 13100 16.9

The following conclusions can be drawn for estimation of the tails of the models used,
Figure 2.10:

. The lognormal distribution, modelled from all the data, overestimates the
bending strength values for the tail fractiles below 5%. This is the same
conclusion as that drawn for spruce with a depth of 150 mm.

° The two-parameter Weibull distribution, modelled from all the data,
underestimates the bending strength values for the tail fractiles below 5%. This
is the same conclusion as that drawn for spruce with a depth of 150 mm.

. The normal and three-parameter Weibull distributions, modelled from all the
data, result in reasonable estimates for the bending strength values for the tail
fractiles below 5%.

o The normal, lognormal and two- as well as three-parameter Weibull
distributions, modelled from 10% of the weakest data, result in good estimates
for the bending strength values for the tail fractiles below 5%. This is the same
conclusion as that drawn for spruce with a depth of 150 mm.
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Table 2.10. The modelled distribution functions for spruce and pine, series S-1 to S-99
and P-1 to P-99.

Distribution function (no. of cases) Data Parameters in the distribution function
)7, o a p £
Ungraded (1995)
Normal All 42.89 12.28 - - -
Normal Tail 39.23 9.88 - - -
Lognormal All 3.712 0.320 - - -
Lognormal Tail 3.938 0.496 - - -
Two-parameter Weibull All - - 4.016 47.28 -
Two-parameter Weibull Tail - - 4.132 47.23 -
Three-parameter Weibull All - - 3.297 47.11 6.13
Three-parameter Weibull Tail - - - - -
Visually graded to C24 (902)
Normal All 48.38 10.61 - - -
Normal Tail 45.30 8.18 - - -
Lognormal All 3.854 0.227 - - -
Lognormal Tail 3.918 0.280 - - -
Two-parameter Weibull All - - 5.714 52.20 -
Two-parameter Weibull Tail - - 8.403 45.42 -
Three-parameter Weibull All - - 2.925 51.84 19.89
Three-parameter Weibull Tail - - 8.131 45.55 0.86
Machine graded to C30 (1327)
Normal All 47.80 10.64 - - -
Normal Tail 45.98 9.30 - - -
Lognormal All 3.841 0.235 - - -
Lognormal Tail 3.979 0.341 - - -
Two-parameter Weibull All - - 5.495 51.73 -
Two-parameter Weibull Tail - - 7.092 46.67 -
Three-parameter Weibull All - - 3.280 51.45 16.10
Three-parameter Weibull Tail - - 4.399 50.77 9.70
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Table 2.11. The modelled bending strengths for spruce and pine, series S-1 to S-99 and
P-1 to P-99.

Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100
Ungraded (1995)
Normal All 4.9 11.3 14.3 22.7 27.2
Normal Tail 8.7 13.8 16.2 23.0 26.6
Lognormal All 15.2 18.0 19.4 242 27.2
Lognormal Tail 11.1 14.3 16.2 22.7 27.2
Two-parameter Weibull All 8.5 12.6 15.0 22.6 27.0
Two-parameter Weibull Tail 8.9 13.1 15.5 23.0 27.4
Three-parameter Weibull All 11.2 14.4 16.3 22.8 26.8
Three-parameter Weibull Tail - - - - -
Non-parametric All 7.6 14.4 16.9 22.6 26.9
Visually graded to C24 (902)
Normal All 15.6 21.1 23.7 30.9 34.8
Normal Tail 20.0 24.2 26.3 31.8 34.8
Lognormal All 23.4 26.3 27.8 32.5 353
Lognormal Tail 21.2 24.5 26.2 31.7 35.1
Two-parameter Weibull All 15.6 20.7 233 31.0 35.2
Two-parameter Weibull Tail 20.0 242 26.3 31.9 34.7
Three-parameter Weibull All 22.9 25.1 26.5 31.5 34.7
Three-parameter Weibull Tail 20.0 24.2 26.2 31.9 347
Non-parametric All 20.1 24.7 25.5 32.1 349
Machine graded to C30 (1327)
Normal All 14.9 20.4 23.0 30.3 342
Normal Tail 17.2 22.0 243 30.7 34.1
Lognormal All 22.5 25.4 27.0 31.6 345
Lognormal Tail 18.6 222 242 30.5 345
Two-parameter Weibull All 14.7 19.7 22.4 30.1 343
Two-parameter Weibull Tail 17.6 22.1 24.4 30.7 34.0
Three-parameter Weibull All 20.4 23.1 24.8 30.4 339
Three-parameter Weibull Tail 18.2 22.0 24.1 30.6 343
Non-parametric All 18.5 22.0 23.6 30.6 343
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Figure 2.8. Cumulative distributions of bending strength for ungraded spruce and pine
series S-1 to §-99 and P-1 to P-99.
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Figure 2.9. Cumulative distributions of bending strength for visually graded spruce and
pine, series S-1 to §-99 and P-1 to P-99. The spruce was graded to class T2 and better
given in INSTA 142. T2 corresponds to the European strength class C24.
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Figure 2.10. Cumulative distributions of bending strength for machine-graded spruce
and pine, series S-1 to S-99 and P-1 to P-99. The spruce was graded by Raute
Timgrader to the European strength class C30.
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2.3 Kerto-laminated veneer lumber

2.3.1 Data

The data used represents Kerto-laminated veneer lumber manufactured by Finnforest at
the mill located in Lohja, Finland. In addition to data obtained from internal quality
control between 1995 and 1998, the data obtained from external quality control between
1993 and 1999 were used.

The 3.0 mm thick veneers used in the production process of Kerto-laminated veneer
lumber are rotary peeled from spruce (Picea abies). In the automatic sorting process all
veneers with a density below a pre-set limit value are rejected. In order to obtain a more
uniform quality of the characteristics of the product, the veneers are in turn placed in
different stacks. The size and location of knots and other discontinuities are then spread.

Both edgewise and flatwise bending tests were carried out according to the test method
given in EN 408. In edgewise bending, the depths of the specimens were 100 mm and
the widths (thickness of the panel) were between 27 and 75 mm. In flatwise bending,
the depths of the specimens were between 27 and 75 mm and the widths were 100 mm.

A summary of the data used in the analysis is given in Table 2.12. For the external
quality control tests, the specimens are pre-conditioned in humidity rooms where the
relative humidity is 65% and the temperature is 20 °C. No conditioning is carried out
and the moisture content is about 8% at testing for internal quality control. A lower
moisture content results in higher bending strength values. On the other hand, testing of
fresh specimens may also effect bending strength values.

Table 2.12. Moisture content, @, density, p, bending strength, f, and modulus of
elasticity, E, of Kerto-LVL used in the analysis.

LVL Series ® p fedge Eedge fflat  Eflat | Datasource

% kg/m> N/mm’ N/mm’ N/mm’ N/mm?’
Kerto | K-EQC | Mean 9.7 508 58.6 13500 60.7 13800 VTT-QC
Ccov 8.4 4.0 10.2 8.4 12.7 10.4
Number | 372 372 372 372 372 372

Kerto K-IQC Mean - - 60.1 - 64.3 - FF-QC
cov - - 9.6 - 14.4 -
Number - - 1968 - 1963 -
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2.3.2 Analysis of external quality control results

The bending strength, f,4e., is plotted against the modulus of elasticity, E,gq,, In
Figure 2.11. Using linear regression analysis the relationship is given by
Sedge =7-84+0.00376E 40, (2.15)

The coefficient of correlation (r) is 0.717. This relationship is based on the 372
specimens tested in the external quality control process.

Fonselius (1997) has previously reported the relationship for Kerto-laminated veneer
lumber

udge = 246 +0.00410E (2.16)

edge

of which the coefficient of correlation is 0.823. This relationship is based on 150
specimens of which 15 represent Kerto-laminated veneer lumber of low density,
430 kg/m3.

Equations (2.15) and (2.16) result in practically the same values for bending strength for
modulus of elasticity values between 10000 and 18000 N/mm?.

80

70+

60+

50

Bending strength (N/mm2)

40

30
10000 12000 14000 16000 18000

Modulus of elasticity (N/mm?2)

Figure 2.11. Dependence between bending strength and modulus of elasticity for Kerto-
LVL, series K-EQC. The linear regression line and the 90% confidence interval are
included.
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2.3.3 Analysis of internal quality control results

Both edgewise and flatwise bending strength was modelled using normal, lognormal
and two- as well as three-parameter Weibull distribution functions. In addition to all of
the data, the tail data, represented by 10% of the weakest specimens, were also
analysed. The estimated parameters of these functions are given in Table 2.13.
Furthermore, the model and the data are plotted in Figures 2.12-2.13. The estimated
bending strengths at different fractiles are given in Table 2.14.

Since the number of specimens is adequate, 1968 for edgewise bent and 1963 for
flatwise bent specimens, it is reasonable to use the 5% fractile given by the non-
parametric distribution as the reference value. The estimated values divided by the
reference value are given in Table 2.15. Based on these ratios the following conclusions
can be drawn:

o The lognormal and three-parameter Weibull distributions, modelled from all the
data, result in good estimates for the 5% fractile of bending strength.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the 5% fractile of bending strength by about 2%.

o The normal, lognormal and two-parameter Weibull distributions, modelled from
10% of the weakest specimens, result in good estimates for the 5% fractile of
bending strength.

To compare the tails of the models used to the non-parametric distribution, the
estimated fractile values are divided by the corresponding non-parametric values,
Table 2.15. The following conclusions can be drawn:

. The lognormal distribution, modelled from all the data, result in good estimates
for the bending strength values for the tail fractiles below 5%.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the bending strength values for the tail fractiles below 5%.

° The three-parameter Weibull distribution, modelled from all the data,
overestimates the bending strength values for the tail fractiles below 5%.

. The normal, lognormal and two-parameter Weibull distributions, modelled from

10% of the weakest data, result in good estimates for the bending strength values
for the tail fractiles below 5%.
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Table 2.13. The modelled distribution functions for Kerto-LVL, series K-IQC.

Distribution function (no. of cases) Data Parameters in the distribution function
7 o a g £
Bending strength, edgewise (1968)
Normal All 60.11 5.77 - - -
Normal Tail 58.84 4.59 - - -
Lognormal All 4.092 0.095 - - -
Lognormal Tail 4.089 0.092 - - -
Two-parameter Weibull All - - 13.945 62.36 -
Two-parameter Weibull Tail - - 26.288 57.45 -
Three-parameter Weibull All - - 2.530 61.83 46.53
Three-parameter Weibull Tail - - - - -
Bending strength, flatwise (1963)
Normal All 64.29 9.24 - - -
Normal Tail 60.52 5.98 - - -
Lognormal All 4.153 0.142 - - -
Lognormal Tail 4.128 0.123 - - -
Two-parameter Weibull All - - 9.346 67.69 -
Two-parameter Weibull Tail - - 19.608 58.97 -
Three-parameter Weibull All - - 2.317 66.88 44.12
Three-parameter Weibull Tail - - - - -
Table 2.14. The modelled bending strengths for Kerto-LVL, series K-IQC.
Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100
Bending strength, edgewise (1968)
Normal All 423 45.2 46.7 50.6 52.7
Normal Tail 44.7 47.0 48.2 51.3 53.0
Lognormal All 44.6 46.9 48.0 51.2 53.0
Lognormal Tail 44.9 47.1 48.2 51.3 53.0
Two-parameter Weibull All 38.0 42.7 44.8 50.4 53.1
Two-parameter Weibull Tail 44.2 47.0 48.2 51.3 52.7
Three-parameter Weibull All 47.5 48.4 49.0 51.3 52.8
Three-parameter Weibull Tail - - - - -
Non-parametric All 44.7 47.0 48.1 51.3 53.0
Bending strength, flatwise (1963)
Normal All 35.7 40.5 42.8 49.1 52.4
Normal Tail 42.0 45.1 46.6 50.7 52.9
Lognormal All 41.0 44.1 45.7 50.4 53.0
Lognormal Tail 42.4 45.2 46.6 50.7 53.0
Two-parameter Weibull All 323 38.4 414 493 53.2
Two-parameter Weibull Tail 41.5 45.0 46.6 50.7 52.6
Three-parameter Weibull All 45.3 46.4 47.2 50.4 52.7
Three-parameter Weibull Tail - - - - -
Non-parametric All 41.2 44.6 46.6 50.3 53.0
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Table 2.15. The ratio of modelled to non-parametric bending strength values for Kerto-

LVL, series K-1QC.

