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Abstract 
In this research note, we take a look at the field of mobile work machine 
diagnostics. The perspective by the authors is limited by the research project 
(KODIE) behind this research. However, we have tried to provide generic 
guidelines for machine builders to set up their diagnostics strategy. Building 
blocks, like SAE J1939/73, ISO 15765 and ODX, from automotive industry are 
exhibited to prevent machine manufactures from reinventing diagnostics 
protocols and practices. Furthermore, examples of diagnostics architectures are 
presented, with OSA-CBM among others. To make the most of diagnostics data, 
an extensive set of data analysis methods are introduced. And in order to help 
engineers to design diagnostics feature for the sensor system, hints and examples 
are supplied as to how to establish the fault modes of sensors; a good knowledge 
about the (relevant) sensor and actuator fault modes is a prerequisite for 
comprehensive fault detection. 
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1. Introduction 
Diagnostics is not an easy task. The following issues make implementation of 
comprehensive diagnostics of work machines laborious: 

• It is difficult to parse the whole picture of diagnostics into manageable 
pieces. Matters to be settled are, for example, the partition between on-
board and off-board diagnostics, strategy for on duty and off duty 
diagnostics, creating corporate infrastructure to support telediagnosis 
and field service, providing service personnel training, producing 
diagnostics manuals on paper and in electronic formats (multimedia 
manuals), balancing between reactive, schedule based and proactive 
diagnostics (prognosis) and fulfilling both the legislative requirements 
and proprietary requirements. Creating an effective diagnostics strategy 
and a suitable set of requirements for the diagnostics features and 
services requires a significant amount of skills and experience. 

• Designing of the diagnostics methods and algorithms is time consuming. 
If a good diagnostic method is found to detect faults of a certain 
measurement function, a different method may be needed for a different 
measurement even though it uses exactly the same sensor type. To learn 
the effectiveness of the invented diagnostic method may take a 
considerable time, as the number of machines in the field using the 
particular method may be low. Hence, the field feedback is slow. 
Furthermore, to minimise the risks posed by a fresh diagnostic method 
necessitates performing thorough theoretical evaluations and massive 
laboratory tests. 

• Implementation of diagnostics software is more difficult than 
implementation of the actual application software. Testing and tuning of 
the diagnostic features especially is time consuming. Setting the fault 
reporting thresholds correctly is critical to prevent unnecessary fault 
reports, but a fault indication must always be ensured when a fault really 
prevails. However, the thresholds are not generic, but the machines are 
individuals and their working environments may vary from the cold 
climate of Nordic countries to the tropical climate. Hence, the fault 
reporting thresholds, and even the diagnostic methods, must be adapted 
to the specific machine and its working conditions. 
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• The complexity of the machine control systems may grow faster than the 
diagnostics skills, engineering resources and infrastructure support of 
the machine manufacturer company. 

In the early 90's, the manager of an electronics sub-contractor of a Finnish 
machine manufacturer said that about 50% of the software development effort is 
put into programming and especially testing and tuning of the diagnostic 
features. Ogawa & Morozumi [2002] (from Toyota) report that (in year 2002) 
one third of the CPU capacity of the electronic modules of cars was spent on on-
board diagnostics. Although to implement extensive diagnostics on work 
machines is such a tedious task, there is enough motivation to do it and to do it 
well:  

• Diagnostics is one major way to improve the availability performance of 
the machine. Especially now (in year 2004) when the trend is to shift 
from machine sales to capacity trading, the availability performance is 
the quantitative measure that sets the price tag. In more traditional trade, 
better availability saves the customer money and keeps the customers 
happy. It should be noted, however, that not all diagnostics brings added 
value, but is a must to keep the availability at least at the same level as 
with the traditional, more mechanical, machines. In the context of 
mobile machines, the importance of availability performance may be 
higher than with e.g. personal cars due to the fact that a work machine 
does productive work that somebody pays for. 

• In the case of emission related diagnostics, the legislation may require 
certain diagnostic services and a standardised access to those services. 

• With diagnostics it is possible to defend functions against safety critical 
fault modes and signal deviations. 

Diagnostics of work machines is thus clearly an issue meriting greater emphasis, 
now and even more in the future. 
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2. Clarifying the diagnostics picture 
Diagnostics is a messy playground. Here we try to clarify the picture by posing 
questions: what, where, when, who and how. But before posing the questions, 
we define the term 'diagnostics' and also take a look at the relationship between 
diagnostics and the failure reporting, analysis and corrective action system 
(FRACAS). Finally, we summarise the relevant questions as a checklist to help 
create a diagnostics strategy for a modern work machine. 

2.1 Definition of the term diagnostics 

Diagnostics is not an easy word. The definition and sense of the word may vary 
depending on the context and the people using the word. IEC 60050-191 
(Electrotechnical vocabulary. Dependability and quality of service) defines the 
phrase 'fault diagnosis' as follows: "Actions taken for fault recognition, fault 
localisation and cause identification". In this context, we use a more narrow 
definition for the word 'diagnostics': 

The reason to omit 'cause identification' from the above definition is the fact that 
in the case of machine diagnostics, the cause identification is considered to be 
included in the failure analysis process performed in the failure analysis 
laboratory. Hence, cause identification is part of the failure reporting, analysis 
and corrective action system (FRACAS). To make the relation between 
diagnostics and FRACAS clear, we will discuss FRACAS in more detail in 
Chapter 2.3. 

2.2 Costs and benefits of diagnostics  

The obvious reason why condition monitoring and diagnostic systems are 
developed is to:  

Diagnostics = Actions taken for fault recognition and fault localisation 
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A human is very good at diagnosing whether things are going well or wrong. By 
automating human reasoning we try to smoothen out the good days and the bad 
days, and work for 24 hours per day and seven days per week, but can hardly 
ever be as good as the best human. But, building up a reasonable set of 
diagnostics facilities involves a lot of human effort and often very dedicated, and 
thus expensive, expertise. It may be difficult to get motivated to spend huge 
sums of money on extensive diagnostics tasks, especially as the development 
project leaders know that diagnostics has little impact on the direct operative 
functions of their machines. But if we think of machine operations in a broader 
sense and in the longer term, the effect can be extremely valuable. Decisions that 
have effect after a long period of time are not easy to make and are certainly not 
straightforward. Questions that arise at the initial development stage are: 

• When, where and how much condition monitoring capability is needed? 

• What is the current situation? What data is collected now and is it 
sufficient? 

• Who uses the data? How can we help him? 

Some analysis and calculations can be used to get some guidance for decision 
making. Cost and benefit analysis (CBA) might be one tool with which  to 
answer these questions and to determine the value of advanced monitoring 
systems in the long run. CBA considers costs from the development, investment 
and maintenance perspectives. Benefits cover both monetary and non-monetary 
issues. Monetary benefits include increased sales, extended lifetime, and reduced 
costs in service and operation. Non-monetary benefits include things like the 
readiness and ability of the machine to perform the task it has been planned for, 
better machine image and so on. 

Decision making is not difficult: if the return of investment (ROI) and non-
monetary benefits are high, there should be no doubt about making the 
investment decision. A big question mark is that the diagnostics technology is 
continuously evolving; this may affect the timetables.  

Automate human diagnostic knowledge 
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The US Army has been investigating the extensive use of diagnostics and 
prognostics on weapons platforms, vehicles, etc. They have used systematic 
guidelines to evaluate and make cost and benefit analyses to set a target level for 
the availability performance [CEAC 1995]. The ability to increase real-time 
situation awareness and rapid reaction capabilities has wide effects, e.g. in 
logistics, proactive logistics, development of supporting infrastructure, and an 
implementation strategy that achieves maximum benefit with the resources 
available. The next table provides an example of how the US Army has 
evaluated its actions in various CBA outcomes. 

Table 1. Action Matrix for CBA Results [Greitzer et al. 2001]. 

Non-Monetary Benefits 

 HIGH MED LOW 

HIGH Implement as soon as 
possible 

High priority "Harvest" to reduce budget 
impacts 

MED High priority Medium 
priority 

Low priority 

R
et

ur
n 

on
 In

ve
st

m
en

t 

LOW Medium priority Low priority Abandon 

 

2.3 Diagnostics and FRACAS 

There is a clear distinction between diagnostics and FRACAS: when the service 
person has found the faulty component, i.e. he has completed the diagnostics 
process, he writes a failure report, i.e. he starts the FRACAS procedure. This is a 
practical distinction as the service person does not care why a sensor or other 
component has failed; he is happy when the machine works with the 
replacement component. The reliability engineers, instead, are interested in 
finding the root cause for the problem to incorporate corrective actions to the 
design, manufacturing and component selection processes if necessary. And 
enhanced diagnostics may be one of the items on the list of necessary corrective 
actions. Hence, diagnostics provides input to the FRACAS process and 
FRACAS sets requirements for the diagnostics (see Figure 1).  
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Figure 1. Connection between diagnostics and FRACAS. 

But which one comes first, the chicken or the egg? FRACAS clearly sets the 
pace here, as we may manage well without any diagnostics whatsoever if the 
FRACAS process reports adequate availability performance without any 
corrective actions. But as soon as the FRACAS process starts to indicate too 
high failure rates or too long maintenance times, it is time to start to plan 
diagnostic features. As a consequence, we state the following: 

It should be noted that FRACAS is only a part of the dependability programme 
of the company (machine manufacturer) and diagnostics is only a part of the 
maintenance programme of the company. The dependability programme, and 
hence also the FRACAS process, is owned by the dependability engineer, but 
who owns the diagnostics process? Currently there is normally no evident owner 
of the diagnostics process, but the system designer designs the diagnostics 
features while designing the actual application. However, as the requirements for 
more elaborate diagnostics in work machines increase, it may be necessary to 

A well functioning failure reporting, analysis and corrective action system 
(FRACAS) is a cornerstone to set up a reasonable set of diagnostics 
requirements 
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appoint a diagnostics engineer, or the dependability engineer could also take 
over the diagnostics process. 

