VTT RESEARCH NOTES

Tommi AihKkisalo

Remote maintenance and
development of home automation
applications

lookup service server

‘ calculation service

X) rinting service
service 1. discover the lookup service ‘ i 9
proxy W coffee maker

-

service

'\ service

proxy H

N

2. discover the lookup service Pl
and download needed proxies

3. use the service via its proxy

coffee .
service

maker —— rox
interface proxy

client application

client

v I I TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2002

VTT TIEDOTTEITA — MEDDELANDEN — RESEARCH NOTES 2129

Remote maintenance and
development of home
automation applications

Tommi Aihkisalo
VTT Electronics

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2002

ISBN 951-38-5943—6 back ed.)
ISSN 1235-0605 (soft back ed.)

ISBN 951-38— 5944—4(URL:http://www.inf.vtt.fi/pdf/)
ISSN 14550865 (URL:http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2002

JULKAISIJA — UTGIVARE — PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvégen 5, PB 2000, 02044 VTT
tel. vixel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitovéyla 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitovéyld 1, PB 1100, 90571 ULEABORG
tel. vixel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitovéylad 1, P.O.Box 1100, FIN-90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2002

Aihkisalo, Tommi. Remote maintenance and development of home automation applications. Espoo 2002.
Technical Research Centre of Finland, VTT Tiedotteita — Meddelanden — Research Notes 2129. 85 p.

Keywords Jini, XML, LON, Local Operating Network, residential gateways, remote maintenance,
remote development

Abstract

This work studies methods and technologies for remote maintenance and development
of home automation applications. A major problem in remote home automation
configuration seems to be the missing information concerning the properties and
attributes of the home’s automation hardware. This study defines methods and a
prototype to describe the automation hardware remotely for developer along with
further methods to use to deliver these descriptions to the developer.

A review is done of the traditional automation technologies and automation networking.
Local Operating Network automation technology and networking methods are studied
more deeply, while the prototype presented in this work used this technology. The
aspects of modern home automation are reviewed and studied. This includes crucial
technologies for this work like residential gateways.

A few description technologies for describing automation platform are examined. These
include XML, databases and JavaBeans. On the basis of evaluation XML is chosen due
to its compactness and simplicity. Furthermore distributed computing technologies are
presented which include the Jini concept. This distribution technology is utilised in
communication between homes and application developer.

The required XML structures are defined for device description purposes and other
prototype software for residential gateway and developer’s client are defined. The
residential gateway software is described with UML and the software was implemented
using the Java programming language due to its good networking abilities. On the basis
of this work it was seen that is possible to describe the home’s automation platform and
deliver the descriptions for use of the remote developer.

Especially XML was seen as very suitable for this purpose and the Jini distribution
concept was also seen suitable for delivering this and other maintenance and
development services to the remote developer.

Preface

The basis of this thesis was laid by the project done as a student project of the
University of Oulu in co-operation with VTT Electronics. In that project, a basic
concept and a prototype for remote control and remote configuration was presented.
This thesis presented a continuation to that project. Problems were studied and solutions
presented for remote maintenance and the develpment of home automation applications.
This work was guided and assisted by the supervising professor Jouko Paaso and the
second supervising professor Tino Pyssysalo from the University of Oulu. I want to
thank them and all my collagues for their efforts of helping me.

This work was offered to me and made possible by the supervisor Hannu Rytild, m.A.,
from VTT Electronics. I want to express my gratitude to both him and the second

supervisor Eila Niemeld, Ph.D., from VTT Electronics.

Further I want to thank Dave Bradburn for straightening my mistakes and errors in
English language.

In Raahe 2.4.2001

Tommi Aihkisalo

Contents

ADSETACE . ..ot e e e e et e e e et e e e e e taa e e e eataeeeeaaaaaaeeannees 3
PIOIACE ..t et e e e e re e e eabeeeareaens 4
| A 3% 00 070 USRS 7
L. INErOAUCHION.....eiiiiiiiee e e e e e e e e et e e e e e aa e e e e eeaabeeeeenneeaas 9
L1 Back@round..........cooueeiieiiiiiiieieeieeee ettt sttt e 9

1.2 Research problem and methods..........ccccevviiieiiiiiiiicecece e 10

1.3 Boundaries of this reSearchcccocoviiiiiiiiiiiieeee e 11

2. Classifications and general concepts in the field of automation...........c.ccecevvereennens 12
2.1 AUtOmMAtION AEVICESuuviiieeeiiieeeeciiie e ettt e ettt e et e e et e e e e earae e e e eaaeaaas 12
2.2 Automation NEEWOTKSccccuiiiieiiiiiie ettt e e e e eaaeeeean 14

2.3 Local Operating NetWorkc.cccieriiriiiiiieiieeieeiieeie e 17
2.3.1 Addressing in LON NetwWorks.........coovvieeiiiiniiieeiiiecieeeee e 18

2.3.2 LonTalk protocol layerscceeeveieriiiiiiieeiie e 20

2.3.3 Network variablescceieiiiiiiiiiciiccee e 21

2.3.4 Functional profilescccueeriieeiiieeiie e 23

2.3.5 Self-documentation and -identification.............cccccceeevvieieeiiiireeecnnennn. 24

3. Modern home autOmMAtIONccviiiiiiiiiiie et e et et et eree et e e eeree e ereeeeareeeaneeens 26
3.1 Residential area networks and local area networks.............ccccoveeeeeiiieeiecnnnn.n. 27
3.2 Residential GAtEWAYScccviiiiiiiiiiieeiieeerieeesteeeee et eeeeee e steeesaeeesereeeaaee e 30

3.3 Current residential gateway standards............ccoeeeeviiiiiiieniiieiienie e 32
3.4 Conclusions of this Chapterccceiriiiiiiieeiieeeeeee e 33

4. Technologies for presenting device deSCIIPtIONS........cccvveeeveeeriieerieeeie e eeiee e 35
4.1 XML-PreSeNtationcc.eevvieriieriieeiieeieeteesite et esteeereeseeesteeaeessreenseessseenseesnnes 35
4.1.1 Structure of the XML documentcccouvreeeiiiiiieciiieceeieee e 35

4.1.2 Structure of the elements...........c.ccoeeeiiiiiiiiiiiiicee e 36

4.2 Software component teChNOlOZYc.ceevvieiiiiiiieiieeiieeee e 37
4.2.1 JavaBeans COMPONENLS.........cccccuuieeerriiieeeriiieeeeiiieeeeeieeeeeeseieeeeenneeeeens 37

4.2.2 JavaBeans as a collection of information..............cccceeeveeieiiiiiieennnnn.n. 38

4.3 DaAtADASEScccuviieiiieeiiie et et e e e e e aae e e aaeeeabeeenareeas 38
4.4 Evaluation of description technologiescccceevviieeriieeniieeieccee e 40

5. Distribution teChNOIOZIESueieieiiieiie e e 42
5.1 Open Distributed Processing reference modelcccceeviiiiiiniiniiiciennnns 42
5.2 EnNgINEering VIEWPOINT.......cueeviuireriiireriireeieeesieeesreeeseseeessseesssreesseeesseesssseennns 43

5.3 Remote MethOod INVOCATIONo e e e e e eeeeeeeeeeeeeeeaans 44

54 JIN ceiiteiieeee ettt b et e n e te e st e teenbeeneenes 46
5.5 Common Object Request Broker Architecture...........ccceeeeveeeviieiiieenciieeeieenee, 48
6. Requirements set by the previous Worki.........coecuieiieriiiiiiniieieieceeee e 50
6.1 Specified SYSIEM CONCEPL ..uviiiiuiiieiiieeiiieeiieeeiee et e e rteeeereeeareeeaeeesbeeesnreeenes 50
6.2 Basic structure of the prototype system developed in this study...................... 52
6.3 Requirements of the prototype SYStemcccueevuieriieiieeriienie e 54
7. XML description Of EVICES.......cccuuiiriuiiiiiieeiiieeeiee et e eieeesreeeeveeesreeesaeeeseseeeaaeeens 56
7.1 Data available as self-documentation and -identification from API 56
7.2 Resource XML fIle.....coueriiiiiiiiiiiiiiceee s 58
7.3 Structure of the device description XML file.......cccccoovveeiiieniiiiniiieiieeiees 60
7.4 Use of XSLT in forming the device description file.........c.cceovvvecvieniieenienns 64
7.5 Application description filecoccveeiiiiiiiiiiiiieeeeee e 66
8. Definition 0f the PrOtOLYPe......ccccviieiiieeiiieeiie ettt eaee e 68
8.1 SyStem arChItECIUIEveeieviieiiieectie ettt et e e eee e st e e sereeeeaeeenenes 69
8.2 Collaborations iN SYSTEIMcc.eeevieruieriietieeieeieeeteeieeeteeite e ebeesereeseeense e 71
8.3 IMPlementation.........cccuieecuiieeiiiecie e 77
8.4 Use of the XML device desCriptionsc.ceevcveeerveeeiuieeniiieeeieeesveeeneeeesanee e 78
0. CONCIUSIONS ...ttt ettt ebe bt et saee bt 80
LO. SUMIMATY ..ttt e e e ettt e e ettt e e e e steeeeesnnaeeeesnsaeeesenssneeeannnseeens 82
RETEIENICES .. ettt 83

ADSL
API
CAN
CORBA
CPU
CSMA/CD
DOM
EEPROM
EIB
FSK
GFSK
GUI

HF
HTML
/O

IC

IDL
1(0) %
ISO

ISP
Kbps
LAN
LNS
LON
MAP
Mbps

List of symbols

Asymmetric Digital Subscriber Line
Application Programming Interface
Controller Area Network

Common Object Request Broker Architecture

Central Processing Unit

Carrier Sensing Multiple Access with Carrier Detection

Document Object Model

Electronically Erasable Programmable Read-Only Memory

European Installation Bus
Frequency Shift Keying

Gaussian Frequency Shift Keying
Graphical User Interface

High Frequency

Hyper Text Markup Language
Input/Output

Integrated Circuit

Interface Definition Language

Inter — Internet Object Protocol
International Organisation for Standardisation
Internet Service Provider

Kilo bits per second

Local Area Network

LON Network Services

Local Operating Network
Manufacturing Automation Protocol

Mega bits per second

ORB
OSGi
OSI

RMI
RM-ODP
ROM
SCPT
SNVT
SWAP
TCP/IP
UML
UPnP
UPS
WAN
WAP
VCR
WML
XIF
XML
XSL
XSLT

Object Request Broker

Open Service Gateway initiative
Open Systems Interconnection
Personal Computer

Proportional Integral Differential
Programmable Logic Controller

Plain Ordinary Telephone Service
Random Access Memory

Residential Area Network

Remote Method Invocation

Reference Model — Open Distributed Processing
Read Only Memory

Standard Configuration Property Type
Standard Network Variable Type
Shared Wireless Access Protocol
Transmission Control Protocol/Internet Protocol
Unified Modelling Language
Universal Plug and Play
Uninterruptiple Power System

World Area Network

Wireless Application Protocol

Video Casette Recorder

Wireless Markup Language

eXternal Interface File

eXtended Markup Language
eXteneded Stylesheet Language

eXteneded Stylesheet Language for Transformations

1. Introduction

1.1 Background

Bringing automation into the home environment is not a new idea. Automation has
started with simple mechanically controlled automatic washing machines and timer-
controlled ovens. The modern processor-controlled devices have invaded homes
everywhere in the world. All the time the main idea has been to make everyday living
easier and more comfortable for inhabitants of the homes. Modern home automation
generally means a process or a system enhancing everyone’s life, safety, and efficiency
with intelligently controlled home appliances [1].

The newest boom in the market is networking devices together in homes and taking the
controls outside the home. Today there are systems available with which one can turn
the sauna on, even when not at home. This can be done with personal communication
devices like mobile phones, which are connected to services for controlling the home. In
the future, mobile Internet services will make it possible to do this from almost
anywhere at any time. Another trend is to design intelligent devices which communicate
with each other. Home appliances can notify other devices of their actions and states.
For example, a home security unit would broadcast a message to all lights signalling
that nobody is at home at the moment. Consequently, the lights can take the appropriate
action like turning themselves off. But it seems that nobody has yet paid too much
attention to the most essential problem of intelligent home environments: who is going
to develop these customised applications for home environments?

Everyone who has ever tried to program modern VCRs knows how complicated the use
of modern devices sometimes is. Everyone would simply like to buy a new device and
plug its power cable into the wall outlet and start using it. So there is a gap for a service
provider to provide services for the homeowner to control home appliances remotely,
and to configure devices and applications for the home. From now on, the remote
developer and service provider are understood to be one in the same, while the service
provider in this work provides developing and maintenance services. When solutions
like this become more common, it is not profitable for the service providers to visit
every home to connect and configure devices every time the new ones are bought. This
rises the problem of absent information from the automation devices in home. This
study tries to find ways and solutions to solve this problem. Only a few device
manufacturers offer some solutions. But those solutions have been usually tied to the
manufacturers’ own hardware technology and are not interconnectable with other
technologies.

This work examines methods and technologies for remote maintenance and
development of home automation applications, because services like this will be more
common in future. A concept and a prototype are presented to answer these problems.
The prototype contains server software for homes and some tools for those who provide
developing services to maintain and develop remotely applications for automation
platforms. The concept contains a method to describe the automation platform to solve
problems of distance between the developer and actual platform.

1.2 Research problem and methods

The main problem in this study is how the service provider can remotely develop and
maintain applications used to the control home automation especially without prior
information about the physical devices located in homes. Considering this, the research
problem can be stated as a chain of questions. A question leads to another until we reach
a bottom level with very fundamental questions. Answers to more generic questions can
be derived afterwards based on earlier answers. The main questions that arise from this
theme are:

How is the automation platform configured remotely?
Where is this configuration task done?
How are the newly added devices noticed and the service provider informed?

How does the service provider get information and properties of the new and existing
devices?

How are the properties and other data of different kinds of devices described?
Is it possible to create a universal and generic description of devices?

This study aims to answer these questions by constructing the most essential parts of the
system needed in the remote applications development and maintenance. A prototype
will be developed and constructed to achieve this. The research method in this study
will be a constructive method. The aim is already known but methods to achieve the aim
are not known [2]. This work starts with a review of theories applicable to general
automation concepts and classifications, further distribution technologies, residential
gateway solutions and description methods applicable for device description. The basic
framework set by the previous project is described, and it will be used in this study too.

10

The work continues with the definition of the necessary functions and construction of
the prototype utilising technologies presented in the theory part.

1.3 Boundaries of this research

It has been decided earlier by the subscriber of this work to use LonWorks based
devices as the automation platform. Up to this point it has been seen that this technology
provides properties which are useful to this study. One of those properties is a self-
documentation ability. This means that devices store some basic information about
themselves, which is accessible to the development tools. Standard PCs will be used as
an implementation platform because they are commonly available and software
development is relatively easier for them than for dedicated embedded systems.

The programming technologies used in this study will be Java-based due to its usability
over multiple platforms and its good support for distribution and telecommunications. A
few distribution concepts will be considered in this work but due to the choice of the
Java platform, Jini is seen as the strongest candidate as a distribution technology. The
other distribution technologies are reviewed for comparison purposes.

A generic description method and its conventions are going to be developed for the
description of devices. Several technologies for presenting devices are considered. The
most promising one is the XML mark-up language. The other ones under consideration
include conventional databases and software component technologies. Later on in this
work, all these applicable technologies will be rated and the one that seems the best will
be chosen.

It seems that the prototype system will contain a home server along with suitable
software to handle the required tasks. The most essential task of a home server is the
ability to probe the automation platform and on the basis of that to create the device
descriptions. Generally speaking automation devices must have self-explanatory
information available, which is also retrievable by the server. Further, the server has to
supply device descriptions to the clients needing them and furthermore to allow remote
development of automation applications. Therefore home server software must have
facilities to control the selected LonWorks automation platform and handle distribution
of its maintenance services using the selected distribution concept. This also means that
client software must have the capability to use the service through this same distribution
practice. The server and clients must utilise networking to allow distributed computing
between them. The prototype’s client part must be able to handle device descriptions
and on the basis of them to create home automation applications using distributed
services of the home server.

11

2. Classifications and general concepts in the
field of automation

This chapter reviews the general automation concepts and practices that are also
applicable to home automation. The terms and concepts presented here will be used
later on in this work. As mentioned in the beginning, this work is implemented using
LonWorks compatible devices. Furthermore this chapter reviews the technology used in
LonWorks compatible devices. A view is created of the structure of devices and
networking conventions. Furthermore the important features of self-documentation and
the application definition process are described. From now on the LonWorks devices
and networks are referred to as LON.