Distribution function (no. of cases) Data Model per non-parametric
0.001 0.005 0.010 0.050 0.100

Bending strength, edgewise (1968)
Normal All 0.95 0.96 0.97 0.99 0.99
Normal Tail 1.00 1.00 1.00 1.00 1.00
Lognormal All 1.00 1.00 1.00 1.00 1.00
Lognormal Tail 1.00 1.00 1.00 1.00 1.00
Two-parameter Weibull All 0.85 0.91 0.93 0.98 1.00
Two-parameter Weibull Tail 0.99 1.00 1.00 1.00 0.99
Three-parameter Weibull All 1.06 1.03 1.02 1.00 1.00
Three-parameter Weibull Tail - - - - -
Non-parametric All 1 1 1 1 1

Bending strength, flatwise (1963)
Normal All 0.87 0.91 0.92 0.98 0.99
Normal Tail 1.02 1.01 1.00 1.01 1.00
Lognormal All 1.00 0.99 0.98 1.00 1.00
Lognormal Tail 1.03 1.01 1.00 1.01 1.00
Two-parameter Weibull All 0.78 0.86 0.89 0.98 1.00
Two-parameter Weibull Tail 1.01 1.01 1.00 1.01 0.99
Three-parameter Weibull All 1.10 1.04 1.01 1.00 0.99
Three-parameter Weibull Tail - - - - -
Non-parametric All 1 1 1 1 1
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Figure 2.12. Cumulative distributions of edgewise bending strength for Kerto-LVL,
series K-10C.
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Figure 2.13. Cumulative distributions of flatwise bending strength for Kerto-LVL, series
K-1QC.
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2.4 Plywood
2.41 Data

The data used represent birch and conifer plywood. Birch plywood was produced from
1.4 mm thick birch (Betula pendula) veneers. Conifer plywood was produced from 1.4
as well as from 3.0 mm thick spruce (Picea abies) veneers. The birch plywood was
sampled from twelve different mills in Finland while the conifer plywood was sampled
from eight different mills in Finland. The thick plywood was sampled between 1995 and
1999 from one mill in Finland. The thickness of the plywood was between 9 and
30 mm.

Prior to testing, all plywood was conditioned in humidity rooms where the relative
humidity was 65% and the temperature was 20 °C.

Flatwise bending tests were carried out according to the test method given in EN 789. In
addition to bending strength and modulus of elasticity (true), density and moisture
content were determined.

Before analysis, the bending strength, f,;;, of the load-bearing veneers was calculated
from

w
pii _W—efff 2.17)

where W is the section modulus of the full cross-section, Weﬁp is the section modulus of
the load-bearing veneers of the cross-section and fis the bending strength determined
for the full cross-section.

Additionally, the modulus of elasticity, E,;, of the load-bearing veneers was calculated
from

_ 1 (2.18)

E li
p ]eﬁ

where / is the second moment of area of the full cross-section, 7, is the second moment
of area of the load-bearing veneers of the cross-section and E is the modulus of
elasticity determined for the full cross-section.
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Table 2.16. Moisture content, @, density, p, bending strength, f, and modulus of
elasticity, E, of plywood -veneers used in the analysis.

Species | Veneer | Series o p fpli Epli Data source
thickness
mm % kg/m* N/mm’ N/mm’

Birch 1.4 B-14 Mean 10.5 679 90.9 17900 VTT 2000
CoVv 4.8 34 13.2 10.6
Number | 108 108 224 224
Spruce 1.4 S-14 Mean 11.8 523 56.5 13700 VTT 2000
COov 4.2 4.4 19.8 16.9
Number 72 72 173 173
Spruce 3.0 S-30 Mean 10.2 463 49.2 12500 VTT 1995
CoVv 3.9 4.7 20.7 18.2
Number | 180 180 281 281

In Equations (2.17) and (2.18) the cross-veneers are assumed to be non-load-bearing
veneers. This calculation method excludes the effect of different veneer lay-ups of
plywood on the bending properties. It is to be noted that the veneer properties given are
valid only for veneers as a part of plywood products. The coefficient of variation is
considerably larger for single veneers.

A summary of the data used in the analysis is given in Table 2.16.

2.4.2 Analysis

The bending strengths for 1.4 mm thick birch and spruce as well as for 3.0 mm thick
spruce plywood veneers were modelled using normal, lognormal and two- as well as
three-parameter Weibull distributions. In addition to all of the data, the tail data,
represented by 10% of the weakest specimens, were also analysed. The estimated
parameters of these functions are given in Table 2.17. Furthermore, the model and data
are plotted in Figures 2.14-2.16. The estimated bending strengths at different fractiles
are given in Table 2.18.

The amount of data from each location and thickness is too small to give a
representative sample for 1.4 mm thick birch and spruce plywood veneers. Hence, no

conclusions should be drawn on the distribution functions.

The following conclusions can be drawn for estimation of the 5% fractile of the 281
spruce plywood veneers of 3.0 mm thickness, Figure 2.16:
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o The lognormal and three-parameter Weibull distributions, modelled from all the
data, result in good estimates for the 5% fractile of bending strength.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the 5% fractile of bending strength.

o The normal, lognormal and two-parameter Weibull distributions, modelled from
10% of the weakest specimens, result in good estimates for the 5% fractile of
bending strength.

The following conclusions can be drawn for estimation of the tails of the models used,
Figure 2.16:

. The lognormal distribution, modelled from all the data, results in good estimates
for the bending strength values for the tail fractiles below 5%.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the bending strength values for the tail fractiles below 5%.

° The three-parameter Weibull distribution, modelled from all the data,
overestimates the bending strength values for the tail fractiles below 5%.

. The normal, lognormal and two-parameter Weibull distributions, modelled from

10% of the weakest data, result in good estimates for the bending strength values
for the tail fractiles below 5%.
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Table 2.17. The modelled distribution functions for 1.4 mm thick birch and spruce as
well as 3.0 mm thick spruce plywood veneers, series B-14, S-14 and S-30.

Distribution function (no. of cases) Data Parameters in the distribution function
)7, o a p £

Birch plywood (224)
Normal All 90.92 12.02 - - -
Normal Tail 91.70 11.66 - - -
Lognormal All 4.501 0.133 - - -
Lognormal Tail 4.560 0.169 - - -
Two-parameter Weibull All - - 9.804 95.58 -
Two-parameter Weibull Tail - - 13.961 89.84 -
Three-parameter Weibull All - - 2.843 94.77 59.49
Three-parameter Weibull Tail - - - - -

Spruce plywood (173)
Normal All 56.48 10.71 - - -
Normal Tail 52.29 7.07 - - -
Lognormal All 4.016 0.192 - - -
Lognormal Tail 4.015 0.189 - - -
Two-parameter Weibull All - - 6.849 60.34 -
Two-parameter Weibull Tail - - 13.661 50.55 -
Three-parameter Weibull All - - 2.616 59.75 30.50
Three-parameter Weibull Tail - - - - -

Spruce plywood of thick veneers

(281)
Normal All 49.24 10.19 - - -
Normal Tail 46.06 7.28 - - -
Lognormal All 3.875 0.207 - - -
Lognormal Tail 3.908 0.232 - - -
Two-parameter Weibull All - - 6.329 52.83 -
Two-parameter Weibull Tail - - 10.611 45.11 -
Three-parameter Weibull All - - 2.287 52.07 27.30
Three-parameter Weibull Tail - - - - -

50




Table 2.18. The modelled bending strengths for 1.4 mm thick birch and spruce as well
as 3.0 mm thick spruce plywood veneers, series B-14, S-14 and S-30.

Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100

Birch plywood (224)
Normal All 53.8 60.0 63.0 71.1 75.5
Normal Tail 55.7 61.7 64.6 72.5 76.8
Lognormal All 59.7 64.0 66.1 72.4 76.0
Lognormal Tail 56.7 61.8 64.5 72.4 77.0
Two-parameter Weibull All 47.2 55.7 59.8 70.6 76.0
Two-parameter Weibull Tail 54.8 61.5 64.7 72.7 76.6
Three-parameter Weibull All 62.6 65.0 66.5 71.9 75.5
Three-parameter Weibull Tail - - - - -
Non-parametric All - 60.3 61.4 73.1 75.8

Spruce plywood (173)
Normal All 23.4 28.9 31.6 38.9 42.8
Normal Tail 30.4 34.1 35.8 40.7 43.2
Lognormal All 30.7 33.8 35.5 40.5 43.4
Lognormal Tail 309 34.1 35.7 40.6 43.5
Two-parameter Weibull All 22.0 27.8 30.8 39.1 43.4
Two-parameter Weibull Tail 30.5 343 36.1 40.7 429
Three-parameter Weibull All 32.6 344 35.5 39.9 42.9
Three-parameter Weibull Tail - - - - -
Non-parametric All - 35.2 35.8 38.9 43.9

Spruce plywood of thick veneers

(281)
Normal All 17.8 23.0 25.5 32.5 36.2
Normal Tail 23.6 27.3 29.1 34.1 36.7
Lognormal All 25.4 28.3 29.8 34.3 37.0
Lognormal Tail 243 27.4 29.0 34.0 37.0
Two-parameter Weibull All 17.7 22.9 25.5 33.0 37.0
Two-parameter Weibull Tail 23.5 27.4 29.2 34.1 36.5
Three-parameter Weibull All 28.5 29.7 30.6 34.1 36.6
Three-parameter Weibull Tail - - - - -
Non-parametric All - 27.4 29.1 33.6 373
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Figure 2.14. Cumulative distributions of bending strength for 1.4 mm thick birch

plywood veneers, series B-14.
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2.5 Small-diameter round timber

2.5.1 Data

The data used represents small-diameter round timber of spruce (Picea abies and Picea
sitchensis) and pine (Pinus silvestris). Spruce was sampled from two locations in
Finland, two locations in Austria and one location in the United Kingdom. Pine was
sampled from four locations in Finland and one location in the United Kingdom.

Both bending and compression parallel to the grain tests were carried out following, as
closely as possible, the test method given in EN 408. In addition to bending strength and
modulus of elasticity (true), density and moisture content were determined. Further
details on the data, test method and results are given by Ranta-Maunus (1999).

Before analysis, all individual density values were adjusted to a moisture content of
12% according to EN 384. No other adjustments were carried out.

A summary of the data used in the analysis is given in Table 2.19. The mean diameter
of the specimens was 123 mm. The mean moisture content of the specimens was 16.1%.
This results in lower strength and modulus of elasticity values than those of specimens
of 12% moisture content.

Table 2.19. Density, p, bending strength, f, and modulus of elasticity, E, of small-
diameter round timber used in the analysis.