Note also that FRACAS is not the only source of requirements for diagnostics. 
There may also be legislative requirements as well as requirements due to safety 
issues. For a fresh design with no FRACAS based history information, the initial 
diagnostic requirements are set by former experience of similar systems. 

2.4 What is diagnosed 

What is the object to be diagnosed? As the on-board diagnostics is mainly 
embedded into the electronic control system, we discuss this issue from that 
point of view.  

The electronic control system consists of sensors, controllers, actuators and 
communication links. The controllers are normally programmable. The 
electronic control system controls the mechanical system including hydraulic, 
pneumatic and electro-mechanical sub-systems to make the machine do the 
desired work. We can identify three diagnosis levels: 

1. Diagnosis of the control system (sensors, connectors, cables, CPU, 
RAM, I/O electronics, actuators and communication sub-systems) 

2. Diagnosis of the mechanical system (fluid quality, fluid levels, fluid 
pressure, temperatures, bearing wear-out, etc.) 

3. Monitoring of the efficiency of the work and quality of the output 
produced (like sizes of crushed stones, volumes of timber or 
manoeuvring accuracy). 

2.5 Where do the diagnostics procedures reside 

Diagnostic procedures may reside either on-board the machine or off-board. 
Compared to cars, work machines are better equipped with computing power. 
Normally there is also a display module included in the control system. This 
helps a lot to implement sophisticated diagnostic features with informative fault 
reports, even electronic fault localisation and repair manuals. Very often a work 
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machine is equipped with a full blown PC and with a professional operating 
system like Windows, Linux or QNX. This enables using commercial off-the-
shelf software tools to provide flexible data analysis facilities. Hence, there is 
practically nothing that could not be implemented on-board, at least from the 
technological point of view. However, licensing of the commercial software 
makes it impossible to put all diagnostics software onto all machines. 
Nevertheless, in the case of work machines, the line between on-board and 
traditional off-board diagnostics is vanishing. With traditional off-board 
diagnostics we mean handheld testers or laptops carried by the service 
technician. On the other hand, the role of remote diagnostics, telediagnosis, is 
growing. Hence, we define three location dependent levels of diagnostics 
services: 

1. On-board 

2. Near off-board 

3. Far off-board (remote diagnostics, telediagnosis).  

2.6 When is the diagnosis performed? 

The diagnosis can be performed either on-duty or off-duty. Continuous sensor 
signal monitoring is an example of on-duty diagnostics. Such diagnostics can be 
part of the application software, or the system may include stand-alone 
diagnostic agents to monitor the condition of the system. Off-duty diagnostics 
typically include special tests that require special circumstances and a lot of 
processing power. Hence the work is stopped for the duration of the diagnostics 
and the machine will enter a diagnostics mode. 

Together with the location-based levels presented in Chapter 2.5, we can build a 
where-when matrix to facilitate the allocation of diagnostics features. Table 2 
supplies some examples of diagnostics features allocated to such a matrix. Note 
that the 'near off-board' level is omitted as, within the context of work machines, 
near off-board diagnostics (if such is implemented) is a mixture of on-board and 
far off-board diagnostics services. 
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Table 2. Examples of diagnostics features allocated to a where-when matrix. 

 On-board Far off-board 

On-duty • Sensor signal range checking 

• Monitoring of the diagnostics outputs 
of smart FETs 

• Communication error checking 

• Logging of fault codes 

• Sub-system diagnostics agents 

• Remote monitoring and logging of 
system state variables 

Off-duty • Power-on self-test of the controller 

• Sensor signal tests by forcing a well-
defined action 

• Forced mode actuator tests 

• Browsing the fault log 

• Browsing the electronic manual 

• Gathering large sets of data and 
producing long-term trends and 
analysing the long-term behaviour 

Power-on self-test is an exceptional case of off-duty diagnostics. Although the 
control system is not in a diagnostics mode during the power-on self-test, the 
system is virtually in a diagnostics mode as the machine will not start its on-duty 
operation if the self-test fails. 

2.7 Who performs the diagnosis? 

There are basically three levels of persons who can perform the diagnosis: 

1. Customer level (the operator or the owner of the machine) 

2. Service technician level 

3. System expert level. 

The comprehensiveness of the diagnostics tools and the skill level are lowest at 
the customer level and highest at the system expert level. The reason is simple: it 
is expensive to provide all customers with a highly extensive set of diagnostics 
tools and it is also expensive to train all the customers to use sophisticated 
diagnostics tools. 
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2.8 How to partition diagnostics into more manageable 
chunks 

The OSA-CBM organisation (http://www.osacbm.org [Referenced 27.01.2004]) 
has defined an open system architecture (OSA-CBM) for condition-based 
maintenance. The OSA-CBM architecture defines a seven-layer architecture 
(similar to the Open System Interconnection [OSI] model of communication 
sub-systems) to partition the diagnostics sub-system into modular and well 
interfacing entities. The seven layers are the following (in bottom-up order) 
[Lebold & Thurston 2001]: 

1. Data acquisition (sensor module that outputs calibrated sensor signal 
values) 

2. Data manipulation (signal processing; e.g. mean value calculation or 
frequency spectra) 

3. Condition monitoring (e.g. range checking, alerts) 

4. Health assessment (diagnostic processing; e.g. fault condition 
evaluation) 

5. Prognostics (e.g. estimation of remaining useful life) 

6. Decision support (e.g. 'limp home' instructions and automatic 
reconfiguration) 

7. Presentation (user interface). 

If we think about on-board diagnostics on a work machine, the simplest 
diagnostics activity is to implement the data acquisition layer to provide data for 
remote off-board diagnostics. If the amount of data to be transferred is large, it 
may be better to include the data manipulation layer to provide only some 
characteristic parameters of the measured signals. The more sophisticated on-
board diagnostics and problem solving we want, the more layers we have to 
implement. The CPU, storage and communications capacities set the restraints 
and criteria for the level of sophistication and for the on-board/off-board 
partitioning. 

OSA-CBM is presented more closely in Chapter 4.2. 

http://www.osacbm.org
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2.9 Application-specific or generic 

Some of the diagnostics facilities are reusable. For example, diagnostic protocols 
and error logs can be embedded into the operating system of the electronic 
control modules to constitute diagnostics-aware extended operating system 
services. Figure 2 depicts how such extended operating system services relate to 
the core operating system, to the application and to the device drivers. The 
example is from the SAE Generic Open Architecture (GOA) model. 
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Figure 2. GOA interface reference model (SAE AS 4893. 1996) (OS = Operating 
System; XOS = eXtended Operating System). 

4L: Application Logical Peer Interface 
4D: Application to System Services Direct Interface 
3L: System Services Logical Peer Interface 
3D: System Services Software to Resource Access Services Direct Interface 
3X: OS Services to XOS Services Direct Interface  
2L: Resource Access Services Logical Peer Interface 
2D: Resource Access Services to Physical Resources Direct Interface 
1L: Physical Resources Logical Peer Interface 
1D: Physical Resources to Physical Resource Direct Interface 

Furthermore, some components or sub-systems can be considered reusable 
objects that also include relevant diagnostics. A potentiometer sensor could be 
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an example of such an object: when a new potentiometer-based measurement is 
to be incorporated into the system, its devices drivers and diagnostics routines 
could be picked from a software components library. If we compare this type of 
object-based approach with the layered architecture of OSA-CBM presented in 
Chapter 2.8, we can recognise a vertical architecture instead of the horizontal 
architecture of OSA-CBM (see Figure 3). 

Data Acqusition

Signal Processing

Condition Monitoring

Healt Assesment

Prognostics

Decision Support

Presentation

P
ot

en
tio

m
et

er
 s

en
so

r d
ia

gn
os

tic
s

E
nc

od
er

 d
ia

gn
os

tic
s

A
ct

ua
to

r X
 d

ia
gn

os
tic

s

Software components  
Figure 3. Horizontal OSA-CBM architecture vs. object or component-based 
vertical architecture. 

The goal is to be able to make generic diagnostics software components, but 
there is always an application-specific realm for diagnostics. In the above 
potentiometer sensor example, the generic diagnostics can detect an electrical 
fault but not mechanical faults, e.g. if the shaft of the potentiometer slips, the 
electrical signals do not directly reveal the failure. Hence the mechanical failure 
cannot be detected by the generic diagnostics software, so application-specific 
plausibility checking must be applied. Figure 4 illustrates the partitioning 
between application-specific and generic diagnostics. 
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Figure 4. Partition of application-specific and generic diagnostics. 

2.10 Diagnostics strategy 

The diagnostics strategy is manufacturer and machine type-specific. In this 
chapter we will supply a list of questions that should be answered by the 
diagnostics strategy created for the particular work machine type. The list is 
presented below: 

1. What is the current situation? What data is collected now and is it 
sufficient? 

2. Who uses the data? How can we help him? 

3. Who or what sets the request to implement a diagnostic feature? 
(FRACAS perhaps?) 

4. Who (and by what criteria) decides whether the requested diagnostic 
feature is implemented? (Is a diagnostics engineer needed?) 
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5. How much effort is put into software-based intelligence and how much 
into support for human-based diagnostics (with, e.g., training and 
multimedia manuals)? 

