
V
TT RESEA

RCH
 N

OTES 2238
U

biSoft - pervasive softw
are

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

ISBN 951–38–6452–9 (soft back ed.) ISBN 951–38–6453–7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0605 (soft back ed.) ISSN 1455–0865 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004 VTT RESEARCH NOTES 2238

Päivi Kallio, Eila Niemelä & Juhani Latvakoski

UbiSoft - pervasive software

VTT TIEDOTTEITA – RESEARCH NOTES

VTT ELEKTRONIIKKA – VTT ELEKTRONIK – VTT ELECTRONICS

1914 Korpipää, Tomi. Hajautusalustan suunnittelu reaaliaikasovelluksessa. 1998. 56 s. +
liitt. 4 s.

1927 Lumpus, Jarmo. Kenttäväyläverkon automaattinen konfigurointi 1998. 68 s. + liitt.
3 s.

1933 Ihme, Tuomas, Kumara, Pekka, Suihkonen, Keijo, Holsti, Niklas & Paakko, Matti.
Developing application frameworks for mission-critical software. Using space
applications as an example. 1998. 92 p. + app. 20 p.

1965 Niemelä, Eila. Elektroniikkatuotannon joustavan ohjauksen tietotekninen
infrastruktuuri. 1999. 42 s.

1985 Rauhala, Tapani. Javan luokkakirjasto testitapauseditorin toteutuksessa. 1999. 68 s.

2042 Kääriäinen, Jukka, Savolainen, Pekka, Taramaa, Jorma & Leppälä, Kari. Product Data
Management (PDM). Design, exchange and integration viewpoints. 2000. 104 p.

2046 Savikko, Vesa-Pekka. EPOC-sovellusten rakentaminen. 2000. 56 s. + liitt. 36 s.

2065 Sihvonen, Markus. A user side framework for Composite Capability / Preference
Profile negotiation. 2000. 54 p. + app. 4 p.

2088 Korva, Jari. Adaptiivisten verkkopalvelujen käyttöliittymät. 2001. 71 s. + liitt. 4 s.

2092 Kärki, Matti. Testing of object-oriented software. Utilisation of the UML in testing.
2001. 69 p. + app. 6 p.

2095 Seppänen, Veikko, Helander, Nina, Niemelä, Eila & Komi-Sirviö, Seija. Towards
original software component manufacturing. 2001. 105 p.

2114 Sachinopoulou, Anna. Multidimensional Visualization. 2001. 37 p.

2129 Aihkisalo, Tommi. Remote maintenance and development of home automation
applications. 2002. 85 p.

2130 Tikkanen, Aki. Jatkuva-aikaisten multimediasovellusten kehitysalusta. 2002. 55 s.

2157 Pääkkönen, Pekka. Kodin verkotettujen laitteiden palveluiden hyödyntäminen. 2002.
69 s.

2160 Hentinen, Markku, Hynnä, Pertti, Lahti, Tapio, Nevala, Kalervo, Vähänikkilä, Aki &
Järviluoma, Markku. Värähtelyn ja melun vaimennuskeinot kulkuvälineissä ja
liikkuvissa työkoneissa. Laskenta-periaatteita ja käyttöesimerkkejä. 2002. 118 s. +
liitt. 164 s.

2162 Hongisto, Mika. Mobile data sharing and high availability. 2002. 102 p.

2201 Ailisto, Heikki, Kotila, Aija & Strömmer, Esko. Ubicom applications and technologies.
2003. 54 p.

2213 Lenkkeri, Jaakko, Marjamaa, Tero, Jaakola, Tuomo, Karppinen, Mikko & Kololuoma, Terho.
Tulevaisuuden elektroniikan pakkaus- ja komponenttitekniikat. 2003. 78 s. + liitt. 4 s.

2238 Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani. UbiSoft - pervasive software. 2004.
68 p.

VTT TIEDOTTEITA � RESEARCH NOTES 2238

UbiSoft - pervasive software

Päivi Kallio, Eila Niemelä & Juhani Latvakoski
VTT Electronics

2

ISBN 951�38�6452�9 (soft back ed.)
ISSN 1235�0605 (soft back ed.)
ISBN 951�38�6453�7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0865 (URL: http://www.vtt.fi/inf/pdf/)
Copyright © VTT 2004

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2004

3

Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani. UbiSoft - pervasive software [Läsnä-älyn ohjelmisto-
jen haasteet ja teknologiat]. Espoo 2004. VTT Tiedotteita � Research Notes 2238. 68 p.

Keywords ubiquitous software, pervasive computing, ubiquitous computing, ubiquitous business

Abstract
Ubiquitous computing enhances computer use by making many computers available
throughout the physical environment, while making them effectively invisible to the
user. Ubiquitous computing can be seen as a prerequisite for pervasive computing that
emphasizes mobile data access, and the mechanisms needed to support a community of
nomadic users. Ambient intelligence focuses on a smart way to use communication
technology for making life simpler, more enjoyable and interesting. Ubiquitous software
is software required for ubiquitous computing environments and in this report it in-
cludes pervasive software. Ambience intelligence is out of the scope of this report.

The aim of this report is to offer Finnish companies and preparators of the Tekes-
programs (ELMO, NETS, FENIX) a total view of the maturity, development needs and
business opportunities of software engineering in the ubiquitous computing area. This
report illustrates the state-of-the-art and requirements of ubiquitous software based on
recent surveys. This report also provides a view on the state-of-the-practice of ubiqui-
tous software in Finnish companies based on interviews made in some Finnish compa-
nies and replies received to a questionnaire sent to bigger sample of companies.

State-of-the-art visions set about global ubiquitous systems, products' short-time-to-
market and quality requirements that are tightening up, set ubiquitous software a huge
set of requirements that include interoperability, hetereogeneity, mobility, security,
adaptability, ability of self-organization, augmented reality and scalable content.
Enabling technologies of ubiquitous software are standards, reference architectures and
generic software technologies. Ubiquitous software develoment requires applying
suitable software architectures and development methods that are presented in this
research.

Based on the stat-of-the-practise this report presents that the main challenges of
ubiquitous software are achieving adaptable middleware and interoperability between
services and networks, developing the required enabling technologies, defining value
chain for providing the services and guaranteeing secure transactions between different
stakeholders. Ubiquitous computing is seen to combine hardware and software, so new
kind of development methods and architectural models are required for ubiquitous
service development. Companies will have business opportunities in ubiquitous busi-

4

ness in middleware components, for example, concerning security, enabling technolo-
gies, ubiquitous components and sensors implemented locally to various conditions
such as to the surface of paper, small-sized applications, and personalized services.

In principal, we suggest as important research topics in ubiquitous software arena secu-
rity, management of changing requirements, middleware standards and services, cost
efficient architecture solutions and ubiquitous business value chains.

Recommended research topics of ubiquitous software.

 Authors' view Companies' view

Generic

− Security and privacy protection
− Ontology-orientated design
− Methods and tools for describing

service and content semantics

− Data security, ownership and control
− Information semantics
− User interfaces and interaction of a user in

different devices

Software − Cost-efficient and dynamic net-
working and architecture solutions

− Management of changing require-
ments

− Dynamic architectures
− Adaptive middleware services
− A unified middleware standard
− Service evaluation
− Methods and tools for evaluating

execution qualities
− Methods how to add value to exist-

ing software solutions
− Methods, tools and platforms for

testing embedded product software

− Management of rapidly changing
requirements

− Defining software-intensive, tailorable,
platform-independent product
applications

− Configuration of the functionality
− Dynamic architectures
− Middleware and use cases of ubiquitous

applications
− Component-based design
− Defining standardized interfaces

System − Interoperable distributed software
platforms

− Defining services that are adaptable to
changes in transmission networks, service
level, terminal etc.

Business − Business value chains − Defining challenges and costs of the in-
frastructure implementation

− Defining cost-effective and reasonable
value chain

− Defining consumer needs and potential
markets; the needs could be collected with
the aid of pre-study of potential applica-
tions and their advantages

5

Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani. UbiSoft - pervasive software [Läsnä-älyn ohjelmisto-
jen haasteet ja teknologiat]. Espoo 2004. VTT Tiedotteita � Research Notes 2238. 68 s.

Avainsanat ubiquitous software, pervasive computing, ubiquitous computing, ubiquitous business

Tiivistelmä
Läsnä-älyn ohjelmistot lisäävät tietokoneiden käyttöä ja tarjoavat ohjelmistoilla tuotet-
tuja palveluja käyttäjille hyödyntämällä käyttäjien normaalia fyysistä toimintaympäris-
töä, mutta kätkemällä tietokoneiden olemassaolon itse käyttäjiltä. Verkotettuja sulautet-
tuja järjestelmiä tarvitaan, jotta käyttäjä saa haluamansa palvelut kaikissa mahdollisissa
tilanteissa ja ympäristöissä. Tietokoneiden ja tietotekniikan leviäminen edellyttää myös
tiedon saatavuutta liikkuvien päätelaitteiden kautta, mikä puolestaan edellyttää erityisiä
liikkuvaa käyttäjää tukevia ratkaisuja. Älykkäät ympäristöt pyrkivät hyödyntämään tie-
toliikenneteknologiaa ihmisen elämän helpottamiseksi ja rikastuttamiseksi. Läsnä-älyn
ohjelmisto tarkoittaa verkotettujen ja ympäristöön sulautettujen järjestelmien ohjelmistoa.
Läsnä-älyn ohjelmistojen kehittäminen korostaa joko tietokonetekniikkaa tai ihmiskeskei-
syyttä, joita molempia asioita on käsitelty tässä raportissa rinnakkain. Älykkäiden ympä-
ristöjen kehittämiseen liittyvät teknologiat on jätetty raportin aihepiirin ulkopuolelle.

Tämän raportin tarkoitus on tarjota suomalaisille yrityksille ja Tekes-ohjelmien (ELMO,
NETS, FENIX) valmistelijoille kokonaisnäkemys läsnä-älyn ohjelmistoteknologioiden
kypsyydestä, kehitystarpeista, liiketoimintamahdollisuuksista ja ohjelmistokehityksen
verkottumisesta sekä läsnä-älyn sovellusten mahdollisuuksista tulevaisuudessa. Raportti
kuvaa läsnä-älyn ohjelmistojen teknologialle asettamat vaatimukset ja teknologioiden
kypsyyden perustuen tuoreisiin tutkimustuloksiin. Raportti esittää myös läsnä-älyn so-
velluksia kehittävien suomalaisten teollisuusyritysten käsityksen teknologian nykytilas-
ta haastatteluihin ja kyselytutkimukseen perustuen.

Globaaleista langattomista kommunikointijärjestelmistä esitetyt visiot, palvelutuotteille
asetettava lyhyt kehitysaika ja yhä kiristyvät laatuvaatimukset asettavat sekä järjestel-
mille että ohjelmistoille suuren joukon haasteita kuten liikkuvuus, yhteistoiminnallisuus
ja mukautuvuus. Standardit, viitearkkitehtuurit ja yleiset ohjelmistoteknologiat ovat
esimerkkejä teknologioista, jotka mahdollistavat läsnä-älyn ohjelmistojen kehittämisen.
Koska kaikkialle leviävä tietojenkäsittely yhdistää ohjelmistot ja laitteistot, läsnä-älyn
ohjelmistojen kehittämiseen tarvitaan uudenlaisia menetelmiä ja arkkitehtuurimalleja.

Tässä raportissa esitetään, että läsnä-älyn ohjelmistojen toteuttamisen suurimpia
haasteita ovat mukautuvan välitason ohjelmistojen kehittäminen, ohjelmistopalvelujen
ja kommunikointiverkkojen yhteistoiminnallisuuden aikaansaaminen, vaadittavan

6

infrastruktuurin kehittäminen, toimivan arvoketjun määritteleminen palvelujen
tuottamiseksi ja palvelujen turvallisen toimituksen takaaminen eri osapuolten välillä.
Yrityksillä on liiketoimintamahdollisuuksia läsnä-älyn ohjelmistojen ja järjestelmien
alueella mm. välitason komponenteissa, palvelut mahdollistavissa teknologioissa, su-
lautettujen järjestelmien komponenteissa, antureissa ja pienikokoisissa henkilökohtaiste-
tuissa palveluissa.

Suosituksia läsnä-älyn ohjelmistojen tutkimusaiheiksi.

 Kirjoittajien näkökulma Yritysten näkökulma

Yleiset
teknologiat

− tietoturva ja yksityisyyden suojaus
− ontologia perusteinen suunnittelu
− menetelmät ja työkalut palvelun ja

sisällön merkityksen kuvaamiseksi

− tietoturva, omistusoikeudet ja niiden
hallinta

− tiedon semantiikka
− käyttöliittymät ja erilaiset

vuorovaikutustekniikat
Ohjelmistot − kustannustehokkaat dynaamiset

välitason palvelut ja
arkkitehtuuriratkaisut

− nopeasti muuttuvien vaatimusten
hallinta

− dynaamiset arkkitehtuurit
− adaptiiviset välitason palvelut
− yhdistetty välitason standardi
− palvelujen varmentaminen
− menetelmät ja työkalut

suoritusaikaisten laatutekijöiden
varmentamiseksi

− menetelmät olemassa olevien
palvelujen sovittamiseksi läsnä-älyn
sovelluksiksi

− sulautettujen ohjelmistotuotteiden
kehittämistä tukevat menetelmät,
työkalut ja alustat

− nopeasti muuttuvien vaatimusten hallinta
− dynaamiset arkkitehtuurit
− ohjelmistokeskeisten, räätälöitävien ja

alustariippumattomien sovellusten
kehittäminen

− toiminnallisuuden konfiguroitavuus
− läsnä-älyn sovellusten välitason palvelut ja

käyttötapaukset
− komponenttiperusteinen suunnittelu
− standardiliityntöjen määrittely

Järjestelmä − yhteentoimivat hajautetut
ohjelmistoalustat

− tiedonsiirtoverkoissa, palvelutasoissa ja
päätelaitteissa tapahtuviin muutoksiin
sopeutuvien palvelujen määrittely

Liiketoiminta − liiketoiminnan arvoketjujen
määrittely

− infrastruktuurin haasteiden ja
kustannusten määrittely

− kustannustehokkaiden ja järkevien
arvoketjujen määrittely

− asiakas- ja markkinatarpeiden määrittely;
tarpeiden tunnistamiseksi aktivoidaan
sovellusten mahdollisuuksia ja hyötyjä
kartoittavia esitutkimuksia

7

Preface
The background of this report is the need presented by Tekes and Finnish companies to
clarify the development needs in the ubiquitous area from the software point of view.
This need is based on VTT Electronics' Ubicom-raport "Ubicom applications and tech-
nologies" (Ailisto et al. 2003). The aim of this report is to offer Finnish companies and
preparators of the Tekes-programs (ELMO, NETS, FENIX) a view from the maturity,
development needs, business opportunities and networked software development in
ubiquitous computing area.

The work has been carried out within the Opera project of VTT Technical Research
Centre of Finland and has been funded by Tekes, the National Technology Agency of
Finland. This report is based on the state-of-the-art surveys and the interviews and ques-
tionnaire done for industrial companies. The state-of-the-art survey of this report was
performed by collecting the most recent surveys made in several research projects and
the state-of-the-practice by interviewing some Finnish companies autumn, 2003 and
sending them thereafter a questionnaire to wider amount of companies.

Prof. Eila Niemelä functioned as responsible manager of this report. State-of-the-
practice of this report was realized by senior research scientists Päivi Kallio and Juhani
Latvakoski. Eila Niemelä has contributed to all other chapters except 4 of this report,
Juhani Latvakoski to Chapter 2 and the testing in Chapter 3, and Päivi Kallio to Chap-
ters 1, 4 and 5 and the editing of this report. Matti Sihto from Tekes provided his valu-
able comments and views for this report.

We would like to sincerely thank the representatives of the companies that participated
in this research for their valuable support.