Property Number p E
Mean COV Mean COV Mean COV
kg/m’ % N/mm’ % N/mm’ %
Bending 660 467 12.7 56.2 21.3 12300 26.4
Compression 575 469 13.2 26.9 23.3 10700 28.3
2.5.2 Analysis

Both bending and compression strength was modelled using normal, lognormal and
two- as well as three-parameter Weibull distribution functions. In addition to all of the
data, the tail data, represented by 10% of the weakest specimens, were also analysed.
The estimated parameters of these functions are given in Table 2.20. Furthermore, the
model and the data are plotted in Figures 2.17-2.18. The estimated strengths at different
fractiles are given in Table 2.21.
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In estimating the 5% fractile of the 660 bending specimens, Figure 2.17, the same
conclusions as those drawn for spruce with a depth of 150 mm can be drawn. The
conclusions were:

. The lognormal distribution, modelled from all the data, overestimates the 5%
fractile of bending strength.

. The normal and two- as well as three-parameter Weibull distributions, modelled
from all the data, result in good estimates for the 5% fractile of bending strength.

. The normal, lognormal and two- as well as three-parameter Weibull
distributions, modelled from 10% of the weakest specimens, result in good
estimates for the 5% fractile of bending strength.

The following conclusions can be drawn for estimation of the tails of the models used,
Figure 2.17:

. The lognormal distribution, modelled from all the data, overestimates the
bending strength values for the tail fractiles below 5%.

. The normal and two- as well as three-parameter Weibull distributions, modelled
from all the data, result in reasonable estimates for the bending strength values
for the tail fractiles below 5%.

o The normal, lognormal and two- as well as three-parameter Weibull
distributions, modelled from 10% of the weakest data, result in good estimates
for the bending strength values for the tail fractiles below 5%.

The following conclusions can be drawn for estimation of the 5% fractile of the 575
compression specimens, Figure 2.18:

. The lognormal and three-parameter Weibull distributions, modelled from all the
data result in good estimates for the 5% fractile of compression strength.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the 5% fractile of compression strength.

. The normal, lognormal and two- as well as three-parameter Weibull

distributions, modelled from 10% of the weakest specimens, result in good
estimates for the 5% fractile of compression strength.
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The following conclusions can be drawn for estimation of the tails of the models used,
Figure 2.18:

o The lognormal and three-parameter Weibull distributions, modelled from all the
data, result in reasonable estimates for the compression strength values for the
tail fractiles below 5%.

° The normal and two-parameter Weibull distributions, modelled from all the data,
underestimate the compression strength values for the tail fractiles below 5%.

. The normal, lognormal and two- as well as three-parameter Weibull

distributions, modelled from 10% of the weakest data, result in good estimates
for the bending strength values for the tail fractiles below 5%.

Table 2.20. The modelled distribution functions for small-diameter round timber.

Distribution function (no. of cases) Data Parameters in the distribution function
7 o a g £

Bending strength (660)
Normal All 56.25 12.00 - - -
Normal Tail 54.89 10.92 - - -
Lognormal All 4.006 0.223 - - -
Lognormal Tail 4.144 0.328 - - -
Two-parameter Weibull All - - 5.780 60.70 -
Two-parameter Weibull Tail - - 7.194 55.76 -
Three-parameter Weibull All - - 3.077 60.24 22.57
Three-parameter Weibull Tail - - 5.557 57.91 7.17

Compression strength (575)
Normal All 26.88 6.26 - - -
Normal Tail 22.64 2.95 - - -
Lognormal All 3.265 0.232 - - -
Lognormal Tail 3.170 0.178 - - -
Two-parameter Weibull All - - 5.682 28.96 -
Two-parameter Weibull Tail - - 14.085 21.96 -
Three-parameter Weibull All - - 2.136 28.52 14.20
Three-parameter Weibull Tail - - 2.808 26.39 13.12
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Table 2.21. The modelled bending strengths for small-diameter round timber.

Distribution function (no. of cases) Data Bending strength for different fractiles
0.001 0.005 0.010 0.050 0.100

Bending strength (660)
Normal All 19.2 25.3 28.3 36.5 40.9
Normal Tail 21.1 26.8 29.5 36.9 40.9
Lognormal All 27.6 309 32.7 38.1 41.3
Lognormal Tail 22.9 27.1 29.4 36.8 414
Two-parameter Weibull All 18.4 243 27.4 36.3 41.1
Two-parameter Weibull Tail 21.3 26.7 29.4 36.9 40.8
Three-parameter Weibull All 26.6 293 31.0 36.9 40.7
Three-parameter Weibull Tail 21.8 26.7 293 36.9 41.0
Non-parametric All 23.0 24.3 29.9 36.6 41.2

Compression strength (575)
Normal All 7.5 10.8 12.3 16.6 18.9
Normal Tail 13.5 15.0 15.8 17.8 18.9
Lognormal All 12.8 14.4 15.3 17.9 19.4
Lognormal Tail 13.7 15.1 15.7 17.8 19.0
Two-parameter Weibull All 8.6 11.4 12.9 17.2 19.5
Two-parameter Weibull Tail 13.4 15.1 15.8 17.8 18.7
Three-parameter Weibull All 14.8 15.4 15.9 17.8 19.2
Three-parameter Weibull Tail 14.3 15.1 15.7 17.7 19.1
Non-parametric All 14.3 14.9 15.8 17.8 19.2
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Figure 2.17. Cumulative distributions of bending strength for small-diameter round

timber.
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2.6 Summary

Strength data on sawn timber, Kerto-laminated veneer lumber, plywood and small-
diameter round timber were analysed. A summary of the strength results is given in
Table 2.22.

Strength was modelled using normal, lognormal and two- as well as three-parameter
Weibull distribution functions. In addition to all of the data, the tail data, represented by
10% of the weakest specimens, were also analysed. The model was judged using two
criteria:

° How well the 5% fractile is estimated.
° How well the values below the 5% fractile are estimated.

Any of the models based on the tail data gave good estimates for both the 5% fractile
and the values below that. A summary of the evaluation for the models based on all the
data is given in Tables 2.23-2.24.

Fitted distribution functions can be characterized by giving mean value and COV
instead of the usual parameters. Appendix A gives the equations needed to calculate
mean value (m) and standard deviation () from the distribution parameters, and

cov=¢

Table 2.25 summarizes COV values calculated from the distributions fitted to all data
and to the tail. Quality of the fitting of those functions fitted to all data in tail area is
characterized by a few words and COV's of those functions are close to the COV
obtained from the test. The tail-fitted functions give a different COV, when the all data-
curve does not fit well to the tail data.
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Table 2.22. Summary of strength results.

Material Remarks Mean COV  5%-frac Number
N/mm?* % N/mm?* -
Sawn timber
Spruce, edgewise, Ungraded 45.2 25 27.5 589
depth = 150 mm Visually graded, C24 49.4 20 33.1 367
Machine graded, C30 47.5 22 30.5 496
Sawn timber Ungraded 429 29 22.6 1995
Spruce and pine, Visually graded, C24 48.4 22 32.1 902
edgewise Machine graded, C30 47.8 22 30.6 1327
Laminated veneer lumber
Kerto, edgewise External quality control 58.6 10 49.9 372
Internal quality control 60.1 10 51.3 1968
Kerto, flatwise External quality control 60.7 13 48.1 372
Internal quality control 64.3 14 50.3 1963
Plywood
1.4 mm thick birch plies, flatwise 90.9 13 73.1 224
1.4 mm thick spruce plies, flatwise 56.5 20 38.9 173
3.0 mm thick spruce plies, flatwise 49.2 21 33.6 281
Small-diameter round timber
Spruce and pine Bending 56.2 21 36.6 660
Spruce and pine Compression 26.9 23 17.8 575
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Table 2.23. Evaluation of model used for estimation of 5% fractile. Optim means
optimistic (model overestimates strength) while Pess means pessimistic(model

underestimates strength).

Material Remarks Normal Lognorm. We-2 We-3
% % % %
Sawn timber
Ungraded - - - -
Visually graded, C24 Pess/OK  Optim  Pess/OK OK
Machine graded, C30 OK Optim OK OK
Laminated veneer lumber
Kerto, edgewise Internal quality control Pess OK Pess OK
Kerto, flatwise Internal quality control Pess OK Pess OK
Plywood
1.4 mm thick birch plies, flatwise - - - -
1.4 mm thick spruce plies, flatwise - - - -
3.0 mm thick spruce plies, flatwise Pess OK Pess OK
Small-diameter round timber
Spruce and pine Bending OK Optim OK OK
Spruce and pine Compression Pess OK Pess OK

Table 2.24. Evaluation of model used for estimation of tail fractiles below 5%. Optim
means optimistic (model overestimates strength) while Pess means pessimistic (model

underestimates strength).

Material Remarks Normal Lognorm. We-2 We-3
% % % %
Sawn timber
Ungraded - - - -
Visually graded, C24 Pess/OK  Optim Pess OK
Machine graded, C30 Pess/OK  Optim Pess OK
Laminated veneer lumber
Kerto, edgewise Internal quality control Pess OK Pess Optim
Kerto, flatwise Internal quality control Pess OK Pess Optim
Plywood
1.4 mm thick birch plies, flatwise - - - -
1.4 mm thick spruce plies, flatwise - - - -
3.0 mm thick spruce plies, flatwise Pess OK Pess Optim
Small-diameter round timber
Spruce and pine Bending OK Optim OK OK
Spruce and pine Compression Pess OK Pess OK
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Table 2.25. Summary of COV values calculated from fitted distribution functions. Sawn
timber is machine-graded.

Material COV in test COV of Fitting qualityin ~ COV of See
models tail area models
fitted to all fitted to tail
Spruce 150 mm  21.6 % N: 22 pessimistic N: 18 Table 2.3
LN: 23 optimistic LN: 29
W2: 20 pessimistic W2 14
W3:22 a bit optimistic W3: 18
Spruce all 21.0 N: 21 a bit pessimistic N: 19 Table 2.7
LN: 22 very optimistic LN: 31
W2: 20 pessimistic W2: 15
W3: 21 a bit optimistic W3:23
Spruce & pine 22.3 N: 22 a bit pessimistic N: 20 Table 2.10
LN: 24 very optimistic LN: 35
W2: 21 pessimistic W2: 17
W3: 22 a bit optimistic W3: 20
LVL edgewise 9.6 N: 10 a bit pessimistic N: 8 Table 2.13
LN: 10 good LN:9
Ww2:9 very pessimistic W2:5
W3: 10 very optimistic W3: -
LVL flatwise 14.4 N: 14 very pessimistic N: 10 Table 2.13
LN: 14 a bit pessimistic LN: 12
W2: 13 very pessimistic W2:6
W3: 14 very optimistic W3: -
Plywood birch 13.2 N: 13 N: 13 Table 2.17
LN: 13 LN: 17
W2: 12 Ww2:9
W3:13 W3: -
Plywood spruce  19.8 N: 19 N: 14 Table 2.17
1.4 mm LN: 19 LN: 19
W2: 17 Ww2:9
W3:19 W3: -
Plywood 3 mm  20.7 N: 21 N: 16 Table 2.17
LN: 21 LN: 23
W2: 18 W2: 11
W3:21 W3:
Small-diameter  21.3 N: 21 a bit pessimistic N: 20 Table 2.20
round timber, LN: 23 very optimistic LN: 34
bending W2: 20 a bit pessimistic W2: 16
W3: 21 very optimistic W3: 18
Small-diameter  23.3 N: 23 very pessimistic N: 13 Table 2.20
round timber, LN: 24 a bit pessimistic LN: 18
compression W2: 20 very pessimistic W2:9
W3: 23 a bit optimistic W3: 18
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3. Determination of characteristic 5% fractile
values

3.1 Standardised methods
3.1.1 1SO 12491

ISO 12491 is a material-independent standard in which general principles for the
application of statistical methods to be used in quality control are given. Whether or not
the estimation of fractiles is a part of quality control is a matter of contention. However,
the classical approach to the estimation of fractiles is described.