6. What are the (on-board) communications, CPU and storage resources 
available for diagnostics? 

7. What part of the diagnostics services is embedded on-board the machine 
and what is left off-board?  

8. Will all the off-board diagnostics be remote diagnostics or is near off-
board diagnostics needed also or only? 

9. What parameters, components and sub-systems are diagnosed on-duty 
during operation and which off-duty in a diagnostics mode? 

10. Which diagnostics services should be accessible to the customer, which 
to the service technicians and which to only the system experts? 

11. What is the level of on-board diagnostics to be implemented? (data 
acquisition and condition monitoring only or also health assessment and 
perhaps prognostics?) 

12. What parts of the diagnostics hardware, software and algorithms could 
be generalised for use in future projects? 
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3. Automotive and heavy-duty vehicles 
diagnostics standards 

Have you heard stories about modern cars left beside the road with awkward 
problems that have been very difficult to resolve? The automotive control, 
safety, information and entertainment systems are becoming too complex to be 
managed perfectly. The complexity makes the maintenance of cars a headache. 
There is practically no single person who can master all the control system 
functions of a car. One of the reasons for this is the fact that the control system is 
a composition of sub-systems from different vendors and thus from different 
experts. Hence the control system must be equipped with a reasonable set of 
diagnostics services to facilitate pertinent maintenance by non-experts and to 
keep the availability performance of modern cars at least at the same level as 
traditional cars. 

Off-road work machine manufacturers could well learn from the automotive 
manufacturers and exploit the diagnostics tools available on the market for cars 
and trucks, and apply the available diagnostics standards. Some of the 
diagnostics features are required by the authorities, especially those concerning 
exhaust gas emissions. In the following we will take a look at the automotive 
and heavy-duty diagnostics standards.  

3.1 ISO and SAE diagnostics standards 

 The standardisation of diagnostics for the automotive and utility vehicle sector 
is driven by the emissions legislation. Heavy-duty vehicles are soon to be 
equipped with an on-board diagnostics interface for inspection purposes similar 
to that in cars. However, such legislation for off-road work machines is still far 
ahead in the future. Nevertheless, such legislation will surely come. As a 
consequence, it is good to take a look at the diagnostics standards applied in the 
automotive and utility vehicle sector in order to make the next-generation 
diagnostics architectures of the work machines flexibly adaptable for the 
upcoming standards. 

The main issues of the diagnostics standards are as follows: 
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• Diagnostic connector and other physical layer issues 

• Communication layers (data link layer and transport layer) 

• Diagnostics services, including Freeze Frame service, to support 
capturing of circumstances at the occurrence of a trouble code.  

• Diagnostic Trouble Codes (DTCs) 

• Security 

• Off-board scan tool specification. 

The diagnostics standards may also support non-emission related, i.e. general, 
diagnostic services and program downloading, as well as calibration and 
configuration services. 

ISO 9141 [1989] is the most famous diagnostics standard and defines the 
physical layer of a diagnostics bus or a point-to-point connection, but it also 
defines issues concerning the data link layer. It does not define any diagnostics 
services and is thus basically generic and not emissions related. It covers both 12 
V and 24 V systems. ISO 9141-2 [1994] is a supplementary standard to ISO 
9141 to support SAE J1978 [2002]-based SAE OBD II scan tools. ISO 9141-2 
only covers 12 V systems. However, both ISO 9141 and ISO 9141-2 are 
obsolete and uninteresting within the context of the future trends of work 
machine diagnostics. In Europe, the ISO 14230 set of standards was adopted to 
amend the ISO 9141 standard. ISO 14230 consists of four parts: 

! ISO 14230-1 Road vehicles - Diagnostic systems - Keyword Protocol 2000 - Part 
1: Physical layer  

! ISO 14230-2 Road vehicles - Diagnostic systems - Keyword Protocol 2000 - Part 
2: Data link layer  

! ISO 14230-3 Road vehicles - Diagnostic systems - Keyword Protocol 2000 - Part 
3: Application layer  

! ISO 14230-4 Road vehicles - Diagnostic systems - Keyword Protocol 2000 - Part 
4: Requirements for emission-related systems 

ISO 14230-1 is based on ISO 9141-2, but also includes 24 V systems. ISO 
14230-2 defines the data link layer and ISO 14230-3 defines the Keyword 
Protocol 2000 implementation of the unified diagnostic services defined in ISO 



 

  27

14229 [1998]1. The ISO 14230 set of standards is generic and not application-
related, except part 4, which defines requirements for emission-related systems. 
Hence the standards could be used within the context of work machines as well. 
However, Keyword Protocol 2000 is still a so-called K-line protocol, as was ISO 
9141, and does not fit the contemporary control systems of work machines, 
which normally include a Controller Area Network (CAN)-based 
communication bus. Fortunately, modern cars include the CAN bus as well. As a 
consequence, a new set of ISO standards is being published: the ISO 15765 set 
of standards. The set includes the following parts: 

! ISO 15765-1 Road vehicles - Diagnostics on Controller Area Networks (CAN) - 
Part 1: General information 

! ISO 15765-2 Road vehicles - Diagnostics on Controller Area Networks (CAN) - 
Part 2: Network layer services 

! ISO 15765-3 Road vehicles - Diagnostics on Controller Area Networks (CAN) - 
Part 3: Implementation of unified diagnostic services (UDS on 
CAN) 

! ISO 15765-4 Road vehicles - Diagnostics on Controller Area Networks (CAN) - 
Part 4: Requirements for emissions-related systems 

The ISO 15765 set of standards is similar to Keyword Protocol 2000 (i.e. ISO 
14230), except that no special physical layer or data link layer is specified as the 
CAN protocol is used. Instead, a network layer is specified to support data 
transfers larger than a single CAN frame can carry (i.e. eight bytes). The 
diagnostics services are practically the same as in ISO 14230-3 and, in fact, ISO 
15765-3 refers to ISO 14230-3 and does not repeat the service definitions but 
does provide some guidelines on the use of ISO 14230-3 services in cases of 
CAN. Hence the potential user of the ISO 15765 standards has to acquire a copy 
of the ISO 14230-3 standard as well. 

                                                      
1 ISO 14229 is under revision and will soon be published as ISO 14229 Part 1: Road 
vehicles -- Unified diagnostic services (UDS) -- Part 1: Specification and requirements. 
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In the USA, the Society of Automotive Engineers (SAE) has issued a set of 
regulatory diagnostics standards for cars, light-duty trucks and medium-duty 
vehicles2. They are as follows [Stepper et al. 1995]: 

! SAE J1930 Electrical/Electronic Systems Diagnostic Terms, Definitions, 
Abbreviations, and Acronyms - Equivalent to ISO/TR 15031-2 

! SAE J1962 Diagnostic Connector - Equivalent to ISO 15031-3 

! SAE J1978 OBD II Scan Tool - Equivalent to ISO 15031-4  

! SAE J1979 E/E Diagnostic Test Modes - Equivalent to ISO 15031-5 

! SAE J2012 Diagnostic Trouble Code Definitions - Equivalent to ISO 15031-6 

! SAE J2186 E/E Data Link Security3 

! SAE J2008 Recommended Organization of Vehicle Service Information for 
Interchange 

The communication layer for these can be either ISO 9141-2 or SAE J1850 
[2001]. J1939 is an alternative as a communications layer in the case of medium 
and heavy-duty vehicles [Stepper et al. 1995][Anon 1999]. J1939 also includes a 
diagnostics layer standard (J1939-73) and a diagnostics connector specification 
(J1939-13). J1939-73 defines diagnostic services as well as the structure (and, 
partly, the contents) of the Diagnostic Trouble Codes (DTCs). These are 
different from J1979 services and J2012 DTCs. J1939 will be presented in 
Chapter 3.1.1 in more detail. 

In Europe, Directive 2005/78/EC stipulates that either ISO 15765 or SAE J1939 
must be used in heavy-duty vehicles.  

The Worldwide Harmonisation group (WWH) is working together with ISO 
TC22/SC3/WG1 to produce a globally harmonised set of diagnostics 
standards to support light, medium and heavy-duty vehicles. The WWH 
group proposes use of TCP/IP over Ethernet protocol (see 
http://www.unece.org/trans/doc/2006/wp29grpe/ECE-TRANS-WP29-GRPE-
2006-08r1e.pdf [Referenced 10.04.2006]). The particular diagnostics 

                                                      
2 The environmental protection agency (EPA) proposes these for heavy-duty vehicles 
starting from the year 2004 [Anon. 1999]. The EPA also allows use of J1939 where 
applicable. 
3 This is quite probably equivalent to ISO 15031-7:2001, although the title of the SAE 
standard does not imply it. 

http://www.unece.org/trans/doc/2006/wp29grpe/ECE-TRANS-WP29-GRPE-
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standard will later be issued as an ISO standard (ISO 27415). However, ISO 
15765 SAE J1939 will be used during the transition period. 

Yet another example of a diagnostics standard can be found in the Local 
Interconnect Network (LIN) specification (starting from its version 2.0). LIN is a 
low-cost multiplex bus to be used mostly as a sub-net to a CAN bus. Hence the 
LIN 2.0 specification adopts the CAN based on the ISO 15765-2 and -3 
diagnostics standards. The frame structure of LIN, with a maximum eight data 
bytes, is similar enough to the CAN frame structure to make practically direct 
adoption of the CAN-based standards possible.  