Oulu, March 2004

Päivi Kallio Eila Niemelä Juhani Latvakoski

8

Contents

Abstract..3

Tiivistelmä...5

Preface ...7

Abbreviations ..10

1. Introduction..13
1.1 Background and aims...13
1.2 Definition of concepts..13
1.3 Overview of this report ..15

2. Requirements for ubiquitous software ...16
2.1 Visions of ubiquitous computing ...16
2.2 Some essential requirements..18

2.2.1 Interoperability ..18
2.2.2 Heterogeneity ..19
2.2.3 Mobility ...19
2.2.4 Security, privacy and survivability..20
2.2.5 Adaptability ...21
2.2.6 Ability of self-organization ...23
2.2.7 Augmented reality and scalable content..23

2.3 Summary..24

3. State-of-the-art in ubiquitous software technologies ...26
3.1 Enabling technologies..27
3.2 Standardization bodies ...30
3.3 Research activities in ubiquitous software development31
3.4 Software architecture of ubiquitous systems ...32

3.4.1 Architectural styles and patterns ...33
3.4.2 Wireless-specific design patterns ..35
3.4.3 Adaptive resource management ..35
3.4.4 Proactive service discovery ...37
3.4.5 Context-aware coordination ..38
3.4.6 Multi-agents...39
3.4.7 Models for heterogeneous environments ..40

3.4.7.1 Meta models ...40
3.4.7.2 Component types..41

9

3.4.7.3 Generative model ...42
3.5 Development aspects of ubiquitous software ..43

3.5.1 Towards service-oriented software development....................................43
3.5.2 Adding quality to legacy software...45
3.5.3 Agile methods in ubiquitous software development46
3.5.4 Software testing...48

3.6 Summary..50

4. State of the practice in Finnish R & D ..51
4.1 Background knowledge and current state of ubiquitous arena52
4.2 System development ..53
4.3 Architectural design and analysis ..54
4.4 Software development ...54
4.5 Business challenges to ubiquitous computing ...56
4.6 Special ubisoft- features of different domains ...57
4.7 Summary..59

5. Conclusions and recommendations ...61
5.1 Future research in the ubiquitous software area ..61
5.2 Opportunities for Finnish companies in the ubiquitous area62
5.3 Recommendations..63

References ...64

 10

Abbreviations
3GPP 3rd Generation Partnership Project
2G,3G,4G 2nd Generation, 3rd Generation, 4th Generation (mobile phone networks)
ACD Application customized description
AIMS Adaptive Introspective Management System
AOP Aspect Oriented Programming
API Application Programming Interface
ASD Adaptive Software Development
AWG Architecture Working Group
CAST Computer Aided Software Testing
C/S Client Server
CFS Context File System
CM Coordination Medium
COM(+) Component Object Model (Microsoft)
CORBA Common Object Request Broker Architecture (OMG)
CPU Central Processing Unit
DCOM Distributed COM (Microsoft)
DRM Digital Rights Management
EJB Enterprise Java Beans
ETSI European Telecommunications Standards Institute
EU European Union
FDD Feature-Driven Development
FIPA Foundation for Intelligent Physical Agents
GMA Grid Monitoring Architecture
GPRS/ General Packet Radio Service/ Enhanced Data rates for
EDGE Global Evolution
GSP Generic Switch Place
HAVi Home Audio / Video Interoperability
HomeRF/ Home Radio Frequency/ Shared Wireless Access Protocol
SWAP
HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol
HTTPR Hypertext Transfer Protocol Reliable
IDL Interface Definition Language
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IMPP Instant Messaging and Presence Protocol
IP Internet Protocol
IPv6 IP version 6
IS Internal Structure

 11

IT Information Technology
ITEA Information Technology for European Advancement
ITU International Telecommunication Unit
MARS Mobile Agent Reactive Spaces
MDA Model Driven Architecture
MIP Mobile Internet Protocol
MITA Mobile Internet Technical Architecture
MOF Meta Object Facilities
MOM Message Oriented Middleware
MPU Message Processing Units
MQ Messaging and Queuing
MS Microsoft
MSP Message-passing Switch Place
MVC Model-View-Controller
NetBSD Net Berkeley Software Distribution
OBSAI Open Base Station Architecture Initiative
ODP Open Distributed Processing
OMA Open Mobile Alliance
OMG Object Management Group
OSA Open Service Architecture
OSGi Open Services Gateway initiative
P2P Peer-to-Peer
PAC Presentation-Abstraction-Control
PAN Personal Area Network
PDS Proactive Directory Service
PKI Public Key Infrastructure
QoS Quality of Service
RPC/RMI Remote Procedure Call/ Remote Method Invocation
SA Survival by Adaptation
SIP Session Internet Protocol
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SP Survival by Protection
SSL Secure Sockets Layer
TCP/IP Transmission Control Protocol/ IP
TPA Trading Partners Agreement
TTCN Tree and Tabular Combined Notation
UDDI Universal Description, Discovery and Integration
UDP/IP User Datagram Protocol IP
UML Unified Modeling Language
W3C World Wide Web Consortium

 12

WML Wireless Markup Language
VFS Virtual File System
VHE/OSA Virtual Home Environment/ OSA
WLAN Wireless Local Arean Network
WSCL Web Services Conversation Language
WSDL Web Service Definition Language
WSFL Web Services Flow Language
WSXL Web Service Experience Language
WWRF Wireless World Research Forum
xDSL Digital Subscriber Lines
XHTML eXtensible HTML
XMI Meta Data Interchange
XML eXtensible Markup Language
XP eXtreme Programming

 13

1. Introduction

1.1 Background and aims

The background of this report is the need presented by Tekes and Finnish companies to
clarify the development needs in the ubiquitous area from the software point of view.
This need is based on VTT Electronic's Ubicom-raport "Ubicom applications and tech-
nologies" (Ailisto et al. 2003). The aim of this report is to offer Finnish companies and
preparators of the Tekes-programs (ELMO, NETS, FENIX) a view of the maturity, de-
velopment needs, business opportunities and networked software development of soft-
ware engineering in the ubiquitous computing area.

This report aims to present the needs for ubiquitous software and process development
as a whole. The aim of the evaluation is to illustrate the main challenges in ubiquitous
software development, enabling and enhanced software technologies and their maturity
level. The report explores the following topics:

• requirements of ubiquitous software development,

• architectural solutions and standardization of the area,

• the main actors in the area,

• estimation of the future evolution of the area in a 5-10 years period,

• the opportunities for Finnish industry, and

• recommendations for required actions.

The state-of-the-art survey of this report was done by collecting the newest surveys
made in several research projects concerning software architectural models and devel-
opment methods of pervasive software. The state-of-the-practice was realized during
autumn 2003 by interviewing experts from eight Finnish companies and sending a ques-
tionnaire to 80 Finnish companies. The results of the work reported in this research note
were completed in 2004.

1.2 Definition of concepts

Ubiquitous computing enhances computer use by making many computers available
throughout the physical environment, while making them effectively invisible to the
user (Weiser 1991; Weiser 1993). Mark Weiser from Xerox PARC expressed the goal
as to achieve the most efficient kind of technology that is essentially invisible to the
user, to make computing as ordinary as electricity. Ubiquitous computing embeds com-

 14

puter technology in our every-day environment providing humans with information ser-
vices and applications through any device over different kinds of networks. Thus, com-
puter technology is addressed by adding computers everywhere. At the beginning of the
ubiquitous computing efforts, the focus was on small special purpose devices, network
protocols, interaction substrates, and new styles of applications. After the first proto-
types, additional research directions were identified:

• wireless communications,

• partitioning and disconnected operation,

• location and resource discovery,

• privacy, and

• power consumption.

Ubiquitous software is software required for ubiquitous computing environments. The
other terms, used in the same context but from different points of view, are pervasive
computing and ambient intelligence. Pervasive computing emphasizes mobile data ac-
cess and the mechanisms needed to support a community of nomadic users, smart or
�active" spaces and context awareness. Pervasive computing also emphasizes the way
people use devices to interact with the environment, the best ways to deploy new func-
tions on a device and exploit interface modalities for specific tasks. There are three ma-
jor focus areas in pervasive computing. First is the way people view mobile computing
devices and use them within their environments to perform tasks. Secondly, the way
applications are created and deployed to enable such tasks to be performed, and thirdly,
how the environment is enhanced by the emergence and ubiquity of new information
and functionality (Raatikainen et al. 2003).

Ambient intelligence focuses on a smart way to use communication technology for mak-
ing life simpler, more enjoyable and interesting. Thus, ubiquitous computing is a pre-
requisite for pervasive computing, whereas ambient intelligence is based on pervasive
computing technology that is enhanced by intelligent user interfaces suitable for differ-
ent usage contexts (Purhonen & Tuulari 2003). In ambient intelligence persons are sur-
rounded by intelligent interfaces supported by computing technology, which is every-
where, embedded in clothes, furniture, walls, vehicles etc. As interaction, one uses the
whole body: speech, pointing, gestures and even direction of sight. The intelligent envi-
ronments will play a role in all activities: from houses to industrial plants and health-
care. The concept �ambient intelligence� is not limited to services or devices, but ex-
tends to any kind of software system. In this research ubiquitous software includes also
pervasive software. Ambience intelligence is out of the scope of this report.

 15

1.3 Overview of this report

This report focuses on the ubiquitous software technologies so that Chapter 2 illustrates
the requirements of ubiquitous computing. Chapter 3 provides a state-of-the-art of ubiq-
uitous software. Chapter 4 describes the summary and analysis of the interviews of Fin-
nish companies and the replies received to the questionnaire sent afterwards to wider
amount of Finnish companies. Chapter 5 illustrates the actors in ubiquitous software
development. Chapter 6 draws conclusions, defines the opportunities of Finnish compa-
nies in the ubiquitous arena and gives recommendations for future research activities.

 16

2. Requirements for ubiquitous software
Figure 1 visualizes the requirements of ubiquitous computing that arise from visions of
ubiquitous computing. The system, software and business are affected by these re-
quirements. In Figure 1 the system refers to the computing platforms, software to soft-
ware implemented as services and components of the system, and business to the net-
work of actors providing added value and components and services to the system devel-
opment and the process for producing the system and its components (i.e. development
view). The main requirements of ubiquitous computing are interoperability, heterogene-
ity, mobility, adaptability, security and privacy, self-organisation, and last but not least
augmented reality and content scalability. The aim of this chapter is to provide some
more details for clarification of Figure 1.

Figure 1. Requirements architecture for ubiquitous computing.

2.1 Visions of ubiquitous computing

The notion of ubiquitous computing is related to a set of other paradigms such as no-
madic computing, pervasive computing and ambient intelligence. A more concrete view
(based on communication technologies) of the future wireless system is Wireless World
Research Forum's (WWRF) MultiSphere model, which consists of several levels: Per-
sonal area network (PAN), immediate environment, instant partners, radio accesses,
interconnectivity, and cyberworld (WWRF 2001). The model is �I� centric in the sense,
that everything starts from a human described in the center of the model. The closest
interaction will happen with the PAN elements that are nearest to us or might even be

System Software Business
(development view)

Mobility

Heterogeneity

Security, privacy and survivability

Self-organisation

Interoperability

Adaptability

Augmented reality and
scalable content

Visions for Ubiquitous computing
Pervasive

 Computing

Nomandic
computing

Ambient
Intelligence

WWRF MultiSphere Model

 17

part of our body. The immediate environment refers to the real world elements that sur-
round us. Today, we usually do not interact with the elements in an electronic way, but
in the future this is expected to happen. In addition, future interaction should even per-
sonalize the devices in the immediate environment. For example, TV sets should know
the programs the user is interested in. A toaster might want to deliver toast just as a per-
son wants it, and a fridge wants to tell what we could have for breakfast or propose that
we go and buy milk.

Instant partners refers to the more complex elements around us, such as cars. It is ex-
pected that we want to talk with them or relay information through them. The same ap-
plies to the people around us, which enables a new form of networking people with
whom we want to be closely interconnected, e.g. local chat communities.

Efficient radio accesses that need to be publicly accessible for any entity are the essen-
tial fundamental requirement to enable ubiquitous coverage of a wide area system. Cur-
rent infrastructures will be enhanced by novel solutions such as mobile base stations.
The system needs to be adaptive to various user devices, equipped with simple interac-
tion with a network having as low operational cost as possible. Another essential issue
is the universal wireless interconnectivity, which can be claimed to increase the value of
communications proportionally to the square of the number of the connected devices.
One key requirement is offering the right level of support for the various specialized
radio interfaces and terminals.

Ubiquitous computing environments also require adaptive interaction with the radio
technology and applications. End to end support for the required quality of service level
for interconnectivity is essential. The cyberworld is enhancing our physical presence in
the virtual world that is already visible in the form of �web� services and advanced
games. In the future, we can stay in touch with our (semantic) agents, knowledge bases,
communities, services and transactions.

Ubiquitous wireless world systems trigger a huge set of requirements for both system
and software technologies. One discussion is provided in the roadmap of future tele-
communication technologies (Sipilä 2002), in which the future requirements are dis-
cussed in terms of inter-networking, micromechanical radio frequency systems, service
architectures and smart human environments. A ubiquitous computing environment
requires an advanced computing platform with energy efficient radio accesses. In addi-
tion, it can be assumed that one of the most essential challenges will arise from the huge
complexity and intelligence required in software that embeds the brains of the system.

 18

2.2 Some essential requirements

This section describes some essential requirements from the software and software de-
velopment points of view as presented in Figure 1.

2.2.1 Interoperability

Interoperability is one of the most essential requirements of ubiquitous software, be-
cause the need to network the embedded products of different vendors with cyber world
applications is increasing in the ubiquitous environment. The increasing amount of mi-
croprocessors and their networking highlights the need for distributed software plat-
forms applicable for distributed wireless computing (Coulouris et al. 2001), de facto or
de jure standards (consensus between different actors), and especially testing that soft-
ware implementations realize these standards correctly.

Integrability is related to interoperability and interconnectivity. Interoperability is a
sub-characteristic of integrability and is partially defined by interconnectivity, the abil-
ity of software components to communicate and exchange information. Thus, intercon-
nectivity is a prerequisite for interoperability, the ability of software to use the ex-
changed information and provide something new originating from exchanged informa-
tion. Interconnectivity and interoperability are execution qualities, whereas integrability
has a larger scope, impacting the development and evolution of a system. Therefore,
integrability is to be considered together with the features of a product family, domain
requirements, coarse-grained architectural elements and the ways to develop and main-
tain software systems. Interoperability is considered when components and their interac-
tions are defined in detail and finally observed as executable models, simulations and
running systems. (Taulavuori et al. 2004)

Integration architecture is a software architectural description of the overall solution to
interoperability problems between various component systems. The focus is on pre-
integration assessment that tries to discover inherent interoperability problems based on
the architecture mismatch analysis that describes the underlying reasons for interopera-
bility problems among software components (Garlan et al. 1995). Software components
should be built to be independent of the context in which they are used, as this allows
their use in different computing environments and applications. Component interfaces
should be specified by a uniform description language and thereafter the component
specifications can be used for binding components dynamically, i.e. when the context of
a component changes, the interconnections between components are changed according
to the new context. (Niemelä &Vaskivuo 2004)

 19

2.2.2 Heterogeneity

In the future, ubiquitous world heterogeneous networks will be integrated. The devices
connected by the heterogenous networks will have different screen resolutions, user
interaction methods, radio capabilities, memory, power and processing capabilities, as
well as mobility. Services can be accessed through heterogeneous networks with widely
varying transport capability, quality and usage cost and they may have different re-
quirements for bandwidth, real-time capabilities as well as input output methods. The
user interaction with computers refers to various facilities and mechanisms that enable
users to interact with devices using multiple methods (multi-modality) such as speech,
hand movement, screens, buttons etc. This kind of interaction requires novel solutions
in the form of embedded sensors.

In software, heterogeneity is expressed by a diversity of software structures, component
models, interface technologies and languages. The component model depends on the se-
lected middleware that sets requirements and constraints for the architectural structure and,
in many cases, also for the implementation languages used in application development.

The infrastructure of different networks is provided by multiple actors. In addition, ser-
vices may consist of components and subsystems provided by different actors. The
value chain may be complex network (value network) between these different actors.

2.2.3 Mobility

Management of mobility will be an important characteric of a ubiquitous system. There
are, however, different kinds of mobility schemes, such as terminal mobility, personal
mobility, session mobility and service mobility. Users shall be supported in such a way
that they can move from one place or terminal to another and still get a personalized
service (Schulzrinne & Rosenberg 2000). In the future, the networks may also be mo-
bile and dynamic, and therefore, full mobility is an essential requirement in the ubiqui-
tous wireless world (Latvakoski et al. 2004).

From a software perspective, mobility can be divided into actual, virtual and physical
mobility (Cabri et al. 2002). Actual mobility is an extension to the capability of an
autonomous software agent that dynamically transfers its execution, i.e. its code, data,
and execution state, towards the nodes where the resources it needs to access are lo-
cated. Exploitation of actual agent mobility can save network bandwidth and increase
the reliability and efficiency of the execution. Agent mobility can effectively be ex-
ploited to have nomadic users assisted by personal software agents capable of following
them in their activities. Virtual agent mobility is the ability to be (network-) aware of
the multiplicity of networked execution environments (e.g. Internet nodes or administra-

 20

tive domains of nodes). When agents are aware of the distributed nature of the target,
and explicitly locate and access Internet resources in the environment, it is a kind of
virtual mobility of agents across execution environments. Physical agent mobility
means mobile and wireless computing devices connecting to the Internet from dynami-
cally changing access points. An active space extends the physical space, i.e. physical
objects, networked devices, and users with well-defined physical boundaries, adding
coordination via a context-based software infrastructure (Roman et al. 2002). (Niemelä
& Vaskivuo 2004)

2.2.4 Security, privacy and survivability

In ubiquitous services the security mechanisms should support authentication, authori-
zation, confidentiality, reliable transactions, and privacy of communication and content,
end systems and users' location, and protection against denial of service attacks (Sipilä
2002).