2.1 Automation devices

Automation devices can be divided roughly into three categories: sensors, actuators, and
controlling devices. The sensors measure the state of an automated process or object. A
refrigerator is taken here as a simple example. The actuators make changes in the
object’s state, e.g. the compressor cools the refrigerator. A controlling device makes
decisions based on information measured by sensors. The example discussed here, a
refrigerator, contains a refrigeration process the state of which is measured by a
thermostat and the decisions for a proper state change is made by the thermostat.
Therefore the thermostat is actually both sensor and controlling device which makes
decisions. Figure 1 [3] presents the automated process with actuators, sensors, and the
controlling system. [3]

Controlling system
-relay logic

-PLC -

-computer

Actuators Sensors

Automated process

Figure 1. Automated process and its main components.

12

The sensors and actuators are usually connected to the I/O of the controlling system.
The system ’communicates’ with the process through it. Therefore modern controlling
systems can be divided into two separate units. Typically these contain the controlling
unit and I/O-units. I/O-units are used to connect sensors and actuators and to deliver
information to the controlling unit. Controlling units execute the desired regulation
tasks.

Input-units are used to import the signal from sensors to the controlling unit. An input-
unit is selected on the basis of the type of the incoming signal. Input-units convert the
measured signal into such a form that the controlling unit understands it e.g. converts an
analogue signal to digital if the controlling unit demands it. Mainly there are two kinds
of inputs: digital and analogue. This indicates the form of the accepted input signal.
Figure 2 illustrates an input arrangement from source to controlling unit.

Controlling unit Input data Input-unit Measurement data Sensor

Figure 2. The input-unit and a sensor inputting information to the controlling unit.

Output-units are used to export the signal from the control unit to the actuator. The
output-units convert output data to adjustment data for the actuator. As with inputs,
there are two kinds of outputs mainly in use: digital and analogue ones. Figure 3
presents output from the controlling unit to the actuator.

Controlling unit Output data Output-unit Adjustment data Actuator

Figure 3. The output-unit and outputted information.

I/O-units may be integrated with the controlling device or may have a modular
construction to allow easy replacement when damaged or when the type of I/O signals

13

changes. Controlling units are typically IC-based computers nowadays. Earlier, there
were mechanical and relay solutions, which were complicated. In the industrial world,
PLCs, Programmable Logic Controllers are widely in use nowadays. PLCs are small
computers with a real-time operating system dedicated only to automation use, and they
are usually programmed with PCs or special hand held programming devices. Mainly,
they were meant to replace relay logic. [3, 4 p. 438-456]

2.2 Automation networks

In the early days, communications in industrial automation, and generally everywhere,
were based on analogue signals, although on/off information in relays and similar
devices can be considered as an early form of digital signals. Those signals were
vulnerable to electromagnetic interference, and to attenuation in long signal paths.

Automation has previously been based on the centralised controlling theme. A central
controller may have been a programmable-logic-controller, relay-logic, computer, and
so on. Centralised controlling has made use of complicated wiring and obligatory
instrumentation. Figure 4 shows the situation when using a centralised control. It can
easily be seen that this arrangement leads to a massive amount of wiring when the
system is big. It is also harmful in big systems to allow sensor and actuator signals to
propagate in long wires where some severe losses can occur. [5]

Sensors and actuators

] L 1
] L 1
] L 1

[s [s

programmable logic
controller

Figure 4. Centralised control system.
When better reliability and higher data speeds were demanded, digital communications

and their network solutions were adopted. Generally the digital communication
networks can be categorised as follows [5]:

14

level 0: sensor and actuator busses
level 1: field busses

level 2: cell or workshop busses
level 3: local area networks (LAN)
level 4: wide area networks (WAN).

A more modern approach is the use of different kinds of information busses, which are
channelling the information to devices utilising digital communications. The bus
arrangement reduces the complexity of systems while the devices are connected to a
bus, which might be a single twisted-pair cable with bus-specific transceivers. The
information propagating in busses is in the form of digital packets, which are sent and
received by devices through busses. These packets contain an address so the correct
device can read the appropriate packet. Information is more secure because of the nature
of digital communications. Attenuation does not affect the information itself, only the
signal levels until the signal fades out totally and cannot be resolved in the destination.
In arrangements like these, the first step was to distribute I/Os. The I/O-modules were
connected with digital busses to a central controlling device. But the connections from
sensors and actuators were still traditional. A centralised control automation system
with distributed I/Os is viewed in Figure 5. [5]

distributed 10s

:z %

| e s

programmable logic
controller

Figure 5. Centralised control system with distributed 10Os.

Control systems utilising distributed I/Os can be categorised as a level 0 network using
the categories presented earlier. This only distributes the I/Os but the system is more
reliable than the previous system presented. The communication between I/Os and the
central controller is more secure because of the bus. These systems allow the use of
standardised legacy devices with bus interfacing.

15

The intelligence is still centralised in the logic controller. Nowadays the development is
heading for distributed intelligence. Intelligence itself is distributed to devices
themselves. This forms a very robust system. A fully distributed system, as in bus
topology, is presented in Figure 6. [4, pp. 438—456]

ty 2
X X

Figure 6. Distributed control system in bus form.

Devices contain the actuator or sensor itself with an intelligent part executing
controlling and communicating tasks [4]. Devices communicate between each other by
means of a bus. A bus delivers messages or data packets to a recipient. In networks,
there are also other topologies that can be used: star, ring, and tree [6, pp. 158-160].
Commonly in all topologies, a source sends a packet with the recipient's address to all
connected devices but only the addressed recipient reads the packet. A protocol is used
to avoid and detect collisions in the bus.

In level 3 and 4 the most common networks are Ethernet and TokenRing. Ethernet,
typically used in computer networks, uses collision detection and carrier sensing
technologies. Data is transmitted in the forms of packets containing data themselves as
well as addresses and other control information.

In the field of automation there are several implementations of automation busses.
Every manufacturer seems to have their own solutions and application area. Such as
Profibus, Bitbus, AsiBus, LonWorks, and so on, are in use. When moving between the
levels of networks, the amount of transferable data changes. In level 0 devices with
distributed I/O-units, the amount of transferred data is small and gets bigger towards the
networks of level 4 which is typically an Ethernet-style network nowadays. This is
presented in Figure 7 [5].

16

[. =
i

‘O O
g

Workstation Workstation

Ethernet, TokenRing with
TCP/IP. Office, worldwide
environment

[] Bridge |
 I—
PC
Ethernet with TCP/IP or
MAP, locallhome
environment
Gateway

Fieldbus, Profibus,Bitbus

| | | etc.

amount of data

PLC PLC PLC
Sensor-actuator busses,
distributed 1/Os, CAN,
Interbus-S, Sercos,
machine environment etc.
110 110 110

Figure 7. Network levels and amount of data transferred.

2.3 Local Operating Network

The American Company Echelon has developed a distributed automation network
called LON (Local Operating Network) in the '80s. Echelon’s system utilises its self-
developed protocol called LonTalk. The LON system contains independently operating
devices which can communicate together [7]. LON can be referred to as a distributed
system with intelligent devices. It has some features of fieldbus, sensorbus, and
devicebus. Simple sensors, actuators and even complex devices like PID-controllers,
timers and so on are available to the LON network.

Devices in this standard use the LonTalk protocol. The LON-devices have a
microprocessor called the Neuronchip. The Neuronchip itself contains three
microprocessors. There are two processors for communication and one for the
application. The application processor handles the application itself and can be
referenced as a controlling unit as stated earlier. For transmitting data with other
devices, two communication processors are used, each implementing different levels of
the protocol stack. Chips are identified by a unique 48-bit ID-number. Devices
containing the Neuronchip can be identified and accessed with this ID-number [7].

Neuronchip applications are programmed with a special implementation of the C-
programming language called Neuron-C. It is an extension of ANSI-C including event

17

driven applications and special communication commands for LonTalk protocol’s
messages, and is object oriented. Applications can be made on a conventional
microprocessor using the Neuronchip only as a communications processor. This widely
expands the usability of the LonWorks network. In Figure 8, a basic construction of the
LON device and basic architecture of the Neuronchip are presented.

Protocol Firmware Protocol Firmware
(Layers 1-2) (Layers 3-6)
Network
T : -
ransceiver Communication Media Access CPU Network GPU
RAM/ROM/EEPROM RAM/ROM/EEPROM
Optional
External
Memory
RAM/ROM/EEPROM
1/0 (Counters,
Resources, Drivers, Application CPU
o etc.)
_ Conditioning
: Device Specific
Neuron Chip Progrom
NeuronID 01004DE52000

Figure 8. Main components in LON-device.

The standard of the LonTalk protocol is ‘locked’ in order to create a better
interoperability between different vendor’s devices. Messaging between devices is
packet-based and is directed peer-to-peer. The packets find their destination mainly by
the Neuronchip’s ID-number. There is no need to know anything about the topology of
a network. Reconfigurations can be made in the network and packets still find their way
to their destination. Another communication processor called MAC, Media Access
Control, deals with accessing the network and actually implements layers 1-2 in the OSI-
model. Using a special algorithm, this processor sends data packets while trying to avoid
any collision with other packets. The MAC algorithm used in LON is quite similar as in
Ethernet. It uses randomised time slots when sending and retrying to send. [7]

2.3.1 Addressing in LON networks

In the LonTalk protocol, addressing is divided into hierarchies. These include domain,
subnet, and node addressing. A device is also referred to as a node here. In this way it is
possible to address the entire domain, subnet or an individual node. A domain contains a
collection of nodes forming a virtual network. Nodes can communicate only within the
same domain. A node containing the Neuronchip can be configured to belong to one or

18

two domains. The node belonging into two domains may be used as a gateway between
domains.

A domain is defined by the domain ID. A subnet is an entity in a domain containing up
to 127 nodes; domains can contain 255 subnets at maximum. Subnets are discontinued
over routers. A subnet is tied more to the physical layout of the network. Nodes are
considered as a single functional unit or LON device, which has assigned to it a node
address. The node address is 7 bits so this gives 127 possible nodes per subnet. In
addition, the device can be always addressed by its Neuron ID.

Logical groups can be formed in domains. Groups are formed without any regard for
their physical location in the domain. A device can belong to 15 groups. Figure 9
illustrates the addressing in LonTalk protocol.

4 N7 N

xlx | 1xDx
el L

-

20z |[[@]z
X XX

CX Group 1

Subnet 3 / \\ Subnet 4
\\ Domain 1 \ Domain2 /

Figure 9. Addressing hierarchies in LonTalk protocol.

Several kinds of address types are supported by the LonWorks protocol:

1. The physical address is included in every LON device in the form of Neuronchip’s
ID number.

2. The device address is a device’s address when the device is installed in a particular
network. A network installation tool creates the address. This address is divided into
three parts: domain ID, subnet ID, and node ID, each identifying a device in a

greater entity.

3. The group address is used to identify a single group of devices.

19

4. The broadcast address is used to broadcast messages to many devices in a subnet of
a domain. [8]

2.3.2 LonTalk protocol layers

LonTalk provides services in the six lowest (1-6) layers of the ISO/OSI reference
model. The seventh layer, the application layer, is defined by user programmed

automation. Services provided by the layers are presented in Table 1 [8].

Table 1. OSI layers in LonTalk.

OSlI-layer Purpose Services provided

Physical Electrical Media-specific interfaces and modulation
interconnection schemes

Link Media access and Framing, encoding, error checking, media
framing access, collision detection & avoidance, priority

Network Message delivery Unicast & multicast addressing, packet routing

Transport End-to-end End-to-end acknowledgement, service type,
reliability packet sequencing, duplicate detecting

Session Control Request-response, authentication

Presentation | Data interpretation | Network variables, application messages,

foreign frames

Application | Application Standard objects and types, configuration

compatibility properties, file transfer, network services

Due to the layered protocol, LonTalk is media-independent. The transfer media can be
changed by changing the transceiver in the LON device. There are many types available
ranging from wired to wireless media. The cable-based media allows speeds of 10 Kbps
up to 1,25 Mbps depending on the network topology. The slowest connection of 10
Kbps is used in powerline based networks with free topology. The highest speed is
useful in twisted pair cable networks with the bus topology. The speed of 78 Kbps can
be used in twisted pair free topology networks. Distances between nodes that can be
used depend on topologies. Distances can vary from 130 m to 2700 m, which can be
increased with special repeaters. In wireless media, there are possibilities to use radio
waves and infrared light among others. In Table 2, properties of several wired networks
that are possible to use are presented. [8]

20

Table 2. Properties of wired LON networks.

lines and
unpowered
twisted pair

noise in lines

Network |Media |Bitrate | Topology Max dist. Max no. of nodes
type
FTT-10A |Twisted |78 kbps | Free —bus, star, |500 m m with a | 64
pair loop, other doubly
combinations terminated bus
LPT-10 |Twisted |78 kbps |Free —bus, star, |500 m free 32@100mA/node
pair loop, other topology; 2,700
combinations. m with doubly |64@50mA/node
Power to nodes is | terminated bus
supplied within 128@25mA/node
the same cable.
TPT/XF- |Twisted |78k bps |Bus 1400 m 64
78 pair (3 m stubs)
TPT/XF- |Twisted |1,25 Bus 130 m 64
1250 pair Mbps (0.3 m stubs)
PLT-10A |Power |10 kbps |Free or bus; Depends on 32,385
lines supports power | attenuation and

2.3.3 Network variables

In the presentation layer, data is presented as network variables, where they represent
the I/O of the device. Network variables are data that are formatted by the variable
types. Variables define the data that are carried by LonTalk messages. There are

variable types for example for temperature, switch positions, frequency, and time.

Currently, the amount of predefined variables exceeds 100. Data carried by a variable
can be addressed to a certain device by binding it. The automation applications are
defined by binding these variables. The device must be able to handle the data type
being received. The variable types are standardised by the LonMark Association and
called SNVTs, Standard Network Variable Types. The predefined variable types contain
a definition of units, and a range and a resolution for data. Therefore in the binding

21

process, variable types must be compatible when they are connected together. There are
separate variables for input and output uses. For example in digital input devices, when
an input event occurs, a variable is sent to the network and is received by a device or
devices to which the variable is bound. Bindings are usually done with graphical
configuration software, which presents bindings as lines leading from one graphical
object to another, where the graphical objects re-present the devices. Configuration
settings are done by special configuration network variables. There are standard
configuration property types available defining, for example, gain and other properties
for the PID controller. The use of these predefined properties and variables is meant for
device manufacturers to make development easier. In the case of Figure 10, a simple
application is defined by two variable bindings.

II;

v

nviswitch{1] Neuron
SNVT _switch chip

bindings

m‘— - E_ \ nvoswitch[[o]\
. SNVT switV

nvovoltage[0]
SNVT_volt

Neuron
chip

nvohours
Clock f-------- SNVT tm}

nvivoltage . Neu!'on
SNVT_volt chip

Analog Output device

Application

Analog/Digital Input
device

Figure 10. An application defined by variable bindings.

The analogue/digital-input device has three output variables of types SNVT switch,
SNVT volt and SNVT time. The SNVT switch is simple on/off information about the
state of the simple switch. The A/D-transformer digitises the voltage from the
potentiometer, and the digital information of the voltage is in the SNVT volt formatted
variable. Time produced by the clock is transmitted in the variable of the format of
SNVT time. In Figure 10, the time variable is not connected to anything. The Switch
variable is connected to a digital output device. When the state of the switch is changed
in the input device, the Neuronchip formulates the data to be attached to the network
variable and sends the variable to the network as a message. A message is also received
by an output device, which reads and resolves the data and turns on the light bulb.

22

Voltage information about the state of the potentiometer is constantly transmitted to an
analogue output device, which controls the brightness of the light bulb, by the D/A
transformer. Properties of variable types are presented in Table 3 and Table 4 [9].

Table 3. Properties and fields of SNVT switch variable.

Field |Units Valid Range |Note
value |8 bit 0..100% |Intensity as percentage of full scale,
percentage resolution 0.5%
state state 0..1, 0xFF |0 means off, 1 means on, OxFF means
undefined

Table 4. The properties of other variables.

Variable type Units Valid Range Resolution
SNVT volt volts -3,276.8 ..3,276.7 |0.1 V
SNVT time hour |hours 0 .. 65535 hours 1 hour

2.3.4 Functional profiles

Functional profiles define standardised patterns for devices the way SNVTs define
network variable types. The pattern describes the application layer interface including
the network variables, configuration properties and so on. A functional profile is generic
and may be implemented by devices from different manufacturers. A profile
standardises the functions of devices, and not the actual devices [7]. The use of profiles
in device design helps device manufacturers to make devices interoperable. A typical
functional profile for a simple switch as presented in a standard LonMark style is
presented in Figure 11 [10].