There is also a set of standards for the measurement, calibration and diagnostics 
of automotive application created by an organisation called Association for 
Standardisation of Automation and Measuring Systems (ASAM e.V.). The 
particular set for calibration, measurement and diagnostics is called ASAM-
MCD and includes the CAN Calibration Protocol (CCP), which has been 
succeeded by the more general XCP that can use any relevant communication 
protocol including CAN. XCP defines data acquisition and stimulation services, 
calibration services and Flash programming services. The ASAM standards are 
mainly aimed at the development phase of the automotive systems, such as 
measurements on a test rig, and not for providing standardised on-board 
diagnostics for the field service. Hence XCP may not be interesting within the 
context of work machines. Interesting, however, may be the ASAM-MCD2 
version 2.0 that will include an enhanced Open Diagnostics Exchange (ODX) 
format specification to support the definition of the diagnostics services of 
electronic control units (ECU). An ODX database is used to generate a 
diagnostics software template for the ECUs and to port the ECU diagnostic 
capability descriptions to service technician tools in field service. ODX supports 
the whole process cycle, including development, production and service. Tools 
supporting ODX are emerging onto the market. 

The work machine on-board diagnostics legislation will most probably follow 
the tracks of heavy-duty legislation or the anticipated globally harmonised set of 
diagnostics standards discussed above. SAE J1939/73 and ISO 15765 are 
relevant in both cases, but the upcoming ISO 27415 must be considered as well. 
We will take a closer look at these two standards in the following two chapters 
(Chapters 3.1.1 and 3.1.2 respectively). ODX may also be interesting for work 
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machine manufacturers to facilitate the management and porting of diagnostics 
information. Hence ODX is also presented more closely in Chapter 3.2. 

Two additional J1939-based diagnostic standards are also emerging, one for 
tractors, (ISO 11783-12) and one for the communication between towing and 
towed vehicles (ISO 11992-4). These standards are not presented here. 

3.1.1 J1939/73 

J1939/73 belongs to the family of J1939 standards (Recommended Practice for 
Truck and Bus Control and Communications Network). J1939 defines CAN-
based in-vehicle real-time communications in buses and trucks, including off-
road vehicles. The particular standard, J1939/73 (Application Layer-
Diagnostics), defines diagnostic messages and protocols over the J1939 bus. 
J1939/73 specifies the following issues: 

• Diagnostic connector. In fact, J1939/73 refers to J1939/13, which 
specifies a special 9-pin circular connector. 

• A set of diagnostic messages to provide the diagnostic services. 

• Direct Memory Access with security control. This service is provided 
to read and manipulate the memory of a module in the network. This 
service can be used also for boot-loading and calibration. 

The diagnostic messages defined by J1939/73 are as described in Table 3. 
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Table 3. J1939/73 diagnostic messages (DM). 

DM
1 

Active diagnostic trouble 
codes 

Carries the statuses of warning lamps and trouble 
codes of active faults. This message is sent when a 
fault becomes active and when it becomes inactive. 
Furthermore, DM1 is sent once per second while 
the fault is active. DM1 always includes all the 
active trouble codes. If no active faults are 
prevailing, no DM1 is sent, except as a response to 
a request. The trouble code consists of a Suspect 
Parameter Number (SPN, 19 bits), Failure Mode 
Identifier (FMI, 5 bits), Occurrence Count (OC, 7 
bits) and SPN Conversion Method (CM, 1 bit). CM is 
needed to allow legacy SPNs (with different 
encoding styles) to be used. Together, these make 
32 bits - i.e. four bytes. A DM1 with more than one 
diagnostic trouble code is sent using a multipacket 
transport protocol. 

DM
2 

Previously active 
diagnostic trouble codes 

Carries the history of active trouble codes. Sent as  
a response to a request. 

DM
3 

Diagnostic data 
clear/Reset for previously 
active DTCs 

Erases the history of active trouble codes but does 
not affect currently active trouble codes. 

DM
4 

Freeze frame parameters Contains values of predefined parameters (and 
possible manufacturer-specific parameters) at the 
time of trouble code occurrence. The predefined 
parameters are: Engine torque mode, Boost, Engine 
speed, Engine Load, Engine coolant temperature 
and Vehicle speed. DM4 is sent as a response to  
a request. 

DM
5 

Diagnostic readiness Provides information on the number of active trouble 
codes and previously active trouble codes, and the 
OBD compliance and other diagnostics readiness. 
DM5 is sent as a response to a request. 

DM
6 

Continuously monitored 
systems test results 

Provides diagnostics information about the 
emission-related components for a service 
technician after clearing the trouble codes and after 
driving the first test drive. 

DM
7 

Command non-
continuously monitored 
systems 

Allows commanding of manufacturer-specific on-
board tests by referring to a test identifier (1�64). 
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DM
8 

Test results for non-
continuously monitored 
systems 

Returns test results for the tests commanded by 
DM7. 

DM
9 

Oxygen sensor results Not defined in the current version of J1939/73. 

DM
10 

Non-continuously 
monitored systems test 
identifier support 

Provides a list of manufacturer-specific on-board 
tests (1�64) supported. 

DM
11 

Diagnostic data 
clear/reset for active 
DTCs 

Erases all active trouble code information. 

DM
12 

Emission-related active 
DTCs 

Same as active trouble codes, except that only 
emission-related active trouble codes are reported. 
Sent as a response to a request. 

DM
13 

Stop/start broadcast Can be used to stop (and restart) transmission of 
broadcast messages and periodic requests. Vital 
broadcasts are allowed in a stop state. Is used to 
minimise the traffic during diagnostic procedures, 
e.g. during calibration or I/O-module traffic 
emulation. 

DM
14 

Memory access request Is used to initiate direct memory access by  
a diagnostics tool. Includes security control. 

DM
15 

Memory access response Sent as a response to DM14. 

DM
16 

Binary data transfer Is used to do the actual data transfer to perform the 
requested memory access. 

DM
17 

Boot load data Is used to download boot code into a device. 

DM
18 

Data security Is used to provide a security facility during memory 
access. 

DM
19 

Calibration information Provides information about the calibration to  
a diagnostics tool. The information includes  
a calibration checksum over the non-volatile 
calibration information and an ASCII identifier  
of the calibration entity. 
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In many cases the message length of the diagnostics messages described above 
exceeds the CAN frame length, i.e. eight bytes. In those cases the J1939-214 
transport protocol is used to transfer the multipacket messages. 

J1937/73 pre-defines the failure mode identifiers (FMI) reported within the 
diagnostic trouble codes (DTCs). The FMIs are defined as listed in Table 4 and 
the signal ranges referred to in the table are depicted in Figure 5. 

Table 4. J1939/73 Failure Mode Identifiers. 

FMI=0 Data valid but above normal operational range - most severe level; range e 
in Figure 5 

FMI=1 Data valid but below normal operational range - most severe level; range d in 
Figure 5 

FMI=2 Data erratic, intermittent or incorrect 

FMI=3 Voltage above normal, or shorted to high source; range g in Figure 5 

FMI=4 Voltage below normal, or shorted to low source; range f in Figure 5 

FMI=5 Current below normal or open circuit; range f in Figure 5 

FMI=6 Current above normal or grounded circuit; range g in Figure 5 

FMI=7 Mechanical system not responding or out of adjustment 

FMI=8 Abnormal frequency or pulse width or period 

FMI=9 Abnormal update rate 

FMI=10 Abnormal rate of change 

FMI=11 Root cause not known 

FMI=12 Bad intelligent device or component 

FMI=13 Out of calibration 

FMI=14 Special instructions 

FMI=15 Data valid but above normal operating range - least severe level; range i in 
Figure 5 

FMI=16 Data valid but above normal operating range - moderately severe level; 
range k in Figure 5 

                                                      
4 SAE J1939-21 Data Link Layer   
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FMI=17 Data valid but below normal operating range - least severe level; range h in 
Figure 5 

FMI=18 Data valid but below normal operating range - moderately severe level; 
range j in Figure 5 

FMI=19 Received network data in error 

FMI=20-
30 

Reserved for SAE assignment 

FMI=31 Not available or condition identified by the SPN exists 

 

Normal rangehjdf geki  
Figure 5. J1939/73 FMI ranges. 

J1939/73 does not pre-define Suspect Parameter Numbers (SPNs). However, it 
suggests mapping J15875 Parameter Identifiers (PIDs) one to one as SPNs. For 
example, the engine oil pressure parameter has a PID number 100 in J1587 and 
should therefore be mapped to SPN 100 in a J1939 system. An SPN greater than 
511 shall be used where no PID for the J1939 exists. 

3.1.2 ISO 15765-3 

ISO 15765-36 is a CAN-based diagnostic services standard. In fact, it defines a 
CAN-based version of Keyword Protocol 2000 services (ISO 14230-37). The 
diagnostic services defined in ISO 15765-3 are defined in Table 5. 

                                                      
5 SAE J 1587 Joint SAE/TMC Electronic Data Interchange Between microcomputer 
systems in Heavy-Duty Vehicle Applications. 
6 ISO 15765-3 Road vehicles -- Diagnostics on Controller Area Networks (CAN) -- Part 
3: Implementation of unified diagnostic services (UDS on CAN). 
7  Road vehicles -- Diagnostic systems -- Keyword Protocol 2000 -- Part 3: Application 
layer. 
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Table 5. ISO 15765-3 diagnostic services. 

SERVICE NAME DESCRIPTION 

NetworkConfiguration The client reads information about the system 
from a server. 

DisableNormalMessageTransmission The client requests to stop non-diagnostic 
message transmission. 