Software engineers define survivability as the ability of a system to fulfill its mission in
a timely manner, and also in the presence of attacks and failures. Thus, survivable sys-
tems require self-healing infrastructure for distributed applications with improved quali-
ties such as security, performance, reliability, availability and robustness. (Amin 2000)
A key characteristic of a survivable system is its capability to deliver essential services
even in the face of attack, failure or accident. These services are delivered with the
specified levels of integrity, confidentiality and performance. Thus, it is important to
define minimum levels of quality attributes that must be associated with the essential
services. (Tarvainen 2004) These qualities are so important that survivability is often
expressed in terms of trade-offs among multiple quality attributes such as performance,
security, reliability, availability, and modifiability. Because quality attributes represent
broad categories of related requirements, a quality attribute may contain other quality
attributes (Ellison et al. 1999; Matinlassi & Niemelä 2003).

Current facets of dependability, such as reliability and availability, do not address the
needs of critical information systems because they do not include the notion of a de-
graded service as an explicit requirement. A precise notion is needed for the forms, in
which a degraded service is acceptable, under what circumstances each form is most
useful and the fraction of time a degraded service is acceptable. This concept is termed
survivability; a new branch of dependability. (Knight & Sullivan 2000; Knight et al.
2003)

Survivability requirements can vary substantially depending on the scope of a system
and the consequences of the failure and interruption of a service. The definition and
analysis of survivability requirements is the first step in achieving system survivability.

 21

Survivability must address not only the functional requirements of software, but also the
requirements for software usage, development, operation and evolution (Tarvainen
2004). Five types of requirements definitions are relevant to survivable systems (Ellison
et al. 1999): System/Survivability Requirements, Usage/Intrusion Requirements, Devel-
opment Requirements, Operations Requirements, and Evolution Requirements.

Survivability is not synonymous with fault tolerance. Fault tolerance is a technique for
achieving a certain dependability property. In terms of dependability, it is referred to a
system as reliable, available, secure, safe, etc., or some combination of them using the
appropriate formal definition. A fault tolerant system really means a statement about the
system�s design (Knight & Sullivan 2000). Fault tolerance enables systems to continue
to provide services in spite of the presence of faults. Fault tolerance consists of four
phases: error detection, damage assessment, state restoration and continued service. The
first two phases constitute comprehensive error detection and the latter two phases con-
stitute comprehensive error recovery. Survivability is intimately related to and depend-
ent upon both the recognition of certain system faults that affect the provision of a ser-
vice (error detection) and the proper response to these system faults in order to provide
some form of continued service (error recovery). (Elder 2001)

It is important to understand the relationship between survivability and security. An
application may employ security mechanisms such as passwords and encryption and
may still be fragile, for instance, by failing when a server or a network link dies. On the
other hand, a survivable application must be able to survive malicious attacks, and
therefore survivability must involve security. In that case, there are two kinds of surviv-
ability: survival by protection (SP) and survival by adaptation (SA). In SP, security
mechanisms like access control and encryption attempt to ensure survivability by pro-
tecting applications from harmful (accidental or malicious) changes in the environment.
In SA, the application can survive by adapting itself to the changing conditions. These
two kinds of survivability are not mutually exclusive: an application may utilize security
mechanisms in SA as well. For example, it may start using access control or increase
the key length when it perceives the threat of an intrusion. (Pal et al. 2000; Tarvainen
2004)

2.2.5 Adaptability

Services must adapt to different kinds of terminals and networks, as well as handle dy-
namically emerging and evolving contexts and users preferences. The system may have
different kinds of radio capabilities (multiradio), and due to mobility, dynamically
changing conditions make adaptability anything but an easy challenge.

 22

Application-aware adaptation that is part of context-awareness means collaboration
between the system infrastructure and individual applications (Noble et al. 1997). The
system manages the resources; it monitors resource levels, notifies applications of rele-
vant changes, and enforces resource allocation decisions. Each application independ-
ently decides how to adapt when notified. Resource management is centralized (and
embedded to the middleware) but adaptation is controlled in a decentralized way. This
is a mixed controlling architecture; centralized monitoring and tracking, and decentral-
ized decision-making. (Niemelä &Vaskivuo 2004)

There are many strategies to adapt the applications. In the laissez-faire approach, the
responsibility of adaptation is left to individual applications and no system support is
provided for adaptations. However, this approach lacks the central arbitrator to resolve
the incompatible resource demands of different applications and to enforce limits on
resource usage. Even though the system support for adaptation can be avoided in this
approach, the applications become more difficult to implement and the size of the appli-
cations increases because each application needs to implement its own adaptation func-
tionality individually. (Noble & Narayannan 1997 et al.)

The other extreme of adaptation strategies is the application-transparent approach,
where adaptation does not require any changes in applications, but it is left fully to the
responsibility of the underlying system. Even when providing backward compatibility
with existing applications, this approach has drawbacks. There may be situations where
the adaptation performed automatically by the system is inadequate or even harmful.

Between these two extremes of adaptation strategies lie a number of solutions that are
collectively referred to as application-aware adaptation. Application-aware adaptation
emphasizes the collaborative partnership of applications and the system in the adapta-
tion functionality. This approach permits applications to determine the best adaptation
behavior for the situation, but preserves the ability of the system to monitor resources
and enforce allocation decisions. Application-aware adaptation also decreases the appli-
cation size compared to the laissez-faire adaptation approach, because part of the adap-
tation functionality is provided by the system and every application does not need to
have embedded adaptation functionality. (Pakkala 2004)

Agility means a set of combined quality properties, sensitivity to varying resources (e.g.
battery power and bandwidth) and sensitivity to changes in resource availability (e.g.
data sharing in intermittent connections) (Noble et al. 1997). Resource need for concur-
rent applications is changing according to the situation in which services are used and
how they are processed. In this case, agility is mapped to the execution of a software
system and its ability to manage changes that are unpredictable in terms of time, but
whose characteristics are predictable. However, in addition to execution agility all soft-

 23

ware systems also embody evolvability that means the ability to handle changes in the
long-term, considering the life-cycle of a system. (Niemelä &Vaskivuo 2004)

2.2.6 Ability of self-organization

Self-organization is a process where the organization of a system spontaneously in-
creases, without this increase being controlled by the environment or an encompassing
or otherwise external system. A self-organizing system not only regulates or adapts its
behaviour, but it also creates its own organization (Heylighen & Gersheson 2003).

Self-organization applies concepts of self-learning, expert systems, chaotic theory,
fuzzy logic, etc., to enable more smooth application of computing systems for its users.
In addition, self-organization may be applied for communication networks, such as ad
hoc networks, to achieve improved performance, efficiency, minimize cost and increase
reliability and survivability.

Ad hoc networks refer to the system that consists of devices dynamically connected to
each other using wireless media (Perkins 2001; Toh 2002). Ad hoc networks are auto-
matically organized without any static configuration or centralized management (self-
organization of communication networks). From a user's perspective these systems can
be called spontaneous systems (Latvakoski et al. 2004, Kindberg & Fox 2002). From a
software perspective, ability of self-organization refers to the ability to dynamically re-
organise the structure of software, i.e. dynamic software architectures.

2.2.7 Augmented reality and scalable content

The increasing amount of information (content), content and service providers and net-
work services is making life more difficult for humans. Additionally, new ways to look
at the content like an augmented reality are emerging. In augmented reality human
awareness is augmented by using virtual context in parallel with human-sensed context.
One example of this kind of solution is described in Antoniac et al. (2002). Therefore,
the requirements for augmented reality and scalable content include many perspectives
such as e.g. security, privacy protection, Digital Rights Management (DRM), adaptabil-
ity, self-organization and semantic awareness.

The term fidelity has been used for the property of a system that defines the degree to
which data presented at a client matches the reference copy at the server (Noble et al.
1997). Fidelity includes three dimensions: consistency, the type of data and tradeoffs
made by applications. When network connectivity is poor or nonexistent, data provided
to applications may be stale but still useful for achieving appropriate functionality in a

 24

system. Data consistency means high availability of shared data in intermittent net-
worked systems. The data types are based on time, state and frequency. Sampling rate
and timeliness are quality properties of the type of telemetry data. On the other hand,
the size and resolution of data is considered as the fidelity of spatial data, e.g. topog-
raphical maps. In addition to the image quality of each frame, frame rate is a key issue
in video streaming. Applications that use data make different tradeoffs among the di-
mensions of fidelity, the quality property of shared data. (Niemelä & Vaskivuo 2004)

2.3 Summary

 Table 1 below summarizes the requirements of computing and their effect on system,
software and business. The state-of-the-art of ubiquitous software technologies de-
scribed in the next chapter tries to answer how ubiquitous computing requirements are
met by software technologies.

 25

Table 1. Summary of ubiquitous computing requirements

Requirement System Software Business
(development view)

Interoperability • Increasing amount of
microprosessors and
their networking

• Distributed software
platforms

• Integrability and
interoperability

• Software Testing

• Multiactor system
infrastructure

• Multiprovider and
multiactor services

• Value network
Heterogeneity • Integration of

heterogeneous
networks

• Various device
capabilities

• Various user
interaction methods

• Service access via
different network
infrastructures

• Services have different
needs for the network
and device capabilities

• User interaction
support

• Multiactor system
infrastructure

• Integration of
multiprovider and
multiactor services

• Value network

Mobility • Physical device,
personal, session,
service mobility

• Full mobility

• Actual, virtual and
physical mobility

• Physical device,
personal, session,
service mobility

• Full mobility

• Roaming in
multiactor system

• Value network

Security, privacy
and survivability

• Security
(authentication,
authorization,
confidentiality,
accountability)

• Reliable transactions
• Privacy of

communication and
content,

• Terminal and user
location.

• Security
• Reliability
• Survivability
• Location-monitoring

• Security and fault
tolerance of
multiactor system
infrastructure

• Security and privacy
of multiprovider
service network

Adaptability • Different kinds of
terminals and
networks

• Dynamically changing
contexts and users
preferences

• Different kinds of
radio capabilities
(multiradio), and
dynamically changing
conditions

• Context awareness
• Personalization
• Resource management
• Agility

• Multiactor system
infrastructure

• Multiprovider and
multiactor services

Self-organization • Ad hoc networking • Smooth application of
computing platforms
for users

• Spontaneity
• Dynamic structures

• Multiactor system
infrastucture

• Multiprovider and
multiactor value
network

Augmented
reality and
content
scalability

• Content networking • Semantic awareness
• Scalability, augmented

reality
• Fidelity

• Multiprovider and
multiactor
services/content value
network

 26

3. State-of-the-art in ubiquitous software
technologies

This chapter captures the state-of-the-art of ubiquitous software technologies consider-
ing standards and models that can be used to guarantee that ubiquitous software meets
the special requirements mentioned in the previous chapter. This chapter also illustrates
some new development approaches that are applicable in the development of ubiquitous
and pervasive software systems.

Ubiquitous computing means highly distributed systems that consist of applications,
middleware and system infrastructure software. Middleware embodies a variety of dis-
tributed computing services and application development supporting environments that
operate between the application logic and the underlying system infrastructure software
(Charles 1999). The important capabilities of software in a pervasive computing envi-
ronment are its ability to provide interoperability for heterogeneous systems that ac-
commodate to dynamically changing resources. Resource variability arises through the
user�s changing needs, user mobility and through the need to exploit time-varying re-
sources of the environment, e.g. wireless bandwidth. This means that devices are made
aware of their contexts, the habits of a device user, the status of the physical and social
surroundings of the user and the status of the device itself. Thus, context awareness is
the capability of pervasive middleware to handle unpredictable changes.

Figure 2 represents some enabling and advanced software technologies mapped to the
architectural layers of ubiquitous systems. Enabling technologies are based on stan-
dards, reference architectures and generic software technologies used for wireless and
wired ubiquitous systems. Advanced software technologies are micro architectures,
adaptive supporting services, special interface standards and specification languages
used in defining software services. Advanced software technologies are based on ena-
bling technologies commonly applied in embedded systems. Some of them are mature
technologies, used for years, others are emerging and under continuous technology de-
velopment. For example, GPRS (General Packet Radio Service) and ODP (Open Dis-
tributed Processing) are mature technologies, whereas 4G (4th Generation of Mobile
phone networks) and design patterns of wireless service engineering are technologies
under active development. However, the trend is to adopt and adapt existing technolo-
gies to pervasive computing environments, and to develop new software technologies
(i.e. languages, supporting services and concepts) that help in the development of ubiq-
uitous software services for end-users. Figure 2 is not exhaustive but tries to illustrate
the relationships between enabling and advanced technologies applicable for ubiquitous
software. The aim is to give an overview of the technologies that will be introduced
next.

 27

Figure 2. Examples of software technologies of ubiquitous systems.

3.1 Enabling technologies

Enabling technologies of heterogeneous networks that constitute the basis of service
architectures of ubiquitous computing environments are classified into four categories:

• generic software technologies,

• application level technologies,

• service level technologies, and

• infrastructure level technologies.

Generic software technologies concerning software engineering methods, architectural
styles and patterns as well as component models and appropriate languages are used at
the application level as well as at the middleware and infrastructure level. Generic soft-
ware technologies give standard-based methods and technologies that all kinds of soft-
ware should be based on. Object-oriented engineering methods, e.g. UML (Unified
Modeling Language), have recently been widely used in industry and thus, they will
also be applied in pervasive software development. Programming and interface lan-

Meta Models for Heterogeneous Environments

Enabling technologies
- standards

- reference architectures
- generic software

technologies

Advanced software
technologies

- micro architectures
- adaptive supporting

services

Open Base Station Architecture Open Mobile
Architecture

Open Distribution Processing

Web Servces
Protocols

Architectural Styles and Patterns

Design Patterns

Proactive Service
Discovery

Adaptive Resource
Management

Generative Model

Multi-Agents

Context-Aware Coordination

Component Types

Ubiquitous computing
Infrastructure

Pervasive
Middleware Pervasive Services

Component Models

Mobile Internet ProtocolsAdvanced
Wireless
Accesses

Radio Accesses

Fixed Accesses

 28

guages such as Java, C++, IDL (Interface Definition Language) and XML (eXtensible
Markup Language) are also technologies commonly used for defining and implementing
software components and services. Interface technologies are even more important in
the service development in which software developed in multi-organizational settings
are composed and used together. COM+ (Component Object Model) and EJB (Enter-
prise Java Beans) are the most promising component models that will also be applied to
pervasive software development. Architectural styles and patterns such as an implicit
invocation style and an observer pattern as well as architectural viewpoints will play a
key role in the pervasive service development. QADASM1 is an architecture development
method that focuses on the quality requirements of the systems and retains them as driv-
ing factors for achieving a reusable service architecture that can be shared by a wide
community of pervasive software developers.

Profiling and the techniques used in artificial intelligence are examples of enabling
technologies for context-aware, personalizable, and adaptive applications. Web tech-
nologies like HTML (Hyper Text Markup Language), XHTML (eXtensible HTML),
WML (Wireless Markup Language) and XML, WSXL (Web Service Experience Lan-
guage) are used for adaptive user interfaces.

Distribution architectures such as ODP implemented as middleware technologies like
Java RMI, CORBA (Common Object Request Broker Architecture), and DCOM (Dis-
tributed COM) are also used in pervasive middleware, as shown in the middleware solu-
tions illustrated later in this report. However, communication of mobile and wireless
services is more often based on assynchronous messages than synchoronous procedure
calls. Although Message Oriented Middleware (MOM) has not been used as a pervasive
middleware, technologies as OSGi (Open Service Gateway initiative) and HAVi (Home
Audio/Video Interoperability) are messages-oriented and used in the service archtitec-
ture development. VHE/OSA (Virtual Home Environment/Open Service Architecture),
Parlay, JAIN and Jini specify the application interfaces used in service architectures.
Security technologies such as SSL (Security Sockets Layer) and PKI (Public Key Infra-
structure) as well as session technologies, for example, SIP (Session Initiation Protocol)
are also suitable for ubiquitous systems. Although there are great a number of technolo-
gies applicable for pervasive and ubiquitous software, there is no unified and explicit
view of which technologies are best in which kind of context. There is not either a uni-
fied technology map as web services have. Figure 3 represents the web services stack as
an example of technology map, where enabling technologies are mapped to each layer
of the protocol stack. A similar kind of stack is required for pervasive software devel-

1 QADA (Quality-driven Architecture Design and quality Analysis) is the service mark of VTT Techni-
cal research Centre of Finland.

 29

opment. The technologies mentioned in the web services stack might be suitable for
pervasive software based on fixed accesses, but they are not necessarily proper solutions
for wearable uqibuitous systems or mobile applications.