/ Switch \ Output

Object Type 3200 Network
Variables
Mandatory -
nvoSwitch
Network "1 SNVT switch
Variables
Input
Network
Variables
nv2 nvoSwitchFb (l\)lgt\lzgrall nv3 nvoSetting
SNVT_switch . SNVT_setting
Variables

Configuration Properties
Mandatory/Optional

\ J

Figure 11. Graphical illustration of the switch’s functional profile.

23

The switching device contains one mandatory network variable, which is of the type of
SNVT switch. The variable is named as nvoSwitch. It is output information about the
state of the hardware switch. Optional variables contain two variables, one to form a
feedback loop and another for optional information output for external controller
devices. In this profile, configuration properties contain only optional ones like
minimum and maximum send times for network output. Only a mandatory variable is
nvoSwitch. [10]

2.3.5 Self-documentation and -identification

LON devices are self-documenting and -identifying devices. The devices hold
information about the device itself in their Neuronchips. Self-documentation
information includes [11]:

1. The manufacturer of the device,

2. the type of the device,

3. the ID of the Neuronchip within the device,

4. any functional profiles supported by the device, and

5. type information for any additional network variables supported outside of the
standard objects.

Self-documentation data can be accessed by network management tools. This helps the
installation tasks because the device-specific information is downloadable from the
device itself when it is connected to the network. Self-identification signifies the stored
Neuron ID number, which identifies the devices as stated earlier. Data is presented in
XIFs, External Interface Files, which presents all the self-documentation data. The same
data is stored in the device’s Neuronchip but is also usually available as an external file.

In the device design phase, an XIF file is compiled into a binary file, which is fed to the
Neuronchip. This binary file can be retrieved and the information can be read. Figure 12
shows an example where are two variables, nviNdRequest and nvoNdStatus, and their
parameters defined.

24

----cut----
80:00:34:32:1F:0A:04:03
2151130883388 11
11910008011128
0561328141401553
1454
1710444152000
7812500000000000
9002400004040058
51214 15

"&3.0@0,5,5, 1

VAR nviNdRequest 0 00 0
01630010101000
"@O|1

92* 2

20000

10010

VAR nvoNdStatus
----cut----

Figure 12. A sample from XIF file.

25

3. Modern home automation

The visions and new technologies of modern home automation have been presented
widely and quite frequently. The major improvement has been the adoption of bus
networked devices. This makes obsolete the need for complicated wiring arrangements.
The bus networks might be a crucial networking method for homebuilders because of its
simple wiring. There is a wide range of different technologies and standards available in
this field. The visions presented, contains the ability to control homes distantly from
users’ terminals. This sets a demand also for homes to be connected somehow to outside
world. Nowadays this usually means a standard TCP/IP network connection in some
form.

Now there is made a distinction between two, possibly incompatible networks, which
are categorised as RAN and LAN on the basis of their coverage area. RAN, Residential
Area Network, means networks used in residential buildings and it connects together the
devices located in homes or other residential areas. Different types of control
automation networks, like LonWorks, are categorised as RAN. LAN groups all the
networks, in this case in homes, together. Furthermore these LANs might be connected
to an even bigger networks like the Internet. The Internet is usually referred as a WAN,
Wide Area Network.

While there is no common standard in the foreseeable future in RANSs, all the devices
connected to different networks are practically invisible to each other. When keeping in
mind that LAN and RAN must be connected together somehow to allow access from
outside to an automation device level, an interconnection facility is needed. Its function
is to tie flows of information from different networks together and allow data exchange
between them. It has been also recognised by several standardisation proposal like
OSGi [12] and ISO/IEC SC25 [13] that there is a need for a common interconnection
apparatus. This apparatus which is called a residential gateway or in-home-server in this
work, makes it possible for all the networks to communicate transparently. Figure 13
illustrates the roles of the RAN, LAN, WAN and the in-home-server. [14,15]

26

In-home-server

//> RAN

L.

LAN

Figure 13. RAN, LAN, WAN and in-home-server.

3.1 Residential area networks and local area networks

The viewpoint in RANs here, is on the automation. There are several other uses for
RANSs like audio, video and computer networking. Home automation networking has
evolved from a centralised control scheme towards to a distributed intelligence even
more rapidly than in the industrial world. In the field of home automation the costs in
wiring is an important factor. Some of the RAN technologies have options to use
existing wires like telephone lines and power lines. The power line networking method
has some problems like interference from devices consuming power from the network
[16]. The biggest advance this technology is the costs of wire installations, while the
wiring usually exists. Nowadays the needs of future networking have been taken
seriously and wires have been installed during the building process. Of course there are
some wireless technologies available even today which are naturally independent of
network wiring.

There are a wide range of technologies and standards available. The most usual
appliances available for these networks are lighting devices like switches and lights.
These can lead towards other simple on/off control tasks for turning on and off
electricity in other home devices. The other uses could include home security, heat and
ventilation controlling. The possibilities are wide. The LON network handles the device
level communications, or in other words acts as a RAN, in the environment of this
work. Below is presented a few networking technologies. Some of them are also
applicable as a RAN and network connection to the outside world

27

HomeRF/SWAP:

The Home Radio Frequency working group has presented the Shared Wireless
Access Protocol. Devices utilising this protocol, are designed to use the license
free 2.4 GHz radio frequency band. The HomeRF uses a dual protocol stack:
DECT, Digital European Cordless Telephone, for voice, and 802.11 packets for
data [17]. The modulation type is frequency-shift keying, FSK, at up to 2 Mbps. A
network can consist of up to 127 nodes. Distributed and central control schemes
are supported. The maximum usable range is 50 meters. [18]

Bluetooth:

Bluetooth is an open specification for short-range wireless communication of data
and voice utilising short-range radio links. It operates on the same 2.4 GHz band
as HomeRF. Bluetooth uses fast acknowledgement and frequency hopping with
GFSK, Gaussian Frequency Shift Keying, modulation [19, p. 22]. This radio link
system is largely intended for mobile devices to replace wires but is usable in
other applications too. [19, pp. 41-42]

HomePNA:

The Home Phone Networking Alliance is presenting the use of existing phone
lines to be used as networking media. Devices are connected to wall telephone
jacks and are operated in an Ethernet-fashion using CSMA/CD scheme. The data
transmissions are located above the voice frequencies. The current HPNA 2.0
version reaches the throughput rate of 32 Mbps. [20]

HTTP:

It would be possible to handle automation networking at device level with an
embedded HTTP-server, while there are several embedded HTTP/TCP/IP server
solutions available. One of those is the WebChip developed in a research project
by VTT Electornics, which is implemented totally in hardware. In this kind of
solution for example Ethernet networking technology could be used. [21]

EIB:

EIB, European Installation Bus, is a proprietary automation networking system. It
allows networking on several media like twisted pair, power line, wireless and
infrared. Transmission speeds varies from 1200 bps up to 10 Mbps. Devices
available in this standard include security, household appliances, measurement
and control equipment. [22]

28

Typically communications to the outside world is handled by the TCP/IP protocol
which can be considered as a defacto standard nowadays while there are available many
wired and wireless interconnection technologies for physical implementation. The
choice of external networking technology is mostly based on the local circumstances
and already available wirings. The reference [16, p. 8] discusses these issues and sees
Ethernet as a best solution for interconnection to outside world. Ethernet is widely in
use in computer networks. With special adapters and routers it is possible to use
Ethernet network as an automation network for special automation devices. LonWorks
is also routable via Ethernet. Ethernet can be brought home with a wide variety of
networking technologies. A typical solution for homes includes connection through
phone lines while there are seldomly fixed network connections available in sparsely
populated areas. Below are described a few methods for TCP/IP networks to be
propagated into homes:

- Powerline:

This method allows a data transmissions through a power line. The main
advantage of this technology is the use of existing wires. The biggest problems are
related to the interference received from those appliances using power from the
same line. There are several automation bus technologies offering this networking
method as an alternative. The outside networking with this connection technology
has some features that need to be investigated more. Power companies have been
using power lines as low speed controlling networks for a long time. When the
speed is brought up to a level appropriate for computer networking severe
interference will occur in the HF radio bands and furthermore other technologies
available will make this method obsolete [23].

- Cable modems:

Cable modems offer data networking through cable television networks. The data
transmission is located on unused channels of the cable. Usually these modems
offer Ethernet connection for the computer. The highest speed available at
maximum is in theory 5 Mbps while in practice the usable speed is 1 Mbps. The
transmission is asymmetric which means that in average the data throughput from
network to homes is higher and from homes to network lower. [24]

- xDSL:

xDSL, Digital Subscriber Line, technologies are offering point-to-point network
access for digital communications like data, video and voice. This is a technology
to bring digital communication from a service provider’s switch to homes while
the communication between service providers is handled with other technologies.
These technologies are using standard POTS twisted copper wire as the transfer

29

media on a local loop. The x stands for the various kind of digital subscriber
technologies, including ADSL, R-ADSL, HDSL etc. Nowadays technologies like
ADSL, Asymmetric Digital Subscriber Line, are available commonly for
households’ Internet access. The transfer method is asymmetric while the transfer
speed is higher into homes and lower from homes. [25]

3.2 Residential gateways

A device is needed to integrate the home and outside networks together and at the same
time offer a gateway for accessing the home or accessing outside network from homes.
It is also seen that this device is located in homes and is using robust hardware and as
reliable software as is possible. From the viewpoint of this work, the residential gateway
or, as referred to from now on in this work, in-home-server offers an access point from
outside the homes to the automation devices located in the homes. It is also considered
that it would be able to offer other services like TV, telephone networking, printing etc.
in addition to a home automation service. While the in-home-server performs router,
firewall and gateway functions, it is expected to handle functions at a network level
listed below [14]:

- Media translation:
Wherever the access network and RANs physical media differ, a translation
function is required.

- Speed matching:
Where network speeds differ, buffering is required to avoid overwhelming the
slower network.

- [P address acquisition:
Terminal equipment requires an unambiguous address for addressing an access
network.

- Protocol coexistence:
Where protocols are encapsulated or multiplexed with one another, de-
encapsulating or de-multiplexing will be required.

- Filtering:
Perform firewall functions to prevent unauthorised packets from entering or
leaving the home.

- Authentication and encryption:
Ensure privacy and security of transactions, as well as authenticate customers for
services.

30

- System management:
Provide functions such as fault management, diagnostics, accounting and
performance management.

The physical architecture of an in-home-server has been proposed by the Residential
Gateway working group. The in-home-server contains five functional components
which are a common bus, power supplies, in-home network interfaces, service provider
network interfaces and processing support. The common bus serves as a common
backbone of the system. It provides a communication path for all other components.
Power supplies supply the required electrical power for all the components included in
in-home-server. An un-interruptible power supply, UPS, could be included for safe
operation even during the power cuts. In-home network interfaces provide an interface
for RANs like LonWorks automation networks. Other services like cable TV and
telephone can be included. Service provider network interfaces offer an access to the
outside world networks or WANSs for the in-home-server. The processing support offers
general processing capabilities for the system. It can contain general purpose processors
and processors specialised for a particular purpose. A traditional PC platform is seen as
an inadequate solution for in-home-server technology [15], but the final decision for the
platform technology is left to others and in this work the PC platform is used. In Figure
14 [14] the architecture of the in-home-server architecture is illustrated. [14]

Nonvolatile
Storage

General purpose

processor, ADSL
memory
ISDN
Security
processor
(Firewall) Twisted Pair

MPEG processor

Satellite

Processing Support Service Provider

Network Interfaces

Video/Video-on-
demand "
Utility Power
C Source
Ethernet o
m Uninterruptible
Power Suppl
POTS m PRy
(0]
n
LonWorks
B
In-home Network
Interfaces v
S

Figure 14. Architecture of the in-home-server.

31

3.3 Current residential gateway standards

There are several standardisation efforts going on. The most noteworthy seems to be the
ISO/IEC Residential Gateway Model [13] and the Open Services Gateway initiative,
OSGi [12]. The ISO/IEC model supports two approaches to in-home-server
deployment: centralised and distributed. The centralised set-up contains all server
functions in a single node. The distributed mode allows the distribution of functions in
several nodes which all might be located in diverse locations. The ISO/IEC working
group tries to define RGIP, Residential Gateway Interchange Protocol, which can be
used as an interchange format between different networks. All the in-coming
information is translated to RGIP format and fed to destinations which again translate it
into their own formats. This protocol can be considered as a part of the common bus
presented in general in-home-server architecture earlier. The data streams in the home
access line, or connection between in-home-server and WAN, has been divided into
three functional parts in this model, each has been reserved for certain purposes:

- User Services Functions:
This channel provides all user specific data like video, audio, IP packets, control
and management signals for service providers.

- Residential Gateway Functions:
This path is used for maintenance of in-home-server’s hardware and set-up.

- Access Line Termination Functions:
This path is reserved for access provider, like ISPs, to control the access line.

The work around this ISO/IEC model is still unfinished and the schedule of its
completion is unknown. [12]

The OSG initiative is supported by several large companies like IBM, Motorola and
Lucent. They hope to get a standard available for this kind of technologies while the
need of standards is recognised for the market to soar in home automation systems. The
OSGi is a collection of Java APIs which define operations and functions required from
an in-home-server. The specification includes standard Java APIs where possible like
JINI. The APIs are meant for service providers, network operators, device makers and
appliance manufacturers for a vendor-neutral interface. This specification does not
respond to hardware requirements but tries to specify a platform independent system.
The specified system includes Device Access Manager which is responsible for
managing networks and other devices under its control. In addition to that it offers
services for hardware included with the in-home-server. The services it offers for the
hardware are dynamically loaded on demand. It must support automatic discovery of

32

hardware which is added and furthermore load the services needed. The OSGi in-home-
server supports several general services needed for full operation of the server. These
includes the following:

- Log Service:
The log service is involved in the upkeep of diverse logs with information of user
actions and system state.

- HTTPService:
OSGi sees that many services offered to users and service providers, will be based
on web protocols. Therefore support for this is added using standard Java APIs.

- Client Access Service:
This service provides access for end users in the home. It offers capabilities that
are not available through HTTPService and is located in the homes while the
HTTPService can be used also remotely.

- Configuration Data Service:
Configuration data service will be responsible for configuring other services
running on the in-home-server. A common service API for services is offered to
store and access configuration data for remote administrator.

- Persistent Data Service:
This service is used by other services that will store and retrieve information that
persists beyond the life of the service and that can be shared with other services
too. Use of this centralised data service make unnecessary the services’ own
implementations of data services.

When paying regard to these two standard initiatives, it seems that OSGi is more
noteworthy on the basis of its background organisations. The OSGi has also chosen
Java as the implementation language. This opens to it a wide possibilities of interesting
Java technologies. Currently the OSGi supports several RAN technologies like
Bluetooth, CAL, CEBus, HAVi, Home API, HomePNA, HomePnP, HomeRF,
LonWorks, VESA etc. [12]

3.4 Conclusions of this chapter
The most crucial technologies presented here are the concept of a residential gateway or

in-home-server and some RAN technologies. The concept of an in-home-server is a
very important piece of infrastructure when controlling home devices outside the home.

33

It allows the use of multiple incompatible RANs and further routes them to the outside
world. These abilities are very basic requirements in these kind of arrangements, where
applications are developed elsewhere and even used outside the homes. When thinking
of the basic problem, the problem of the device description and remote application
development, researched in this work any of the currently available and presented
residential gateway solutions does not make respond.

The demand for RANs contains the availability of a hardware and software interface for
a use in the in-home-server to control them. Most of the RAN technologies do not have
self-documentation abilities as the LON has, although device identification addressing
is an elementary function of almost all networked devices. Of course the self-
documentation can be handled in some other way like in the form of a centralised
database, where the data is collected by the identification information. But for the time
being the information concerning the device distributed to the distributed devices is the
most elegant solution.

34

4. Technologies for presenting device
descriptions

The interface of a device can be retrieved from the device itself. This data is presented
in this case using LonWorks’ own data formats. In this chapter the ways of presenting
and storing this data in a more general form for use in other instances than LonWorks’
own are studied. As a storage technology XML, JavaBeans and relational databases are
considered, as they offer mechanisms required in this prototype. Finally, one of these
technologies is chosen to be used in the prototype.