Guidance for determination of different fractiles using different confidence levels for a
normal distribution function is given in Section 6 of ISO 12491. In addition to a
recommended simple technique, a technique based on the Bayesian approach is given.

Using both the simple technique and the technique based on the Bayesian approach the
characteristic strength value, f;, defined as the 5% fractile value of the strength property,
is given by

fk = fmean - knfvtdev (31)

where f,,.,, 15 the mean value and f,,,,, is the standard deviation. k, depends on the
number of tests, the confidence level used and whether the coefficient of variation is
known or unknown before testing. Values for &, using a confidence level of 75% are
given in Table 3.1.

Table 3.1. Values for ky, to be used in Equation (3.1), ISO 12491.

Number of tests 3 4 6 8 10 20 30 50 100 0

Jstdev 1s unknown

Simple technique 315 2.68 234 219 210 193 187 181 176 1.64

Bayesian approach - 263 218 200 192 177 1.73 - - 1.64

No guidance is given for a lognormal distribution function. However, the guidance
given for a normal distribution function can be used by replacing the variable f; by Inf;.
Hence, the mean value, f,,.,,, and standard deviation, f;,,.,, in Equation (3.1) shall be
replaced by (Inf),,.,, and (Inf)y4,,- The characteristic strength value is then given by

fk — e(ln f)mean _kn (111 f)stdev (3 2)
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3.1.2 Eurocode 1

According to Section 5 of Part 1 of Eurocode 1, the characteristic strength value is
defined as the 5% fractile value. However, the confidence level is not given. Guidance
for determination of characteristic values for a normal distribution function is given in
Section 3.2 of Appendix D of Part 1 of Eurocode 1. It is stated that this guidance leads
to almost the same result as classical statistics with confidence levels equal to 0.75.

The characteristic strength value, f;, defined as the 5% fractile value of the strength
property, is given by Equation (3.1). The values for £, to be used are given as the
Bayesian values in Table 3.1.

3.1.3 Eurocode 5

As in Eurocode 1, the characteristic strength value is defined as the 5% fractile value in
Section 3.1 of Part 1-1 of Eurocode 5. Guidance for determination of characteristic
values using a confidence level of 84.1% is given in Appendix A of Part 1-1 of
Eurocode 5 (1993). This method should not be used in cases covered by other European
standards or in cases where the assumption of a lognormal distribution function is not
appropriate. Furthermore, this method will probably be replaced by the method given in
EN TC 124.bbb.

The characteristic strength value, f;, defined as the 5% fractile value of the strength
property, is given by

fk = knfmean (33)

where f, .., 1s the mean value and %, is given by

- 6(0.15—(2.645+\/1;j fmJ 6

where f,,, 1s the coefficient of variation and » is the sample size. The value of £, shall
not be taken as less than 0.10. The sample size shall not be less than 30.
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3.1.4 EN 1058

Guidance for determination of characteristic values for wood-based panel products for
structural purposes is given in EN 1058. However, this method will probably be
replaced by the method given in EN TC 124.bbb.

The characteristic strength value, f;, defined as the 5% fractile value of the strength
property, is given by Equation (3.3). The value for %, to be used is given by

k — eo-ls_kfcov (35)

n

where f,,, is the coefficient of variation. The value of f,,, shall not be taken as less than
0.10. k£ depends on the number of tests. Values for k are given in Table 3.2. The sample
size shall not be less than 32.

Table 3.2. Values for k to be used in Equation (3.5), EN 1058.

Number of tests 32 36 40 60 80 100 0

k 3.10 3.07 3.04 295 291 288 265

3.1.5 EN TC 124.bbb

The forthcoming standard EN TC 124.bbb is based on Annex A of Eurocode 5 and
EN 1058. A more general method is given and some errors are corrected. The
characteristic strength value is defined as the 5% fractile value using a confidence level
of 84.1% and a lognormal distribution function.

The characteristic strength value, f;, defined as the 5% fractile value of the strength
property, is given by Equation (3.2). The values for £, to be used are given in Table 3.3.

Table 3.3. Values for ky, to be used in Equation (3.2), EN TC 124.bbb.

Number of tests 3 5 10 15 20 30 50 100 o0

k

n 411 291 234 216 207 198 189 181 1.65
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3.1.6 EN 384

Guidance for determination of characteristic values for visually and machine strength
graded timber is given in EN 384.

One to five samples shall be selected from the timber population. The sample size shall
not be less than 40. From each sample, the 5% fractile, )5, shall be determined by
ranking all the test values in ascending order. Since the 5% fractile is defined as the test
value for which 5% of the values are lower, the confidence level used is 50%.

The characteristic strength value, f;, defined as the 5% fractile value of the strength
property, is given by

(fOS )megn kskv
fi =min (3.6)

1 2(f05 )min kSkV

where (f)5),0qan 15 the mean value of the 5% fractile values for each sample, weighted
according to the number of specimens in each sample. (fjs),,;,, 1s the minimum value of
the 5% fractile values of the samples. k; is a factor to adjust for the number and size of
the samples. k, is equal to 1.0 for five samples. £, is a factor to be taken as 1.00 for
visually graded timber and 1.12 for machine-graded timber.

3.1.7 ASTM D 2915

Guidance for determination of different fractiles using different confidence levels for a
normal and lognormal distribution function as well as for a non-parametric distribution
is given in Section 4 and Appendix X5 of ASTM D 2915.

The characteristic strength value f;, defined as the 5% fractile value of the strength
property, is given by Equations (3.1) and (3.2) for a normal and a lognormal distribution
function, respectively. The values for £, resulting in a 75% confidence level are given as
the simple technique values in Table 3.1.

Order statistics can be used for a non-parametric distribution. The strength values shall
be ranked in ascending order and the characteristic value, defined as the 5% fractile
value of the strength property, is directly given by the m:th strength value. m depends on
the number of tests and the confidence level used. The values for m resulting in a 75%
confidence level are given in Table 3.4.
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Table 3.4. Values for m to be used in order statistics, ASTM D 2915.

Number of tests 28 53 78 102 125 148 193 237 668 1089

m 1 2 3 4 5 6 8 10 30 50

3.2 Case studies
3.2.1 Sawn timber

As a first case study, the characteristic bending strength, defined as the 5% fractile, for
sawn timber is analysed. Sawn timber is represented by the 986 spruce specimens
machine-graded to the European strength class C30. This population is presented in
detail in Section 2.2.3. The mean value is 47.8 N/mm?” while the coefficient of variation
is 21.0%. Furthermore, the 5% fractile value based on a non-parametric analysis is
31.3 N/mm?®. The 5% fractile is well estimated using a normal distribution function for
all the data but overestimated by 4% using a lognormal distribution function for the
same data.

The characteristic value determined in accordance with EN 384 is given in Table 3.5.
For analysis the population was split into five samples according to the depth of the
specimens.

A summary of the characteristic values determined in accordance with some of the
standardised methods is given in Table 3.6.

As expected the ISO 12491 method based on a normal distribution function, as well as
the ASTM D 2915 method based on order statistics, result in characteristic values equal
to the value given in Section 2. Due to the large amount of specimens the effect of
different confidence levels can be neglected.

Furthermore, the method to be used in Europe, namely EN 384, overestimates the
characteristic value by 11%. However, this is no surprise since the k,, factor which is
1.12 for machine-graded timber is not based on statistical facts. It is incorrect to
multiply an estimate of the 5% fractile value by 1.12 and then state that the result is the
characteristic value defined as the 5% fractile value.
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Table 3.5. Determination of characteristic bending strength of 986 specimens of sawn
timber in accordance with EN 384.

Sample Depth & o5 Number
mm N/mm? -
Sample 1 h<110 31.6 166
Sample 2 110 <h <130 33.8 96
Sample 3 130 <h <170 30.9 537
Sample 4 170 <h < 190 29.2 130
Sample 5 190 <h 28.1 57
(F05)mean all 30.9 986
1.2 - (fo5)min all 33.7 986
i all 34.6 986

Table 3.6. Characteristic bending strength of 986 specimens of sawn timber in
accordance with some standardised methods.

Method i Ji/31.3
N/mm? %
ISO 12491 - Normal - Simple* 30.9 99
EN 384 34.6 111
ASTM D 2915 - Non-parametric 30.8 98
Non-parametric - Section 2 31.3 100

* This method is equal to ASTM D 2915 - Normal

3.2.2 Kerto-laminated veneer lumber

As a second case study the characteristic bending strength, defined as the 5% fractile,
for Kerto-laminated veneer lumber is analysed. Kerto-laminated veneer lumber is
represented by the 1968 edgewise bent specimens. This population is presented in detail
in Section 2.3. The mean value is 60.1 N/mm” while the coefficient of variation is 9.6%.
Furthermore, the 5% fractile value based on a non-parametric analysis is 51.3 N/mm’.
The 5% fractile is well estimated using a lognormal distribution function for all the data
but underestimated by 1% using a normal distribution function for the same data.

A summary of the characteristic values determined in accordance with some of the
standardised methods is given in Table 3.7.
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As expected, the ISO 12491 method based on a lognormal distribution function results
in a characteristic value equal to the value given in Section 2. Furthermore, the method
based on Eurocode 5 overestimates the characteristic value by 4%. Due to the large
amount of specimens the effect of different confidence levels can be neglected.

In real life, it is unrealistic to assess a characteristic value from a sample size of many
hundreds of tested specimens. In Europe, a more realistic sample size is between 30 and
60. To analyse this situation, 30 specimens were randomly selected from all the 1968
specimens. The mean value, f,,,,, for these 30 specimens was 60.3 N/mm” while the
coefficient of variation, f,,,, was 11.7%. Furthermore, the mean value, In(f),,.,,, Was
4.09 and the standard deviation, In(f),,;.,,» was 0.113. A summary of the characteristic
values is given in Table 3.8.

According to Section 2.3, the strength of laminated veneer lumber is lognormally
distributed. Hence, it is reasonable to use the strength 48.4 N/mm® given by the
ISO 12491 method for a lognormal distribution function as a reference value. Compared
to this method the ISO 12491 method for a normal distribution function underestimates
the characteristic value by 3%. Furthermore, the method given in Eurocode 5
overestimates the value by 4%. Usually a non-parametric method results in conservative
values but in this case the value given by ASTM D 2915 overestimates the characteristic
strength by 7%. This overestimation may not be representative of the method.

A comparison to the strength 47.1 N/mm? given by the ISO 12491 method for a normal
distribution function is also included in Table 3.8.

Table 3.7. Characteristic bending strength of 1968 specimens of Kerto-laminated
veneer lumber in accordance with some standardised methods.

Method Ji Ji/51.3
N/mm’ %
ISO 12491 - Normal - Simple* 50.5 98
ISO 12491 - Lognormal - Simple** 51.0 99
Eurocode 5 53.5 104
Non-parametric - Section 2 51.3 100

* This method is equal to ASTM D 2915 - Normal
** This method is equal to ASTM D 2915 - Lognormal
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Table 3.8. Characteristic bending strength of 30 specimens of Kerto-laminated veneer
lumber in accordance with some standardised methods.