EnabteNormalMessageTransmission The client requests to resume non-diagnostic 
message transmission. 

ControlDTCSetting The client starts and stops setting of DTCs in 
the server. 

startDiagnosticSession The client requests to start a diagnostic 
session with a server(s). 

securityAccess The client requests to unlock a secured server. 

ecuReset The client forces the server(s) to perform  
a reset. 

readEculdentification The client requests identification data from the 
server(s). 

ReadDataByLocalldentifier The client requests the transmission of the 
current value of a record with access by a local 
identifier. 

ReadDataByCommonldentfier The client requests the transmission of the 
current value of a record with access by  
a common identifier. 

ReadMemoryByAddress The client requests the transmission of  
a memory area. 

DynamicallyDefineLocalldentifier The client requests to dynamically define local 
identifiers that may subsequently be accessed 
by a local identifier. 

WriteDataByLocalldentifier The client requests to write a record accessed 
by a local identifier. 

WriteDataByCommonldentifier The client requests to write a record accessed 
by a common identifier. 

WriteMemoryByAddress The client requests to overwrite a memory 
area. 

SetDataRates The client changes the data rates for periodic 
transmissions. 
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ReadDiagnosticTroubleCodes The client requests from the server the 
transmission of both the number of the DTC 
and values of the diagnostic trouble codes. 

ReadDiagnosticTroubleCodesBy-
Status 

The client requests from the server the 
transmission of both the number of the DTC 
and values of the diagnostic trouble codes, 
depending on their status. 

ReadStatusOfDiagnosticTroubleCodes The client requests from the server the 
transmission of the number of the DTC, values 
and status of the diagnostic trouble codes. 

ReadFreezeFrameData The client requests from the server the 
transmission of the value of a record stored in 
a freeze frame. 

ClearDiagnosticlnformation The client requests the server to clear all or  
a group of the diagnostic information stored. 

InputOutputControlByLocalIdentifier The client requests the control of an 
input/output specific to the server  

InputOutputControlByCommonldentifier The client requests the control of a common 
input/output. 

StartRoutineByLocalldentifier The client requests to start a routine in the 
ECU of the server using the local identifier of 
the routine. 

StartRoutineByAddress The client requests to start a routine in the 
ECU of the server using the address of the 
routine. 

StopRoutineByLocalldentifier The client requests to stop a routine in the 
ECU of the server using the local identifier of 
the routine. 

StopRoutineByAddress The client requests to stop a routine in the 
ECU of the server using the address of the 
routine. 

RequestRoutineResultsByLocalldentifer The client requests the results of a routine by 
the local identifier of the routine. 

RequestRoutineResultsByAddress The client requests the results of a routine by 
the address of the routine. 

RequestDownload The client requests the negotiation of a data 
transfer from the client to the server. 
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RequestUpload The client requests the negotiation of a data 
transfer from the server to the client. 

TransferData The client transmits data to the server 
(download) or requests data from the server 
(upload). 

RequestTransferExit The client requests the termination of a data 
transfer. 

ISO 15765-3 makes references to ISO 14230-3 and specifies only what is 
different from or added to ISO 14230-3. Therefore, one has to acquire both 
standards to implement the diagnostic services in the software. Furthermore, ISO 
15763-28 is needed; it includes the transport protocol specification (multipacket 
transfer) and the use of the CAN identifier field and the data bytes to address the 
network nodes locally or over gateways. 

ISO 15763-3 does not define failure mode identifiers or suspect parameter 
numbers, but is a pure service specification.  

ISO 15763-3 provides a well structured and easy to comprehend set of 
diagnostic services. It is suggested here that if, within the context of work 
machines, there is no compelling reason to use SAE J1939/73, ISO 15765-3 is 
used instead. 

3.2 Open Diagnostic data eXchange (ODX) 

ODX is an effort by a group of automotive manufacturers to standardise the 
diagnostic services specification format. The group is called Association for 
Standardisation of Automation and Measuring systems (ASAM). The ODX 
standard is maintained by ASAM e.V. and is numbered ASAM MCD-2D.  

The goal behind ODX is to provide a single source of diagnostic information for 
the different parties involved in the car diagnostics. These parties include the 
software development team that designs and implements the diagnostics 

                                                      
8 Road vehicles -- Diagnostics on Controller Area Networks (CAN) -- Part 2: Network 
layer services 
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software, manufacturing staff and service personnel (see Figure 6). ODX defines 
the diagnostics services of a car type in an XML file. A diagnostic or testing tool 
from any vendor can read this XML file to configure itself to be able to perform 
diagnostic tests embedded into the car control system. Furthermore, the XML 
file can be fed as an input to a code generation tool to produce the framework for 
the diagnostic software of the electronic control units, thus speeding up the 
diagnostic software production process. 

ODX database
(XML)

Diagnostic
Services

Requirements
and Design

Automatic
Diagnostic SW

Framework
Generation

Testing at
Manufacturing

Site

Diagnostics
Tools in the

Field or
Remotely via

Internet

 
Figure 6. ODX context. 

ODX is independent of the diagnostic protocol used. Hence it can be used to 
describe J1939/73, ISO 15763-3, etc., diagnostic services. Tools that support the 
ODX format are already available from different vendors. However, a quick 
Internet search does not find too many such vendors. Hence broad acceptance of 
ODX cannot be verified at the time of writing this report. 

ODX is also being standardised by the International Organisation for 
Standardisation (ISO); the standard will be numbered ISO 22901 (with several 
parts). Meanwhile, the standard is available from ASAM e.V. at 
http://www.asam.net/ (Referenced 09.02.2005). 

http://www.asam.net/
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4. Diagnostics architectures 
This chapter is made with the point in mind that the main focus of this report is 
to take a glimpse at the diagnostics of machinery that is not stationary. This 
gives us some kind of boundaries that can be followed. At the same time, we 
must get a good full picture of what these diagnostics will mean in more years to 
come. 

The current situation of machine manufacturers is that more and more 
information technology is being added into machines [Lind et al. 1999, Jameel et 
al. 1998, Rohmert 2002]. The main reason is that every maintenance 
organization wants to take good care of the machinery they have. Every 
breakdown means interrupted operation and lost profit. In some instances the 
breakdown can be very costly. Usually, there is no spare machine to substitute 
the original machine. 

Every machinery manufacturer has some estimates of component run time and 
other values that influence the run time cost for making the purchase. Usually, 
these values include some estimates of service speed. If service support could be 
done by better machine self-diagnostics or by remote service, it would mean a 
great reduction in the time spent wondering what is wrong and what to do. This 
usually reduces the changing of parts that are ok. 

The constraints that come with machinery that is not static are basically limited 
to communication issues. The limitations on moving a large amount of data 
through wireless networks are still a bit problematic. Also, the computers on a 
work machine are getting more powerful and are thus capable of hosting 
software components for condition-based maintenance (CBM). 

It also has to be noted that the purpose of a CBM system is basically to save 
money or to protect from accidents. A CBM monitoring system makes sense if 
the cost of constructing and maintaining the system is less than the cost due to 
system failure if the machine is left unattended. 

It is recognized that condition-based maintenance and machine diagnostics 
became a focused research area in the United States at the end of the 1990s and 
early 2000. Big global companies like Boeing and Caterpillar with military 
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partners like US Navy have focused on making machinery and monitoring 
systems more open so that development costs can be reduced and a better service 
can be provided. With other partners, their ideas are coming to come to the stage 
of standardization. 

Machines that have very a limited capability of providing measurement 
information are hard to diagnose until some faults have come up with them. 
Usually, this is called the run-to-failure maintenance approach. The basic idea of 
condition-based maintenance is to monitor a machine and to react when some 
faults have been recognized. To take this a step further, we could make an 
estimate of when is the right time to take maintenance action before something is 
actually broken. This means that some estimate or prognosis has to be made 
about the remaining useful life of machine. At the same time, this helps to 
prepare the service action and to make the down time shorter. Usually, this is 
done by maintenance with periodic service and is based on experience of the 
lifetime of machine parts. 

In order to build a sophisticated condition-based maintenance system, some 
things are essential: without sensing and data acquisition it would be impossible 
to build a good CBM system. 

The reasons why the people that are involved in CBM are trying to standardise 
the systems and define an architecture and framework are the benefits that can 
be reached in the long term in solving the problem of integration of 
heterogeneous systems (see Figure 7). This could lead to plug-and-play systems, 
saving the burden of system integration and allowing more freedom to choose 
the best technology from the supplier. 

  
Figure 7. Do we understand each other? 

Integrating systems from different soft-/hardware vendors is usually very 
difficult. There are four different options for solving this problem: 
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• Avoid bridge-building (purchase as many systems as possible from one 
vendor) 

• By a custom bridge (buy a pre-designed gateway offered by a supplier) 

• Build a custom bridge (build your own gateway through an integration 
company or internal IT group) 

• Use an open systems bridge (build or buy an industry-standard 
gateway). 

Every option has its pros and cons. The last option requires that the whole 
architecture and all interfaces have been accurately defined and the information 
is available. 

Architectures that are used in condition-based maintenance have evolved into a 
stage of standardisation like ISO 13374. This chapter will describe some of the 
research in this area. 

The common feature of the following is an idea to put the required software into 
the components and let them communicate with each other through a TCP/IP 
network. 