4.1 XML-presentation

XML, Extensible Mark-up Language, is a mark-up language used for presenting data
and its structures. Actually XML is not really a language, but a standard for creating
other application specific languages meeting the XML criteria. Like HTML, XML is a
subset of SGML. Furthermore XML is most usable as a data interchange format. Unlike
HTML, it does only define the data not what it looks like. The complexity of SGML is
reduced as much as possible when XML has been developed. XML is compatible with
SGML but only upwards. [26, p. 13]

Physically the XML document is a hierarchical text file with tags and the data itself.
Content elements are separated by the tags and they form a tree with leaves and
branches. Tags specify the meaning or the label of the data followed. It is up to the user
or the application how the tags are named and what kind of hierarchy they follow. The
most essential part of the interchangeability is the use of ordinary text file to store the
documents. To make interchanging easier the XML documents can be formed into an
other XML document or into a totally different kind of file with the use of style sheet
languages like XSLT. XSLT, extensible stylesheet language for transformations, is a
language derived from XML and is a smaller version of the more complex XSL
language. [26, p. 18, p. 133]

4.1.1 Structure of the XML document

The structure of the XML document can be considered as a hierarchical tree with
branches and leaves or parent nodes and their child nodes with siblings. The tags and
the information relevant to the tags are called elements. The document has a root
element, which is a parent element of all other elements in the document. Therefore all
the other elements in the document are children of the root element. The children might
have again children and siblings. Siblings are located on the same level or in other

35

words they have the same parent. Figure 15, shows the hierarchical tree structure of a
simple XML document presenting a simple document for names. [26, pp. 18-20]

/ Element
person

names
parental
relationship

first_name
parental
relationship

sibling
relationship

middle_name

sibling
relationship

last_ name

Figure 15. Structure of a XML document.

4.1.2 Structure of the elements

Elements contain the information itself and the information, which tags the data.
Therefore the tags give name to the information. To form a well formed XML document
elements must have a start and end tag, which must match the start tag. The tag naming
conventions in the XML standard are very open, but a few rules should be followed in
order to have a well formed document like the names should always start with a letter,
and to keep in mind the case-sensitivity of the XML.

The name of the tag is placed inside of < and > characters to form a tag. The tag might
contain attributes. The name of the attribute with = sign and following quoted value is
placed after the tag name in side the < and > characters. The element’s information
itself, the content element, is placed after the start tag. The end tag closes the element,
but the elements cannot overlap, therefore the end tags must be in the proper order to
maintain desired the hierarchical order. Figure 16 presents an example of the document
of names. [26, pp. 27—44]

36

<person>
<first name>
Tommi
</first name>
<middle name>
Niilo
</middle name>
<middle name>
Henrik
</middle_name>
<last_name>
Aihkisalo
</last_name>
</person>

Figure 16. Simple XML document.

4.2 Software component technology

Software objects, which are self-contained entities, usually encapsulate data and a set of
operations, which manipulate that data. Usually objects reside in a single program and
do not exist as separate entities when the program is compiled. The software
components are the independent and self-managing parts of a system, which separates
them from the objects. Furthermore these components are pre-developed before the
actual application development takes place. The actual applications can be assembled
from these pieces. There are several component-based technologies available nowadays
like Microsoft’s ActiveX and Sun’s JavaBeans based on the Java platform. [27, 28]

4.2.1 JavaBeans components

In the Java platform applications created using JavaBean components are developed
with special visual builder tools. Tools visually manipulate a collection of desired
components to form a final application. The components’ events and properties are
connected visually together to achieve the desired actions and state changes. As stated
earlier software components must expose their interface to the user. So the user knows
how to use and what kind of properties are enclosed in that specific JavaBean when
composing a new application. Internally JavaBeans may vary greatly but commonly
they must meet a few JavaBean concepts to be usable as a JavaBean component:

- Introspection:

Beans must support introspection to allow builder tools to discover the entire bean’s
features including properties, methods and events. Features of the bean can therefore

37

be exposed to the developer. Introspection can be achieved by two methods: using
certain naming conventions or creating a special Bean Information class.

- Customisation:
A beans’ properties must be customisable to allow a user to alter the appearance
and behaviour of a bean.

- Events:
Beans use events to communicate with other Beans. Beans can fire events and
register as a listener to certain events. Events that Bean can fire and handle must
be exposed to the user.

- Persistence:
Beans must be able to save and restore their state. Once changed and saved, the
property must be able to be retrieved. [27]

4.2.2 JavaBeans as a collection of information

As any other software object information can be saved and retrieved from a JavaBean
component based on the demands of persistence. In this case, the component must have
suitable variables for storing for example name information. Handling of this
information can be achieved by using methods, which might set and get the values of
the variables. Figure 17 represents a diagram in UML class notation of a simple Bean
containing information about one person and proper methods for data input and output.

Person JavaBean

first_name: String = Tommi
middle_names: String = Niilo Henrik

last_name: String = Aihkisalo

getName : String

setName(name : String) : String

Figure 17. Class illustration of a simple Bean.

4.3 Databases

Databases as the name says are used for storing data. The databases meant here are
computerised, not manually maintained. A database is a collection of related data. Data

38

as it is used here means all recordable data, which can be names, addresses and so on. A
database has the following implicit properties [29]:

- A database represents aspects of the real world. When the real world changes,
changes are reflected in the database.

- A database is a logically coherent collection of data with inherent meaning.
- A database is designed, built and populated with data for a specific purpose.

This means that a database has some source where data are collected from, data is
related somehow to events in the real world and someone is maintaining and using the
data stored in the database [29].

Data stored in databases are formed as files containing records, which again contain
data elements. The form of data in elements are defined by data types telling the type of
the specific element e.g. name field is defined as a string of alphabetic characters. These
declare the structure of the data used in a database. Figure 18 presents simple files
containing records and data elements in a name and address database.

name and address

database data element element name file
x I/ P |
/
‘ person id / first_name 4 middle_names last_name | — record

0 | ¥ Tommi Niilo Henrik Aihkisalo 4l/

1 Kiia Sarianna Aihkisalo

address id per_id street postal town
0 0 Ollinkeha 8 F 92120 Raahe
1 1 Savontie 18 A9 78300 Varkaus

Figure 18. Example files and records in a name and address database.

To form a complete database system a database management system is needed. This is a
collection of programs to allow users to create and maintain a database. Tasks being
processed through the database management system include definition, construction and
manipulation of a database. Definition involves creating files, records and data elements
and all kind of properties needed to form a database. Constructing is the task of storing
the data itself to a database. Managing involves querying, updating and forming reports
from the data saved in a database. [29]

39

4.4 Evaluation of description technologies

The need for presenting information about interfaces of the devices has raised the
question, what kind of technology is going to be used to present them in terms of
general usability. All the technologies have their own advantages and disadvantages.
These will be considered here and one technology will be chosen. In general the chosen
technology should be easy to use both in storing the data and retrieving it. Furthermore
the speed of transferring descriptions over the network and availability of tools for
manipulation are important features. Therefore the categories of requirements for
evaluating each technology are presented as listed below:

- Availability of tools
This describes the availability of tools for each technology. This can include the API
and other development tools.

- Ease of dynamic creation
This describes the ease of the dynamic description creation process using each
technology. Using one technology it might be easy to dynamically create new
descriptions of automation platform than with others.

Need of further processing
Here the need for further processing is evaluated. Further processing means the
actions needed before the description can be taken in use.

- Platform independence
Here the technology is evaluated for its usability in multiple processing platforms
without excessive translations.

- Simplicity of format
This describes the simplicity of each technology’s format. Some technologies might
have a simple format in which to store information while others are more
complicated.

- Speed of transfer
This describes the speed of transfer over the network of descriptions based on each
technology. Some of the technologies might have more control data around the
actual description information.

Using these requirements each technology has been rated from the viewpoint of this

work and presented in Table 5. The each category is rated as + or -. The + means that
technology fills the demands well in this category and - that it fills them insufficiently.

40

Table 5. The evaluation of each technology.

Requirement XML JavaBeans Database
Availability of tools + + +
Ease of dynamic creation + - +
Need of further processing - + -
Platform independence + + -
Simplicity of format + - -
Speed of transfer + - +

Based on this table, XML seems to be the best choice to be used in the prototype as a
device description method. Its weak point is the need of further processing to have
usable descriptions. The availability of tools is good while there are plenty of APIs and
tools available. It is also easy to dynamically add or create new information files with
XML and databases. This does not involve JavaBeans because the dynamic compilation
and coding is not well supported. All the technologies are platform independent except
the database. Database queries can be made from almost any platform and data itself
can be transferred but the transfer of the actual database program is difficult. The format
of data is most simple and compact in XML format. This correlates little with the speed
of transfer. The XML descriptions are small and therefore easy to transfer over the
network. The JavaBeans software components might form large entities which are slow
to transmit.

41

5. Distribution technologies

This chapter reviews all the distribution technologies applicable to the prototype.
Technologies that are taken in consideration are Java RMI, Jini and CORBA.

Distribution generally in computer science means that computing tasks are distributed to
a group of computers. Computers are networked together with a network. The
computers are using services that are located in some other computer. Usually
computers offering services are referred to as servers and those using them are referred
to as clients. In the networked community of the computers, the uses of the services take
place over the networks. Using the services is made transparent to the user. Therefore
network traffic is usually hidden under the upper layers of applications.

5.1 Open Distributed Processing reference model

Due to the development of computer networking, interconnecting of computer system
can be realised efficiently and sensibly. There have been many instances of developing
different kinds of distribution solutions. A particular reference point in this area is ISO’s
RM-ODP, Reference Model — Open Distributed Processing, which defines a framework
for standards. It can be categorised as a standard for standards. As it provides only a set
of concepts for the distributed systems, not any ready standards or solutions. The basic
concepts that RM-ODP offers are: an object-oriented approach, viewpoints and
viewpoint models, distribution transparency and RM-ODP functions. [30]

RM-ODP defines viewpoints and viewpoint models for describing distributed systems.
Each of them describes the system from its own viewpoint in a different scale or scope.
This provides a set of concepts, structures and rules for each viewpoint. The reference
model defines five different viewpoints:

- Enterprise Viewpoint, which defines purpose, scope and policies of the system

- Information Viewpoint for semantics of information and information processing

- Computational Viewpoint for functional partitioning of the system

- Engineering Viewpoint for defining infrastructures required to support distribution

- Technology Viewpoint for defining technologies in implementation

Transparency, which hides the details of distribution from the user, has been defined in
RM-ODP in eight categories. Transparencies create an illusion of a single
heterogeneous computer system while using a single remote console. Defined

42

transparencies include such as access transparency which hides remote procedure
calling mechanisms and differences in data representation, location transparency masks
the addressing and the difference between local and remote, etc. These were just
examples among the many other types of transparencies to point out the essentiality of
it.

The collection of functions is represented in the RM-ODP that is needed to form a fully
functional distributed system. The functions are categorised to the management, co-
ordination, repository and the security categories. [30, 31]

5.2 Engineering viewpoint

The engineering viewpoint describes the infrastructures required to support distribution
or design of the distribution-oriented aspects of an ODP system. The reference model
defines an engineering language, terminology, and procedures needed for various
actions like creating a communication channel. The main entities it prescribes are
clusters, capsules, nodes and channels.

The main component in this terminology is a node. Engineering objects, services, along
with their processing resources are grouped into nodes. Consequently a node can be
thought of as representing a single computing system. The node is controlled by a
nucleus, which offers the operating system’s services like timing.

Capsules and clusters are containers of engineering objects. The capsules can contain
many objects while they are arranged into smaller entities, clusters. The capsule
contains clusters, which contain a set of related engineering objects. This arrangement
makes manipulation and interaction between objects easier for the smaller entities.

Channels provide a mechanism for remote engineering objects and services, to
communicate together. To maintain communications in a channel three objects are
needed. Stub objects are concerned with how the information transferred. The stubs
interact directly with the object needing communications, while they marshal and un-
marshal parameters, logging the interactions. Consequently it can be said that stubs
offer transparency when it involves some knowledge of the application semantics.
Binders and protocol objects are more like messengers, which only transport the
messages bit streams. The binders establish the binding between services when the
channel is created and maintain the integrity of the channel. Protocol objects provide the
actual communication between7 binders and while implementing the communication
protocol used. Figure 19 [30, p. 35] shows the engineering viewpoint of a simple
distributed system. [30, p. 24-30]

43

Channel
controller

Capsule

Capsule

Cluster

Cluster

Engineering
object

Engineering
object

Cluster
manager
Capsule
manager

Cluster
manager

Capsule
manager

channel

protocol } Interceptor T protocol

Node 1 Node 2

Figure 19. The engineering viewpoint to the distributed system in RM-ODP.

5.3 Remote Method Invocation

RMI, Remote Method Invocation, is a protocol in the Java platform to allow distributed
computing. It is one implementation of the RM-ODP model. It makes method
invocation between objects in different address spaces. Address spaces do not
necessarily mean different computers in a network but different Java Virtual Machines.
The main issue in RMI is the transparency of method invocation from objects in another
virtual machine. It removes the need of implementing a new application level protocol
using TCP or UDP sockets. RMI uses HTTP as an underlying protocol to transport RMI
messages. The transmitted objects are formulated with Java Object Serialisation
protocol to be transmittable RMI messages, which are again embedded in HTTP
messages and transmitted.

RMI applications usually utilise a standard client/server model, which is taken here as
an example. Both of them are located in different virtual machines. In the server is
located a collection of objects capable of distributed computing which can be used by a
client. This distributed object application must fulfil a few requirements to function.
They have to be able to locate remote objects, communicate with remote objects and
load bytecodes for objects that are passed as parameters or return values.

Before the client can invoke methods remotely, a naming facility is needed. Its function
is to make services locatable. It keeps track of services, which are offered to be used
remotely. When services are instantiated they are registered with the naming facility
associating the names and references with these remote objects. In the Java platform
there is a simple naming facility available called rmiregistry. It provides a well-known
bootstrap service for retrieving and registering services by simple names [32, p. 47].

44

The function order for the client is firstly to locate the registry service. Using a known
URL, the registry service is located. The client receives a reference from the registry for
the service it is looking for. With this reference it can call the service from the server.
Standard web servers are used for transmitting the actual bytecodes of objects in
parameter passes, returning values and receiving remote objects. Figure 20 [32, p. 4]
illustrates the structure of distribution in a simple distributed client/server application
using RML

registry
RMI RMI URL
protocol
client RMI » O
O

O

URL server
protocol URL

protocol

web server (
web server

Figure 20. A structure of distribution in a simple client/server application utilising RMI.

The actual communication with remote objects is done using stubs and skeletons. The
stub is a counterpart for the skeleton, which resides with the remote object. The skeleton
and the remote object are referred here as a remote object. The client side uses stubs,
which is a local representative for the remote object. It can be considered as a proxy too.
It is responsible for hiding details of communications between objects and therefore it
implements the transparency and the RMI protocol. The client invokes the methods on
the stub through an interface describing the remote object. The stub carries out the
method call to the remote object. Its counter part in communication is the skeleton
located on the server’s side. The communications is done using the RMI protocol. The
main tasks of the stub are:

- Connection initiation with the remote object,
- marshalling the parameters,
- un-marshalling the return values and exceptions, and

- returning values to the client.

45

The skeleton that is located on the server’s side is quite similar to the stub. Its
responsibilities are to communicate with the stub and to implement the actual RMI
protocol. As the stub, the skeleton implements the same interface as the remote object.
It has the same responsibilities as the stub and it does not have to initiate
communications. In newer Java platform releases the usage of the skeletons is replaced
with an additional stub protocol. Figure 21 illustrates the RMI between the client and
the server utilising stubs and skeletons. [32]

client server
client remote
... r— object — stub RMI channel skeleton — remote object
application .
interface

Figure 21. The basic structure of the client and server with RMI distributed service.

5.4 Jini

The Jini architecture brings a new kind of flexibility to distributed computing. It allows
a spontaneous networking of devices, software services and hard/software
combinations. Rather than client/server architecture Jini is decentralised a system
providing reliable networking. Adding or removing any of these components is possible
without the need to update others in the community they form. The important part of
Jini architecture is a lookup service. It is a service that keeps track on the services
available in the network community. Services are registered to the lookup with
parameters telling the type and other properties of the services. So services can join or
leave the network community anytime and the lookup service is updated to a new
situation. All the services in the community are aware of each other and they can use
each other. The size of communities has not been restricted, but a reasonable size must
be considered. To allow scalability in Jini networking a concept of federations are
adopted. Federations are collections of smaller communities. Communities can use the
services of other communities. This can be achieved by adding one’s lookup service to
the other’s lookup, while the lookup service itself is a Jini service. Therefore the
services can be used crossover. This kind of hierarchy and the main elements in Jini
concept is presented in Figure 22.

46

federation 1

community 1 community 2
lookup service lookup service
service service
client client
network network ——— service
service
client client service
service

Figure 22. The hierarchies and the main elements in Jini.