Method i Ji /484 Ji/47.1
N/mm’ % %
ISO 12491 - Normal - Simple* 47.1 97 100
ISO 12491 - Normal - Bayesian** 48.1 99 102
ISO 12491 - Lognormal - Simple*** 48.4 100 103
ISO 12491 - Lognormal - Bayesian 49.1 101 104
Eurocode 5 50.3 104 107
EN 1058 48.6 100 103
EN TC 124.bbb 47.8 99 101
ASTM D 2915 - Non-parametric 51.6 107 110

* This method is equal to ASTM D 2915 - Normal
** This method is equal to Eurocode 1
*** This method is equal to ASTM D 2915 - Lognormal

3.2.3 Plywood

As a third case study, the characteristic bending strength, defined as the 5% fractile, for
plywood produced from 3.0 mm thick spruce veneers is analysed. This plywood is
represented by the veneers of the 281 flatwise bent specimens. This population is
presented in detail in Section 2.4. The mean value of the veneers is 49.2 N/mm? while
the coefficient of variation is 20.7%. Furthermore, the 5% fractile value based on a non-
parametric analysis is 33.6 N/'mm”. The 5% fractile is overestimated by 2% using a
lognormal distribution function for all the data but underestimated by 3% using a
normal distribution function for the same data.

A summary of the characteristic values determined in accordance with some of the
standardised methods is given in Table 3.9.

The ISO 12491 method based on a lognormal distribution function and the Eurocode 5
method result in characteristic values close to the value given in Section 2. However the
ISO 12491 method based on a normal distribution function underestimates the
characteristic value by 4%.

As a special case in this third case study, 100 specimens were randomly selected from
all the 281 specimens. The mean value, £, for these 100 specimens was 49.2 N/mm®
while the coefficient of variation, f,,, was 20.7%. Furthermore, the mean value,
In(f),,e0n» Was 3.85 and the standard deviation, In(f),;.,,» was 0.211. A summary of the
characteristic values is given in Table 3.10.
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According to Section 2.4 the strength of plywood is lognormally distributed. Hence, it is
reasonable to use the strength 32.4 N/mm® given by the ISO 12491 method for a
lognormal distribution function as a reference value. Compared to this method all other
methods except the EN TC 124.bbb method underestimate the characteristic value by 5
to 8%.

A comparison with the strength 29.7 N/mm” given by the ISO 12491 method for a
normal distribution function is also included in Table 3.10.

Table 3.9. Characteristic bending strength of 281 specimens of spruce plywood in
accordance with some standardised methods.

Method i Jfi /332
N/mm? %
ISO 12491 - Normal - Simple* 31.8 96
ISO 12491 - Lognormal - Simple** 34.0 102
Eurocode 5 32.7 98
Non-parametric - Section 2 33.2 100

* This method is equal to ASTM D 2915 - Normal
** This method is equal to ASTM D 2915 - Lognormal

Table 3.10. Characteristic bending strength of 100 specimens of spruce plywood in
accordance with some standardised methods.

Method Ji Ji/ 324 Ji/29.7
N/mm’ % %
ISO 12491 - Normal - Simple* 29.7 92 100
ISO 12491 - Lognormal - Simple** 324 100 109
Eurocode 5 30.7 95 103
EN 1058 29.9 92 101
EN TC 124.bbb 32.1 99 108
ASTM D 2915 - Non-parametric 30.3 94 102

* This method is equal to ASTM D 2915 - Normal
** This method is equal to ASTM D 2915 - Lognormal

3.3 Summary

The methods for determination of characteristic strength value, defined as the 5%
fractile value, given in ISO 12491, Eurocode 1, Eurocode 5, EN 1058, EN 384 and
ASTM D 2915 are summarised. The Eurocode 5 and EN 1058 methods will be replaced
by the method given in EN TC 124.bbb. This method which is based on a lognormal
distribution function is also included.
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Three case studies were carried out and the results of the relevant methods for
determination of characteristic values are compared to each other.

The method to be used for sawn timber is based on a non-parametric distribution
function. A method based on a normal distribution function is sufficient at least for the
analysed case. The k, factor which is 1.12 for machine-graded timber cannot be
defended statistically.

The forthcoming European method given in EN TC 124.bbb results in reasonable 5%
fractile values for Kerto-laminated veneer lumber. Whether the method should be based
on an 84.1% or a 75% confidence level needs to be discussed. The method given in
Eurocode 5 overestimates the 5% fractile value for the coefficient of variation values by
just over 10%.

The forthcoming European method given in EN TC 124.bbb results in reasonable 5%

fractile values for plywood. The method given in EN 1058 underestimates the 5%
fractile value for coefficient of variation values by about 20%.
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4. Calculation of the failure probability for
different load-material combinations

4.1 Calculation method based on discrete probability
distributions

Probability of failure can be calculated by
P, = [fy(0)F, (x)dx (4.1)
0

where fs is the probability density function of load effect, and Fjy is the cumulative
probability function of resistance. Here the numerical integration of discrete probability
distributions is used and is written as

Pf = ZFR,I‘ fS,fo 4.2)
i=1

The practical calculation was made by programming an Excel macro, in which fs and Fj
are given numerically in columns. The load distribution was adjusted by a factor to
adjust the ratio of resistance and action effect so as to reach a decided safety factor or
probability of failure. The output of the calculation includes characteristic values of
strength and stress, the total safety factor and Py The total safety factor is calculated in
the case of a single load as

y= Joos 4.3)

Oy

where £ )5 1s the 5% fractile of the given strength distribution and oy is the stress caused
by the characteristic load, the fractile of the characteristic load being different for dead
and variable loads. Here, strength distribution is thought to be given corresponding to
the load duration in question. Tested strength values should be multiplied by a factor,
kmoa according to the load duration and service conditions. This would, however, not
change the results of the parametric studies to be made. Failure probabilities can be
transferred to safety indices B (see Equation (1.7), and Table 1.1).

Combinations of two loads are also analysed. For simplicity, the parameters of the two
load distributions are selected so that the stress caused by the characteristic load, oy, is
the same for both loads. The loads are then combined using different values of a, the
ratio of variable load to total load:
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a=oy /(aGk + O'Qk) (4.4)

The failure probability is calculated using combined distribution for stress. The strength
is then adjusted by a factor, m, such that the target value of P;is achieved. Finally, the
material safety factor y,,is solved from the design equation:

mf
(1 —a)y .o, +ay,o, = —2005 4.5)

Y m
where y; and y, are the given safety factors for the loads.
The basics of adding and multiplying statistical distributions are given in Appendix A.

The equations of the probability distribution functions commonly used for material
strength and load effects are given in Appendix A. The cumulative strength distribution
equations are illustrated in Figure 4.1, where they have the same 5 percentile value.
Similarly, load density functions of normal and Gumbel distributions are compared in
Figure 4.2. The tails of distributions are most interesting from the reliability analysis
point of view: a lognormal distribution of strength means that there are less cases with
extremely weak strength values than when material obeys a normal or two-parameter
Weibull distribution, when the COV calculated from the distribution parameters is the
same. Also the upper tails of load distributions are different: the probability of having a
load exceeding the g™ percentile by 50% is much higher in the case of a Gumbel
distribution than in the case of a normal distribution.

Strength compared to 5%tile Strength below 5%-tile
1 0,1
>

z 5 N0 g - Y N: 0.1
§ 075 & H 0 ©
E o0 o NO2 2 001 o 4 o N:02
g & @ ’ 3
g o — — LN:0.1 & o <7 — — LN:0.1
5 05 / © R
2 I/ o X LN:02 2 °q / x  LN:0.2
£ £ F 0001 © x .
3 o025 50 Wei: 0.1 2 Lo e X / Wei: 0.1
£ o o Wei 0.2 3 o x / o Weir0.2
© 0 R 0,0001 ; |

05 10 15 20 04 05 06 07 08 09 10

relative strength relative strength

Figure 4.1. Comparison of normal, lognormal and two-parameter Weibull distributions
when coefficient of variation is 10 or 20%.
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Normal and Gumbel distributions when 98%tile
is 20

Normal and Gumbel distributions above 98%tile
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Figure 4.2. Comparison of loads following normal and Gumbel distributions when the
98 percentile value is 20. N means normal and G Gumbel distribution, the number
following N or G is the coefficient of variation.

4.2 Accuracy of the calculation

The accuracy of numerical integration was analysed using two different step-lengths of
discrete stress and strength distributions. Results are shown in Table 4.1 where the
Monte Carlo simulation results of the same problem are also shown (Svensson 2000).
The relative difference between the methods increases when the safety level increases.
Accuracy with Ac = 0.1 MPa seems adequate for practical purposes, and this step length
has been used in the calculations.

Table 4.1. Comparison of the accuracy of the numerical integration. Failure
probabilities at three intended [S-index levels. Number of simulations is 10" for § =3,
10° for B =4, and 10° for B = 5.

Method Load Strength Probability
of failure
Distribution COV | Distribution COV =3 =4 =5

Ac =1 MPa normal 0.4 lognormal 0.2 0.001310 | 0.0000320 | 0.00000030
Ac =0.1 MPa 0.001275 | 0.0000306 | 0.00000029
Monte Carlo 0.001210 | 0.0000277 | 0.00000025
Ac =1MPa Gumbel 0.4 lognormal 0.2 0.001377 | 0.0000320 | 0.00000029
Ac =0.1 MPa 0.001336 | 0.0000311 | 0.00000028
Monte Carlo 0.001320 | 0.0000308 | 0.00000024

For verification purposes the results of the numerical integration were also compared to
results computed by other software, namely the Strurel package using the Comrel
program (SORM method). In the numerical integration method, the step in the
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integration was Ac = 0.1 MPa. Two cases were studied as shown in Table 4.2. The
results demonstrate that these two methods give the same results within reasonable
accuracy and thus verify the result of the numerical integration.

Table 4.2. Comparison of computed probability of failure values computed by the
numerical integration and Comrel software.

Input values Numerical Comrel

integration

Case 1
strength lognormal (mean: 56.5, COV: 26%) 1.9058 - 10°° 1.9139-10°
load normal (mean: 10.0, COV: 40%)
kmod =1.0

Case 2

strength ~ lognormal (mean: 56.5 COV: 26%) 0.7190 - 10°° 0.7086 - 10
load ~ Gumbel (u: 4.4, a: 0.6 COV: 40%)
Kipod =0.8

4.3 Sensitivity studies
4.3.1 Effect of load distribution function: one variable load

Two distribution types, normal and Gumbel for actions, and normal and lognormal for
resistance were used in the calculation of the total safety factor needed for a certain
probability of failure in the case of a single action. In this calculation, characteristic
values of resistance were 5 percentiles and those of actions were 98 percentiles, and the
total safety factor is the ratio of these two. The values of safety factors needed for a
probability of failure of 10°, 10° and 10” are given in Tables 4.3, 4.4 and 4.5,
respectively. Results are illustrated in Figure 4.3. It can be concluded that by having the
same characteristic values and same coefficient of variation but different shapes of
distribution functions very different results can be obtained. The combination of a
normal load and a lognormal strength distribution gives a favourable result: y = 1.76
results in Pr= 10 when the COV of the load is 40% and the COV of strength is 20%.
With the same COV values, a combination of a Gumbel load and a normal strength
distribution ends up with the result: = 1.87 which results in Py= 107,

If the target failure probability level for a year is 10 and a lognormal distribution is
used for strength and a Gumbel distribution with a COV = 40% for variable actions, we
end up with y = 2.31 for a COV = 10% and y = 2.39 for a COV = 20%. This
combination of target safety level and selection of load distribution type leads to a
considerably higher safety factor than the present values in most standards (Eurocode 5:
YmYq =1.3 x 1.5=1.95).
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.. 10E03 .. 10E03
£ 10804 - _\\'\-‘\\«_\- —e—N0.05/N0.2 £ 10504 {ma —+—NO0.05/LNO.2
S 1,0E-05 \ —® NO.4/NO02 21,0505 - \ —#—NO.4/LNO0.2
S 4 0E06 % —A—NO4/NO.A o 1.0E06 ——NO4/LNO.1
2 10807 N0.05/N 0.1 = 108071 \Li\ N0.05/LN 0.1
T 10E08 M ‘ % 1,0E08 e
15 2 25 3 1 15 2 25 3
Total safety factor Total safety factor
Gumbel load / normal strength Gumbel load / lognormal strength
1,0E-03 1,0E-03
> > "
3 10E04 L.Q‘\‘\.\ . |—*—coommo2 3 10804 § = —+—GO0.05LN0.2
8 1,0E:05 \ —=—GO0.4/N0.2 8 10E05 \ —=—GO04/LN0.2
S 10E06 A ——GO.4/NO.1 o 1.0E06 X —2—G04/LNO.1
21,0807 1 \A\ G0.05/N0.1 21,0807 G0.05/LN0.1
* 1,0E-08 ‘ ‘ % 1,0E-08 ‘ 2\
15 2 25 3 1,5 2 25 3
Total safety factor Total safety factor

Figure 4.3. Calculated correspondence of P, and y when a load is normally or Gumbel
distributed and the strength is normally or lognormally distributed. COV is given in the
legend after the symbol of distribution N, LN or G. The characteristic load is the 98% fractile.