There are several enabling technologies for ubiquitous infrastructure services. MIP
(Mobile Internet Protocol), IPv6 (Internet Protocol version 6) and Fireware specify mo-
bility technologies and protocols, and communication is based on wireless, cellular, ad
hoc and wired networks. Wireless networks can be based on WLAN (Wireless Local
Area Networks), Bluetooth or HomeRF/SWAP (Home Radio Frequency/Shared Wire-
less Access Protocol) technologies. Cellular networks may use the specifications of 2G
(2nd Generation), GPRS/EDGE (GPRS/ Enhanced Data rates for Global Evolution), 3G
(3rd Generation) or 4G (4th Generation) networks. Wired networks use, for example,
Powerline, cable, xDSL (Digital Subscriber Lines), and the Internet over Fibre. Com-
munication technologies are more thoroughly surveyed in (Ailisto et al. 2003).

Besides communication technologies, security technologies and operating systems are
infrastructure technologies required in ubiquitous systems. Because ubiquitous systems
are heterogeneous systems, the scale of operating systems is wide, from micro kernels
to commercial distributed operating systems.

Figure 3. Enabling technologies of web services mapped to the layers of the protocol
stack (IBM, 2004).

TPA Service negotiation

 WSXL/.NET Web applications

 IBM WSFL/MS XLANG Workflow

 WSDL/WSCL Service descriptions
 Transactions
 Reliability / Routing
 SOAP / XML Protocol Message / Protocol
 HTTP,HTTPR,SMTP
 MQ Transport
 Internet, Intranet Network

UDDI Publishing & Discovery

M
anagem

ent

Q
uality of Service

Security / privacy

 30

3.2 Standardization bodies

Several standardization forums are active in the topics related to service architectures.
The standardization groups presented below provide an overview of current activities:

• OMG (Object Management Group)2: OMG's aim is to set vendor-neutral software
standards and enable distributed enterprise interoperability. The most important top-
ics related to pervasive software development are UML, MDA (Model Driven Ar-
chitecture), MOF (Meta Object Facilities), XMI (Meta Data Interchange) and the
telecommunications domain task force.

• OBSAI (Open Base Station Architecture Initiative)3 and OMA (Open Mobile Alli-
ance) 4 are initiatives for standardization of service architectures for mobile services.
OBSAI concerns base stations, and the OMA standardizes application interfaces
used in mobile service development. MITA (Mobile Internet Technical Architec-
ture) (Nokia 2002) focuses on the Internet service architecture of mobile terminals.

• IEEE AWG (Institute of Electrical and Electronics Engineers, Architecture Working
Group) has standardized architectural descriptions by the Recommended Practice
for Architectural Description of Software-Intensive Systems.

• FIPA (The Foundation for Intelligent Physical Agents) has the Architecture Techni-
cal Committee that defines architectural specifications providing a service frame-
work necessary to support the end-to-end interoperability of agents.

• ETSI (European Telecommunications Standards Institute) determines standards for
developing and testing protocol software.

• ITU (International Telecommunication Unit) has defined the reference architecture
model and protocols for computational interactions for Open Distributed Processing.

• IETF (Internet Engineering Task Force) provides specifications for Internet
communications.

• 3GPP (Third Generation Partnership Project) has defined 3G mobile system stan-
dards.

2 http://www.omg.org
3 http://www.obsai.org
4 http://www.oma.org

 31

• Parlay (Parlay Group) and JAIN APIs (Application Programming Interfaces) are
specifications for the development of telecom products and services.

• OSGi specifies server functionalities for delivering services between the external
Internet and local devices.

• W3C (World Wide Web Consortium) develops interoperable technologies to boost
the Web as a forum for information, commerce, communication, and collective un-
derstanding.

3.3 Research activities in ubiquitous software development

In the research community, there is an increasing amount of activities in the ubiquitous
software area. Research funding organizations are also encouraging topics related to
ambience intelligence and pervasive computing. For example, the main objective of the
6th Framework for Information and Software Technologies is to help EU (European
Union) citizens� life with smart services available for everyone. The same objective is
also seen in the new roadmap for Software Intensive Systems (ITEA (Information
Technology for European Advancement) /Eureka), which describes five application
domains, namely Home, Cyber enterprise, Nomadic, Infrastructure and basic services
and Services and software creation, as being the most important areas in future informa-
tion technology development.

Although these programs are just beginning, work in this area already started about five
years ago. The following organizations have already made successful achievements in
ubiquitous computing area, especially related to pervasive software:

• The Fraunhofer Integrated Publication and Information Systems in Germany has
worked on support for synchronous collaboration with roomware components.
Roomware is a term used to refer to room elements with integrated information
technology such as interactive tables, walls and chairs.

• The University of Illinois has developed a middleware infrastructure for active
spaces, programmable ubiquitous computing environments in which users interact
with several devices and services simultaneously.

• Stanford University has developed a service framework for ubiquitous computing
environments that lets users flexibly interact with the services using a variety of
modalities and input devices.

 32

• Carnegie Mellon University has developed the Aura architecture for user mobility in
ubiquitous computing environments.

• NIST Smart Space Laboratory has developed technologies for wearable pervasive
computers. Their focus is on human-systems-interaction.

• VTT Electronics has participated in developing ambient intelligence solutions, mo-
bility across networks and ad-hoc radio systems (VTT Electronics 2004)

Ubiquitous software provides new opportunities for companies that have embedded
software in their products and also for pure software companies. Companies in perva-
sive software markets can be classified into five categories:

• Ubiqiutous infrastructure: telecommunication industry, teleoperators, device and
appliance vendors, automation industry.

• Ubiquitous middleware: embedded systems suppliers, middleware software suppliers.

• Pervasive services: software companies in several application domains, e.g. infor-
mation services, e-commerce, healthcare, entertainment, human-interaction soft-
ware technologies, and measuring technologies.

• Pervasive development methods and tools: IT (Information Technology) companies
specializing in real-time, embedded and communication software technologies.

• Pervasive service providers: distribution and maintenance of pervasive services.

3.4 Software architecture of ubiquitous systems

This section represents the architectural styles and patterns as well as the architectural
models and types of components applied in ubiquitous software systems. Architectural
styles and patterns are generic software technologies used for specifying reference ar-
chitecture. OBSAI specify mobile ubiquitous computing infrastructure, and OMA tries
to promote an open mobile architecture, the reference architecture for mobile pervasive
services (see Figure 2). Reference architecture is an architecture that is explicitly de-
fined, its specifications are freely available and accepted and used on a community-wide
basis. Thus, reference architecture is a prerequisite for achieving interoperability be-
tween software solutions provided by different software suppliers.

The architectural models that are introduced in this section are examples of micro archi-
tectures (i.e. enhanced software technologies, see Figure 2) used in pervasive systems.
These micro architectures introduce specific component types that play the key role in

 33

achieving architectural solutions that meet the quality requirements defined for specific
pervasive computing environments. The survey is not exhaustive; the research commu-
nity and technology developers are active in this area and new concepts and technolo-
gies are emerging each year.

3.4.1 Architectural styles and patterns

The purpose of using architectural styles and patterns is to assist the architect of a ubiq-
uitous software system in selecting appropriate styles and patterns based on the quality
requirements set for a new service or a new system. The use of styles and patterns is a
means to assure that qualitative properties are, at least, considered in the design phase of
a system. Quality attributes, such as quality requirements are considered in architecture
design and realized in mechanisms, mostly described as design patterns.

Here, the styles and patterns that are appropriate for wireless services are briefly sum-
marized. Styles and patterns have a specific purpose that they were initially designed for
Table 2.

Table 2. Architectural styles and patterns and their purpose

Purpose Styles/architectural patterns
Distribution Client-Server style

Peer-to-Peer style
Communication Broker pattern
Decomposition Tiered style

Layered style
Task-orientation Blackboard style

Pipes-and-Filters style
Application-orientation Model-View-Controller pattern

Presentation-Abstraction-Control pattern

The N-tier C/S (Client/Server)- architecture means an architectural style in which soft-
ware functionality is decomposed into tiers that communicate in the client-server fash-
ion. The style is a combination of the Tiered style (Kalaoja et al. 2003) and the C/S style
in the runtime structure category. The C/S style decouples client applications from the
services they use.

Peer-to-peer (P2P) means network architecture, where information is divided between
the participating nodes without centralizing it to one server (Parameswaran et al. 2001).
In the P2P model, resources can also be switched between the systems (Gutberlet 2000).
Variants of P2P are pure, hybrid and agent-based P2P. Pure P2P is well suited to divid-

 34

ing information between limited number of users. In hybrid P2P, the central server is
responsible for maintaining a registry of shared information and responding to queries
for that information. In an agent-based P2P architecture, the user communicates with
agents that are located inside the wireless device and the agents can work on behalf of
the human-users. (Homayounfar 2002)

By using the Broker pattern, a wireless application can access distributed services by
sending massage calls to the appropriate object (like a network server) through the bro-
ker (Buschmann et al. 1996). The Broker architectural pattern is applied to structure
distributed wireless systems with decoupled components that interact by remote service
invocations.

The Tiered style is used to partition a wireless system into logically separated tiers.
Each tier has a unique responsibility in the system. A tier is logically separated from
other tiers in the system, and is loosely coupled with adjacent tiers.

The layered architectural style helps decompose the software into strict ordered hori-
zontal layers where each layer provides its higher-level layer or layers with a cohesive
set of services with a public interface (Buschmann et al. 1996), (Clements &Northrop
2002). The Layered style is best suited to a system where the tasks can be divided into
application specific and generic tasks.

In Blackboard, several specialized subsystems assemble their knowledge to build a pos-
sibly partial or approximate solution. The idea behind the Blackboard architecture is a
collection of independent programs that work cooperatively on a common data struc-
ture. Blackboard is best suited to the systems where scalability is needed in the form of
adding consumers of data without changing the procedures and modifiability in the form
of changing who produces and consumes which data. (Bass et al. 1998)

The Pipes-and-Filters style emphasizes the incremental transformation of data by suc-
cessive components. The Pipes-and-Filters style intends to view the system as a series
of transformations on successive pieces of input data. Data enters the system and flows
through the components one at a time until they are assigned to some final destination,
output or a data store.

The Model-View-Controller (MVC) architectural pattern divides an interactive applica-
tion into three components. MVC emphasizes modifiability and portability by applying
separation of input and output-devices and use of the unit-operation of the part-whole
decomposition (Bass et al. 1998).

 35

The Presentation-Abstraction-Control architectural pattern (PAC) defines a structure
for interactive wireless services in the form of a hierarchy of cooperating agents
(Buschmann et al. 1996).

3.4.2 Wireless-specific design patterns

This section presents three wireless-specific patterns: reduced mark-up language, con-
nection-less protocols and multiple presentations.

The problem of presenting complex structured information on a limited device can be
solved using a mark-up language such as WML, which requires a small footprint
browser. The reduced mark-up language addresses the problem of representing fairly
complex information on a device with limited capabilities. The limitations that are ad-
dressed essentially concern limited display capabilities, limited device resources usable
for presentation software, and missing development effort for the implementation of ad-
hoc presentation software. Since several recent mobile devices come bundled with
WML browsers, it is possible to leverage this built-in capability to implement all the
presentation-related features on the client side (Kalaoja et al. 2003).

When a client needs a frequent and low latency notification of events from a server on a
wireless network, the use of TCP/IP (Transmission Control Protocol/ Internet Protocol)
may not meet the latency requirements. The connection-less protocols- solution consists
of adopting the UDP/IP (User Datagram Protocol/Internet Protocol) and introducing
some packet loss detection and recovery mechanism at a higher level. This pattern has
the purpose of limiting the bandwidth occupation of the protocol to obtain low latency.

In a network environment, especially with wireless devices, the characteristics of client
applications are often very different. Thus, it is very useful to provide the users with a
single point of access to a service and automatically adapt to the client/device features.
As the user changes a device, he/she must be offered the same independent of the device
capabilities. In general, the same service must be presented through different channels
as multiple presentations. In practice, each device has different capabilities and the de-
tails of the presentation can depend heavily on the device or client application capabili-
ties. This pattern provides a method to automatically detect the type of device/client and
switch to the presentation mode that best suits it.

3.4.3 Adaptive resource management

The aim of adaptive resource management is to provide software solutions that assist in
resolving adaptability required in pervasive computing environments. Odyssey (Noble
et al. 1997) monitors resources such as bandwidth, CPU (Central Processing Unit) cy-

 36

cles, and battery power, and interacts with each application to best exploit them. For ex-
ample, when connectivity is lost due to a radio shadow, Odyssey detects the change and
notifies interested applications. Reaction to the notification depends on the application.

Odyssey is a minimal middleware solution realized as a new VFS (Virtual File System)
connected to the NetBSD5 (Net Berkeley Software Distribution) kernel. Odyssey has
two kinds of components; a viceroy that is responsible for the centralized resource man-
agement, and wardens that are data-type specific pieces of software that provide the
system-level support to clients that is necessary to effectively manage data types (i.e. a
warden is required in each client).

Odyssey applies data-centric and event-driven architectural styles. The data-centric style
defines the fidelity levels for each data type and factors them into the resource manage-
ment. Event-driven (or action-centric as defined in the paper) communication is used
between middleware and applications for providing applications with control over the
selection of fidelity levels supported by the wardens.

In Odyssey, the range of adaptation is defined by two end points; laissez-faire (i.e. no
system support required for adaptation) and application-transparency (i.e. the system
bears full responsibility for adaptation and resource management). The best solution for
a particular ubiquitous system is somewhere between these two extremes, because lais-
sez-faire means that applications by themselves have to take care of adaptation and ap-
plication-transparent adaptation does not support the diversity of applications. An appli-
cation launch management concept developed for open source components is another
approach to adaptive resource management. The concept is intended for low power
handheld devices by preventing end-users from overloading the resources of the device
with arbitrary actions. Reliable operation of handheld computing devices with minimal
user intervention is one of the requirements the concept has to meet. As users are able to
install and run third party software on their new multimedia devices, the resource man-
agement problem is becoming a major bottleneck. No matter what they install, they still
expect perfect operation when considering the rest of the system. The concept extends
the X-Window system with the application launch management features and protects
necessary resource reservations for critical user space applications. It also includes a
concept for generic resource management control and monitoring. (Hongisto 2003)

5 http://www.netbsd.org/

 37

3.4.4 Proactive service discovery

The contribution of the Proactive Discovery Service (PDS) (Bustamante et al. 2002) is
that it allows clients dynamically tune the detail and granularity of the notifications
about changes they are interested in. Thus, it provides a mechanim for achieving a scal-
able service discovery service. PDS is message-based, contrary to W3C�s service dis-
covery that is heavily based on RPC (Remote Procedure Call), although the necessity of
message-based interaction model is already identified (Vinoski 2002).

PDS extends an ordinary directory service in three ways:

1) It links a channel and a change notification with each object managed by the direc-
tory service.

2) It customizes notification channels thorough client-specific filters.

3) It defines a leasing model for client registration to a notification channel in order to
simplify the handling of client failures.

The advantage of the proactivity model is that it allows clients to transform from con-
trolling pull-based passive interfaces to trade control for performance because message
traffic is generated only when updates occur. The PDS architecture includes three main
components: PDS clients, servers and object owners. Clients discover available objects
in the environment and become aware of any change in them that could affect their
functionality and/or performance. Object owners publish their objects through the direc-
tory service. Servers act as mediators. In PDS, related information is organized into
well-defined collections called entities, where each entity represents an instance of an
actual object type in the environment. Each object has an associated set of properties (or
attributes) with particular values. Entities may be bound to names in different contexts
and each context contains a list of name-to-entity bindings. In turn, contexts may be
bound to names in other contexts, building an arbitrary directed naming graph.

Scalability of the global naming space is obtained by dividing it into sub-spaces and
assigning these sub-spaces to domains, each with a single root context. Security mecha-
nisms are not available in PDS, and the extensions of the language for customization are
also missing. PDS is a general directory service but shares a number of architectural
ideas with GMA (Grid Monitoring Architecture) (Tierney et al. 2002). The authors of
PDS mentioned further exploration of PDS with AIMS (Adaptive Introspective Man-
agement System) and use of proactivity to enhance the robustness of widely distributed
services through flexible replication strategies, dynamically adaptive server hierarchy
management and automatic failure recovery. Dynamic service discovery with self-
adaptation is also considered a promising approach to a generic service discovery ser-
vice in which all kinds of services can interoperate with each other (Vinoski 2003). This

 38

idea is based on Apple�s Rendezvous, which focuses on easily connecting computers
and devices through a multicast interaction model and trader-like mechanisms. How-
ever, Rendezvous applies to software as well, and Apple uses it for its iChat instant
messenger system and file sharing.