Services are used through proxies, which provide all the code to use the desired service.
The communications between the service user and the service implementation is
handled by the proxy. The proxy’s code is dynamically downloaded to the client. So the
user does not have to know anything about the implementation of the service. The only
requirement for the instance using the service, is to know the service’s interface. The
proxies are stored to the lookup service, when the service is started. The proxies of
services desired to be offered for use, are uploaded to the lookup service. When the
service user is looking for a suitable service he must search the lookup service for
service meeting the requirements. After the proxy is found and downloaded, the service
can be used. The process to find the lookup service is referred to by discovery in the Jini
concept. There is no need to know any fixed addresses of this service. The lookup
service acts like a beacon because it periodically sends messages informing of its
existence. This is done also by the client when looking for and discovering the lookup.

There are different types of proxies that can be used. One type of proxies is a proxy that
performs the services itself. Consequently the service need only be a software service
and it does not required any external resources. The second type is a proxy using some
external resources. It can be implemented as an RMI stub using services somewhere
else. Its only function is to communicate with the service implementation. This kind of
proxy can represent e.g. a hardware service. The protocol between the proxy and the
service implementation can be implemented by many other protocols than RMI but it is
the most natural for Jini.

To maintain stability in a network of Jini services, services use a leasing method.
Services have a lease to be listed in the lookup service. The lease is received when the
service registers itself with the lookup service. If the lease is not renewed before it
outdates, the service is removed from the lookup. The lease renewal might have been
prevented by e.g. network problem, power shortage, or malfunction in the service itself.

47

So forth the lease might get expired and service removed, so the other services do not
attempt to use it in vain.

Suitable example here could be a networked laptop computer and a colour printer. The
printer has registered itself as a printing service to the lookup service when it is turned
on. It has been defined that printer has ability to print in colours. The user of the
computer wants to print out a colourful picture. So the computer looks up a suitable
service from the lookup service. The service must have abilities of printing and
especially colour printing. If the printer has been disconnected from the network or has
got no power, its services are not listed in the lookup and therefore not available for use.
The computer discovers a lookup service and browses a suitable printing service. The
computer downloads a proxy representing the printer and implementing a general
printer interface. Therefore the printing service can be used through the proxy. Figure
23 represents the operations required to be use and set-up the service and the main
components of the Jini concept. [33]

lookup service server
i IEEEE) E
. . printing service 4
service II 1. discover the Iogkup service =
proxy .N and upload service proxies coffee maker
\ service
service L i
I
proxy - Iﬁ
Dol

2. discover the lookup service
and download needed proxies

3. use the service via its proxy

coffee
maker —
interface

service
proxy

client application

client

Figure 23. The operations to setup and use service in Jini.

5.5 Common Object Request Broker Architecture

As Jini is Java platform dependent, CORBA, Common Object Request Broker
Architecture, is a platform independent distributed computing architecture and it is
presented here only for a comparison. CORBA is based on the use of a standard
protocol IIOP, Internet Inter-ORB Protocol, unlike RMI which uses its own RMI
protocol. Furthermore CORBA implements the operations and standards presented in
RM-ODP.

48

The main parts in this architecture are ORBs, clients, stubs, skeletons and object
implementations. The ORB, Object Request Broker, is similar to Jini’s lookup service,
which keeps track of the services available in a network. The ORB is responsible for
finding the object implementations, or services, for clients. Opposite to Jini architecture
the communications are always handled through the ORB, where Jini uses
downloadable proxies to communicate directly between services and clients. The stubs
used in CORBA are standard IDL, Interface Definition Language, and definitions of
services. The skeletons use also IDL. In CORBA, in addition to predefined stubs and
skeletons, the dynamic invocation mechanisms can be used. When dynamic invocation
is used, the desired service is described by the types of parameters passed and
information about the operations. The ORB finds a suitable service to fill the needs of
the client and the invocation and processing takes place. Different kinds of set-ups are
reached by locating the ORB differently. The RPC like operations can be established by
locating the ORB resident to clients and services. A Jini like structure can be achieved
by setting the ORB to the server in the network, where clients and services can reach it.
[34]

49

6. Requirements set by the previous work

In this chapter the previous project, LONTONEXTG, is previewed and its contribution
to this work is examined. The main issue in the LONTONEXTG project was the
distribution of home automation. The home automation would have been used with the
next generation mobile communication devices. In the project a concept was planned
and developed which was then implemented by developing a small prototype. The
prototype sampled the distribution of the automation but no real automation hardware
was used.

The prototype is based on the use of an in-home-server, which is the main controller in
the homes. At the same time as it controls the automation tasks in the home, it acts as a
gateway to the outside world. Through it, it is possible to maintain and control the
home. The prototype system included a homeowner’s simple controlling application in
the form of a Java applet and Java application. For the maintainer and service provider
was provided a piece of maintenance software for down- and uploading home
automation applications, which was created with LabView while LabView was used as
a processing platform in the in-home-server. The idea of using LabView was to
integrate different types of automation devices to work together. Due to time restrictions
in the project this was not achieved.

6.1 Specified system concept

In the project there was specified a concept for the distributed home automation. The
main component in homes is the in-home-servers. It provides a processing platform for
upper level tasks like timing etc and as stated earlier, for the networking to the outer
world. The automation devices are controlling the home in lower level for example
turning on the lights.

The in-home-server distributes the services contributed to it. This is done by adding
services to the lookup service. The server and the lookup service should have a fixed
connection to the Internet for the high rate availability. Nowadays this is not always
possible for the homes. Therefore an in-home-server can be separate from the
processing platform in homes. This makes it possible e.g. its use for multiple homes if
the workload is not high or the network connection is not stable to the homes. But the
development in the future might remove obstacles like this.

In this concept it was seen possible to have applications on different levels. There were

processes that offered simple user interfaces to the ordinary homeowner. They have a
simple controlling interface e.g. for using lights presented with a single button. The next

50

level, critical processes, are meant only for qualified professional. This level handles all
critical tasks which are not allowed to be interrupted or intruded in any way, or the loss
of property or health might occur. This might include basic heating, burglar alarms etc.
All the regulation tasks needing a little more computing or intelligence are gathered to
the intelligent processes. These might be such as concluding the presence of the
homeowner in the house with motion sensors and the take appropriate actions.

The other main component in the concept was a Jini like lookup service for locating
services provided by the in-home-server for the end-users’ terminals and the service-
providers’ tools. It is a directory service with an Internet connection and well-known
address to be locatable every time. The end-user is able to browse the services available
in his home from the lookup service. When the suitable service is chosen, a proxy is
loaded on the end-user’s terminal. With this proxy the user is able to manipulate the
individual home device or a larger entities.

The service providers tools are used to create applications for the processing platform.
The application is created with the LabView programming tool. Later the application is
downloaded onto the in-home-server and started there using a maintenance proxy, a
Java application, created for the prototype. The maintenance proxy is able to start and
stop applications created earlier in the processing platform. [35]

The basic concept is usable in this work too. A similar kind of structure is presented in
the OSGi, Open Systems Gateway initiative [12]. In Figure 24 [35] is presented the
system structure used in the prototype of LONTONEXTG project. Similar types of
service entities like in-home-server, lookup service, user terminal and maintenance
terminal are going to be used in this work too.

51

Structure of the system

Local environment

518 36 Direcory service mot (Home, Factory)

Processing platform

Customer interface

Customer interface
Customer interface
process

End-user Terminal

TGoKUp-SeTvice by

Operator N

4 |
I
a es |
- |
= Horne autoratc . =

Services by Service [ESVCR. Cortrl proxy. set +25 |

Provider A [4t home 7 away <ontrol proxy ! LNS Host

T ‘ o
[}

WAP-platform

Services by Service
Provider N

-Customer A
-Customer B
-Customer N

Critical process

HAVi API

HTTP-platform

Internet

3G-media environment

RS232, 1/0-API
|EEE1394, ™

Bluetooth,...

Java-platform

In-home Network Server Another

hardware

Another API UHDEDI

ool e AN
SO U U
[HS

Distributor Server

Distributor Server Configuration process

Distributable Application
by Service Provider N O
-Proxy
-Server —

(c) 2000 Project LONTONEXTG by VTT Electronics

Figure 24. The specified system structure in LONTONEXTG-project.

6.2 Basic structure of the prototype system developed in this
study

The main problem in programming automation applications remotely is the lack of
information about the platform, which will execute the applications. The main purpose
of this work is to study how this automation platform can be described using a specific
XML vocabulary created in this work. The basic case studied in this work is the creation
of an application for the platform, which has been described in XML. The in-home-
server creates XML files describing LON devices controlling the home and adds a
service to lookup, which is used to download these XML files. Initially the terminal
must connect to the lookup service to get a proxy for the home’s services. With the aid
of this proxy, terminals are able to use automation services provided by the in-home-
server. When the service provider wants to create a new application for e.g. light
control, the device description files are downloaded to the service provider’s terminal.
The XML device file tells the content of automation platform, LON in this case, and the
interfaces of those devices. This information provides the knowledge needed to create
applications. The automation service offers in addition a method for binding the
devices’ variables, so creating applications.

52

As earlier was declared, the concept of LONTONEXTG structure will be used here, and
it mainly dictates some basic solutions used here. The solution presented here could be
used along with a LabView to present devices available in the automation device
platform. This work does not respond to the processing platform or to the type of
service provider’s tools. But LabView is not used in this prototype as a processing
platform, because LonWork devices can run low-level applications independently in
their own application processors. There is a plenty supply of devices available even for
very complicated tasks. Processes needing more calculation power and intelligence can
be realised although with previously mentioned LabView, but it is out of this work’s
scope. The actual automation processing will take place in the LON devices itself.

In the prototype of this study, the in-home-server device contains all other components
of system except the Lookup service and of course the end-user’s terminals. So despite
the architecture illustrated in Figure 24 there is no network separating processing
platform and the in-home-server. The networking is handled by TCP/IP network
because of its general availability in development environment used. The service
provider’s maintenance client is used for creating automation applications for the LON
platform. The homeowner’s client software is used for remote controlling the home
devices and automation application created by service provider. The homeowner’s
control client is somewhat out of scope in this work and therefore not implemented. The
lookup services are handled by the Jini’s Lookup service. It is a ready-made piece of
software so no effort is needed to implement it. In-home-server’s services are registered
with the lookup and their proxies can be retrieved from there by the client programs. So
the client programs need the ability to work with Jini.

The programming interface for the Lon devices is available as an ActiveX component
and is very expensive. Solution used in this prototype is based on the LON Network
Services Server, which offers a means of access for the Java host programming
interface. The Java host uses the server via a TCP/IP channel to allow the host to be
used in different kinds of platform other than Microsoft’s Windows. In a strict meaning
it is not a pure programming interface, but is suitable for this prototype. It has a few
restrictions when compared to the real interface, but these restrictions can be passed
with special solutions not relevant to the prototype to be mentioned here. In this
prototype the in-home-server is executing both the LON Network Services Server and
the Java LNS Host to be used as a programming interface. The system structure with its
main components defined so far looks like in Figure 25.

53

LON control network

Java Virtual Machine

Homeowner's
Java Virtual Machine control client

—
—

Jini Lookup Service

T PY

LNS Server

|
TCP/IP network I

Java LNS Host

Service provider's In honfﬁt\tlevserver
maintenance client software
Java Virtual Machine Java Virtual Machine

Figure 25. The system structure and its main components.

6.3 Requirements of the prototype system

While the structure of the prototype system is defined earlier on the basis of the
previous project’s results, the requirements are gathered here. The requirements of the
prototype system can be divided into two categories: requirements for in-home-server
software and client software. Both of them still have some common requirements.
While XML is chosen to be used as a device description method, the server is required
to have the ability of manipulating XML. It is sufficient for only the client to read XML,
while the server is responsible for creating it. The server needs to form the basic
structure of the XML files and fill the elements with suitable information.

The amount of external files in the server system, including device descriptions and
possible resources, can increase, therefore a facility to keep track of files, their names,
locations etc. is needed. Other services which must be realised by the in-home-server
include distributed access for clients to pick up device descriptions, configure remotely
devices and create remotely automation applications. The basis of distribution is based
on the computer networking. The hardware platform, both the server and clients,
standard PCs in this prototype, must have network interface cards and connection to a
common network. The software distribution is handled following the Jini concept as
earlier stated and described. The use of Jini concept requires the set up of a lookup
service for locating services available in the network. Other hardware requirement on
the server side is the ability to control the automation platform, LON in this case. This is
handled by a suitable interface card located inside the server. Furthermore a suitable

54

device driver and API for it is needed. The driver issue is handled as stated in the
structure definition.

Using the interface facilities of the automation platform, the server must collect the
information about devices used in automation and produce XML device descriptions
based on device information. Furthermore, the client must have interface available to
the network to communicate with the server. The communication includes the use of
services to download the descriptions and use them to develop new applications. The
client presents, in a suitable way on the basis of device descriptions, the devices and
their properties. Using the client software, the service provider is able to configure and
create applications for the automation platform remotely using the remote configuration
and application development services provided by the server.

55

7. XML description of devices

This chapter describes the way of creating XML files and their vocabulary. The creation
of device description files is based on XML processing combining two XML files. This
involves the use of the XSL stylesheet language. The device description files are
initially created as XSL files with queries of network variables’ properties from a
resource file. Finally the resource file and device description file in XSL format,
referred to as a device description template file, are combined using XSL processing.
The result will be the final device description file in XML format. An overview of the
creation process is illustrated in Figure 26.

resource file (LON
format)

device

device description

template file (XSL) resource file (XML)

combine

device description
file (XML)

Figure 26. The device description file forming process.

7.1 Data available as self-documentation and -identification
from API

The basic information in the XML files is gathered using the LON devices self-
documentation and —identification ability. This data is accessible using the LNS Host
APIL All the data is readable from objects’ attributes presenting the devices. To get
hands on that data, the object inherited from class LNSAppDevices must be retrieved
from the LNS API. This presents the collection of all devices in the platform.
Furthermore to get a single device, its object must be retrieved from this collection. The
LNSAppDevice contains information about the device itself like name and its
NeuronID. The objects presenting the network variables, inherited from
LNSNetworkVariable class, can be retrieved from device objects. The basic information
of each network variable can be read from the attributes of that object. In the viewpoint
of API, the view of the devices is presented as a class diagram in Figure 27. There are a
lot of other classes that must be used to achieve this level but they are not shown here
for clarity.

56

LNSAppDevices

+getltem()

: LNSAppDevice|

0.1

LNSNetworkVariables

LNSAppDevice

-NeuronlD : String
-Name : String

+getltem() : LNSNetworkVariable|

+getNetworkVariables() : LNSNetworkVariables ﬂ..*

LNSNetworkVariable

-name : String
-direction : Int
-NVindex : Int
-SNVTid : Int

Figure 27. Class structure of LON platform API in the level of devices.

As earlier determined the devices only offer basic information about themselves. The
biggest deficiency is the lack of a more specific definition of the properties of the
network variable, but this is understandable due to the limited memory available in
devices. The SNVTid number tells its standard network variable type. The properties of
all SNVTs are collected in a separate resource file and retrieved from there by an id
number. Table 6 describes the attributes that can be read from the LNSAppDevice and
Table 7 attributes of LNSNetworkVariable. Therefore all the data presented in tables is

readable from the devices itself.

Table 6. Attributes in device.

Attribute | Type Meaning
NeuronID | String Neuron id of the device
Name String Name of the device

Table 7. Attributes in network variable.

Attribute Type Meaning

Name String Name of the variable

Direction Integer Direction of the variable, input/output
NVIndex Integer Index of the variable in the device
SNVTid String Type number of the variable

57

7.2 Resource XML file

As previously seen the self-documentation is not complete enough. To reach full
independence from outside files and total description of devices the device information
and especially the network variable information must be completed with the resource
file’s information. The complete definition would contain minimum and maximum
values, scale, unit etc.

There is an API for accessing the LON system’s own resource database which is written
in C as an ActiveX control. Because in this project Java is used as a programming
language, the API is not usable and in addition XML is used as much as possible. This
kind of arrangement allows platform independence and is a little lighter solution in
terms of required processing power. The resource file contains very detailed data of
every SNVT and SCPT type in mostly numerical form. The data is collected in the
XML file in string format where possible. The process needed in parsing the resource
file is out of the scope of this work and therefore not presented here. Table 8 represents
the data fields and their meaning in the final XML resource file which are common to
all SNVTs. The SNVTs, which are structural, are identified by ‘format’-field with value
‘struct’. This means that SNVT has more than one field in its attributes. Refer to Table 3
earlier presenting an SNVT switch with two fields. The latter fields are presented in
Table 9 if the SNVT has not got fields and Table 10 presents the latter fields if SNVT is
structural. This resource file is only applicable to LON technology. Other automation
technologies must have their own resource file with applicable information and
structures.

Table 8. Data in resource file.