Table 4.3. Total safety factors corresponding to probability of failure level 10° (=4.75)
for different combinations of load and strength distribution. NA (not applicable) means
that the target probability can-not be achieved using a reasonable safety factor.

Load distribution Strength distribution
Normal Lognormal
COV 0.1 0.2 0.1 0.2
Normal 0.05 1.49 NA 1.31 1.74
0.4 1.58 NA 1.52 1.76
Gumbel 0.05 1.49 NA 1.36 1.73
0.4 2.32 NA 2.31 2.39

Table 4.4. Total safety factors corresponding to a probability of failure level of 107
(f=4.27) for different combinations of load and strength distribution.

Load distribution Strength distribution
Normal Lognormal
COV 0.1 0.2 0.1 0.2
Normal 0.05 1.37 4.17 1.24 1.58
0.4 1.42 2.94 1.38 1.54
Gumbel 0.05 1.36 4.07 1.27 1.55
0.4 1.97 2.92 1.96 1.98
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Table 4.5. Total safety factors corresponding to a probability of failure level of 107
(f=3,72) for different combinations of load and strength distribution.

Load distribution Strength distribution
Normal Lognormal
COoV 0.1 0.2 0.1 0.2
Normal 0.05 1.25 2.40 1.17 1.41
0.4 1.26 1.80 1.24 1.32
Gumbel 0.05 1.24 2.34 1.18 1.38
0.4 1.62 1.87 1.63 1.60

4.3.2 Effect of self-weight definition

The Eurocode gives two possibilities for the determination of the characteristic value of
self-weight: mean value if the COV< 0.05 or the 95 percentile, if the coefficient of
variation is larger. A normal distribution can be used for a dead load. In the following,
the effect on the safety factor is compared when the characteristic value of a dead load
is a mean or the 95 percentile. Values for the 98" percentile are also given in Tables 4.6
and 4.7 for comparison purposes. The results show that in all calculated cases the use of
a mean value as the characteristic dead load requires a safety factor 8 to 9% higher than
that required with the use of the 95™ percentile. The difference between the 95" and 98™
percentile is equivalent to a 2% difference in safety factor. However, when strength
follows a normal distribution and the COV > 0.2 we end up, with unreasonably high
safety coefficients. Boxed values of safety factors in Eurocode give y,yg =1.3 x 1.35 =
1.76 which is close to the value obtained for the combination of Pf= 106, and a
lognormal strength distribution with a COV = 0.2.

Table 4.6. Total safety factors corresponding to a probability of failure level of 10
(f=4.75) for a dead load when the characteristic value is a mean or the 95% or 98%
fractile and the COV = 5%.

Load distribution Strength distribution
Normal Lognormal
Ccov 0.1 0.2 0.1 0.2
Normal Mean 1.65 13.7 1.44 1.92
95%-tile 1.52 12.6 1.33 1.78
98%-tile 1.49 NA 1.31 1.74
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Table 4.7. Total safety factors corresponding to a probability of failure level of 107
(f=4.27 for a dead load when the characteristic value is a mean or the 95% or 98%
fractile and the COV = 5%.

Load distribution Strength distribution
Normal Lognormal
CoVv 0.1 0.2 0.1 0.2
Normal Mean 1.51 4.60 1.37 1.74
95%-tile 1.39 4.25 1.26 1.61
98%-tile 1.37 4.17 1.24 1.58

4.3.3 Tail effects

The effect of the lower tail of strength distribution is analysed using different truncated
distributions. Basically the same load distributions are used as in Paragraph 4.3.1.
Strength distributions are truncated in such a way that all values below the truncation
point (1% or 5% fractile) are transferred to have the strength of the truncation point.
Thus the cumulative distribution above truncation is unchanged. Tables 4.8 and 4.9 give
the factor indicating the change of failure probabilities due to the truncation of the tail.
The conclusion is that the effect of truncation of the tail depends strongly on the type of
distribution and on the COV. This can be explained by Figure 4.4 where the tails of the
distributions are shown in an example where £ )5 is 20 and o}, is 40 MPa. Obviously, the
truncation is most effective when the tails cross at high levels of Py

When COV of strength distribution is large (>20%) we can conclude that strength
values below 5% fractile contribute the major part of failure probability, in case of
normally distributed load more than 99% of it. When COV of strength is 10% and load
distribution type is Gumbel, also values above 5% fractile have practical effect on Py

Table 4.8. Probability of failure x10° for a strength distribution truncated at the 5%
(1%) fractile when the original strength distribution gives Py = 1 0. Other parameters
as in Table 4.3.

Load distribution Strength distribution
Normal Lognormal
Cov 0.1 0.2 0.1 0.2
Normal 0.05 10%(107) (107%
0.4 0.19 (0.51) 0.00034 (0.02)
Gumbel
0.4 0.63 (0.83) NA 0.76 (0.92) 0.24 (0.55)
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Table 4.9. Probability of failure x107 for a strength distribution truncated at the 5%
(1%) fractile when the original strength distribution gives Pr= 1 0. Other parameters
as in Table 4.4.

Load distribution Strength distribution
Normal Lognormal
cov 0.1 0.2 0.1 0.2
Normal 0.05 107" (0.0004) (102"
0.4 (10" 0.36 (0.69) 0.009 (0.14)
Gumbel
0.4 0.74 (0.90)  0.0006  0.83 (0.95) 0.39 (0.70)

Stress and strength distributions between
characteristic values
0.1 N 0.05
----N04
> 0,01 4 G0.05
g G04
=
> N 0.1
i 0,001 - N 02
x LN 0.1
0,0001 LN 0.2
20
Stress / strength [MPa]

Figure 4.4. Density distributions of stresses above the action of the characteristic load
(98% fractile = 20 MPa) and cumulative distributions of strength below the 5% fractile

(40 MPa).

4.3.4 Effect of safety factor on reliability

Here we discuss how a 10% change in safety factor will influence the failure probability
at different levels of safety and when using various distributions for load and strength as
specified in Paragraph 4.3.1. Results are shown in Tables 4.10 to 4.12. It can be seen
that for cases typical of dead loads (normal distribution, COV = 5%) and a lognormal
strength distribution, the probability of failure is increased by a factor of 10 to 100 when
the safety factor is decreased by 10%. When the load corresponds to variable loads
(Gumbel, COV = 40%), the effect is smaller: the failure probability is increased by 3 to

5 times.
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Table 4.10. Probability of failure x10° for a safety factor decreased by 10% of the

original value giving Py =1 0°. Other parameters as in Table 4.2.

Load distribution

Strength distribution
Normal Lognormal
Ccov 0.1 0.2 0.1 0.2
Normal 0.05 73.5
0.4
Gumbel 0.05 10.2
0.4 4.48 5.09 3.78

Table 4.11. Probability of failure x107 for a safety factor decreased by 10% of the

original value giving Py =1 07. Other parameters as in Table 4.4.

Load distribution Strength distribution
Normal Lognormal
CoVv 0.1 0.2 0.1 0.2
Normal 0.05 46.9
0.4
Gumbel 0.05 8.24
0.4 3.72 1.59 4.00 3.22

Table 4.12. Probability of failure 107 for a safety factor decreased by 10% of the

original value giving Py =1 0. Other parameters as in Table 4.5.

Load distribution Strength distribution
Normal Lognormal
CoVv 0.1 0.2 0.1 0.2
Normal 0.05 28.5
0.4
Gumbel 0.05 6.42
0.4 3.05 1.92 3.19 2.72

4.4 Analysis with real material data
4.41 Spruce sawn timber
The effect of different distributions fitted to material strength data is analysed when the

load distribution is Gumbel (COV=0.4). In the first example, the data given in Table 2.2

(Series S-1), spruce with a depth of 150 mm, machine graded to C30, is used. The fitted
distributions to be analysed are:
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Normal distribution fitted to all data (N all), normal fitted to the lowest 5% of
the data (N tail) and a combination of the two: different normal distributions
below and above the 5%-tile (N+N).

Lognormal distribution fitted to all data (LN all), lognormal fitted to the lowest
5% of the data (LN tail), and a combination of a lognormal distribution below
and a normal distribution above the 5%-tile (LN+N).

Non-parametric distribution based on direct application of test data, where two
alternatives are analysed: test data only indicating that there are no weaker
specimens than the lowest value tested (test), and the combination of a non-
parametric distribution and a lognormal distribution fitted to the lowest 5
percentile so that a lognormal distribution is used below the lowest test value
(LN-+test).

The results indicate that a normal distribution fitted to all of the test data gives the
lowest safety level (f=3.64) and a lognormal distribution fitted to all of the data the
highest (p=4.34) the other combinations being fairly close to each other (B=4.1 to 4.2).
The combined distributions fit very closely to the test data (see Fig. 2.2) and are
obviously the most correct ones. We can also conclude that the distributions fitted to the
lowest 5 percentile of the test data give practically the same reliability as combined
distributions. Results are shown in Tables 4.13 in terms of failure probability and in
Table 4.14 in terms of beta index.

Table 4.13. Probability of failure x10° when load distribution is Gumbel or normal
with a COV=0.4, total safety factor 1,3x1,5=1,95 and material is C30 as given in Table

2.2(S-1).
Load Strength distribution
distribution
N all N tail N+N LN all LN tail LN+N test LN-+test
Normal 135 5.5 5.5 0.12 0.92 0.92 0.14 0.95
Gumbel 137 20 19 7 15 14 13 15

Table 4.14. Beta index when load distribution is Gumbel or normal with a COV=0.4,
total safety factor 1,3x1,5=1,95 and material is C30 as given in Table 2.2 (S-1).