3.4.5 Context-aware coordination

The MARS (Mobile Agent Reactive Spaces) architecture (Cabri et al. 2002) introduces
the coordination medium (CM), a service that is typically associated with an Internet
node or with a local administrative domain of nodes, in charge of acting as a mediator
for all coordination activities in that site (i.e. node or domain). CM provides, through a
specific API, the capability to both access the local resources of a site (i.e. agent-
environment coordination) and to interact with other local agents and other application
agents (i.e. inter-agent coordination). Any coordination model, such as meetings, event-
channels and tuple spaces, can be applied to providing the API for agents. The applied
tuple spaces model can easily be integrated with the current web scenario.

The MARS architecture applies many styles and patterns. The intra-agent architecture
depends on the task to be performed, but the main style is the independent-components
style. Interactions between agents and agents and the environment define the main
styles to be applied; the peer-to-peer style for networking and the rule-based style for
defining global rules and environment-specific coordination laws. Moreover, MARS
reactions can be combined in a pipeline and therefore, a hierarchical Pipes-and-Filters
style can be applied to install and uninstall reactions on a tuple space. The code and
behavior of a reaction can also be changed without changing the agent and/or the other
reactions because the agents and reactions are implemented separately, which leads to
advantages in code development and maintenance.

An adapter with the adapter API running on top of middleware is a solution for runtime
binding of components (Chiang 2003). This binding model is based on the two types of
interactions:

1) adapters communicate with each other through a mediator or a facilitator or

2) adapters communicate with each other directly.

The first approach decreases implementation complexity at the expense of increased
interaction overhead. Component interfaces are defined by the server names, operation
names, number of parameters in the interface, parameters' orders, types of parameters,
sizes of parameters and directions of parameters such as IN, OUT, or INOUT. Adapters
invoke components based on a component�s name and the operation name. The inter-

 39

face needs to be agreed on by communicating components. It happens by registering
interfaces to the associated adapters of these components. The biggest drawback of the
approach could be overhead, which can make this concept unapplicable in real-time
ubiquitous systems and some mobile ubiquitous systems.

3.4.6 Multi-agents

A G-net system (Xu & Shatz 2003) includes a number of G-nets, each of them repre-
senting a self-contained module or an object. A G-net is composed of two parts: a spe-
cial place called Generic Switch Place (GSP) and an Internal Structure (IS). GSP pro-
vides the abstraction of the module, and serves as the only interface between the G-net
and other modules. IS, a modified Petri net, represents the design of the module. The
need for extended G-nets is justified as follows:

• Multi-agent systems are developed independently by different vendors and agents
may be distributed across large-scale networks. Therefore, agents require a common
communication language and common protocols.

• The agent communication model is usually asynchronous and an agent may decide
whether to perform actions requested by some other agents. However, the standard
G-net does not directly support asynchronous message passing and decision-making.

• Agents are designed to determine their behavior based on individual goals, their
knowledge and the environment. They may autonomously and spontaneously initi-
ate internal or external behavior at any time. The standard G-net models can only di-
rectly support a predefined flow of control.

The Planner module is the heart of an agent; it can ignore an incoming message, start a
new conversation or continue with the current conversation. Through the Planner mod-
ule, the Goal, Plan and Knowledge-base modules of an agent are updated after the proc-
essing of each communicative act that defines the type and content of a message, or if
the environment changes. The Planner module is both goal-driven and event-driven be-
cause the transition sensor may fire when any committed plan is ready to be achieved or
any new event happens. The Planner is also message-triggered because certain actions
may initiate whenever a message arrives. A message is represented as a message token
with a tag of internal/external/private.

IS consists of incoming message, outgoing message and private utility (that can be
called by the agent itself). The incoming/outgoing message section defines a set of Mes-
sage Processing Units (MPU), which corresponds to a subset of communicative acts. A
new mechanism called Message-passing Switch Place (MSP) is introduced for asyn-

 40

chronous message passing. When a token reaches an MSP, the token is removed and
deposited into the GSP of the called agent and the calling agent continues to execute its
next step.

A mix of several styles is applied in agent-oriented software development. IS is similar
to the Pipes-and-Filters style. The Planner acts as a broker, including independent mod-
ules, and the dispatcher pattern has been used several times. The major benefit of the
multi-agent architecture is the amount of hot-spots to be applied to extensions, modifi-
cations and reusability. However, applying it requires a middleware solution upon
which agents can be executed, and in practical solutions it may also be too laborious.

3.4.7 Models for heterogeneous environments

 3.4.7.1 Meta models

Gaia (Roman et al. 2002) exports a service to query access and use existing resources
and context, and provides a framework to develop user-centric, resource-aware, multi-
device, context-sensitive, and mobile applications. Gaia�s main contribution is the func-
tionality it provides as the result of the interaction of individual services. This interac-
tion provides users and developers with an abstract ubiquitous computing environment
as a single reactive and programmable entity instead of a collection of heterogeneous
individual devices. Gaia has been applied in a ubiquitous computing environment in a
very similar way to digitally augmented meeting rooms.

Gaia provides five basic services based on top of CORBA middleware: event manager,
context service, presence service, space repository and context file system. For example,
the event manager uses the CORBA event service as a default event factory. Although
similar kinds of names as patterns are used, Gaia does not have a clear connection to
any style, i.e. it is not a software engineering approach but gets its origin from the re-
search of augmented reality. However, the Gaia system is a mix of the event-driven
style, independent-components style and rule-based style. The proxy pattern is used on
behalf of the physical entities (i.e. application, service, device and person) in the physi-
cal-entity presence subsystem. Periodically, notification is sent as heartbeats of the pre-
sent services and applications and this means the use of the observer pattern. Space re-
pository stores information about all software and hardware entities in the space as
XML descriptions including the properties of services. The repository is based on the
CORBA Trader service. The context file system (CFS) uses application-dependent
properties and environmental context information to simplify many of the tasks that are
traditionally performed manually or require additional programming. CFS is composed
of mount and file servers. One mount server maintains an active space�s namespace. For

 41

the context model, Gaia uses first-order logic and Boolean algebra, which allow easy
writing of rules to describe context information.

In Gaia, applications are partitioned among a group of coordinated devices. The applica-
tion framework consists of a distributed component-based infrastructure (derived and
refined from the MVC pattern), a mapping mechanism for customization and a group of
policies that defines sets of rules for customization (concerning instantiation, mobility,
reliability and composition). The mapping mechanism of MVC defines two application
description files: an application generic description and application customized descrip-
tion (ACD) that is an active-space-independent description. ACD defines how the com-
ponent is assembled, i.e. a list of components and how they are allocated and initialized.

Gaia differs from Aura in that Gaia emphasizes space programmability and users ability
to configure their applications to benefit from the resources in their current space.

3.4.7.2 Component types

The main goal of the Aura architecture (Sousa & Garlan 2002) is to maximize the use of
available resources and to minimize user distraction and drains on user attention. The
model is simple, including only four component types:

• The Task Manager embodies the concept of personal Aura.

• The Context Observer provides information on the physical context and reports
relevant events in the physical context back to the Task Manager.

• The Environment Manager embodies the gateway to the environment.

• The Suppliers provide the abstract services from which tasks are composed.

Each environment has one instance of the Task Manager, Context Observer and Environ-
ment Manager that cooperate with the corresponding components in other environment.

The Task Manager strives to minimize user distraction in the face of the following
changes:

1) The user moves to another environment (i.e. migration of personal information).

2) The environment changes (monitoring of QoS (Quality of Service) information).

3) The task changes (i.e. indicators from the user).

4) The context changes (monitoring context-dependent constraints).

 42

For task migration, the service status is provided as a markup representation. Suppliers
of a given service type share a vocabulary of tags and the corresponding interpretation.
Existing applications can also be wrapped to the Aura architecture.

Context Observers in each environment may have different degrees of sophistication,
depending on the sensors deployed in that environment. Examples of sophistication di-
mensions are user recognition, location, activity and other people in the vicinity.

When Suppliers are installed in an environment, they are registered with the local Envi-
ronment Manager. The registry is the base for matching requests for services and it also
keeps a record of available capacity.

Aura supports dynamic reconfiguration in a transparent way and hides the variation of
low-level interaction mechanisms from one environment to the next, implemented by
connectors. Thus, deployment of suppliers differs across devices and the deployment
may change dynamically. The interaction mechanism in Aura may be CORBA, while in
another it may be COM or simply RPC. Standard interfaces of components are defined
as ports.

Although (Sousa & Garlan 2002) does not mention the styles and patterns used in Aura,
the main architectural style seems to be independent components style, using at least the
observer and bridge patterns. However, self-awareness and adaptability of the environ-
ment is addressed at two levels. The infrastructure level monitors the availability and
performance of components and communication (i.e. coarse-grained adaptation). At the
lower level, system components themselves are endowed with the ability to adjust their
operation following the variation of available resources.

3.4.7.3 Generative model

The architecture in (Ponnekanti et al. 2001) includes the Interface Manager and one or
more generators defined in the Generator Database. While generating code, the selected
generator uses information about the workspace context from the Context Memory.
Code generation requires information about services, appliance and workspace. It is
produced in the following way: services send a beacon about their presence including a
service description, an appliance supplies an appliance description, and workspace con-
text is stored in a central datastore called the context memory.

The generative model uses proxies that are applied to achieve flexibility for different
appliances. The main architecture is an event-based, blackboard and rule-based system
that uses thoroughly defined service and device descriptions as input for code genera-

 43

tion that is integrated as a part of supporting services. Thus, the framework also sup-
ports evolvability. Design patterns are also utilized in code generation. Although the
current realization is event-driven, the communication can be changed to RPC/RMI
(RPC/ Remote Method Invocation) or message-based communication.

This section surveyed some advanced and enabling software technologies, i.e. architec-
tural styles and patterns as well as some design patterns applicable for ubiquitous sys-
tems. The aim is not to provide a technology roadmap but to introduce some existing
technologies and promising approaches already applied to the ubiquitous systems in a
specific context. Although there are several technologies that have already proven their
applicability in pervasive computing, there is also a lot of work to do, especially in de-
fining micro- and macroarchitectures specific for ubiquitous systems and promoting
standardization of these architectures as reference architectures and open standards.

3.5 Development aspects of ubiquitous software

This section explores how the characteristics of ubiquitous software affect the software
development and methods used in the development.

3.5.1 Towards service-oriented software development

Service-orientation is a new paradigm just entering the embedded software field. By
service-orientation software engineering it is meant software architectures and devel-
opment practices needed in the development of software services for networked embed-
ded systems. Service architectures and alliances such as OBSAI and OMA provide
standards, which facilitate realization of service-orientation in ubiquitous software de-
velopment as well. A software service can be defined as a self-contained Internet based
application, capable of completing tasks on its own and able to discover other services
and use them to compose a new higher level functionality. A service is easily found,
used when needed and then discarded.

Software organizations that exploit service-oriented software development are rather
small and in a continual process of change. These companies act as service developers,
content providers or/and service providers. Companies that produce appliances, devices
and/or systems have different roles. They act as integrators and aggregators by produc-
ing the infrastructure through which the services are offered to the mass markets. A
company may play several roles at the same time, and in the best case, all these roles are
represented by various companies in a global networked coalition. (Zhou & Niemelä
2004a; Kallio et al. 2004; Niemelä et al. 2003)

 44

In service-orientation, software developers prefer exploitating the components available
in the marketplace to produce the most effective software in a short time rather than
programming from scratch. In service-orientation, software is produced as a particular
service that conforms to a service standard technology. A system may be composed,
executed, maintained and evaluated in the way of online procuring, engaging, and
changing. (Zhou & Niemelä 2004a)

The differences between application-oriented and service-oriented software develop-
ment are shown in Table 3 (Zhou &Niemelä 2004a).

Table 3. Comparison of application and service orientated software engineering.

Application-oriented software
development

Service-oriented software development

• Supply-side method • Demand-side method
• Product • Instant service
• System • Particular software when needed
• Ownership • Loose-coupled
• Rigid-boundaries • Unfixed boundaries
• Technology first • Non-technology first
• Large-scale organization • Small-size organization
• Several months • Procurement first

Suppliers that typically dominate application-oriented software development are closely
coupled with customers� business problems and software solutions. Suppliers offer
products and systems, and customers buy and own the applications. The supply-side
methods, driven by technology advance, have worked well for systems with rigid
boundaries of concern such as traditional embedded systems. Software development
may also benefit from large-size and product-focused organizations. However, a slower
time to market and high cost is associated with the maintenance and evolution of the
application. (Zhou & Niemelä 2004a)

In service-oriented software development dominated by customers, an application is
broken down into finer grained parts. Organizations are small in size and focus on soft-
ware market and maintenance. Customers have no interest in owning the application,
but use software as needed. This means that functionality is delivered as a service. Each
time the functionality is required, service elements are identified, executed and dis-
carded (i.e. an instant service). Non-technology issues, such as supply contracts, terms
and conditions, drive the demand-side methods. (Zhou & Niemelä 2004a)

Service-oriented software development fits well to the ubiquitous software development
because end-users satisfaction is the key driver in pervasive computing. Application of

 45

service-oriented software engineering, however, requires further investigations, at least,
in the following issues (Zhou & Niemelä 2004a):

• Service evaluation. Customers should be allowed to �take-try-and�use� a service in
a cheap or cost-free way when needed.

• A unified service middleware standard. A unified service middleware standard
would assist in service description, requisition expression, service composition, im-
plementation and combination that would be supported by service providers, brokers
and customers.

• Goal-driven requirements engineering. Services are targeted to a potential customer
group rather than an individual customer. That is why organizations face implicit re-
quirements, from which explicit functional and quality requirements have to be de-
rived in order for a customer to be able to select various options for his/her needs.

• Value-adding to legacy software. By building the legacy code as a service, extend-
ing the service and promoting the service quality will lengthen the service life cycle.

3.5.2 Adding quality to legacy software

Ubiquitous computing means the use of in-house and 3rd party components that also
have to meet the specific properties of ubiquitous systems such as security and reliabil-
ity. All programmers do not have the required special skills and know-how to know
how these qualities can be achieved, and that is why these properties are often ignored.
One solution is to add quality properties into components by post hoc, which means that
a component is transparently translated into a component that takes the specified quality
properties into account. The solution may not provide the properties completely, but the
approach improves the quality of software drastically. (Nakijima et al. 2002)

One approach for adding quality properties is Aspect-Oriented Programming (AOP). In
AOP, quality properties are defined as aspects which are merged into base components.
In the most favourable case, this can be achieved by recompiling a component using an
AOP-aware compiler without substantial modifications to the source code. This ap-
proach enables the components to be adapted according to the characteristics of under-
lying platforms. There are also proposals to translate Java binary codes for adding qual-
ity properties by post hoc. However, there are several issues to be considered. Firstly,
how the QoS evolution can be achieved transparently from a client program. If adding
quality features changes some assumptions of the component, the correctness of the
client application may be violated. Thus, rigorous API semantics are needed for defin-
ing (middleware) components, and the assumptions need to be checked after adding the

 46

new features. Secondly, the current AOP techniques require an understanding of the in-
ternal structure of the base component in order to be able to define aspects. However, it is
neither reasonable nor cost effective to learn the internal complexity of a large component
such as Linux, Java or CORBA. Thus, it is important to export a high level description of
the component structure for defining new quality aspects. (Nakijima et al. 2002)

Another approach to add quality properties transparently is a resource kernel. The re-
source kernel monitors the resource utilization of all applications, and enforces their
behaviours if they violate the QoS requirements specified by them. By adding the re-
source kernel to a non real-time operating system it is possible, for example, to convert
a traditional operating system into a real-time operating system. The resource kernel
provides several primitives that control resources explicitly and an application should be
modified to invoke these primitives, so that the application would behave predictably.
The primitives are meta-interfaces that control internal resources such as CPU, memory
and network bandwidth and support portability of the application. (Nakijima et al. 2002)

In ubiquitous computing, a variety of platforms are needed and they have to be able to
work together. If a commercial middleware is used, it is important to consider how to
exploit advanced characteristics provided by the underlying platform. One approach is
to add meta-level interfaces or QoS parameters to control the internal algorithms of the
platform components. There is a conflict because a generic interface usually hides low-
level characteristics of the underlying platforms. (Nakijima et al. 2002)

In the software development, trade-offs among different qualities have to be taken into
account. For example, a programmer needs to consider non-functional properties such
as timeliness, precision, accuracy and consistency to build a service or an application.
Because it is impossible to satisfy all requirements, a programmer must consider which
requirements he/she has to focus on as the decision affects the program's architecture.
For example, distributed applications should take into account three properties that af-
fect the quality of a system: consistency, availability and network partition. Building
portable software requires making assumptions explicit, because these assumptions are
necessary to ensure the correctness of a program. (Nakijima et al. 2002)

3.5.3 Agile methods in ubiquitous software development

The traditional software development consists of a series of processes and rules, which
make software development planned and controlled. In the development of pervasive
software, there are more unknown requirements, more customers� expectation and more
changes during the software development, all of which call for a more adaptive software
development, i.e. agile methods. Agile methods balance the non-process hacker model
new change driven development model in order to obtain a relatively satisfactory out-

 47

come, and therefore applying them in the development of ubiquitous applications is
considered a promising approach.