Field Meaning

snvt id Id of SNVT

snvt name |Name of SNVT

format Format of SNVT, e.g. long, struct etc

Table 9. Latter fields if SNVT has not fields.

Field Meaning

comment] 1* commentary line

comment2 |2 commentary line
unit Unit of SNVT e.g. kg
min_value |Lowest allowed value

max_value |Highest allowed value

scale Scaling factor for raw data
bias_add Value added to raw data

58

Table 10. The latter fields if SNVT has fields.

Field Meaning

field id Id of the field in SNVT
field name Name of the field in SNVT
field format Format of the field in SNVT

field commentl |1* commentary line
field comment2 | 2™ commentary line

unit Unit of field, e.g. kg
min_value Lowest allowed value
max_value Highest allowed value
scale Scaling factor for raw data
bias add Value added to raw data

The XML resource document is formed by simply using the field names described
above as element names. The complete structure contains optional elements which
might not all be present with every SNVT depending on the ‘format’-field. Therefore
the structure of the resource XML file is as presented in Figure 28.

snvt_id
snvt_name

format
comment1

comment2

min_value
max_value
scale

bias_add

fields

field_id

field_name

field_comment1

field_comment2

unit

min_value

max_value

scale

N

bias_add

Figure 28. XML structure of the resource file.

59

The original resource file is read and its data is parsed into XML format described here.
The original file follows its own rules defined in LONMark Interoperability
Association’s own documentation, refer to [36]. Figure 29 shows a sample from
resource file with few SNVTs described.

<snvt>
<snvt_id>95</snvt_id>
<snvt_name>SNVT_switch</snvt_name>
<format>struct</format>
<comment1>Switch</comment1>
<comment2>NULL</comment2>
<fields>
<field>
<field_id>0</field_id>
<field_name>value</field_name>
<field_format>short</field_format>
<field_comment1>Value</field_comment1>
<field_comment2>NULL</field_comment2>
<unit>% of full level</unit>
<min_value>0</min_value>
<max_value>200</max_value>
<scale>0.5</scale>
<bias_add>0</bias_add>
<ffield>
<field>
<field_id>1</field_id>
<field_name>state</field_name>
<field_format>short</field_format>
<field_comment1>State</field_comment1>
<field_comment2>This field can either be -1 (NULL), 0
(OFF), or 1 (ON).</field_comment2>
<unit>state code</unit>
<min_value>0</min_value>
<max_value>1</max_value>
<scale>NO SCALE</scale>
<bias_add>0</bias_add>
</field>
</fields>
</snvt>
<snvt>
<snvt_id>98</snvt_id>
<snvt_name>SNVT_pwr_fact</snvt_name>
<format>long</format>
<comment1>Power factor</comment1>
<comment2>NULL</comment2>
<unit>multiplier</unit>
<min_value>-20000</min_value>
<max_value>20000</max_value>
<scale>5.0E-5</scale>
<bias_add>0</bias_add>
</snvt>

Figure 29. Sample from XML resource file.

7.3 Structure of the device description XML file

In the final device description file, initially the elements required and their hierarchies
are defined. The root of the document will be ‘devices’ to allow for future extensions
where all this data could be embedded in some other document types. So all other
information handled in this work is a subset of this root element. The ‘devices’ element
has an attribute indicating from which household the information is gathered. The
easiest way to separate in-home-servers is to use an IP address as a unique identifier, so
the attribute name will be ‘IP’. To separate devices from each other, a ‘device’ element
is needed to contain specific data of a single device. As earlier seen, the device’s
identity is determined in LON devices with unique NeuronIDs which will be used under
‘identity’ tag for identifying. If available the device name ‘device name’ element will
be preceeding. All the I/O information will be placed into the ‘10’ element to make the
structure clearer. The structure determined so far is presented in Figure 30.

60

devices

device

identity

device_name

io

Figure 30. Structure of the elements in device description file.

The I/0O element and its children will contain detailed information about the 1/Os,
network variables in LON platform. The ‘io” element has child elements that define the
number of available I/Os in the current device. This information can be retrieved from
LNSNetworkVariables object’s count attribute. Other elements under the ‘10’ element
are ‘input’ and ‘output’ elements. As earlier described the direction of a variable can be
retrieved from the device. The direction is expressed with 0 or 1 where 0 is input and 1
is an output. This information is used to choose the element’s name. Under these are
elements containing properties of each input or output network variable. And further,
the name of the variable and SNVT’s id can also read from the device. Refer to Table 6
earlier. The properties of each SNVT are collected from the resource XML file. The
properties required are found by the SNVT’s type id which has been read from the
device. The structure of a network variable’s properties description will follow the
structure of the resource XML file and even the same elements will be used. Table 11
presents the elements and their content source. Figure 31 illustrates same operations
grahically.

61

Table 11. Used elements and their content source.

Field Source Translations
In element name In element value
number_of | Device, LNSNetworkVariables | None None
108 count attribute
input / Device, LNSNetworkVariable | Selection of element's | Does not have value
output direction attribute name : input or output
name Device, LNSNetworkVariable |None None
name attribute
type Device, LNSNetworkVariable | None Type's name
SNVTid attribute retrieved from
resources with
SNVTid
format Resource file None, copied directly | Copied directly
from resource file from resource file
bias_add Resource file None, copied directly | Copied directly
from resource file from resource file

device description file

device

‘ device attributes

network variables
. value read
—4 number_of _usable_ios }4 attributes
attributes | Nv1
value read
. 4 -
input/output < attributes | nv2
attributes | Nv3
, value read
name <
attributes |Nv N

—' type 4

search by snvt id

resource file

' { snvt

value copied

} snvt_id

copied

VN

—‘ format

Figure 31. The creation process of the device description file.

The final XML file’s structure is reached when combining the resources and device
information. The structure of the device description file with optional elements is
illustrated on the next page in Figure 32.

62

devices

device

device_name

input/output

Key:
Element used if

10 has no fields
R 10 has fields

name

format

comment1

-
<
3

®

comment2
Vi unit
min_value

max_value

scale

bias_add

&I fields

B field_id
B field_name

RS field_format

i

1

R field_comment1 ‘

R unit
&Y min_value

R max_value

B scale

B3
;1’:
o
o
]
3
3
@
3
S

% bias_add

Figure 32. XML structure of the resource file.

63

7.4 Use of XSLT in forming the device description file

Earlier it was defined that process of constructing device description file involves the
use of the XSLT stylesheet language. This stylesheet is referred to here as a device
description template file, which defines the templates where the additional data is
collected from the resource file. The device description XML file’s structure is defined
earlier, so the desired result is known. So only the way to achieve this, needs to be
defined. The information available from the devices are inserted in stylesheet to their
own places.

The structure of used XSLT file will be described here using the actual XSLT syntax. It
looks like in Figure 33 below, note the use of references like [1]. They are explained
later.

1: <?xml version="1.0"?>

2: <xsl:stylesheet version="1.0" xmins:xs|="http://www.w3.0rg/1999/Transform">

3 <xsl:output indent="yes" method="xml"/>

4: <xsl:template match="/">

5: <devices>

6: <device>

7 <identity>000428770100</identity>

8: <device_name>Lonix |O-module</device_name>

9: <io>

10: <number_of usable ios>62</number_of usable_ios>
11: <input>

12: <xsl:for-each select="resource/snvt[snvt id="36"]">
13: <name>nviLocation</name>

14: <type>[1] </type>

15: <format>[2] </format>

16: <comment1>[3] </comment1>
17: <comment2>[4] </comment2>
18: 5]

19: [6]

20: </xsl:for-each>

21: </input>

22: <lio>

23: </device>

24; </devices>

25; </xsl:template>

26: </xsl:stylesheet>

Figure 33. The structure of XSLT used in the LON resource file.

64

The XSLT files start with a namespace definition (line 2), defining the ‘language’ used:

<xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.0rg/1999/XSL/Transform>

The whole device information is defined as a template with appropriate processing
instructions for finding I/O specific properties from the resource file. The template starts
filling the template from the root of the resource file so starting from ‘resource’-
element. The starting template is defined (line 4):

<xsl:template match="/">

Lines 7, 8, 10 and 13 contain information read directly from the device. Below the
‘identity’-tag is located the device identity which is the device’s NeuronID. The ‘name’-
element contains the name of the device and furthermore the number of usable I/Os is
read from hardware through the API. Also the line 12 contains device read data in the
form of the network variable’s id number which is enclosed inside the XSL query. Line
12 starts the query from the resource file. ‘resource/snvt[snvt id="36"]" defines a path
to the correct ‘snvt’-element with ‘snvt _id’-element with a value of 36. It forms a loop
which ends in line 20. The values required are picked from the resource file under this
loop:

<xsl:for-each select="resource/snvt[snvt_id="36"]">

</xsl:for-each>

Reference /1] (line 14) contains the query for fetching SNVT type from the resource
file. This tag is filled with information from ‘snvt name’-element in resource file from
selected, as earlier shown, ‘snvt’-element which id is 36. So [I] is replaced with
following line:

<xsl:value-of select="snvt name”/>

The references /2/, [3] and [4] (on lines 15, 16, 17) follows the same procedure where
only the element name is replaced in the value-of-statement. On the line 15 the ‘format’
elements is searched and on the line 16 ‘commentl’ and finally on line 17 ‘comment2’.
The references /5] and /6] are used to copy directly the other properties of the network
variable from the resource file. The reference /5] contains the query for SNVT whose
structure contains fields, referred to earlier. So line 18 encloses the next lines:

99__9

<xsl:if test="format”="struct’”>
<xsl:copy-of select="fields”/>
</xsl:if>

The if-statement tests if the selected resource ‘snvt’-element’s child element ‘format’
has value ‘struct’. If this condition is true the next line is processed which copies the

65

‘fields’-element and all its children to the destination document. The reference /6] is
replaced by similar kind of condition statement but for opposite situation. In addition
there is lines for filling the properties like unit, min value, max_ value, scale and
bias_add as the structure is defined for network variable types without fields. These
lines are similar as in the earlier sturcure. They will only pick-up the value of the
element specified in value-of-statement. The lines that replace the reference [6] are as
follows:

<xsl:if test="format”!="struct’”’>
<unit>
<xsl:value-of select=""unit”/>
</unit>

<min_value>
<xsl:value-of select="min_value”/>
</min_value>

<bias_add>
<xsl:value-of select="bias_add”/>
<bias_add>
</xsl:if>

These procedures are multiplied for every I/O existing in the devices and for all devices
the in platform. Forming these lines are done by the program responsible for it and
finally processed with an XSL-process program to the single device description file.
The API for XML operations used in the prototype is Xerces and the XSL processor is
XT. These both used the DOM, Document Object Model, for manipulating the XML
files.

7.5 Application description file

The application description file describes the current application being run on the
automation platform. As seen earlier, in the LON platform the application simply means
the network variables’ bindings. This is a very useful idea to be used in other platforms .
The bindings have a source and destination device. As these are identified in the LON
platform with NeuronIDs and they are used in the device description files as identifiers,
they will be useful also in identifying the source and destination devices. The
connection information will be gathered under the ‘connections’-tag. The individual
connections’ information is enclosed by the ‘connection’-tags. In the connection is
defined both the source and destination network variables and devices. The source
information is enclosed in the ‘source’-element which contains the name of the source
I/O and the device that contains this I/O as a NeuronID identifier in the ‘device’-
parameter. The destination for the connection is defined in a similar way in the
‘destination’-element. This element contains the destination device identifier in the

66

‘device’-parameter and the destination I/O as a value of this element. If the source is
connected to multiple destinations, there are several ‘destination’-elements one for each
destination I/O. Here the XML structure defined is illustrated in Figure 34.

connections

connection

source

destination

Figure 34. The XML structure of the application file.

67

8. Definition of the prototype

The platform for the prototype has been previously defined. This chapter concentrates
on the functionality of this system. The focus of this inspection is the in-home-server,
because it contains the most crucial and interesting tasks. 'Cases of use' for the server
are modelled with '"UML use' case notation. Later on the definition of these 'use cases'
are refined with collaboration diagrams.

The main purpose for an in-home-server is to maintain and offer services for clients.
The service provider’s need is to maintain the home automation system, while the
homeowner is more concerned about the use of his home’s devices. The service
provider’s main action is to maintain the home system. The maintain 'use case' contains
actions like retrieving current applications, creating new and creating resource files
which are needed in further processing and must be available at the beginning. To get
the current application, it can read from existing files or application data can be read
from devices. This use case uses the automation platform to achieve this. Furthermore
this data must be formatted into XML. When creating new applications, the device
interface is read from LON devices which is formatted into XML. When the device
interfaces are downloaded to the clients, actual applications can be programmed. The
programming is done by binding I/Os, meaning network variables. These bindings are
written to the devices. The homeowner’s viewpoint of the system is to use applications
which control the automation platform. These 'use cases' are visualised in Figure 35.

In home server

Read
pplication from
devices

Create XML

<<uses>> <<uses>>

<<uses>>

description

%

Service provider

<<uses>>

Create XML
device
description

<<uses>>

<<uses>>|
Create resource
XML file v
Create new
application
<<uses>>

Use <<uses>>
;E @ = application

Homeowner

<<uses>>

A

/Automation
hardware

Write bindings
to devices

<<uses>>

Control devices

Figure 35. Use cases of in-home-server.

68

8.1 System architecture

When the system is considered on the basis of 'use case' analysis, there could be some
kind of central ‘intelligence’ using other components’ services to achieve the required
results. Its main concern is to keep the assortment of other software services in order
and available. This facility is named as a Main controller module which can be used
locally through a graphical user interface. It is responsible for starting the automation
service module which offers its services for the service provider’s and homeowner’s
terminal. This module has a connection to the automation platform through the Java
LNS host programming interface. Through this interface programming tasks can be
executed. The other tasks it must execute are to retrieve and transmit description files to
the client programs. This module is formed as a Jini service and its proxy is added to the
Jini Lookup service. Clients using this service can download the proxy from Lookup
service and use the actual automation service through this proxy. The easiest way to
realise communication between proxies and the service, is to use RMI under the Java
platform.

As XML was chosen as the device description method, a module for forming these
XML descriptions is needed. These tasks are handled by the XML service module. The
information is read from the devices in the form of specialised objects which are fed to
the XML service module. This module forms XML descriptions out of device data
objects. Information about the files created and their versioning is handled by the file
service. This keeps track of the created XML files. This service has the ability to
retrieve the newest files concerned with the given type. So for example the newest
device description file can be retrieved simply by asking the file of device description

type.

The resource module is a service offering resource services needed in creating complete
device description files. It offers knowledge about the network variables that are not
stored in the devices itself. This service can be implemented as a database service or in
a simple XML document form. The XML service could use a stylesheet approach when
combining device descriptions and resources. The desired system architecture is
illustrated in Figure 36.

69

LON control network
Homeowner's D_
o . control client
Jini Lookup Service _D
Automation Ioad ed Automation
service proxy service proxy D—
LNS Server
o Java LNS Host
(&)
] TCP/IP network
8
- Automation
service Resources
XML service
Automation Main controller
service proxy
Service provider's File service
maintenance client
ul
5
XML
files
In home server

Figure 36. Specified system architecture.

Now that the main modules of the prototype’s in-home-server are defined, an
implementation of software classes can be designed. The separation into classes follows
mainly the module structure found earlier. As was found earlier, this prototype will be
using a central controlled structure. The class named Main controller will be responsible
for these duties, so it must have instances of other services. This Main controller can be
started and stopped using a graphical user interface. The Resource has a few auxiliary
classes, SCPT basic_data and SNVT basic data, for collecting information from the
original resource file and finally methods to form them into XML. The Automation
platform actuator is used for operations in the LON platform like opening connections,
creating bindings, reading device properties etc. The objects representing devices,
which are LON platform’s native objects, are retrieved from the automation platform
and passed to the Device reader for reading the devices properties and forming generic
description objects of devices. The device description objects, Generic_device datas,
are finally passed to the XML service. In similar way it creates an application file
describing the connection existing between devices. The XML service is responsible for
creating XML files out of these objects. The FileService class keeps up a list of files
created and their versioning information. It has a class, FileData, where attributes of
files and the actual file can be read and send via network to the clients. Therefore
sending files is only passing objects derived from the FileData class, which contains the

70

file and its version data. The end point viewable to outside network is the Automation
service. It has connections to the automation platform for I/O binding processes. It has
services to download XML files, embedded in Filedata objects, to the clients. It has an
interface needed for using it remotely as a Jini service. The proxy object out of this is
formed automatically by Java tools. The realisation to classes is finally presented in a
UML class diagram notation in Figure 37 which shows the most essential classes
needed. The user interface class, GUI, uses several classes from the java.awt package
but they are not showed here because of clarity of the figure.