Load Strength distribution
distribution

N all N tail N+N ILNall | LNtail | LN+N test LN-+test
Normal 3.64 4.41 4.40 5.16 4.77 4.77 5.14 4.76
Gumbel 3.64 4.11 4.12 4.34 4.18 4.18 421 4.17

84



4.4.2 Combined spruce and pine

Data of 1327 machine—graded, sawn timber specimens containing both spruce and pine
are given in Section 2.2.4 including fitted models in Table 2.10. The material is graded
to strength class C30, and has a mean strength of 47.8 N/mm” and a COV of 22.3%.
Normal, lognormal and two- and three-parameter Weibull distributions fitted separately
to all data points and to the lowest 10% are used in reliability analysis. In analyses with
different material models the load has the same characteristic values corresponding to
total safety factors 1.4, 1.6, 1.8, 2.0 and 2.2 when the characteristic strength is f; o5 = 30
N/mm®. Load distribution is assumed to be normal with a COV = 5% and the
characteristic value is defined as the 50 or 95th percentile, as used for permanent loads.
Both normal and Gumbel distributions with COV = 40% are used for loads simulating
variable loads, the characteristic value being the 98% fractile.

Results are shown in Table 4.15 in terms of failure probability multiplied by 10°. Large
variation is observed in the P¢ values. When the most optimistic strength distribution
gives Py = 107, the most pessimistic distribution results in 10™ to 107, although all the
functions have been properly fitted to the same test data. If the target value of Py is 10™
for Gumbel distributed variable loads, the use of a three-parameter Weibull distribution
fitted to all data (cut-off value 16) would result in y = 2.1, while the use of a three-
parameter Weibull or a lognormal distribution fitted to tail data would give y = 2.2
whereas other distributions would lead to higher y values not shown in the table. In all
loading cases P¢ values obtained for a lognormal distribution fitted to tail data and a
three-parameter Weibull also fitted to tail data (cut-off value € = 9.7 N/mm?) are nearly
identical. Sometimes a lognormal distribution is also used for loads. A comparison was
made of normal and Gumbel loads when strength was lognormal as in table 4.15 (tail-
fitted). When the COV of the load was 5%, a lognormal load resulted in 3% higher P¢
values than a normal distribution. When the COV of the load was 40%, a lognormal
load resulted in a Py about 30% higher than that in the case of a Gumbel load.
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Table 4.15. Calculated Pf x 10° with spruce and pine combined data taken from Table
2.10 corresponding to different safety coefficients.

Load Strength distribution function
Y N N LN LN w2 w2 w3 w3
all tail all tail all tail all tail
Normal 1.4 7020 4440 649 4040 8330 4290 2460 4370

COV 5%, 1.6 3350 1820 80.6 1200 4010 1670 329 1430
50 %-tile 1.8 1810 861 10.0 365 2100 724 17.1 464
2.0 1180 457 1.28 115 1180 343 0.128 146
2.2 692 266 0.170 373 698 176 5107 423
Normal 1.4 4500 2600 194 2030 5380 2450 831 2280
COV 5% 1.6 2200 1090 20.2 555 2590 949 54.9 680
95%-tile 1.8 1220 532 2.15 157 1360 412 0.58 197
2.0 743 290 0.239 46.4 760 195 2104 527
2.2 488 173 0.028 391 450 99.3 109 12.3
Normal 1.4 884 430 37.9 255 916 364 115 286
COV 40% 1.6 442 190 5.51 71.4 440 141 18.6 84.3
98%-tile 1.8 262 97.9 0.860 21.4 231 61.4 2.74 25.3
2.0 171 56.5 0.138 6.71 129 29.1 0.343 7.65
2.2 119 35.7 0.024 2.20 76,6 14.8 0.036  2.29
Gumbel 1.4 882 563 223 436 918 520 354 461
COV 40% 1.6 450 244 65.1 162 445 207 116 172
98%-tile 1.8 259 119 20.0 63.3 234 91.0 39.7 68.0
2.0 164 64.8 6.46 26.0 131 43.4 14.1 28.3
2.2 112 38.8 2.17 11.2 77.9 22.1 5.17 12.3

443 LVL

The data of nearly 2000 internal quality control specimens of Kerto LVL is analysed in
Section 2.3.3 and the parameters of fitted distributions are given in Table 2.13. All
seven of these functions are used as material data to show how much of a difference the
choice of statistical function makes to failure probability when the load level is such that
a lognormal distribution fitted to all of the data gives a probability of failure of 10-6. A
lognormal distribution is selected as a base because it fits well to both edgewise and
flatwise bending data in the tail area (see Table 2.14). In edgewise bending, a normal
distribution had the best fit when fitted to tail data. COV calculated from test data was
9.6% in edgewise bending and 14.4% in flatwise bending.
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Table 4.16. Probability of failure x10° when the load distribution function is the same,
Gumbel or normal, and LVL material data for edgewise bending is taken from Table
2.14. The actual total safety factor is also given.

Load Strength distribution function
COV N all N tail LNall LNtail W2all W2tal W3all
Normal 0.05 Py 37 2.1 1 0.62 621 11.3 10-6
Y 1.27 1.29 1.29 1.29 1.27 1.29 1.29
Normal 04 Py 2.8 0.99 1 0.89 18 1.3 0.46
Y 1.49 1.51 1.51 1.51 1.49 1.51 1.51
Gumbel 04  Pg 1.24 1.06 1 0.98 2.08 1.39 0.92
Y 2.29 2.32 2.32 2.32 2.28 2.32 2.32
Gumbel 04  P¢ 11.5 10.8 10 9.94 15.1 14.1 9.53
Y 1.95 1.97 1.97 1.98 1.94 1.98 1.97

Table 4.17. Probability of failure x10° when load distribution function is the same in
all rows, calibrated to give Py = 1 0% or 107 for lognormal strength distribution, and
LVL material data for flatwise bending is taken from Table 2.14. The actual total safety
factor is also given.

Load Strength distribution function
COV N all N tail LNall LNtail W2all W2tal W3all
Normal 0.05 Py 209 1.01 1 0.094 795 5.95 10-15
Y 1.43 1.47 1.47 1.47 1.43 1.47 1.47
Normal 04 Py 17 0.64 1 0.46 62 1.10 0.13
Y 1.55 1.60 1.59 1.60 1.56 1.60 1.59
Gumbel 04  P¢ 2.81 0.95 1 0.87 6.62 1.19 0.74
Y 2.26 2.33 2.32 2.33 2.27 2.33 2.32
Gumbel 04  Pg 19.2 10.4 10 9.4 32 13.1 8.4
Y 1.90 1.96 1.95 1.96 1.91 1.96 1.95

In Tables 4.16 and 4.17 the columns in bold are those which correspond to the best
fitting curves in the lower tail area up to the 0.1 percentile. Among these well fitting
functions, two-parameter Weibull fitted to the tail results in higher P values than the
others, the difference, however, being insignificant except in the case of a dead load
simulation with a normal distribution with a COV = 0.05. A normal distribution fitted to
the tail gives similar P; values to those given by a lognormal distribution fitted to all of
the data. A lognormal distribution fitted to the tail gives slightly lower P; values. The
other distributions may result in incorrect P values: normal and two-parameter Weibull
distributions fitted to all of the data give unreasonably high values, and a three-
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parametric Weibull distribution gives low values. The problem with a three-parametric
Weibull distribution is the determination of the third parameter which is the lower limit
of strength in the material. If this cut-off value is high, the results of the P; analysis are
very favourable.

The safety factors, y, needed to achieve desired P; are also given in Tables 4.16 and
4.17. In each loading case, differences of safety factors directly reflect differences of
5% fractiles of strength distributions. The values also confirm earlier observations, how

different P; values are produced by the use of normal and Gumbel distributions when
COV is 40%.
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5. Applications of reliability analysis

5.1 Calibration of safety factors

In the examples of previous chapters, the relations of safety factor and failure
probability have been studied, when we have a single load. These results can be used to
analyse what the ratio of safety factors should be for dead loads and variable loads in
order to achieve the same reliability level in the extreme cases of dead load only or
variable load only. This ratio depends on types of distribution functions and on the
variability of material and load values.

Here loading combinations have been analysed. The material safety factor, needed for a
given reliability level, has been calculated for given combinations of distribution
functions, COVs and safety factors for loads.

Calculations are made for two target safety levels, P = 105 and 106. A normal
distribution is adopted with a COV = 0.05 for dead loads, the characteristic value being
the 95™ or 50" percentile. A Gumbel distribution is used for variable loads (COV = 0.4).
A lognormal distribution is used with a COV = 0.05, 0.1 and 0.2 for material strength.

Results are shown in Figure 5.1. When the partial safety factors for loads were y5 = 1.2
and yq = 1.5, we obtained lower values for y); than those obtained in the case of a single
variable load. In the case of having a COV=0.2 for material strength, the yy; value
needed for a certain safety level seems to have a minimum when load ratio is about o =
0.4. When the material COV is smaller, the minimum for yy, is shifted towards a lower
variable load ratio. In typical timber constructions oo = 0.6 to 0.8 and in this range, the
COV of material strength has only a minor influence, yy; =1.2 is needed for Py=10".

The same example (mean value of permanent load being characteristic, Pg = 10°) was
calculated with the IRELAN software developed by the University of British Columbia,
and the results obtained are almost identical to Figure 5.1 (Foschi 2001). Foschi also
calculated similar examples on a lower target safety level, p = 3 for a 50-year reference
period. The results are shown in Figure 5.2. Here, also, a higher partial safety factor, v
= 1.6, is used in order to obtain a more constant value for the required y,,. We can also
conclude that a lower target safety results in less variability in y,, values.
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Figure 5.1. Material safety factors, y,, needed for a target failure probability of Pr=
1079 or 1 0'6, when the permanent load, G, follows a normal distribution with a COV =
0.05 and the characteristic value is the 50 or the 95% fractile and the variable load, Q,
follows a Gumbel distribution with a COV = 0.4. Partial factors for loads are y, = 1.2
and y, = 1.5. Strength follows a lognormal distribution having a COV = 0.05, 0.1 or
0.2. Q/(G+Q) is the ratio of characteristic values.
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Figure 5.2. Material safety factors, y,, needed for a target failure probability of Pr=
1 0'5, when the permanent load, G, follows a normal distribution with a COV = 0.05
and the characteristic value is the 50% fractile and the variable load, Q, follows a
Gumbel distribution with a COV = 0.4. Partial factors for loads are y; = 1.2 and y, =

1.5 or 1.6. Strength follows a lognormal distribution having a COV = 0.05 to 0,4
(Foschi 2001).
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5.2 System effects

Parallel load-bearing wood members behave in a manner that makes system analysis a
necessary approach. Sheathed timber member systems obtain their behavioural
characteristics from two separate effects: a) composite action between the sheathing and
the member, this composite member is simply a member in the system from the
reliability standpoint, and b) the load distribution and redistribution characteristics of
the system. In this case the load is distributed to the members depending on their moduli
of elasticity and depending on the stiffness of the sheathing in the direction
perpendicular to the span of the member. The correlation between the strength and
stiffness enables weaker specimens not to be loaded as highly as the members with
higher strength. This gives a system effect. At higher load levels, the load may be
further redistributed to neighbouring members after failure or yielding occurs in a
certain member.

In the present study, only the initial load distribution effect between members, where
the differences of moduli of elasticity and their correlation to strength, is considered.
The secondary structure above the members is considered to be perfectly stiff, that is,
the members are loaded with an equal deformation.

Three different approaches to defining the system effects are considered in the
following. The system effect is introduced through a load-sharing factor, which may be
applied in a single member design by multiplying the resistance value with a factor
higher than one due to the additional reliability caused by the system effect. The
multiplication factors, ¢, for resistance are used to obtain an equal probability of failure
in all cases.