4.1 MIMOSA 

The Machinery Information Management Open Systems Alliance (MIMOSA) 
was set up to address problems that come up when setting up a machine 
condition monitoring and diagnostic system. The aim is to establish an open 
architecture and a set of protocols for exchanging complex sensor information 
between CBM systems. Currently, the direction of MIMOSA is to think of 
management in a larger perspective and to focus on asset management-related 
information standards. The next figure (Figure 8) presents a view on how 
various enterprise-level software systems can use MIMOSA. These are Human-
Machine Interfaces (HMI), Manufacturing Execution Systems (MES), Plant 
Asset Management (PAM) systems, Enterprise Resource Planning (ERP), 
Enterprise Asset Management (EAM) systems, Operational Data Historian 
Systems (ODHS), and Condition Monitoring (CM) systems.  
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Figure 8. Integration with MIMOSA standards. 

The core behind MIMOSA is the definition of the CRIS and Tech-XML schema 
that describe document sharing between various systems. The Common 
Relational Information Schema (CRIS) protocol is a common language for 
transferring and exchanging machine condition monitoring and assessment data 
between a client�s database and another remotely located user. This data transfer 
is done by data communication conventions such as Java, XML and DCOM. 

The CRIS schema covers a broad range of CBM information requirements from 
machinery data acquisition to trend setting and condition assessment [Lee et al. 
2002]. The various types of data are classified into eight categories: trend, 
machine dynamic, diagnostics, thermography, test samples, asset registration, 
reliability data and work management. A language-independent description of 
these data elements is provided in the form of MIMOSA Tech File 
specifications. As illustrated in Figure 9, various vendors can exchange CBM 
data through the MIMOSA Tech File architecture, which serves as an 
information gateway. Thus MIMOSA can be viewed as an architecture that 
provides archiving and storage of static CBM data [Lee et al. 2002].  
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Figure 9. MIMOSA Tech-File architecture for information exchange. 

The latest version of CRIS, V3.0, was released in 2005. The schema provides a 
broad coverage of the types of data that need to be managed within the CBM 
domain [Lebold & Thurston 2001]: 

• A description of the configuration of the system/equipment being 
monitored 

• A list of specific assets being tracked, and their detailed characteristics 

• A description of equipment functions, failure modes and failure mode 
effects 

• A record of logged operational events 

• A description of the monitoring/measurement system (sensors, data 
acquisition, measurement locations, etc.) and the characteristics of the 
monitoring components (calibration history, model number, serial 
number, etc.) 

• A record of sensor data (and its characteristics) whether acquired on-
line, manually logged or manually acquired using hand-held roving 
instrumentation 

• A means of describing signal processing algorithms and the resulting 
output data 
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• A record of alarm limits and triggered alarms 

• A means of describing diagnoses of evolving equipment faults and 
projections of equipment health trends 

• A record of recommended actions and the basis of those 
recommendations 

• A record of work requests from initiation through completion. 

4.2 Condition-based maintenance 

Condition-based maintenance (CBM) refers to a maintenance strategy that is 
based on machine health rather than on fixed operating hours or kilometres or 
other duty cycle-based schedule.  Maintenance cost savings are anticipated, not 
only from avoiding unnecessary servicing but also by servicing the machine 
prior to unexpected wearing out or an upcoming fault. This requires diagnostic 
and prognostic actions to assess the expected health of the machine, not only 
today but also in the coming days or weeks. 

Condition-based maintenance is coming to the car servicing business. BMW 
calls their diagnostic concept of their BMW 5 and 7 series models by name 
Condition-Based Service (CBS) [Deicke 2002]. The idea is not to return to the 
old days (before the schedule-based maintenance paradigm came into vogue), 
where the car was only brought for service when it needed repair, but the idea is 
to monitor the relevant car parts to predict the "kilometres to go" for the 
particular part. This simple example illustrates that reactive diagnostics do not 
make the system a CBM system; rather, that proactive diagnostics must be 
incorporated. Prognosis is thus the key ingredient of CBM, and the cornerstone 
of prognosis is diagnostics � i.e. the evaluation of the current health of the 
machine. 

An organisation called the Open System Alliance (including e.g. Caterpillar) has 
defined an Open System Architecture for Condition-Based Maintenance (OSA-
CBM). The target was to develop an architecture that is not exclusive to any 
hardware implementation, operating system or software technology; to define 
the distribution of CBM functions to modules; to define the interface to function 
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modules. This architecture consists of seven functional layers, as depicted in 
Figure 10.  

 
Figure 10. OSA-CBM seven-layer architecture. 

The seven layers are described by Lebold & Thurston [2001] as follows (note 
that the Health Assessment layer is called Diagnostic Processing in the text 
below): 

"Layer 1 � Sensor Module: The sensor module has been generalized to represent 
the software module that provides system access to digitized sensor or 
transducer data. The sensor module may represent a specialized data 
acquisition module that has analog feeds from legacy sensors, or it may collect 
and consolidate sensor signals from a data bus. Alternately, it might represent 
the software interface to a smart sensor (e.g. IEEE 1451 compliant sensor). The 
sensor module is a server of calibrated digitized sensor data records. 

Layer 2 � Signal Processing: The signal processing module acquires input data 
from sensor modules or from other signal processing modules and performs 
single and multi-channel signal transformations and CBM feature extraction. 
The outputs of the signal processing layer include: digitally filtered sensor data, 
frequency spectra, virtual sensor signals, and CBM features. 

Layer 3 � Condition Monitor: The condition monitor acquires input data from 
sensor modules, signal processing modules, and from other condition monitors. 
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The primary function of the condition monitor is to compare CBM features 
against expected values or operational limits and output enumerated condition 
indicators (e.g. level low, level normal, level high, etc). The condition monitor 
also generates alerts based on defined operational limits. When appropriate 
data is available, the condition monitor may generate assessments of 
operational context (current operational state or operational environment). 
Context assessments are treated, and output, as condition indicators. The 
condition monitor may schedule the reporting of the sensor, signal processing, 
or other condition monitors based on condition or context indicators, in this role 
it acts as a test coordinator. The condition monitor also archives data from the 
Signal Processing and Sensor Modules, which may be required for downstream 
processing. 

Layer 4 � Diagnostic Processing: The diagnostic processing layer acquires 
input data from condition monitors or from other diagnostic processing 
modules. The primary function of the diagnostic processing layer is to determine 
if the health of a monitored system, subsystem, or piece of equipment is 
degraded. If the health is degraded, the diagnostic processing layer may 
generate a diagnostic record that proposes one or more possible fault conditions 
with an associated confidence. The diagnostic processing module should take 
into account trends in the health history, operational status and loading, and the 
maintenance history. The diagnostic processing module should maintain its own 
archive of required historical data. 

Layer 5 � Prognostic Processing: Depending on the modeling approach that is 
used for prognostics, the prognostic layer may need to acquire data from any of 
the lower layers within the architecture. The primary function of the prognostic 
layer is to project the current health state of equipment into the future taking 
into account estimates of future usage profiles. The prognostics layer may report 
health status at a future time, or may estimate the remaining useful life (RUL) of 
an asset given its projected usage profile. Assessments of future health or RUL 
may have an associated diagnosis of the projected fault condition. The 
prognostic module should maintain its own archive of required historical data. 

Layer 6 � Decision Reasoning: The decision reasoning module acquires data 
primarily from the diagnostic and prognostics layers. The primary function of 
the decision reasoning module is to provide recommended actions and 
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alternatives and the implications of each recommended action. 
Recommendations include maintenance action schedules, modifying the 
operational configuration of equipment in order to accomplish mission 
objectives, or modifying mission profiles to allow mission completion. The 
decision reasoning module needs to take into account operational history 
(including usage and maintenance), current and future mission profiles, high-
level unit objectives, and resource constraints. 

Layer 7 � Human Interface (Presentation Layer): The human interface layer 
may access data from any of the other layers within the architecture. Typically 
high-level status (health assessments, prognostic assessments, or decision 
reasoning recommendations) and alerts would be displayed, with the ability to 
drill down when anomalies are reported. In many cases the human interface 
layer will have multiple layers of access depending on the information needs of 
the user. This layer may also be implemented as an integrated user interface that 
takes into account information needs of the users other than CBM." 

The main focus of OSA/CBM is on layers 1 through 5. 

The core of the OSA/CBM architecture is an object-oriented data model, which 
has been developed from a mapping of the Mimosa relational schema to the 
OSA/CBM layers. The data model does not describe all the object classes that 
would be required for a software implementation. The focus is on describing the 
structure of the information that is of interest to the clients of that layer.  

Here is a list of features of the OSA/CBM components [Lebold et al. 2003]: 

• Implement the functionality of individual layers of the architecture 

• Communicate in a client/server relationship 

• Have EntryPoints that serve the information needs of specific clients 

• Provide access to synchronized data channel sets and to background 
information through their interfaces. 

The interface descriptions of each component are [Lebold et al. 2003]: 
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• Request Data: prompts a measurement or calculation update 

• Get Data: returns dynamic measurement data or a calculated result to the 
client 

• Get Explanation: returns a data structure that describes the input data 
and data transformation processes used in the calculation of the 
associated output data set 

• Get Config.: returns static information on the monitoring system and the 
monitored system configuration. 

4.2.1 Prognostics 

Prognostics is an essential function in any CBM system. Its purpose is to help us 
determine the condition of a machine in the future. More precisely, it means 
determining the remaining useful life (RUL) of the inspected system. As an 
operational point, this means the system will give an estimate of the time when, 
with the current workload, the machine cannot function as expected.  

Prognostics can be performed in several different ways. The basic structure is to 
use the prognostic function as an input � output mapping (Figure 11). Inputs can 
include current and archived data on the workload, failures, and previous 
maintenance. Output estimates can include the current efficiency, RUL, trouble 
spots and recommendations.  