LNSObjectServer

I0Connection /]\ LNSAppDevice
uses
uses
10Connection AutomationPlatform
Service Actuator
uses
1
AutomationService Serializable uses uses
java.rmi.server. A . . 1 1 . . uses : .
N 1Service . o DeviceProperties Generic_device_
ur . Implementation MainController Reader data
Object
uses
0 uses / \
uses 1 XML
1 Service 10_data Config_data
java.awt.Frame Resources
Service
uses
uses uses
FileData R 0.*
‘ SNVTData ‘ ‘ SCPTData ‘
uses I0Connection

uses. 1

FileService

org.w3c.dom.
uses Document

Figure 37. The class diagram of the in-home-server software.

8.2 Collaborations in system

On the basis of the 'use case' analysis and the class diagram, the collaborations in the
system can be defined. The main ‘use case’ from the service provider’s point of view is
to maintain the system. The object collaborations in this 'use case' begins with starting
the MainController. This is done in the home by using a graphical user interface. The
MainController uses the ResourceService object for creating initially all the required
resource files if they do not exist already. After that operation the AutomationService is
instantiated and added to the Jini lookup service for access through network. The
service provider is able to retrieve current applications and to create new ones through
this service remotely. Collaborations are illustrated in Figure 38.

71

Maintain

1.1:start 1.2:create resouce file

— —
:GUI :MainController :ResourceService
1:start control
/ i 1.3:start and register with Jini lookup
:Automation
service

Ser\{ice 2:get applications
provider

3:create new application

Figure 38. Collaborations in Maintain use case.

For retrieving applications, firstly the FileService is checked. If the file already exists, it
is transmitted to the client. In the opposite case the file is created and compiled using
IOConnectionService. Figure 39 illustrates collaborations in Get applications use case.

Get applications

1.1:check if file exists

1:get applications i N N
. 1.2:[file eX|s/ts] get file
:Automation

- :FileService
Service —_

MainController

\L 1.2:[file does not exist] get file

:Automation
Platform
Actuator

Figure 39. Collaborations in Get applications use case.

If application files are not found from the FileService, they must be created. This case
takes place normally when the in-home-server is started for the first time or application
files are somehow destroyed or outdated. The action is initiated by the automation
service. The DevicePropertiesReader uses the IOConnection service for retrieving
IOConnection objects which contains information about existing connections. Initially
the IOConnectionService opens a connection to the automation platform, where it
retrieves LNSAppDevice objects presenting devices connected to the automation
system. The I0ConnectionService forms from the device data IOConnection objects
which are passed back to DevicePropertiesReader. The applications are fully described
in IOConnection objects and used for further processing into XML files. The
IOConnection class is used here to form a general description object for all simple I/O-
binding applications for other automation platforms too. It insulates the rest of the
system from automation platforms or allows exchangeability across different platforms.
These actions are illustrated in Figure 40.

72

Read application from devices

1:ReadlOConnections()
e

:DeviceProperties
Reader

{parameter}lOConnection

:10Connection

connectiondata

T 1.3:*[for all devices]CreateData()

Service

Automation
service

—
1.1:get connections

Actuator
T~—__| :LNSObject
Server
LON devices

{parameter}LNSAppdevices /

:lI0Connection

\L 1.2:get devices

:AutomationPlatform

Figure 40. Collaborations in Read application from devices use.

To form an XML description the XML service is used. Previously retrieved
IOConnection objects are passed to the XMLService. This service forms a single XML
file describing current applications. After formulation the file’s name and versioning
attributes are embedded into the FileListData object which is stored in FileService.

Figure 41 illustrates this use case.

Create XML application
description

1:Create XML device

descriptions

:DeviceProperties

A

Automation
Service

1.1:CreateXML(connectiondata)

:XMLService

Reader

application filedata

connectiondata

:10Connection

)

—

1.2:create new with
application file's
properties

1.3:Add application file's

data

:FileService

:FileListData

{parameter}application filedata

—
1.9:addFile(application filedata)

FileList:Document

Figure 41. Collaborations in Create XML application description use case.

The creation of new applications starts with retrieving device interface description files.
If already available, file attributes and the name can be retrieved from the FileService. If
there are not any existing files or they are outdated, new ones are created using

73

DevicePropertiesReader. The new applications are created using the services of the
IOConnetionService. Figure 42 presents this use case of creating new applications.

Create new application

1:check if device desc. files
already available :FileService
1.1:[availabe] get file

=

1.2:[not availabe] create interface desc.
2:Make connections Reader
S

AutomationService

:lI0Connection
Service

Figure 42. Illustration of Create new application collaborations.

The reading of device interfaces starts with opening a connection to the automation
platform and retrieving all the objects representing devices. Generic Device data
objects are created for storing the device information. All the data is parsed from device
objects to the Generic_Device data objects. These objects describe generic devices. In
these objects there are embedded other objects, IO data and Config data which contain
general information about I/Os and config properties. The main purpose of this is again
to insulate the rest of the system from the LON platform and to allow the use of other
platforms too. In Figure 43 these collaborations are illustrated.

Read device interfaces

1.4:*[for all devices]compile data

1:ReadDevices() ‘

{parameter}LNSAppdevices
:DeviceProperties :AutomationPlatform
Reader Actuator
—
Automation 1.1:0pen()
service 1.2:getDevices()
\L 1.3:*[for all devices]createData() :LNSObject
Server

devicedata
hedihtioninill
:Generic Device
data %

LON devices

Figure 43. Object collaborations in Read device interfaces use case.

Parsing of the generic device descriptions into XML concerns mainly the XMLService
which is mainly responsible for all XML operations in this system. The
DevicePropertiesReader has all Generic_device data objects formed earlier which are
passed to the XMLService. The next step is to create an XSL description of devices
using data stored in Generic Device data objects device by device. Further the
FileService is quoted for a resource file’s attribute. The FileData object is passed back

74

to XMLService which is used for retrieving the actual resource file from the disk. The
last step in XML processing is to combine the XSL file and resource file which
produces a final XML file describing the devices totally. As a last task the XMLService
creates a FileData object for the device description file and adds it to FileService. Figure
44 represents these actions as a collaboration diagram.

Create XML device description

:DeviceProperties
1:Create XML device Reader

descriptions
Autom?tion devicedata 1.1:*[for all devicedata] read
Service

1.2:CreateXML(devicedata) %

XSLDocument

- 1.3:create XSL document
:Document

\ {parameter}devicedata

1.8:create final XML file 1.6:readfile(resource filedata)
Final device - =

rn Resourcefile
description
:Document XML :Document

—

1.9:create new with
description file's :FileData
properties devicedesc. filedata

{parameter}resource filedata 1.4:get resource file's name
¢ 1.9:add device description file's
data

1.7:combine with
resourcces

{parameter}devicedesc. filedata

resource filedata
:FileData :FileService FileList:Document
-

—
2.0:addFile(devicedesc. filedata)
1.5:create new with

resource file's

properties

Figure 44. Collaborations in use case of Create XML device description.

After the platform’s devices are known the service provider might start producing new
applications. This is done by creating an object inheriting from the IOConnection class.
This class contains data about the I/Os which are bound together. It identifies a device
containing a source I/O and a destination device and I/O. Devices are identified by
NeuronIDs in this system. These actions are illustrated in Figure 45.

Make 10 binding

1.2:makelOBinding(connectiondata)

—
:10Connection
Service

Automation
service

1.1:createlOBinding(101,102,..)

R

{parameter}connectiondata

connectiondata

:10Connection

Figure 45. Collaborations in Make 10 binding use case.

75

The following step is to write all connection data to the automation hardware. Firstly all
the objects presenting defined connections are read and their data are passed to the
AutomationPlatformActuator implementing connections to hardware through a suitable
API, LNSObjectServer in this case. Figure 46 pictures this.

Write 10 bindings

1.2:*[all connectiondata] parse
connectiondata

1:update connections \ /

:lI0Connection :AutomationPlatform
Service Actuator

—

1.3:0pen()

Automation 1.4:*[all connections] connect|O()

service

{parameter}connectiondata

:lI0Connection
connectiondata

:LNSObject
i — | Server

LON devices

Figure 46. Write 10 binding collaborations.

As described in the 'Maintain use case' the operations to start with contains the creation
of resource files with ResourceService. In this prototype resources are read from a
separate text file describing the properties of all registered network variables. This file is
parsed into several objects. The objects used are inherited from SNVTData and
SCPTData classes. They are used as data storage structures. These objects contain
separately each SNVT’s or SCPT’s name and other properties. The objects are used for
further processing when they are parsed in to an XML resource file which is later used
in the creation of a device description file. Figure 47 represents these collaborations.

Create resource file

1.1:read resource file
1.2:parse resource data

1.3:*[for all SNVTs] create
i 1:create resource file —
:Resource
“Service :SNVTData

Main
Controller 1.4:*[for all SCPTs] create \L

1.5:compile XML resource file

:SCPTﬂ_ ResourceFile
:Document

Figure 47. Create resource file collaborations.

76

8.3 Implementation

There is no need for any detailed look at small details in the system, because there is
nothing relevant to this work. Following these guidelines in collaborations, the system
has been implemented using the Java programming language on the PC-compatible
platform. In the prototype as in the in-home-server there was a single PC used running
both the LNS host, Jini lookup and the in-home-server software with LNS client as the
API for the LON platform. The automation platform included Echelon’s interface card
for connecting to the LON bus. This card was installed in the PC running the in-home-
server software. Other hardware equipment included two simple digital input/output
units with four digital inputs and five digital relay outputs. Furthermore there was a
more complicated device in use which included several versatile functions like timers,
PID-control functions, analogue inputs and outputs etc. All these devices were
connected together in the FTT-10 type bus, referred to earlier in Table 2. This is a very
liberal bus form which is easy to both terminate and connect devices to and suitable for
use in this prototype. This prototype does not include any kind of actuators or sensors
but sensors were simulated by wiring and with variable voltage supply while the
actuators’ operation was confirmed with a multimeter.

The GUI for starting up the in-home-server contains simply three buttons for starting
and stopping the AutomationService and furthermore an Exit button. The two input
fields are used for inputting the IP address and port for accessing the LNS Server. These
would be unnecessary if a real API is used within the in-home-server. The textbox
below is for messages. Figure 48 illustrates the GUI with messages after the server has
been started.

E%'InHomeSewel Gul == E3

LMS Server IP Start Service

| Iocalhosﬂ

LME Server Port {defaul 2540} Stop Semice

|254D

Exit

Creating device data

Parsing device data file

Creating application file

Adding AutomationService to LookUp

Dane!

Total processing time has heen 10,325 seconds

o J e

4

Figure 48. GUI for starting in-home-server services.

77

8.4 Use of the XML device descriptions

In this work a light client program was implemented just for demonstrating how the
XML device description can be used. In this chapter is reviewed the basic procedures
for using this file. There are several ways of using this file but only one will be
reviewed here. As earlier defined the in-home-server adds its AutomationService’s
proxy to the lookup service where its loadable up to the clients. It is up to a client’s
consideration what to do with this file. The possibilities are numerous. One possibility is
to use stylesheets to create other descriptions and applications. These could include
HTML for web browsers, WML for WAP browser etc. A web page for homeowner’s
use can be formed with information on the application file and device description file.
The client in this prototype is used purely for forming new applications.

When the device description file is downloaded from the in-home-server, the file is
processed so that the device descriptions are read there. The processing in this client
involves the use of DOM API for XML file. With this API all the ‘device’-elements are
searched and their data are written to the objects presenting devices in the client
program.

In this simple client there was created individual device objects for each device
occurrence in the description file. These objects contain all the descriptive information
and a graphical embodiment to be viewable on the desktop window. The client uses a
graphical user interface for visual application creation. All the available devices are
illustrated graphically on the desktop and the bindings can be created with the selected
network variables. The Figure 49 represents the main view of the maintenance client. It
shows two devices and their I/O and a block with text fields to show the properties of
the selected I/O which can be selected from the list of 1/Os. The properties-block has
tabs, one for each field in the network variable.

78

&

nvoPIDeontrolf2]

SNVT_switeh

struct

Switch

MNULL

Eea——

‘va\ue

[short

[value

[nuLL

[5 offull lewel

o

200

o5

o

Mave 10 ta designiayout

[TestField

[TestF il

TexiFieldl

TexiField2

[TextField1

I Move 10 to desighlayout I

Figure 49. The main window of the maintenance client.

The connections are made by choosing the appropriate network variable to be shown in
the application design window. The variables required are collected there. They can be
manipulated by moving them around the window and double-clicking when they are
chosen and painted red. When the ‘Connect’-button is pressed the chosen variables are
connected. The actual connection-process takes place in the in-home-server through the
AutomationService which has a connect method for this operation. The names and other
identifying attributes are sent as parameters by this method call. At the same time the
list-box in the centre of the window shows the current application in the form of a tree.
The ‘Update’-button is used for updating this screen. Figure 50 represents the

[T connections

application design window.

=]

mviDOalarms...
SNVT_switch
01004DE52000

Device 01004DE52000 Lonix I0-module

Pio

@ CJ outputs
@ 3 |nvoPIDcontrol[2]
@ T3 nvaPIDcontrol[1]
@[3 nvoPIDcontral[0]
@ 3 nvoPIDactuator(4]
@[3 nvoPIDactuator(3]
@[3 nvoPIDactuator(2]
® T3 rvoPIDactuator1]
@[3 rvoPIDactuator]0]
@ [nvoPIDsetpoint1]
@[3 nvoPIDsetpaint[d]
@[3 nvoDlcounter[1]
@ T3 nvaDlcounter[0]
@[3 rvoDlgwitch[1]
@ 9 nvoDlswitch[0]
@[3 nvoDlstate[1]
@[] nvoDlstate[0]
@ T3 nvaDOswitch[1]
@ T3 nvoDOswitch[0]
@ 9 nvoAlrelatives(1]
@ 7 nvoAlrelatives(0]
@[] nvoAlsensar(1]
@ 3 rvoalsensar(]]
@ T3 rvoAQcontrolF (0]
@ [nvoAlarmPos
@[] nvoAlarm
@] nvoDate

& T inputs

o
Device OMD-OR5-ID4 | @~ 5 outputs | -
@[] inputs

@ O3 connection
9 Csource
3 [nvoDOswitch(n]
? CJdevice
[v1o04pES2000
§ 3 destination
[nvirelayl4]
9 [device
[ooosa4600800
© [cannection
@ [connection
@] connection
© 9 connection
@ [connection

el

=] B3

Figure 50. The application design windows with two selected network variables.

79

[_[=]x]

9. Conclusions

As stated in Chapter 1.2 the main problem was to find a way for the service provider to
configure a new home automation device to be part of an existing device community.
This statement raised several problems, the most crucial being the question of how to
configure a device with remote access through the network. There a chain of questions
was presented leading from one to another. The answers to these questions are presented
in this chapter on the basis of this study.

1. How is the automation platform configured remotely?

Based on the earlier studies in the LONTONEXTG-project, it was seen that the same
kind of networked arrangement would be appropriate. The use of a networked in-home-
server as a gateway to an automation hardware is the main idea in many other similar
concepts like OSGi which tries to standardise them. In the future there will be several
other uses for the server but here it is crucial as it acts as a controller of the home
automation. This shows that the configuration process can be done through a networked
home-server which makes accessible the actual automation platform to the outside
world. This work’s prototype included a simple implementation for in-home-server
software.

2. Where is this configuration task done?

The ideal situation would be that the automation programmer could do this remotely
from his own networked terminal. It would be useless for the service provider to visit
every home configuring devices every time a new one is bought, especially in the future
when the volumes in home automation will increase dramatically. And as this work and
its simple prototype shows it is possible to create applications remotely from the service
provider’s terminal. The client software in the prototype proves this.

3. How are the new added devices noticed and service provider informed?

The basic feature that is needed is a procedure called discovery. When the new devices
are plugged into an automation network, the in-home-server notices this and takes
needed actions. The service provider may be informed by distributed events or other
messaging methods i.e. simply by e-mails. When the service provider gets information
about the new devices, he may start appropriate actions. The process of discovering
requires that the devices support such an action. The support for this may be
implemented by the co-operation of automation hardware and its API. LON devices and
LNS API are examples of it.

80

4. How does the service provider get information and properties about the new device
and existing devices?

This study shows that it is possible to collect information about the automation platform
and create descriptions of the devices by an in-home-server and offer them for use by a
service provider. The prototype defined in this work for this task is presented in Chapter
9. Generally, it is required to have device information available in some form as well as
an accessible location. The information can be located in the device itself or from where
they are collected. Another option is to have it in a centralised database, but questions
of information correctness and rigidity can be raised while the automation platform
might be changing and evolving. The question can be seen similarly as a choice
between a centralised and distributed database. In both cases, the information can be
delivered over the network to the service provider. The most elegant choice is seen to be
the first one, as it can follow rapid changes in platform structure and information is
distributed and embedded in devices, therefore offering the required robustness.