The core set of agile methods (Abrahamsson et al. 2003; Zhou & Niemelä 2004b) in-
cludes eXtreme Programming (XP)6, Feature-Driven Development (FDD)7, Adaptive
Software Development (ASD)8 and Scrum9.

• XP preaches the values of community, simplicity, feedback, and courage. XP is
aimed at small and medium-sized teams. Communication and coordination between
XP members should be enabled at all times. The common XP culture and advanced
technology shall guarantee the XP project�s successful implementation.

• FDD is a process-oriented, model-driven, short-iteration process. One iteration
should take from a few days to a maximum of two weeks. FDD is suitable for above
medium-sized teams with rich modeling experience, new projects starting out, pro-
jects enhancing and upgrading existing code, and projects tasked with the creation
of a second version of an existing application.

• ASD replaces the static plan-design-build life cycle with the dynamic speculate-
collaborate-learn life cycle. ASD does not have built-in limitation for its project size
and field. An ASD project can be a cross-domain complex system, and ASD needs
techniques for enhancing inter-team collaboration to support distributed development.

• Scrum is an empirical project management approach applying the ideas of industrial
process control theory to systems development resulting in an approach that reintro-
duces the ideas of flexibility, adaptability and productivity. Traditional processes are
designed only to respond to the unpredictability of the external and development en-
vironments. The Scrum process is quite flexible and provides collaboration, training
and learning mechanisms for developers to share tacit knowledge and devise the most
ingenious solutions. Scrum is suitable for small teams of less than ten individuals.

Present agile methods can be characterized by the project-driven, intra-enterprise devel-
opment, object-oriented modeling and people-centric development. However, agile
methods ignore the role of software architecture and due to the iterative nature, they
easily lead to design erosion. Agile methods also require improvements in scaling them
to large development teams, integration and enterprise across application development.

6 http://www.extremenprogramming.org/
7 http://nebulon.com/fdd/
8 http://www.adaptivesd.com/
9 http://ww.controlchaos.com

 48

In summary, the issues to be further investigated and applied to ubiquitous (application)
development on agile methods include (Zhou & Niemelä 2004b):

Process. Light-weight methods improve the plan-driven waterfall process. However, it
would be more beneficial for software organizations to adopt the Win-Win alliance strat-
egy to respond to market changes. Because the increasingly unpredictable software mar-
ket forces software organizations to pay more attention to finding business opportunities,
it is necessary for the methods to combine the processes of component procurement, or-
ganization alliance and software knowledge discovery into software development.

Modeling. Present agile methods are all based on object-oriented methods. The object-
orientation is suitable for modeling intra-enterprise business. However, today�s projects
are generally cross-domains and cross-enterprises, and therefore, it is necessary to study
the domain-oriented and pervasive computing-oriented modeling methods. In recent
years, the ontology-oriented method has been used for modeling enterprises, domain
knowledge and natural language. The ontology-oriented software model will facilitate the
communication and inter-operation among people, enterprise, computer and software.

Software design rationale capturing. Design rationale is the underlying intent and
logical information behind design decisions. The few existing systems that can capture
the rationale are severely limited. The first software version should be done in a short
iteration cycle (e.g. two weeks), which expects more maintainable software. Capturing
software design rationale will enhance software maintenance and reengineering.

Human capital. All present agile methods think that the human factor is the most im-
portant factor (e.g. technology, process) impacting software development, but they do
not point out an effective method of managing people. In fact, managing human capital
means managing and developing the tacit knowledge hidden in people's heads. Knowl-
edge is created through the interaction between tacit and explicit knowledge. Four dif-
ferent modes of knowledge conversion are: socialization (from tacit to tacit); externali-
zation (from tacit to explicit); combination (from explicit to explicit) and internalization
(from explicit to tacit). Obviously, managing the people factor is the process of comput-
erizing the tacit knowledge. It is necessary for agile methods to study how to manage
and develop human capital in software development. (Zhou & Niemelä 2004b; Käh-
könen & Abrahamsson 2003)

3.5.4 Software testing

Testing is an integral part of the software development process. When software is
tested, it is executed with the intention of finding errors, and to determine that the soft-
ware meets its requirements (Myers 1979; Latvakoski 1997). Testing validates the com-

 49

pliance of a system to functional and non-functional requirements (e.g., performance).
Typically, 30-50% of system development effort is used for testing. In ubiquitous com-
puting software, the importance of testing is estimated to be increasing due to the re-
quirement of interoperability.

The computer-aided software testing (CAST) is one answer to lowering the cost of test-
ing. This refers to methods and tools supporting automated or, at least, semi-automated
testing. Test case generation, test execution and test result analysis are much easier for a
human tester when these activities are supported by advanced CAST tools. However, an
essential requirement is that the methods and tools can be seamlessly integrated together
with the test execution platforms both in simulation, integration and system testing.

For the time being, testing is done relying on traditional testing practices, ad-hoc ap-
proaches, and proprietary solutions. Ubiquitous computing requires defining new testing
methods for the special requirements that ubiquitous computing presents: new testing
processes and testing environments that enable testing of ubiquitous computing software
in real environments. The challenge is to represent the non-existent software modules
and network elements as well as make it possible to test in workstation environment.
This refers to the need for test software, which is usually required to enable test execu-
tion (Latvakoski 1997). The final phases of testing, i.e. system and acceptance testing,
require a real execution environment. The challenge is to provide a real execution envi-
ronment for ubiquitous computing software, which is not a trivial environment to setup
and manage but includes several devices and network elements with different interfaces.

One approach to automated testing environments is to use tree and tabular combined
notation (TTCN), which is a language for test specification and implementation. The
latest version of the language (TTCN-3) should be applicable in many application areas,
not just conformance testing. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services),
module testing, testing of e.g. CORBA based platforms, APIs etc. TTCN-3 can also be
used in many other kinds of testing, including interoperability, robustness, regression,
system and integration testing. TTCN-3 is an abstract language that is adaptable for dif-
ferent kinds of execution environments and system under tests. It also provides a
mechanism to distribute testing over several nodes, a means for automatic test execu-
tion, and interfaces to define different time handling mechanisms from simulated time
to real time.

In service-oriented software engineering, testing techniques such as TTCN-3 are applied
to testing infrastructure and middleware services, but they may be too expensive and
time-consuming for end-user service development. Software services are fine-grained
software pieces developed for a particular environment and validated by using them as a

 50

composition of end-user services in real environment. This means that the testing plat-
form/component should be part of a service package and easily used by the service users
as defined in the specifications and specific test cases.

3.6 Summary

Enabling software technologies, i.e. standards, reference architectures and generic mo-
deling and component technologies provide the basis for the development of ubiquitous
software. Advanced software technologies enhance these technologies by providing
concepts, micro-architectures and mechanisms to implement required supporting ser-
vices for the special requirements of ubiquitous software. Meta-models, component
types and generative models support heterogeneity of software technologies. Meta-
models also provide a bridge between various component models and hereby support
interoperability of software systems. Context-aware coordination and multi-agents ar-
chitectures assist in achieving mobility of services. However, there are still lack of sup-
porting services and technologies needed for full mobility as well as achieving security,
privacy and survivability in mobile applications.

Adaptive resource management is a concept for achieving adaptability for changing
network and computing resources. Although context-aware co-ordination is one of the
first steps towards self-organisation, it still keeps us waiting on better and more efficient
technologies. There are several new concepts and ongoing research activities related to
augmented reality and content scalability. However, most of their achievements are not
applicable to practical ubiquitous systems, yet.

Software development methodologies are evolving fast. Contradictory goals to develop
software faster, better and cheaper bring software engineers to face an extremely diffi-
cult situation. This leads to use as much as possible existing software based on standard
information technologies, usage of agile methods in the application development and
breaking down the infrastructure and middleware solutions to services with maximum
independence. Thereafter, virtual and distributed organisations develop services that are
integrated by the service providers. In the extreme case, while an end user defines the
features he/she wants from a service, the feature selection activates self-organisation
mechanisms that assist automatic service creation.

 51

4. State of the practice in Finnish R & D
For obtaining views about the state-of-the-practice and future of ubiquitous software
representatives of eight companies were interviewed and a questionnaire was sent to 80
companies. The aim of the interviews and questionnaire was to obtain views of the
companies about current state and future challenges of ubiquitous software business.

The companies presented in this research function in the following roles:

• device vendor for consumer electronics to mass-markets (one company),

• teleoperator (one company),

• system deliverer of industry (one company),

• software company (six companies),

• component- and service provider for industry and commerce (two companies),

• content provider (press and broadcasting, one company),

• component-provider for automation industry (one company),

• telecommunication company (two companies), and

• others (one company).

The number of companies in brackets indicates the number of companies functioning in
the role in question.

Based on the results received from the interviews, a questionnaire was made and sent to
80 companies. Replies to the questionnaire it was received from 12 company represen-
tatives. In the interviews and the questionnaire, the representatives of the companies
were asked their views about the following topics: problems and challenges in software
development, product development and business environment.

The persons were also asked to propose useful research topics and ways to transfer the
knowledge into industry. The following sections present a summary and analysis of the
information received in the interviews and the responses to the questionnaire divided
into different aspects of software development.

The following section present background knowledge of the researched companies
about ubiquitous software, their points of view in ubiquitous system and software de-
velopment, architectural design and analysis, business. Domain-specific aspects of the
researched companies are also summarized in the following section.

 52

4.1 Background knowledge and current state of ubiquitous
arena

The persons involved in this research had various definitions for ubiquitous computing
and background knowledge about the topic. The definitions given for ubiquitous area
are viewed in the following from several perspectives:

General view:

"Ubiquitous computing combines software and hardware."
"We do not use the concept "ubiquitous computing" anymore, but have focused on spe-
cific areas of ubiquitous computing."

Service view:

Ubiquitous service "means everywhere, as easy to use a service as possible". "Ubiqui-
tous applications are normal mobile applications that have various parameters and stim-
uli from the physical world (place, context etc.)."
"Ubiquitous applications are hidden in the environment."

Technological view:

"Ubicom is a short-range network- several devices that contact each other via a network."
"Ubiquitous devices are devices that control events of the physical world and connect
several devices and their events, are able to learn from the routines of the user."

As the above definitions prove the concept of ubiquitous computing/software varies in
different companies and domains. Different persons regarded ubiquitous software as an
interesting topic although their background knowledge about the topic varied very
much. The persons had three different views about the current technological level of
ubiquitous computing:

1. The technology for ubiquitous applications exists.

2. The technology for ubiquitous applications exists partly.

3. The technology for ubiquitous applications does not exist.

The difference of the above views is partly due to varying definitions and knowledge
about ubiquitous computing and software. The representatives of the companies saw
that the portion of software in systems will increase in the future, although separation of
hardware and software was regarded as problematic. The ubiquitous area was seen to
have several open questions that need to be solved in the future.

 53

4.2 System development

The representatives of the companies regarded achieving standard interfaces and inter-
operability between applications and devices as the main challenges to development of
ubiquitous software. Interoperability is seen as a basic factor for making ubiquitous
computing and software successful. At the moment, devices of different manufacturers
and applications do not interoperate, as standards are too loose. Some people think that
achieving a unique standard is impossible due to tough competition. Interface standardi-
zation is regarded as another big challenge to ubiquitous software development.

The following were seen as other technological challenges to ubiquitous systems:

• security (privacy, customer identification, management of user rights),

• power consumption; the challenge of ubiquitous computing is to develop low-power
devices for different places of use,

• openness,

• scalability,

• management of the decentralization and the huge wholeness,

• invisible data transfer infrastructure to different places cost-effectively,

• dynamic networking, ad-hoc communication and context recognition,

• ability of the system to filter information,

• automatic error handling,

• creating small and effective embedded systems,

• modifying products after their implementation,

• focusing on certain technologies, and

• the ability to draw conclusions, and implementation of a metadata-layer.

Many of the above challenges (like scalability and decentralization) are caused by glob-
alization that forces the systems to expand and be usable from different locations via dif-
ferent devices. Another challenge to system development in ubiquitous software is in-
creasing reusability so that components can be reused in same company/other companies.

According to the persons interviewed, the current standards created by different group-
ings pursuing their own interests were weakly usable in embedded systems and too
loose, therefore causing interoperability problems. Proper architecture requires defini-
tion of interoperability, interfaces and functions. The following are regarded as chal-
lenges to the standardization of ubiquitous:

 54

• achieving open, standard interfaces for different devices and for a limited environ-
ment, and

• standardization of software platforms and data received from different sources.

4.3 Architectural design and analysis

The representatives of the companies consider currently available architectural design
and evaluation methods to be inadequate, different components and interfaces variable,
and standards too loose to achieve interoperability.

The following were regarded as challenges to architectural design:

• design of standard application interfaces,

• developing architectural description methods that can be understood by everybody,

• increasing component-based architecture- thinking,

• developing a common component-library to product-lines and common middleware
for all platforms,

• getting general middleware to support the architectural design of ubiquitous applica-
tions,

• interoperability of architectures, and

• gaining more knowledge about architectural and software design.

Interoperability also presents the biggest challenges to architectural design of ubiquitous
systems. Efforts like OMA and OSA aim to achieve interoperability of interfaces and
applications, but there is still a lot of work to do in order to gain fully functional inter-
operability.

4.4 Software development

The software development of ubiquitous applications will - according to the company
representatives - face several challenges:

• achieving a ubiquitous way of thinking,

• increasing peoples' competence and trust in others' actions/software,

• sharing programming experiences,

• finding suitable development tools for developing ubiquitous applications,

• achieving compatibility of the versions between different manufacturers,

• creating easy-to-use applications,

 55

• increased complexity of programs,

• successful combination of software and hardware, and

• development in an environment with scarce resources (limited memory, supply of
electricity).

The problems of software development were seen to be difficulty in reusing current
software and making it reusable, short-time-to-market, high product development costs
(especially for small companies), inadequate requirement specifications and documenta-
tion, knowledge about software design and poor quality of specifications and code due
to a lack of time.

Changing the way of thinking towards openess and wider cooperation is one of the main
challenges according to the interviewed persons. Another challenge is to make easy-to-
use applications fast as programs become even more complicated and the amount of
available resources is limited. The proportion of software is estimated to increase in
systems in future.

From the applications point of view, the following are regarded as future challenges:

• the small size of devices/ applications that also limits other features,

• presenting the semantics of information,

• getting rid of the errors and resetting needs of the devices,

• taking into account all requirements,

• developing applications that are easy to use, personalize and reliable,

• handling the increased complexity, and

• personalization.

Especially in the case of mobile and wireless devices, people are accustomed to reset-
ting devices and this need should be removed in future. Companies functioning as sub-
contractors regard taking all requirements into account difficult due to inadequate re-
quirements specifications.

At the moment software testing was seen to make up too large a portion of the software
development costs, and decentralization increases the interoperability problems even
more by increasing the costs of testing. Added testing is not seen to increase quality, but
the procust should be qualitative right at the beginning.

 56

4.5 Business challenges to ubiquitous computing

The value chain of ubiquitous computing is regarded as unclear and therefore answers
should be defined to the following questions:

• Who pays for building the system and whose is it (consumer, teleoperator, ...)?

• Who owns which part of the service and who gains profit from it (costs vs. profit)?

• What is the level of service the end-user receives and is it adequate?

• What is the role of the operator?

• What kind of new concepts and visions could exist (where to achieve cost savings)?

• Who pays for what and is the customer willing to pay?

• What is the revenue logic of the P2P approach?

• Who is the provider of the service / who does business?

Concerning the customer service of ubiquitous services, definition of who is responsible
for the functionality of the service to the customer and who fixes the bugs or whether
the system could automatically fix the problems is required. The infrastructural chal-
lenge of ubiquitous computing is to define who pays for building the infrastructure and
whose is it.

According to the interviews, the revenue logic of ubiquitous services is seen as unclear
although the area has revenue potential and competent people. The services should be
almost free to the consumer and money could be collected via advertisements as every-
thing costs either directly or indirectly (there is no such thing as a free lunch).

The following topics were seen as business opportunities:

• security (as people are willing to pay for this),

• business applications,

• software developed from the initiative of device manufacturers,

• local advertisement,

• services that help daily and group communication,

• home environment,

• industry automation, and

• consumer electronics.

 57

4.6 Special ubisoft- features of different domains

The following Table 4 illustrates domain-specific issues of ubiquitous software accord-
ing to the role of a company.

Table 4. Domain-specific issues of ubiquitous software.