 

Figure 11. Prognostic function produces estimates. 

In [Lebold & Thurston 2001], prognostic approaches are categorized into three 
groups: model-based, estimation-based and experience-based. The ISO 13381-1 
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(2004) standard provides guidance for the development of prognosis processes 
for machine manufacturers. 

4.2.2 Other component-based CBM systems 

One example is presented in [Wolfram & Isermann 2002], where a component-
based tele-diagnosis approach has been developed. Their idea is to equip each 
sensor and actuator of an overall system with an appropriate signal processing 
unit and thus create intelligent devices. These are to perform tele-service tasks. 
So, monitoring can take place in the components independently from the process 
structure as a whole. A common field bus system connects the components to 
the control centre PC. 

4.2.3 Interpretation of OSA-CBM in machine automation 

In this context we will develop the OSA-CBM architecture from the perspective 
of contemporary work machine control systems. Work machines very often 
include a powerful PC computer capable of executing most of the tasks 
dedicated to the OSA-CBM seven-layer architecture. The tailored architecture is 
depicted in Figure 12. The sixth layer (Decision Support) is omitted. 
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Figure 12. OSA-CBM model tailored to contemporary machine control systems. 

4.3 IEEE 1451 

The Institute of Electrical and Electronics Engineers (IEEE) 1451 [Lee 2000] is the 
standard for the smart transducer interface for sensors and actuators. It was 
developed to solve the problem of sensor interfacing. The common problem is that a 
large number of sensor networks are currently in the market place, each designed for 
a specific application class, with its own custom protocols. 
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IEEE 1451 has defined a set of common communication interfaces for 
connecting transducers (sensors or actuators) to control networks and 
instruments in a network-independent environment. It can be placed between the 
sensor and OSA/CBM�s first layer module. The standard defines a framework 
consisting of data and object models for getting sensor data to the network. This 
framework is displayed in Figure 13.  

 
Figure 13. Framework of IEEE between sensors and OSA/CBM�s first layer. 

The main parts of this standard are a common object model for smart transducers 
with interface specifications for the components of the model (P1451.1). This 
contains an STIM (smart transducer interface module) component for the 
network module, a TEDS (transducer electronic data sheet) component for the 
transducer module and a digital interface to access the data (P1451.2) between 
them. This means that the interface is independent of the transducer. Other 
communication protocols are planned for the family of 1451 standards. 

4.4 ISO 13374 

The intention with ISO 13374 is to provide the basic requirements for open 
software specifications that allow machine condition monitoring data and 
information to be processed, communicated and displayed by various software 
packages without platform-specific or hardware-specific protocols [ISO 13374-1 
2003].  
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The standard has a slightly modified OSA/CBM approach to data flow. The 
diagnostic layers and the information flow are presented in Figure 14.  

 

Figure 14. Data processing and information flow in ISO 13374. 

The data flow begins at the bottom and finally results in the actions to be taken 
being presented at the top. As the information flow progresses from data 
acquisition to advisory generation, data from earlier processing blocks needs to 
be transferred to the next processing block. Additional information can be 
acquired from or sent to external systems. 

This standardization is directed by the MIMOSA OSA/CBM alliance. 

4.5 The OSGi Alliance 

The OSGi Alliance (http://www.osgi.org/) is a forum that specifies, creates, 
advances, and promotes an open service platform. This platform is for the 
delivery and management of multiple applications and services to all types of 
networked devices in home, vehicle, mobile and other environments.  

The OSGi Alliance tries to put together the needs and ideas that come from 
communities like service providers, technology, industrial, consumers and 
automotive electronics. As an independent non-profit corporation, the OSGi 

http://www.osgi.org/
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Alliance wants to keep distribution of the information fair between all its 
members.  

The idea of the OSGi service platform is to offer tools to develop, deploy and 
manage services in a coordinated fashion. The target is to enable flexible and 
managed services for an entirely new category of smart devices. These include 
devices such as set top boxes, service gateways, cable modems, consumer 
electronics, PCs, industrial computers, cars, smart handhelds and more. Service 
providers like mobile phone operators, cable operators and others are enabled to 
deliver differentiated and valuable services over their networks. With the OSGi 
specification, different service provider networks can be seen as one window on 
existing telephony networks, broadband connections, high-speed wireless data 
networks to the home, car, mobile and other device environments, and cable 
entertainment services. 

Services in the Home:  

• Communication  

• Information/entertainment  

• Safety and security monitoring  

• Energy management and metering  

• Appliance diagnostics and servicing  

• Telemedicine and healthcare monitoring.  

Services in the Car: 

• Navigation  

• Emergency assistance  

• Mobile commerce  

• Information/entertainment  

• Vehicle diagnostics  

• Location-based services.  
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The OSGi Service Platform (see Figure 15) consists of APIs that define 
framework standards for service platform devices like a service platform server. 
These APIs are divided into to a set of core and optional APIs that together 
define an OSGi-compliant service platform. The core APIs are focused on 
service delivery, dependency and life cycle management, resource management, 
and remote service administration. The optional APIs define mechanisms for 
exporting resources to an HTTP-based web server, client interaction with the 
service platform and data management.  

The OSGi Platform leverages existing Java technology whenever possible. Java 
is used because it is a portable technology that can run on multiple platforms, 
including multiple types of service platform devices such as automotive and 
consumer electronics equipment, household appliances, communications 
appliances, computers, smart handhelds and more. 
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Figure 15. OSGi Service Platform. 

The key role in the OSGi alliance is in technical expert groups. All of the core 
APIs are either contributed by a member or developed by these groups.  

The following companies are included in OSGi�s Members list (in 2006): BMW, 
IBM, Motorola, Nokia, Oracle, Panasonic, ProSyst, Siemens and Sun 
Microsystem. 
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4.5.1 Vehicle Expert Group Charter 

OSGi specifications are developed by an Expert Group comprised of the 
participants. One such a group is the Vehicle Expert Group Charter. 

The Vehicle Expert Group (VEG) has a task to focus on the vehicle-specific 
requirements and to tailor and extend the OSGi specification for this purpose. To 
achieve this, the VEG defines a list of topics that cover vehicle-specific issues. 
These topics are put into the requirement documentation and each topic is 
analysed with the Architecture Expert Group. The idea of this analysis is to 
define if the topic is relevant to other existing OSGi groups or only to the VEG. 

The deliverables of the VEG are requirement documentation and APIs with a 
reference implementation and a test suite. According to the OSGi policy, the 
requirements for VEG comes from automotive, transport and telematics 
companies, as well as from other OSGi groups and other standardization 
organizations. 

In the next list a few vehicle manufacturers are listed with their connection to 
OSGi: 

• BMW Research uses ProSyst�s (www.prosyst.com) mBedded Server as 
an enabling technology for the development and deployment of 
applications to their vehicle infotainment platform and other devices. 

• Bombardier Transportation utilizes ProSyst�s mBedded Server and 
IBM�s JVM J9 for its remote diagnosis system (RDS), a wireless remote 
data transmission system for rail vehicles. 

• DaimlerChrysler uses Jentro�s and Sun Microsystem�s Java and OSGi-
based telematics solutions in a pilot showcase. 

• GM has made a deal with OnStar Europe to implement the ACUNIA 
(www.acunia.com) Open Telematics Framework in new car models. 
Also cooperation with some car rental companies. 

• Volvo � VTD is planning to use Gatespace�s OSGi Service Platform-
based service platform for building infotronic solutions into future 
generations of Volvo vehicles. 
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4.6 Agent systems 

The definition of an agent is not that simple because there are various things 
people want to see in agent platforms. One basic definition argues that agents 
should have the following properties [Woolridge & Jennings 1995]: 

• Autonomy 

• Proactiveness 

• Reactivity 

• Social ability. 

In that sense, an agent can independently observe the surroundings with 
its �sensors� and act on that information. It is not merely an observer of its 
environment or a passive recipient of actions performed by other entities. 
Human beings are the most obvious examples of agents in the real world. The 
research into multi-agent systems can be thought to have started in 1980 when a 
small number of AI researchers gathered at MIT for the First Workshop on 
Distributed AI [Sycara 1998]. 

It is important to understand the main difference between traditional �functional� 
software systems and agent-based systems. The functional system simply takes 
input, performs some computation over this input, and finally produces the 
result. This can be viewed as function from a set of inputs to a set of outputs. In 
agent systems the basic way of achieving some goal is to negotiate and co-
operate with other agents. While doing this, we must understand the basic beliefs 
and goals of agents. 

The Foundation for Intelligent Physical Agents (FIPA) is an international non-
profit association of companies and organisations sharing the effort to produce 
the specifications of generic agent technologies. It began its work in 1996 and is 
registered in Geneva, Switzerland. One active company from Finland has been 
Telia Sonera. FIPA�s target is to evolve a set of basic technologies, not just for 
one application but as generic technologies for various application areas. These 
technologies can be integrated by developers to make complex systems with a 
high degree of interoperability.  
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The main feature and the actual power of agent systems is the ability of agents to 
communicate with each other. Agents do not just engage in single message 
exchanges; they have conversations � task-oriented, shared sequences of 
messages that they follow, such as a negotiation or an auction. At the same time, 
this is the main feature that differentiates agent systems and client/server type 
systems. 

The agent communication is based on a speech act. This means that when 
somebody sends a message the other party has to know how to respond to that 
message, just like a normal conversation between humans. FIPA has specified 
the FIPA Communicative Act Library, which states the minimum level an agent 
communicative act must satisfy in order to be FIPA-compliant. 