5. How are the properties and other data from different kinds of devices described?

In the in-home-server prototype software, at start-up and on demand, data
are collected from the devices and supplemented with additional data to
achieve a description which is independent from external resources. Keeping this in
mind, several possibilities were considered as a description technology and the best
solution was seen to be an XML based description.

6. Is it possible to create a universal and generic description of devices?
This study shows it is possible. It is possible to create a description which covers the
most crucial general properties of home-automation devices. In this work the device

interface description is based on XML files and XML vocabulary. This kind of solution
is presented in Chapter 8 of this study.

81

10. Summary

This area of automation is new, starting to rise and beginning to commercialise itself.
This work is a basic research like many other researches that have been carried out
recently in this area and there is still lot of work to be done especially in standardisation.
OSGi is a good step in the right way. This work showed the power of XML and modern
distributed computing technologies. XML is very versatile because, the user is able to
define his own vocabularies and structures. On the basis of this work, it has seen that
XML device descriptions are very compact and versatile for this use. The XML device
description can be reused for many purposes with the use of stylesheets, which converts
it into the required form. An the same time it seems that the Jini distribution concept is
also very usable in the automation, mostly because it allows very flexible networking.

This work also showed that LON devices were very suitable for this project because
they use self-documenting and —identifying. The system presents modern thinking with
it’s self describing devices. It has been seen that this is a crucial point in future solutions
for home automation devices, where the configuration is done from elsewhere other
than in the home which makes things a lot easier and cheaper.

There is a lot of work to be done to achieve fully operating and fully featured systems.
The aspects needing more consideration and development are the use of distribution
more at the device level, the viewpoint of the homeowner of his own home and further
processing of device descriptions. The Jini distribution concept could be brought to the
device level where each device would offer its services in the lookup service. There
they would be usable by the homeowner’s applications and they would offer the device
specific XML descriptions for service providers when asked for. The use of stylesheets
offers wide possibilities to create new descriptions and applications. From the service
provider’s viewpoint, it would be easiest to a client software to offer readymade
software components presenting devices who’s I/Os are waiting for configuration and
binding. The creation of software components out of an XML device description should
be researched more. It seems a very attractive technology in this kind of systems, if the
devices could be dynamically presented as prewritten software components.

82

References

[1] Home Automation Association (2.8.2000). What is home automation? URL:
http://www.homeautomation.org/answers.shtml#question|.

[2] Jarvinen, P. & Jarvinen, A. (1995) Tutkimustyon metodeista. Opinpaja Oy,
Tampere.

[3] Fonselius, J. et al. (1993) Sidhkoiset automaatiolaitteet. Painatuskeskus OY,
Helsinki, pp. 9-14.

[4] Andrew, P. (1998) Industrial Control Handbook. Newnes, Oxford, 802 p.

[5] Mondada, M. (22.8.2000) Principal characteristics of field busses, URL:
http://vigna.cimsi.cim.ch/tai/BDC/in/BDC4_7.html.

[6] Lewis, G., (1999) Communications Systems Engineers’ choices. Focal Press,
Oxford, 528 p.

[7] Introduction to the LonWorks System (1999). Echelon Corporation, Palo Alto, 74 p.

[8] LonWorks Engineering Bulletin: LonTalk Protocol (1993). Echelon Corporation,
Palo Alto, 27 p.

[9] SNVT & SCPT Master List Version 10.0A (1999). LonMark Association,
Sunnyvale.

[10] Functional Profile : Switch 3200 Version 1.0 (1997). LonMark Association,
Sunnyvale, 10 p.

[11] Application Layer Interoperability Guidelines (1998). LonMark Association,
Sunnyvale, 95 p.

[12] Open Service Gateway Initiative (OSGi). Specification Overview Version 1.0
(2000). OSGi, 12 p.

[13] Waring, D. (27.5.1999) Residential Gateway Architecture and Network Operations.
ISO/IECJTC 1 SC25 WG 1, 11 p.

[14] Martin, A. et al. (2.3.2001) Residential Gateway Viability. URL:
http://citeseer.nj.nec.com/cachedpage/240325/1.

83

[15] Anderson, M. et al. (2.3.2001) The Residential Gateway: Expanding the Horizons
of Home Networking. URL : http://citeseer.nj.nec.com/419782.html.

[16] Feit, F. et al. (2.3.2001) The Home Network Revisited: Which LAN Technologies
Will Bring the Network Home? URL : http://citeseer.nj.nec.com/279358 . html.

[17] Kearns, P. (2.3.2001) Wireless Personal Area Network Standards : Consumer in
Mind? URL : http://citeseer.nj.nec.com/272258 . html.

[18] HomeRF Working Group: Wireless Networking Choices for the Broadband
Internet Home (2.3.2001). URL :
http://www.homerf.org/data/tech/homerfbroadband whitepaper.pdf.

[19] Bluetooth SIG : Bluetooth Specification Version 1.1, 1084 p.

[20] Frank, E. & Holloway, J. (2000) Connecting the Home with a Phone Line Network
Chip Set. IEEE Micro, Vol 20, No. 2.

[21] Méhonen, P., Saaranen, M. & Soininen, J-P. (2000) Functionally minimized
embedded www-server implementation. In: Proceedings of 1st International Conference
on Internet Computing 2000, IC'2000. 2629 June, Las Vegas, NV. CSREA Press, pp.
315-321.

[22] EIB Association: The EIB System for Home & Building Electronics
(10.12.2000). URL : http://eiba-software.com/eibacom/system.pdf.

[23] Vogele, K. Deutscher Amateur-Radio-Club e.V. (14.2.2001) PLC — nicht
empfehlenswert. URL : http://www.darc.de/aktuell/04112000.html.

[24] Cable Modem Basics (5.3.2001). URL: www.cable-
modem.net/gc/modem_basics.htm.

[25] xDSL Local Loop Access Technology (5.3.2001). URL :
http://www.3com.com/technology/tech net/white papers/500624.html.

[26] Hunter, D. et al. (2000) Beginning XML. Wrox Press Ltd., Birmingham, UK, 823 p.

[27] Thomas, A. (1998) Enterprise JavaBeans Technology. Patricia Seybold Group,
Boston, USA, pp. 1-10.

84

[28] Lewandowski, S. (1998) Frameworks for Component-Based Client/Server
Computing. Brown University, USA, pp. 11-13.

[29] Elmasri, R. & Navathe, S. (2000) Fundamentals of Database Systems Third
Edition. Addison-Wesley, USA.

[30] Information technlogy — Open Distributed Processing — Reference model :
Overview ISO/IEC 10746-1 (1998). ISO/IEC, Switzerland, 76 p.

[31] Kerry, R. (16.1.2001) Reference Model of Open Distributed Processing (RM-
ODP): Introduction. University of Queensland, Australia, URL :
http://www.dstc.edu.au/Research/Projects/ODP/ref model.html.

[32] Java Remote Method Invocation Specification Revision 1.7 (December 1999). Sun
Microsystems Inc., California, USA, 130 p.

[33] Edwards, W. (2000) Core Jini, Second Edition. Sun Microsystems Press, pp. 61-88.

[34] The Common Object Request Broker: Architecture and Specification Revision 2.3
(1999). Object Management Group, pp. 2-1-2-17.

[35] Moilanen, M. et al. (2000) Technical Documentation of LONTONEXTG-project,
VTT Electronics, 40 p. (unpublished)

[36] LONMark Resource File Developer’s Guide (15.11.2000). LONMark

Interoperability Association. URL :
http://www.lonmark.org/press/resfiles/MakeDRFs.zip.

85

Published by
Series title, number and

v Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland report code of publication
Phone internat. +358 9 4561
V I I Fax +358 9 456 4374 VTT Research Notes 2129
VTT-TIED-2129

Author(s)
Aihkisalo, Tommi

Title
Remote maintenance and development of home automation
applications

Abstract

This work studies methods and technologies for remote maintenance and development of home
automation applications. A major problem in remote home automation configuration seems to be the
missing information concerning the properties and attributes of the home’s automation hardware. This
study defines methods and a prototype to describe the automation hardware remotely for developer along
with further methods to use to deliver these descriptions to the developer.

A review is done of the traditional automation technologies and automation networking. Local Operating
Network automation technology and networking methods are studied more deeply, while the prototype
presented in this work used this technology. The aspects of modern home automation are reviewed and
studied. This includes crucial technologies for this work like residential gateways.

A few description technologies for describing automation platform are examined. These include XML,
databases and JavaBeans. On the basis of evaluation XML is chosen due to its compactness and
simplicity. Furthermore distributed computing technologies are presented which include the Jini concept.
This distribution technology is utilised in communication between homes and application developer.

The required XML structures are defined for device description purposes and other prototype software for
residential gateway and developer’s client are defined. The residential gateway software is described with
UML and the software was implemented using the Java programming language due to its good
networking abilities. On the basis of this work it was seen that is possible to describe the home’s
automation platform and deliver the descriptions for use of the remote developer.

Especially XML was seen as very suitable for this purpose and the Jini distribution concept was also seen
suitable for delivering this and other maintenance and development services to the remote developer.

Keywords
Jini, XML, LON, Local Operating Network, residential gateways, remote maintenance, remote development
Activity unit
VTT Elektroniikka, Sulautetut ohjelmistot, Kaitovayld 1, PL 1100, 90571 OULU
ISBN Project number
951-38-5943-6 (soft back ed.) EOSU00385
951-38-5944—4 (URL: http://www.inf.vtt.fi/pdf/)
Date Language Pages Price
March 2002 English 85 p. B
Name of project Commissioned by
VHE
Series title and ISSN Sold by
VTT Tiedotteita — Meddelanden — Research Notes VTT Information Service
1235-0605 (soft back edition) P.O.Box 2000, FIN-02044 VTT, Finland
1455-0865 (URL: http://www.inf.vtt.fi/pdf/) Phone internat. +358 9 456 4404
Fax +358 9 456 4374

VTT TIEDOTTEITA - MEDDELANDEN — RESEARCH NOTES

VTT ELEKTRONIIKKA — VTT ELEKTRONIK - VIT ELECTRONICS

1563
1565

1593

1614

1632
1642
1655

1746

1759

1777

1816

1825

1908
1911

1913
1914
1927
1933

1965
1985
2042

2046
2065

2088
2092
2095

2114
2129

Saari, Hannu. Koneautomaatio-ohjelmistojen komponentointi. 1994. 66 s. + liitt. 13 s.

Jussila, Salme, Salmela, OIlli & Stubb, Henrik. Impedanssispektroskopia elektroniikan -
pakkaustekniikassa. Johdepolymeerien ja niiden kontaktirajapintojen karakterisointi. 1994. 30 s.

Rytild, Hannu. Reverse engineering technology as a tool of embedded software. A solution from PL/M
code to structure charts. 1994. 84 p. + app. 16 p.

Isomursu, Pekka, Juuso, Esko, Rauma, Tapio, Haataja, Kari, Kemppainen, Seppo & Myllyneva, Jaakko.
Sumea sididtd suomalaisessa prosessiteollisuudessa. 1994. 70 s.

Maijanen, Satu. Segmentointi ja asiakastarpeiden analysointi tuotespesifikaation méarittelyssa. 1995. 57 s.
Niemeld, Eila. Uudelleenkiytettivyys koneenohjausohjelmiston suunnittelussa. 1995. 114 s.

Haapanen, Pentti, Korhonen, Jukka & Pulkkinen, Urho. Ydinvoimalaitosten ohjelmoitavien
automaatiojirjestelmien tutkimushanke (OHA) 1995-1998. 1995. 23 s.

Berg, Pauli. Toteutuskokemuksia Oppivien ja #dlykkdiden jérjestelmien sovellukset -ohjelman
hankkeista. 1996. 28 s. + liitt. 12 s.

Korpipdd, Panu. CAD-suunnittelutiedon hyddyntiminen mekatronisen laitteen kunnonvalvonnassa.
1996. 65 s. + liitt. 3 s.

Roning, Juha, Kalaoja, Jarmo, Okkonen, Ari & Kauniskangas, Hannu. Reaaliaikaisten -
konenidkosovellusten kehittiminen. 1996. 72 s. + liitt. 40 s.

Pyhéluoto, Timo. Ohjelmistokomponenttien rajapintojen kuvaaminen. 1997. 55 s. + liitt.
22 s.

Heimala, Pidivi, Hokkanen, Ari, Keindnen, Kari, Kerinen, Kimmo, Tenhunen, Jussi & Lehto, Ari.
Mikroanturisysteemien tutkimusohjelma 1994-1996. 1997. 47 s.

Tuominen, Arno. Joustavat ohjelmistoratkaisut tehtdvékriittisessd hajautetussa jirjestelméssd. 1998. 74 s.

Holappa, Mikko S. CORBAn soveltaminen joustavan valmistusjérjestelmédn perusohjelmistoon. 1998.
95s.

Salmela, Mika. Testausympéiriston konfigurointityokalun kiytettdvyyden parantaminen. 1998. 56 s.
Korpipdd, Tomi. Hajautusalustan suunnittelu reaaliaikasovelluksessa. 1998. 56 s. + liitt. 4 s.
Lumpus, Jarmo. Kenttdviyldverkon automaattinen konfigurointi 1998. 68 s. + liitt. 3 s.

Thme, Tuomas, Kumara, Pekka, Suihkonen, Keijo, Holsti, Niklas & Paakko, Matti. Developing
application frameworks for mission-critical software. Using space applications as an example. 1998. 92

p- + app. 20 p.
Niemeld, Eila. Elektroniikkatuotannon joustavan ohjauksen tietotekninen infrastruktuuri. 1999. 42 s.
Rauhala, Tapani. Javan luokkakirjasto testitapauseditorin toteutuksessa. 1999. 68 s.

Kaidridinen, Jukka, Savolainen, Pekka, Taramaa, Jorma & Leppild, Kari. Product Data Management
(PDM). Design, exchange and integration viewpoints. 2000. 104 p.

Savikko, Vesa-Pekka. EPOC-sovellusten rakentaminen. 2000. 56 s. + liitt. 36 s.

Sihvonen, Markus. A user side framework for Composite Capability / Preference Profile negotiation.
2000. 54 p. + app. 4 p.

Korva, Jari. Adaptiivisten verkkopalvelujen kdyttoliittymat. 2001. 71 s. + liitt. 4 s.
Kérki, Matti. Testing of object-oriented software. Utilisation of the UML in testing. 2001. 69 p. + app. 6 p.

Seppédnen, Veikko, Helander, Nina, Niemeld, Eila & Komi-Sirvio, Seija. Towards original software
component manufacturing. 2001. 105 p.

Sachinopoulou, Anna. Multidimensional Visualization. 2001. 37 p.

Aihkisalo, Tommi. Remote maintenance and development of home automation applications. 2002. 85 p.

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Background
	1.2 Research problem and methods
	1.3 Boundaries of this research

	2. Classifications and general concepts in the field of automation
	2.1 Automation devices
	2.2 Automation networks
	2.3 Local Operating Network
	2.3.1 Addressing in LON networks
	2.3.2 LonTalk protocol layers
	2.3.3 Network variables
	2.3.4 Functional profiles
	2.3.5 Self-documentation and -identification

	3. Modern home automation
	3.1 Residential area networks and local area networks
	3.2 Residential gateways
	3.3 Current residential gateway standards
	3.4 Conclusions of this chapter

	4. Technologies for presenting device descriptions
	4.1 XML-presentation
	4.1.1 Structure of the XML document
	4.1.2 Structure of the elements

	4.2 Software component technology
	4.2.1 JavaBeans components
	4.2.2 JavaBeans as a collection of information

	4.3 Databases
	4.4 Evaluation of description technologies

	5. Distribution technologies
	5.1 Open Distributed Processing reference model
	5.2 Engineering viewpoint
	5.3 Remote Method Invocation
	5.4 Jini
	5.5 Common Object Request Broker Architecture

	6. Requirements set by the previous work
	6.1 Specified system concept
	6.2 Basic structure of the prototype system developed in this study
	6.3 Requirements of the prototype system

	7. XML description of devices
	7.1 Data available as self-documentation and -identification from API
	7.2 Resource XML file
	7.3 Structure of the device description XML file
	7.4 Use of XSLT in forming the device description file
	7.5 Application description file

	8. Definition of the prototype
	8.1 System architecture
	8.2 Collaborations in system
	8.3 Implementation
	8.4 Use of the XML device descriptions

	9. Conclusions
	10. Summary
	References