General comments Challenges Open questions Business potential
Device vendor for consumer electronics to mass-markets
• Current systems are

closed and locally
defined

• Software should be
adaptable so that
data could be picked
up from different
sources.

• It should be possible
to transfer data
between databases

• Data should be
filtered to avoid an
excessive amount of
information

• The system should
be open and know
what information
can be given to
which device

• How does the system
collect information?

• How much data can be
transferred and where
so that the system
does not crash?

• What information can
be received and used
and where does it go?

• Who is responsible for
functionality of the
service towards the
customer?

• How are the systems
connected to each
other?

• Advertisement
• Security

Teleoperator
• The device field will

be mixed
(pocketPCs,
SmartPhones)

• Legislation prevents
the teleoperator
from managing the
whole value chain,
and therefore the
value chain should
be split between
several parties

• Providing side-
functionalities for
maintaining the
infrastructure

• Achieving global
roaming that is
perhaps technically
possible but not yet
politically possible

• What is the role of
teleoperator in the
ubiquitous world?

System deliverer for industry
• There are no

wireless sensors for
implementing
ubiquitous systems

• Expansion of sensor
networking would
have a large effect
on their product
development.

• The traditional
software
development
process does not
work

• Implementing a
sensor to various
places (surface of
paper)

• Where are the
observations saved
and how they can be
found?

• Is there enough
memory for saving the
observations?

• Diagnostics (like
temperatures,
vibrations,...)

• If sensors could be
implemented more
locally, the need
for travel would
decrease thanks to
the possibility of
remote monitoring

 Continues...

 58

Software house
• Power consumption

is too high at the
moment

• Making the
infrastructure
invisible

• Managing the whole
value chain

• Defining standard
interfaces

• Who owns which part
of the service?

• Business
applications

Component and service provider for industry and commerce
 • Intelligent field-

machines should be
based more on
communication
techniques (like IP)

• Good remote-update
methods to
networked field
machines should be
developed

• Standardization of
software platforms

• Running Linux with
low power
requirements

• Who pays for the
infrastructure
investment?

• Providing remote
services

Content provider (press and broadcasting)
• At the moment,

home networks are
missing essential
parts

• Everything will
become IP-based
and WiFi-networks
will become more
general

• Wires have still not
disappeared

• Context has no
importance to them
as their content is
consumed anywhere

• How is the interface of
media content and
ubicomp and where is
the business?

• What new media
services do home
networks bring?

• How big are the
markets for tailored
media?

• Wireless local area
networks that
would become
general

• Tailored context-
aware media and

• Home applications

Component-provider of automation industry
• Software proportion

in their product is 25
% and rising

• Intelligence of the
motor and achieving
communication
between machines

• Ethernet applied to
industry-conditions

 • Wireless control
and surveillance of
house aspirators

• Proactive
maintenance

• Easy-to-use
devices that guide
the users in the
implementation
stage

Telecommunication company
• They concentrate on

selected domains of
ubiquitous
computing

• Management of the
system and
decentralization of
the technology
development

• How intelligent
should the system be?

• Is it reasonable to
build ubiquitous
applications?

• Consumer
electronics

• Home environment
• Entertainment

 59

As can be seen from Table 4, the companies see ubiquitous software in very different
ways, and the problems and opportunities they experience in the ubiquitous software
area are also different. From this, it can be concluded that once the main issues of ubiq-
uitous software, such as interoperability of the applications and standardization has been
solved, the remaining challenges have to be separately considered from the viewpoint of
the stakeholder roles.

4.7 Summary

This Chapter presented state-of-the-practise in Finnish companies based on replies re-
ceived to interviews and questionnaire.

The companies of this research had various definitions for ubiquitous computing and
background knowledge about the topic and this is one reason for differing views about
existence of the ubiquitous technology. Some companies regard ubiquitous software as
a new term for old things, they think that the ubiquitous technology already exists. On
the other hand companies that regard ubiquitous software as a totally new idea, regard
ubiquitous technology as non-existent. As a reason for lack of ubiquitous applications
was seen:

1. lack of competent people,

2. lack of initiative (=someone should start the implementation),

3. lack of infrastructure, and basic services

4. weak quality level of current ubiquitous technologies.

The representatives of the companies regarded as main challenges of development of
ubiquitous software:

• achieving standard interfaces and interoperability between applications and devices,

• enabling reusability of the components,

• standardization of software platforms and data received from different sources,

• achieving ubiquitous way of thinking,

• increased complexity of programs,

• successful combination of software and hardware, and

• achieving value chain for ubiquitous computing

 60

The revenue logic of ubiquitous services is seen -according to the companies- unclear
although the area has revenue potential and competent people. The services should be
almost free to the consumer and money could be collected via advertisements as every-
thing costs directly or indirectly.

 61

5. Conclusions and recommendations

5.1 Future research in the ubiquitous software area

Table 5 summarizes the development trend in some key areas of ubiquitous software tech-
nologies. Technologies are categorized into four main classes, namely infrastructure, mid-
dleware, content and pervasive services and software development. Development includes
methods, techniques and technologies used in each of the other three classes. Human-
system interaction technologies are out of the scope of this research and that is why they are
not considered in this summary. The summary is not exhaustive, but the selected topics are
related to the topics described earlier in this report. The aim is to provide an understanding
of how these topics will evolve in the future. The spans of evolution defined are medium
and long-term. Medium-term means 5 years and long-term 10 years.

Table 5. Evolution of ubiquitous software technologies in the future.

Technology Now Medium-term Long-term

Infrastructure
Interoperability of
heterogeneous networks

Manual Automatic Seamless

Standarized ontologies for
profiles and services

Community
support and
management

Standarized
ontologies and
profile construction

Fusion of profiles across
applications

Automatic resource discovery Local networks Wireless access networks

Knowledge based auto-
configuration

 Home and
enterprise

Wireless access networks

Middleware
Automatic and scalable service
discovery

Prototypes Enterprise, home Personal networks

Adaptive resource management Prototypes Devices, systems Personal networks
Interface standards for
management of resources in
heterogeneous environments

Prototypes Initial
specifications,
prototypes

Specified

Authentication Single sing-on,
Smarcard,
Javacard, VPN

Dynamic configuration,
Tamper-proof,
PKI in P2P

Security methodologies
(modeling and testing tools)

Limited Specified Automated

Design patterns From generic to domain-specific patterns, i.e. pervasive middleware
patterns

Light-weight middleware Prototypes Standard (interoperability, heterogeneous
environments), software solutions and
applications

Established standard compo-
nents and contracts

Component
types

Specified and in practice

 continues...

 62

Content/ Pervasive services
Dynamic filtering and
transformation for adaptation

Prototype Applications Real-time solutions

Self-organizing software agents Multi-agents Self-organizing algorithms and strategies,
negotiation techniques

Self-services,

Adaptive, intelligent self-configuration
Development
Model transformation Prototypes Specified
Dynamic architectures Models, ontology-oriented design, light-weight

solutions
Architectural patterns General patterns Specific patterns
Architecture quality and trade-
off analysis methods

Initial versions Systematic methods,
tool support

Semi-automatic

Automated software testing Protocol
software

Adoption and adaptation to pervasive software
development

5.2 Opportunities for Finnish companies in the ubiquitous area

Finnish companies will have various opportunities in the ubiquitous area although some
of these opportunities are dependent on the development of the required technology like
sensors and infrastructure. In the ubiquitous software arena, the companies are seen to
have business opportunities in the following areas:

− middleware components,

− ubiquitous computing environment and its components,

− sensors implemented locally to various conditions,

− small-sized applications and services,

− personalized services, and

− transfer into wireless communication,

Finnish companies also have a good chance to succeed in the ubiquitous arena interna-
tionally due to their strong knowledge of mobile technologies and embedded software
technologies. With regard to business domains, there is potential in providing applica-
tions for home environment, industry automation, business and consumer electronics.
Realizing the business opportunities of the ubiquitous arena requires tough removal of
the interoperability problems and achieving general standardization into the area.

 63

5.3 Recommendations

The aim of this section is to conclude recommendations that Finnish companies and re-
search institutes and universities could take into account in future research and develop-
ment. Table 6 presents these recommendations from a general, system, software and busi-
ness point of view by describing the authors' view and view of the researched companies.

Table 6. Recommended research topics of ubiquitous software.

 Authors' view Companies' view

Generic

− Security and privacy protection
− Ontology-orientated design
− Methods and tools for describing

service and content semantics

− Data security, ownership and control
− Information semantics
− User interfaces and interaction of a user in

different devices

Software − Cost-efficient and dynamic
networking and architecture solutions

− Management of changing
requirements

− Dynamic architectures
− Adaptive middleware services
− A unified middleware standard
− Service evaluation
− Methods and tools for evaluating

execution qualities
− Methods how to add value to existing

software solutions
− Methods, tools and platforms for

testing embedded product software

− Management of rapidly changing
requirements

− Defining software-intensive, tailorable,
platform-independent product applications

− Configuration of the functionality
− Dynamic architectures
− Middleware and use cases of ubiquitous

applications
− Component-based design
− Defining standardized interfaces

System − Interoperable distributed software
platforms

− Defining services that are adaptable to
changes in transmission networks, service
level, terminal etc.

Business − Business value chains − Defining challenges and costs of the
infrastructure implementation

− Defining cost-effective and reasonable
value chain

− Defining consumer needs and potential
markets; the needs could be collected with
the aid of pre-study of potential
applications and their advantages

Table 5 confirms that the most important research topics of ubiquitous software are in-
teroperability and security of the services, defining services that are adaptable to
changes in transmission networks, service level, terminal etc. and value chain for ubiq-
uitous services. Interoperability and adaptability can be achieved by defining standard-
ized interfaces, unified middleware and dynamic architectures.

 64

References
Abrahamsson, P., Warsta, J., Siponen, M. T. & Ronkainen, J. 2003. New directions on
agile methods: comparative analysis. In: proceedings of ICSE 2003. IEEE Computer
Society: Los Alamitos. Pp. 244�254

Ailisto, H., Kotila, A. & Strömmer, E. 2003. Ubicom applications and technologies.
VTT Technical Research Centre of Finland: Espoo. VTT Tiedotteita - Research Notes:
2201. ISBN 951-38-6154-6; 951-38-6155-4. 54 p.

Amin, M. 2000. Toward Self-Healing Infrastructure Systems. Computer, Aug. 2000, pp.
44�53.

Antoniac, P., Pulli, P., Kuroda, T., Bendas, D., Hickey, S. & Sasaki, H. 2002. Wireless
User Perspectives in Europe: HandSmart Mediaphone Interface. Wireless Personal
Communications, Vol. 22, September, pp. 161�174.

Bass, L., Clements, P. & Kazman, R. 1998. Software Architecture in Practice. Reading,
Massachusetts, USA, Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H. 1996. Pattern-oriented software architecture,
as system of patterns. Chishester, John Wiley & Sons.

Bustamante, F. E., Widener, P. & Schwan, K. 2002. Scalable Directory Services Using
Proactivity. Supercomputing 2002, Baltimore, MD.

Cabri, G., Leonardi, L. & Zambonelli, F. 2002. Engineering Mobile Agent Applications
via Context-Dependent Coordination. IEEE Transactions on Software Engineering, Vol.
28, Issue 11, pp. 1039�1055.

Charles, J. 1999. Middleware moves to the forefront. Computer, Vol. 32, Issue 5, pp.
17�19.

Chiang, C. C. 2003. The use of adapters to support interoperability of components for
reusability. IEEE Information and Software Technology, Vol. 45, pp. 149�156.

Clements, P. & Northrop, L. 2002. Software Product Lines: Practices and Patterns. Bos-
ton, MA, USA, Addison-Wesley.

Coulouris, G., Dollimore, J. & Kindberg, T. 2001. Distributed Systems Concepts and
Design. Addison-Wesley. ISBN 0201-61918-0. 772 p.

 65

Elder, M. C. 2001. Fault Tolerance in Critical Information Systems. Faculty of the
School of Engineering and Applied Science, University of Virginia.

Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson H. F., Longstaff, T. A. & Mead, N. R.
1999. An Approach to Survivable Systems, CERT Coordination Center, Software Engi-
neering Institute, Carnegie Mellon University.

Garlan, D., Allen, R. & Ockerbloom, D. 1995. Architectural Mismatch or Why It Is So
Hard to Build Systems out of Existing Parts. The 17th International Conference on
Software Engineering, Seattle, Washington, USA.

Gutberlet, L. 2000. Peer-to-Peer Computing- A Technology Fad or Fact? European
Business School/Schloss Reichartshausen am Rhein.

Heylighen, F. & Gersheson, C. 2003. The meaning of Self-organization in Computing.
IEEE Intelligent Systems. Section Trends & Controversies - Self-organization and In-
formation Systems. May/Jun 2003.

Homayounfar, H. 2002. An advanced P2P architecture using autonomous agents. Uni-
versity of Guelph (Ontario, Canada) (Master's Thesis): 182 p.

Hongisto, M. 2003. Resource management under Linux for COTS and open source ap-
plications. Minttu technical report.

IBM. 2004. On-line at: http://www-106.ibm.com/developerworks/webservices/library/ws-wsxl/.

Kalaoja, J., Niemelä, E., Tikkala, A., Kallio, P., Ihme, T. & Torchiano, M. 2003. WISA
Reference Architecture. Deliverable ID: D4 (Part B).

Kallio, P., Zorer, A. & Tiella, R. 2004. Accounting and billing of wireless Internet ser-
vices in 3G networks. Accepted to International Journal of Mobile Communications.

Kindberg, T. & Fox, A. 2002. System Software for Ubiquitous computing. IEEE Perva-
sive computing January-March 2002.

Knight, J. C., Strunk, E. A. & Sullivan, K. J. 2003. Towards a Rigorous Definition of
Information System Survivability. DARPA Information Survivability Conference and
Exposition, DISCEX '03, Washigton DC.

Knight, J. C. & Sullivan, K. J. 2000. On the Definition of Survivability, University of
Virginia, Department of Computer Science.

 66

Kähkönen, T. & Abrahamsson, P. 2003. Digging into the fundamentals of extreme pro-
gramming buildingthe theoretical base for agile methods. Proceedings of 29th Euromi-
cro Conference, 2003, Antalaya, Turkey, 1�6 Sept. 2003. IEEE Computer Society. Los
Alamitos (2003). Pp. 273�280.

Latvakoski, J. 1997. Integration Test Automation of embedded communication soft-
ware. VTT Publication 318. 98 p. + app. 28 p.

Latvakoski, J., Pakkala, D. & Pääkkönen, P. 2004. A communication Architecture for
Spontaneous Systems. IEEE Wireless Communication Magazine. 2004.

Matinlassi, M. & Niemelä, E. 2003. The Impact of Maintainability on Component-based
Software Systems. Euromicro 2003, Antalya, Turkey.

Myers, G. J. 1979. The art of software testing. New York: John Wiley & Sons. 177 p.

Nakijima, T., Ishikawa, H., Tokunaga, E. & Stajano, F. 2002. Technology Challenges
for Building Internet Scale Ubiquitous Computing. Proceedings of the 7th International
Workshop on Object-oriented Real-Time Dependable Systems, WORDS 2002. Pp.
171�179.

Niemelä, E. & Vaskivuo, T. 2004. Agile Middleware of Pervasive Computing Envi-
ronments. Middleware Support for Perwasive Computing Workshop, PerWare'2004,
Orlando, USA, IEEE.

Niemelä, E., Matinalassi, M. & Lago, P. 2003. Architecture-centric approach to wireless
service engineering. Annual Review of Communications, Volume 56. IEC. Chicago
(2003). Pp. 875�889.

Noble, B. D., Narayannan, D., Tilton, J. E., Flinn, J. & Walker, K. R. 1997. Agile Ap-
plication-Aware Adaptation for Mobility. The 16th ACM Symposium on Operating
Systems Principles, Saint Malo, France, IEEE.

Nokia. 2002. Mobile Internet Technical Architecture. Volumes 1, 2 and 3. ISBN 951-
826-668-9.

Pakkala, D. 2004. Lightweight Distributed Service Platform for Adaptive Mobile Ser-
vices. MSc Thesis. University of Oulu. Department of Electrical and Information Engi-
neering. 103 p.

 67

Pal, P. P., Loyall, J. P., Schantz, R. E., Zinky, J. A. & Webber, F. 2000. Open imple-
mentation toolkit for building survivable applications. DARPA Information Survivabil-
ity Conference and Exposition, DISCEX'00.

Parameswaran, M., Susarla, A. & Whinston, A. B. 2001. P2P Networking: An Informa-
tion-Sharing Alternative. IEEE Computer. July 2001.

Perkins, C. E. (ed.). 2001. Ad Hoc Networking. Addison-Wesely. ISBN 0-201-30976-9.