Method A, where the system failure is defined by the first failure of any member in the
system. This is strictly a series system, in which the load distribution due to the
correlation between modulus of elasticity and strength is taken into account.

kA - (I)rnernber / (I)system,rnoe,n (5.1)

Method B, where the increase of resistance effect of a single member is considered by
its insertion into the system. The correlation between modulus of elasticity and strength
is taken into account.

kB - (I)rnernber / (I)rnernber,moe,n (5.2)

Method C, where only the increase of resistance effect due to the correlation between
the modulus of elasticity and strength is considered:
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kC = (I)System,n / (I)system,rnoe,n (53)

The probability of failure of a single member and of the system are as below. All the
four ¢ factors are adjusted to obtain an equal target probability of failure of Py = 10-°.
The calculation was carried out using the Strurel Comrel software package. The terms R
and E below signify the resistance and the action effect, respectively.

Pmember (¢member) = P/ (g = ¢memberR - E < O) = 10_6 (54)

The probability of failure of a series system of n single members is:

Psystem,n (¢system,n ) = 1 - [1 - Pmember (¢system,n )]" = 10_6 (55)

The probability of failure of any single member, j, in the system of size n, where the
modulus of elasticity and correlation to strength is considered. This correlation is
assumed to be r =0.7.

nMoej

-E—<0)=10" (5.6)
ZlMoei

Pmember,moe,n (¢member,moe,n) = Pf (g = ¢member,moe,nRj

The probability of failure of a series system of n single members with modulus of
elasticity adjustment:

Psystem,moe,n (¢system,moe,n ) = 1 - [1 - Pmember,moe,n (¢syﬁtem,moe,n )]" = 10_6 (57)

Unfortunately, the real system effect is none of the above as floor or other structural
systems are neither series nor parallel systems. In most cases, structural systems do not
fail from the first member failure as assumed in a series system. This failed member
might still resist some load and have a non-linear ductile failure later. In this case, the
load is redistributed to adjacent members. In some earlier studies, systems having
members with non-linear force deflection relations and having a system failure criteria
of failures in two adjacent members, showed good results compared to experiments.
Such an analysis has to be carried out by a Monte Carlo simulation. The real system
effect should be in-between the values given by methods A and B, probably closer to
method B. In the present study, the variability of strength and load is studied on the
system effect as described by these three methods.

The following distribution and base parameters were used in this study: - system size, n,

= 1,2,3,6 and 10, - resistance ~lognormal (mean: 56.48, COV 20%), - action effect
~normal (mean: 10.0, COV 40%), - modulus of elasticity ~normal (mean: 12000, COV
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10%) and correlation between resistance and elasticity is r = 0.7. The coefficient of
variation of the resistance and of the action effect were later varied.

2.00E-07 ~
—&—P(member,moe,n) --*-- P(system,moe,n)
1.50E-07 -
e System size n
2 Strength : Lognormal(mean:56.48, std:11.3) COV 20%
:‘§ Load : Norm(mean:10.0, std:4.0) COV 40%
g Moe(1..n) : Norm(mean:12000, std:1200) COV 10%
£ 1.00E-07 - Correlation: strength(i) to Moe(i) is r = 0.7
]
-3
[
o
5.00E-08 -
0.00E+00 T )
0 1 11

System size

Figure 5.3. Probability of failure Puempermoen(@=0.9) and Pgysiommoen($=0.9 ) as a
function of the system size.

Strength COV 20 %
Load normal COV 40%

1.20
- #- Method A, ka

1.18 1 —— Method B, kb
—A&— Method C, kc

1.16

Load sharing factor

system size (number of members)

Figure 5.4. Load sharing factors for the different methods, ky, kg and k¢ for the case of
the upper figure as a function of the system size.
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It may be noted from Figures 5.3 and 5.4 that the probability of failure decreases highly
even with a system size of two members as compared to a single member. After this,
changes are rather small. Similar findings were reported by Foschi et al. (1989) on built-
up lumber beams in bending using similar methods to A and B in this study. The load-
sharing factor calculated by method A, a series system of MOE-adjusted member loads,
decreases after a maximum between a system size of 3 and 6. The load-sharing factors
calculated using methods B and C are very similar and these increase continuously with
the system size. Method B gives the increase of resistance of a single member when it is
inserted into the system. Method C gives the increase of resistance effect of the whole
system due to the correlation between the modulus of elasticity and strength only.

1.25 4
Strength COV %, methods A, B and C
12+ -—--—-——— - > - - - - ——————————— - - — ¢ 10,A = 10,B + 10,C
--%--20,A —-X--200B —e—20,C
1.15
K3
5 X
o e
8 M-
=y ..
£
w 105 +------- #----—-—--—— === = -;"-T:f **********************
- #
*
1 4
0.95 *
. X
0.9
Load cov 10 % (normal) Load cov 20 % (normal) Load cov 40 % (normal)  Load cov 40 % (gumbel)

Load Cov and distribution

Figure 5.5. Load-sharing factors for the different methods, k4, kg and k¢ for the case of
the upper figure as a function of the system size.

Figure 5.5 shows the effect of the strength and load variabilities on the load-sharing
factor. The following may be concluded from these results:

o If the strength COV is 10%, as it is for many engineered wood products, the load-
sharing factor is very close to one and thus the system effect may be disregarded.

e If the strength COV is 20%, as for sawn timber, the load-sharing factor of 1.1 may
be a good value assuming there are both permanent and variable loads and assuming
methods B and C are close to the real behaviour.

e The load COV and distribution type also seem to have a significant effect on the
load-sharing factor.
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6. Summary

Strength data of sawn timber, LVL, plywood and round timber were analysed. Normal,
lognormal, two- and three-parametric Weibull distributions were fitted to data,
separately to all data points and to the lowest 10% of the values. The ability of
distributions to describe strength data was judged in two respects:

1. How well the 5™ percentile is predicted, and
2. How good the fit is to the lowest values.

All functions used accurately predict the 5t percentile when fitted to the lower tail data
(10%). When fitted to the whole data set, the ability to predict the 5t percentile is
different:

e Normal distribution underestimates the 5 percentile compared to non-parametric
data from 0 to 5 percent for graded sawn timber, and 0 to 3 percent for LVL and
plywood. A normal distribution gave an exact value for bending for small-diameter
round timber, but a 9% underestimation for compression.

e Lognormal distribution generally gives good or optimistic predictions: 1 to 5%
optimistic for graded sawn timber, fairly precise for LVL and plywood, 4% too high
for bending of round timber but precise for compression.

e Two-parameter Weibull distribution normally gives pessimistic predictions: from 0
to 3% too low for graded sawn timber, 2% too low for LVL and thick veneer
plywood, and 1 to 3% too low for round timber.

e Three-parameter Weibull distribution gives a good prediction: deviation from -2 to
+2% for sawn timber, exact for LVL, from -2 to +2% for plywood, and from 0 to
+1% for round timber.

When fitted functions are used in reliability analysis, it is essential that the fit is good in
the lower tail area, the lowest values being most important. When fitted to the same
data, two-parameter Weibull gives the most pessimistic prediction for the tail, with a
normal distribution being next to it and a lognormal distribution being the most
optimistic. Three-parameter Weibull can be extremely optimistic because the third
parameter is the cut-off value below which P,= 0. When fitted to our two samples with
more than 1000 specimens, LVL and combined spruce and pine sawn timber, the
following conclusions could be drawn:
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e All functions fitted to the lowest 10% of values give a better fit in the tail area than
the best function fitted to all data points. The only exception is a lognormal
distribution fitted to all LVL data, which is nearly a perfect fit in the lower tail area.

e Three-parameter Weibull gives nice fits to the data. However, one should be careful
with using it with small sample sizes.

Combined machine—graded, sawn timber data (N = 1327) based distribution functions
were used in reliability analysis together with load distributions corresponding to
variable loads (Gumbel or normal, COV = 0.4) and dead loads (normal, COV = 0.05).
The P; values obtained were 10 times higher for variable loads in the case of a two-
parametric Weibull fitting than in the case of a three-parametric Weibull (good fit to tail
data) when using a Gumbel load distribution. An even larger difference is obtained
when a normal distribution is used for variable loads (102) and dead loads (103).

In a similar study with different distributions fitted to LVL data, it was concluded that
most distributions gave fairly similar P; values with the following exceptions: a normal
distribution fitted to all data gave P, values 40 times higher in the case of a dead load.
Two-parameter Weibull fitted to all data gave a 2 to 600 times higher P; value
depending on load distribution, and when fitted to tail, Py was up to 10 times higher.
Three-parameter Weibull fitted to all data resulted in P, values of several magnitudes
lower when analysing with dead loads.

P values are sensitive to the load and strength distributions used. A Gumbel distribution
for load results in more than 10 times higher failure probabilities than a normal
distribution (COV = 0.4), but these values are less sensitive to material data: form of
distribution or COV. The target P; values should be selected accordingly.

When strength distributions are used in reliability analysis the distributions used should
give the correct 5% fractile value and fit well to the lowest test values. It was noticed
that COVs corresponding to the tail-fitted distributions can differ remarkably from the
COV of test data. In Table 6.1, the COV values corresponding to the results in Chapter
2 are presented. In some cases, the COV of the tail data fitted function is close to the
test COV which indicates that the material in question follows that type of distribution.
This would lead to the conclusion that bending strength of sawn and round timber
follows a normal distribution, and when a lognormal distribution is used a COV = 35%
has to be used instead of 22. However, a reliability calculation using a lognormal
distribution and a COV = 35% gives a lower failure probability than when using a
normal distribution with a COV = 20% as shown in Table 4.15.
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LVL and plywood seem to follow a lognormal distribution so that the same COV as that
observed in tests can be used in reliability analysis. The tail of compression data of
round timber is different from all others so that even a lognormal distribution with a
smaller COV than in test data can be used.

Table 6.1. Summary of COV [%] of distribution functions fitted to tail data of bending
strength, round timber and also for compression.

COV of all Normal Lognormal Two- Three-
strength parameter  parameter
data [%] Weibull Weibull

Sawn timber spruce & pine 22 20 35 17 20
LVL edgewise 10 8 9 5
LVL flatwise 14 10 12 6
Plywood data combined 18 14 20 10
Round timber bending 21 20 34 16 18
Round timber compression 23 13 18 9 18

Reliability analysis with a permanent load and a variable load gives an interesting
result: constant reliability level can be obtained by the same value of material safety
factor yys , when partial load factors are yg = 1.2 and yo = 1.6 and COV of lognormally
distributed strength is not more than 20%.
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Appendix A: Statistical basics
A1. Equations of distributions

Definitions: m = mean value of observations, ¢ is standard deviation of observations

Normal distribution
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Two-parameter Weibull distribution

; when0,05<V<0,3

Three-parameter Weibull distribution
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A2 Multiplication and addition of distributions
Multiplication of variable

When a statistical distribution is shifted by multiplying all values of a variable by a
coefficient, v, the mean and the standard deviation change by the same factor and the
COV remains unchanged. The effect of multiplication on the parameters of different
types of distributions is given below.

Normal distribution: Moo =7 M Crow =70

Lognormal distribution: g, .., = In(y) + 1, O new = O

Gumbel distribution: a,,, =aly u,,, =M

Weibull distributions a,,, =a Boow =7 P Evow =V E

Sum of two distributions

Summation of two distributions is needed when two loads, say permanent and variable,
are combined. Let’s denote the combined function:

Fy(xp) =PliE+n<zi= [f(x,y)dxdy

x+y<z

This is obtained from two independent distributions as follows:

Fa= AR

X=—00

When discrete distributions are used, it is written as
F12,i = Zﬁk FZ,i—k+1 A
k=1

For mean and variance of a combined distribution, we obtain

m:m§+m”

2 _ 2 2
o —O'§+O'”

A3
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