Ponnekanti, S. R., Lee, B., Fox, A., Hanrahan, P. & Winograd, T. (eds). 2001. ICrafer:
A Service Framework for Ubiquitous Computing Environments. Lecture Notes in Com-
puter Science, Springer Verlag.

Purhonen, A. & Tuulari, E. 2003. Ambient Intelligence and the Development of Em-
bedded System Software. Ambient Intelligence: Impact on Embedded System Design.
T. Basten, M. Geilen and H. de Groot (eds.). Kluwer Academic Publishers. Pp. 51�67.

Raatikainen, K., Hohl, F., Latvakoski, J., Lindholm, T. & Tarkoma, S. 2003. Generic
Service Elements for Adaptive Applications. WWRF WG2 White Paper. 12 p.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H. & Nahrstedt, K.
2002. A Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing, Vol.
1, Issue 4, pp. 74�83.

Schulzrinne, H. & Rosenberg, J. 2000. Application layer mobility using SIP. ACM Sig-
mobile. Mobile Computing and Communications Review, Vol. 4, Issue 3. Jul 2000.

Sipilä, M. 2002. Communications Technologies. The VTT roadmaps. Espoo. VTT Re-
search Notes 2146. 81 p.

Sousa, J. P. & Garlan, D. 2002. Aura: An Architectural Framework for User Mobility in
Ubiquitous Computing Environments. The 3rd working IEEE/IFIP Conference on
Software Architecture, Montreal, Canada.

Tarvainen, P. 2004. Survey on Survivability of Information Systems. Submitted to
ESORICS 2004, the 9th European Symposium on Research in Computer Security. 18 p.

Taulavuori, A., Niemelä, E. & Matinlassi, M. 2004. Evaluating the integrability of
COTS components - the product family viewpoint. To be apper in: Building Quality
into COTS Components - Testing and Debugging. S. Beydeda and V. Gruhn (Eds.),
Springer-Verlag. 25 p.

 68

Tierney, B., Aydt, R., Gunter, D., Smith, W., Taulor, V., Wolski, R. & Swany, M. 2002.
A grid monitoring architecture, Global Grid Forum - Performance Working Group.

Toh, C.-K. 2002. Ad Hoc Mobile Wireless Networks. 302 p.

Weiser, M. 1991. The computer for the twenty-first century. Scientific American, Sep
1991, pp. 94�104.

Weiser, M. 1993. Some Computer Science issues in Ubiquitous Computing. Communi-
cations of the ACM, 36(7), Jul 1993.

Vinoski, S. 2002. Putting the "Web" into Web Services. IEEE Internet Computing, Vol.
6, Issue 4, pp. 90�92.

Vinoski, S. 2003. Service Discovery 101. IEEE Internet Computing, Vol. 7, Issue 1, pp.
69�71.

VTT Electronics. 2004. Embedded Software Research and Development Activities, to
be appear Spring 2004.

WWRF. 2001. The Book of Visions 2001. Version 1.0. 281 p.

Xu, H. & Shatz, S. M. 2003. A Framework for Model-Based Design of Agent-Oriented
Software. IEEE Transactions on Software Engineering, Vol. 29, Issue 1, pp. 15�30.

Zhou, J. & Niemelä, E. 2004a. Beyond Application-Oriented Software Engineering:
Service-Oriented Software Engineering (SOSE). To be appear in: Service-Oriented
Software System Engineering: Challenges and Practices. Z. Stojanovic and A. Da-
hanayake (Eds.). 22 p.

Zhou, J. & Niemelä, E. 2004b. Agile Software Development: A Survey and A Return
on Experience. Submitted to ACM Computing Surveys, 14 p.

Published by

Series title, number and
report code of publication

VTT Research Notes 2238
VTT�TIED�2238

Author(s)
Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani
Title
 Ubisoft- Pervasive Software

Abstract
Ubiquitous computing enhances computer use by making many computers available throughout the physical
environment, while making them effectively invisible to the user. Ubiquitous computing can be seen as a prereq-
uisite for pervasive computing that emphasizes mobile data access, and the mechanisms needed to support a
community of nomadic users. Ambient intelligence focuses on a smart way to use communication technology for
making life simpler, more enjoyable and interesting. Ubiquitous software is software required for ubiquitous
computing environments and in this report it includes pervasive software. Ambience intelligence is out of the
scope of this report. The aim of this report is to offer Finnish companies and preparators of the Tekes-programs
(ELMO, NETS, FENIX) a total view of the maturity, development needs and business opportunities of software
engineering in the ubiquitous computing area. This report illustrates the state-of-the-art and requirements of
ubiquitous software based on recent surveys. This report also provides a view on the state-of-the-practice of
ubiquitous software in Finnish companies based on interviews made in some Finnish companies and replies re-
ceived to a questionnaire sent to bigger sample of companies. State-of-the-art visions set about global ubiquitous
systems, products' short-time-to-market and quality requirements that are tightening up, set ubiquitous software a
huge set of requirements that include interoperability, hetereogeneity, mobility, security, adaptability, ability of
self-organization, augmented reality and scalable content. Enabling technologies of ubiquitous software are stan-
dards, reference architectures and generic software technologies. Ubiquitous software development requires ap-
plying suitable software architectures and development methods that are presented in this research. Based on the
stat-of-the-practise this report presents that the main challenges of ubiquitous software are achieving adaptable
middleware and interoperability between services and networks, developing the required enabling technologies,
defining value chain for providing the services and guaranteeing secure transactions between different stake-
holders. Ubiquitous computing is seen to combine hardware and software, so new kind of development methods
and architectural models are required for ubiquitous service development. Companies will have business oppor-
tunities in ubiquitous business in middleware components, for example, concerning security, enabling technolo-
gies, ubiquitous components and sensors implemented locally to various conditions such as to the surface of
paper, small-sized applications, and personalized services. In principal, we suggest as important research topics
in ubiquitous software arena security, management of changing requirements, middleware standards and services,
cost efficient architecture solutions and ubiquitous business value chains.
Keywords
ubiquitous software, pervasive computing, ubiquitous computing, ubiquitous business

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland

ISBN Project number
951�38�6452�9 (soft back ed.)
951�38�6453�7 (URL: http://www.vtt.fi/inf/pdf/)

E4SU00034

Date Language Pages Price
April 2004 English, finnish abstr. 68 p. B

Name of project Commissioned by
Ubisoft The National Technology Agency (Tekes)

Series title and ISSN Sold by
VTT Tiedotteita � Research Notes
1235�0605 (soft back edition)
1455�0865 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

Julkaisija

Julkaisun sarja, numero ja
raporttikoodi

VTT Tiedotteita 2238
VTT�TIED�2238

Tekijä(t)
Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani
Nimeke
Läsnä-älyn ohjelmistojen haasteet ja teknologiat

Tiivistelmä
Läsnä-älyn ohjelmistot lisäävät tietokoneiden käyttöä ja tarjoavat ohjelmistoilla tuotettuja palveluja käyttä-
jille hyödyntämällä käyttäjien normaalia fyysistä toimintaympäristöä, mutta kätkemällä tietokoneiden ole-
massaolon itse käyttäjiltä. Verkotettuja sulautettuja järjestelmiä tarvitaan, jotta käyttäjä saa haluamansa
palvelut kaikissa mahdollisissa tilanteissa ja ympäristöissä. Tietokoneiden ja tietotekniikan leviäminen
edellyttää myös tiedon saatavuutta liikkuvien päätelaitteiden kautta, mikä puolestaan edellyttää erityisiä
liikkuvaa käyttäjää tukevia ratkaisuja. Älykkäät ympäristöt pyrkivät hyödyntämään tietoliikenneteknologiaa
ihmisen elämän helpottamiseksi ja rikastuttamiseksi. Läsnä-älyn ohjelmisto tarkoittaa verkotettujen ja ym-
päristöön sulautettujen järjestelmien ohjelmistoa. Läsnä-älyn ohjelmistojen kehittäminen korostaa joko
tietokonetekniikkaa tai ihmiskeskeisyyttä, joita molempia asioita on käsitelty tässä raportissa rinnakkain.
Älykkäiden ympäristöjen kehittämiseen liittyvät teknologiat on jätetty raportin aihepiirin ulkopuolelle.

Tämän raportin tarkoitus on tarjota suomalaisille yrityksille ja Tekes-ohjelmien (ELMO, NETS, FENIX)
valmistelijoille kokonaisnäkemys läsnä-älyn ohjelmistoteknologioiden kypsyydestä, kehitystarpeista, liike-
toimintamahdollisuuksista ja ohjelmistokehityksen verkottumisesta sekä läsnä-älyn sovellusten mahdolli-
suuksista tulevaisuudessa. Raportti kuvaa läsnä-älyn ohjelmistojen teknologialle asettamat vaatimukset ja
teknologioiden kypsyyden perustuen tuoreisiin tutkimustuloksiin. Raportti esittää myös läsnä-älyn sovelluk-
sia kehittävien suomalaisten teollisuusyritysten käsityksen teknologian nykytilasta haastatteluihin ja kysely-
tutkimukseen perustuen.

Globaaleista langattomista kommunikointijärjestelmistä esitetyt visiot, palvelutuotteille asetettava lyhyt
kehitysaika ja yhä kiristyvät laatuvaatimukset asettavat sekä järjestelmille että ohjelmistoille suuren joukon
haasteita kuten liikkuvuus, yhteistoiminnallisuus ja mukautuvuus. Standardit, viitearkkitehtuurit ja yleiset
ohjelmistoteknologiat ovat esimerkkejä teknologioista, jotka mahdollistavat läsnä-älyn ohjelmistojen
kehittämisen. Koska kaikkialle leviävä tietojenkäsittely yhdistää ohjelmistot ja laitteistot, läsnä-älyn
ohjelmistojen kehittämiseen tarvitaan uudenlaisia menetelmiä ja arkkitehtuurimalleja.

Tässä raportissa esitetään, että läsnä-älyn ohjelmistojen toteuttamisen suurimpia haasteita ovat mukautuvan
välitason ohjelmistojen kehittäminen, ohjelmistopalvelujen ja kommunikointiverkkojen yhteistoiminnal-
lisuuden aikaansaaminen, vaadittavan infrastruktuurin kehittäminen, toimivan arvoketjun määritteleminen
palvelujen tuottamiseksi ja palvelujen turvallisen toimituksen takaaminen eri osapuolten välillä. Yrityksillä
on liiketoimintamahdollisuuksia läsnä-älyn ohjelmistojen ja järjestelmien alueella mm. välitason kompo-
nenteissa, palvelut mahdollistavissa teknologioissa, sulautettujen järjestelmien komponenteissa, antureissa
ja pienikokoisissa henkilökohtaistetuissa palveluissa.

Avainsanat
ubiquitous software, pervasive computing, ubiquitous computing, ubiquitous business

Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951�38�6452�9 (nid.)
951�38�6453�7 (URL: http://www.vtt.fi/inf/pdf/)

E4SU00034

Julkaisuaika Kieli Sivuja Hinta
Huhtikuu 2004 Englanti, suom. tiiv. 68 s. B

Projektin nimi Toimeksiantaja(t)
Ubisoft Teknologian kehittämiskeskus (Tekes)

Avainnimeke ja ISSN Myynti:
VTT Tiedotteita � Research Notes
1235�0605 (nid.)
1455�0865 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. (09) 456 4404
Faksi (09) 456 4374

V
TT RESEA

RCH
 N

OTES 2238
U

biSoft - pervasive softw
are

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

ISBN 951–38–6452–9 (soft back ed.) ISBN 951–38–6453–7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0605 (soft back ed.) ISSN 1455–0865 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004 VTT RESEARCH NOTES 2238

Päivi Kallio, Eila Niemelä & Juhani Latvakoski

UbiSoft - pervasive software

VTT TIEDOTTEITA – RESEARCH NOTES

VTT ELEKTRONIIKKA – VTT ELEKTRONIK – VTT ELECTRONICS

1914 Korpipää, Tomi. Hajautusalustan suunnittelu reaaliaikasovelluksessa. 1998. 56 s. +
liitt. 4 s.

1927 Lumpus, Jarmo. Kenttäväyläverkon automaattinen konfigurointi 1998. 68 s. + liitt.
3 s.

1933 Ihme, Tuomas, Kumara, Pekka, Suihkonen, Keijo, Holsti, Niklas & Paakko, Matti.
Developing application frameworks for mission-critical software. Using space
applications as an example. 1998. 92 p. + app. 20 p.

1965 Niemelä, Eila. Elektroniikkatuotannon joustavan ohjauksen tietotekninen
infrastruktuuri. 1999. 42 s.

1985 Rauhala, Tapani. Javan luokkakirjasto testitapauseditorin toteutuksessa. 1999. 68 s.

2042 Kääriäinen, Jukka, Savolainen, Pekka, Taramaa, Jorma & Leppälä, Kari. Product Data
Management (PDM). Design, exchange and integration viewpoints. 2000. 104 p.

2046 Savikko, Vesa-Pekka. EPOC-sovellusten rakentaminen. 2000. 56 s. + liitt. 36 s.

2065 Sihvonen, Markus. A user side framework for Composite Capability / Preference
Profile negotiation. 2000. 54 p. + app. 4 p.

2088 Korva, Jari. Adaptiivisten verkkopalvelujen käyttöliittymät. 2001. 71 s. + liitt. 4 s.

2092 Kärki, Matti. Testing of object-oriented software. Utilisation of the UML in testing.
2001. 69 p. + app. 6 p.

2095 Seppänen, Veikko, Helander, Nina, Niemelä, Eila & Komi-Sirviö, Seija. Towards
original software component manufacturing. 2001. 105 p.

2114 Sachinopoulou, Anna. Multidimensional Visualization. 2001. 37 p.

2129 Aihkisalo, Tommi. Remote maintenance and development of home automation
applications. 2002. 85 p.

2130 Tikkanen, Aki. Jatkuva-aikaisten multimediasovellusten kehitysalusta. 2002. 55 s.

2157 Pääkkönen, Pekka. Kodin verkotettujen laitteiden palveluiden hyödyntäminen. 2002.
69 s.

2160 Hentinen, Markku, Hynnä, Pertti, Lahti, Tapio, Nevala, Kalervo, Vähänikkilä, Aki &
Järviluoma, Markku. Värähtelyn ja melun vaimennuskeinot kulkuvälineissä ja
liikkuvissa työkoneissa. Laskenta-periaatteita ja käyttöesimerkkejä. 2002. 118 s. +
liitt. 164 s.

2162 Hongisto, Mika. Mobile data sharing and high availability. 2002. 102 p.

2201 Ailisto, Heikki, Kotila, Aija & Strömmer, Esko. Ubicom applications and technologies.
2003. 54 p.

2213 Lenkkeri, Jaakko, Marjamaa, Tero, Jaakola, Tuomo, Karppinen, Mikko & Kololuoma, Terho.
Tulevaisuuden elektroniikan pakkaus- ja komponenttitekniikat. 2003. 78 s. + liitt. 4 s.

2238 Kallio, Päivi, Niemelä, Eila & Latvakoski, Juhani. UbiSoft - pervasive software. 2004.
68 p.

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	1.1 Background and aims
	1.2 Definition of concepts
	1.3 Overview of this report

	2. Requirements for ubiquitous software
	2.1 Visions of ubiquitous computing
	2.2 Some essential requirements
	2.2.1 Interoperability
	2.2.2 Heterogeneity
	2.2.3 Mobility
	2.2.4 Security, privacy and survivability
	2.2.5 Adaptability
	2.2.6 Ability of self-organization
	2.2.7 Augmented reality and scalable content

	2.3 Summary

	3. State-of-the-art in ubiquitous software
	3.1 Enabling technologies
	3.2 Standardization bodies
	3.3 Research activities in ubiquitous software development
	3.4 Software architecture of ubiquitous systems
	3.4.1 Architectural styles and patterns
	3.4.2 Wireless-specific design patterns
	3.4.3 Adaptive resource management
	3.4.4 Proactive service discovery
	3.4.5 Context-aware coordination
	3.4.6 Multi-agents
	3.4.7 Models for heterogeneous environments
	3.4.7.1 Meta models
	3.4.7.2 Component types
	3.4.7.3 Generative model

	3.5 Development aspects of ubiquitous software
	3.5.1 Towards service-oriented software development
	3.5.2 Adding quality to legacy software
	3.5.3 Agile methods in ubiquitous software development
	3.5.4 Software testing

	3.6 Summary

	4. State of the practice in Finnish R & D
	4.1 Background knowledge and current state of ubiquitous
	4.2 System development
	4.3 Architectural design and analysis
	4.4 Software development
	4.5 Business challenges to ubiquitous computing
	4.6 Special ubisoft- features of different domains
	4.7 Summary

	5. Conclusions and recommendations
	5.1 Future research in the ubiquitous software area
	5.2 Opportunities for Finnish companies in the ubiquitous area
	5.3 Recommendations

	References