One example of an agent-based diagnostic system is the PEDA system [Hossack 
et al. 2003]. This was built to access the data from multiple data source and to 
make diagnostic issues from that. Its functioning agents are:  

• Incident and event identification (IEI) 

• Fault record retrieval (FRR) 

• Fault record interpretation (FRI). 

For communication, PEDA agents use ACL-type interactions like subscribe, 
inform and request. The ontology is also FIPA type and can be extended in 
future if needed. 

4.7 Client - Server 

Some vendors have developed their own system for CBM purposes. One good 
example is Qualtech Systems, who have a server that uses an agent-type 
structure [Deb et al. 2000, Deb & Ghoshal 2001]. Figure 16 presents the 
framework built by Qualtech Systems.  
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Figure 16. QSI�s integrated diagnostics modules. 

The modules use their own message structure and protocol, called the RDS 
Protocol, to communicate. The protocol is based on the ToolTalk architecture, 
which works very much like an agent system [Deb et al. 2000]. 

4.8 Example applications 

This chapter describes some solutions relating to the condition monitoring of 
mobile machines. Passenger cars are covered first because many of the technical 
solutions used in them are similar to mobile work machines. After that, some 
examples from aviation will be described. Due to the possible risks involved in 
aviation, fault detection and condition monitoring is very important. Because of 
this, the use of reactive maintenance is usually out of the question 

4.8.1 Passenger cars  
Because the technology used in mobile work machines and passenger cars is at 
least partially very similar, a brief description of the fault detection and 
maintenance used in them is in place. The high volume of passenger cars makes 
the technology used in them relatively cheap, which of course is a great benefit 
for the manufacturers of the work machines. The technology is transferred to the 
work machines with a little delay and is at that time already tested thoroughly. 
Naturally, only part of the technology can be directly used but it is always better 
to reuse something already approved if it is possible.  
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Some kind of fault detection is nowadays present in most of passenger cars. 
When faults occur the driver is informed with a signal light or a message on the 
display. At least, this is the case with the most critical faults. These faults can 
usually be detected with one sensor, e.g. motor temperature, but more 
sophisticated methods are also used or at least are being developed. 

Most cars have CAN buses to which all the measurements are transferred. 
Usually, cars have several different buses, divided according to the functions of 
the devices in them. For example, the devices with a more critical function, such 
as ABS (Antilock Braking System), ESP (Electronic Stability Program) or 
airbags, are in a bus with a higher speed and have higher priorities than the other 
less important devices, e.g. entertainment electronics. Using a CAN bus has an 
effect on the weight and complexity of the wiring, making it much simpler and, 
at the same time, reducing the weight of the car by as much as 60 kilograms. A 
lot of space is also saved by using a CAN bus. The number of different buses 
varies depending on the car manufacturer. Skoda Octavia, for example, have 
four different CAN buses and 28-37 devices connected to them: CAN-Drive, 
CAN-Comfort, CAN-Infotainment and CAN-Diagnostics [Helkama 2004]. 

Every new car has an On-Board Diagnostics (OBD) connection according to 
European Unions regulations. A similar system is also used in the U.S. The 
system used in Europe, Euro On-Board Diagnosis (EOBD), differs slightly from 
the  OBD II used in the U.S.. The EOBD connection allows reading the 
diagnostic information from the car with the appropriate equipment. The 
connection and the fault codes are standardized and even the warning light is the 
same with every manufacturer. The EOBD is mostly used for monitoring the 
car�s exhaust, but because the concentration of the pollutant components can�t 
be directly measured it has to be done by monitoring the condition of the 
components that affect the quality of the exhaust. These components are: 

1. catalytic converter 

2. lambda probes 

3. combustion system 

4. secondary air system 

5. exhaust gas recirculation system 

6. fuel tank ventilation system 
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7. fuel distribution system 

8. CAN databus 

9. electronic power control 

Even though the EOBD is only used to monitor the quality of the exhaust, the 
condition of many different components in the car is also checked at the same 
time [Helkama 2004]. 

The car�s on-board electronics allows constant monitoring of all the 
measurements transferred in the CAN bus. Many manufacturers use them in 
estimating the need for service. This is a good example of how CBM is 
implemented. Previously, the cars had a fixed service schedule (e.g. every 20000 
km or once a year) but nowadays the service can be done when it is needed. This 
can be done by monitoring several different measurements that mostly differ 
according to the driving style. Some of the monitored values are fuel 
consumption, quality and quantity of oil, number of cold starts, etc. The car 
automatically notifies the driver before the car should be taken to service. This 
kind of service is now present in cars from many different manufacturers.  

Wireless communication is becoming more common in cars every day and in the 
future almost every car will probably have some kind of wireless communication 
possibilities. This will allow car manufacturers to collect data from the cars in 
almost real time, which could then be used for fault detection and identification 
(FDI). It is of course possible that the customers won�t allow this, even though it 
is done for their benefit. DaimlerChrysler, for example, has been researching the 
possibility of transferring information from the car to be used for FDI and as a 
help for maintenance (see Figure 17) [DaimlerChrysler 2002]. 
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Figure 17. CBM concept of DaimlerChrysler [DaimlerChrysler 2002]. 

Wireless communications can also be used to provide information and help for 
the drivers. OnStar is a service available in the U. S. for some vehicle models 
that provides a variety of different functions for the driver using wireless 
communication. These include air bag deployment notification, driving 
directions, emergency services and stolen vehicle tracking. In addition to 
OnStar, a similar service is provided by ATX technologies [Onstar 2004]. 

4.8.2 Airbus � Aircraft Maintenance Analysis 

In addition to the fault diagnosis used on aircraft, Airbus has developed a 
ground-based maintenance software: Aircraft Maintenance Analysis 
(AIRMAN). This software was developed to further enhance the maintenance 
efficiency by interpreting the ECAM warning (Electronic Centralized Aircraft 
Monitor) and fault messages downloaded from the aeroplane. The data is 
transmitted to the ground by radio frequency or satellite communication. The 
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fault monitoring and diagnostic data is used together with the data available on 
the ground (e.g. aircraft documentation, service information) to provide 
maintenance actions and analyzed maintenance data for engineering. This 
improves aircraft dispatch, simplifies maintenance and reduces maintenance 
cost. The features provided by AIRMAN include gate maintenance, predictive 
maintenance and data analysis. 

The gate maintenance feature allows operators to access information on each 
aircraft consisting of leg or post-flight reports, technical documents and analyzed 
fault messages. The predictive maintenance feature uses statistical analysis to 
classify fault messages from the aeroplane onto a job list. These classifications 
can be �new today�, �still open� or �long lasting�. This allows maintenance 
personnel to take the required maintenance actions before the fault leads to a 
malfunctioning of the system. It also allows planning the maintenance actions 
according to the aircraft�s schedule. The data analysis feature processes the data 
from the Onboard Maintenance System (OMS) to improve the ability of the 
maintenance personnel to take the most appropriate maintenance actions.  

The architecture of AIRMAN consists of a real-time data acquisition module, an 
Oracle database and the core software application (AIRMAN executable) 
[Aircraft 2004]. 

4.8.3 Boeing � Aeroplane Health Management 

Like Airbus, Boeing has also developed a service to help with the maintenance 
of its aircraft: Airplane Health Management (AHM). The in-flight data is 
transmitted to the ground with radio frequency technology (ACARS). This data 
is then analyzed with diagnostic and prognostic algorithms during flight and the 
maintenance crew on the ground can be notified if needed. The tools needed to 
process the data are hosted by Boeing. Customers get alerts through a fax, PDA, 
e-mail or pager system. The information can be accessed on the web at 
MyBoeingFleet.com. In this way the customers (airlines) don�t have to manage 
and store the data themselves. With AHM the airlines can reduce delays, 
cancellations and air turnbacks. 
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AHM was first tested with Air France and British Airways in 2003; Japan 
Airlines was also included in the test at the beginning of 2004. The first 
customer of AHM was Singapore Airlines. 

4.8.4 The National AirSpace System-Wide Simulation    

National AirSpace System-Wide Simulation (NAS Sim) is a program with a goal 
to develop and implement a comprehensive, integrated health management 
system for the national (US) aviation system. In addition to health management 
of individual aircraft, the system also monitors, models and evaluates risks in air 
traffic over the whole of the United States. 

The system consists of simulation models for the different subsystems (engine, 
wings, etc.) of an aeroplane and a large amount of input data (weather, airline 
schedules). This data is transferred through a secure network under the 
Information Power Grid (IPG). The simulation of the subsystems produces 
modelled values for different parameters, which allow checks for anomalies. 
This approach is similar to the methods described in Chapter 5.3. For the engine, 
these values include shaft rpm, inlet and outlet temperatures, and pressures in the 
compressor and turbine and fuel burn rate. Other subsystem models can be seen 
in Figure 18 [Bardina et al. 2000].  

 
Figure 18. NAS Sim subsystem models [Bardina et al. 2000]. 
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5. Methods for Data Analysis 
The purpose of this chapter is to give a brief introduction to the various fault 
diagnosis methods. Fault detection methods can be classified in many ways. We 
will use five categories: Data-driven, Analytical, Knowledge-based, Data mining 
and Model-based. Some methods can be classified into more than one category 
and combinations of various methods are often used. 

Fault detection and identification (FDI) consists of several stages or procedures. 
There is no explicit classification of these procedures and the terminology 
varies. For example, in [Patton et al. 2000, Patton & Chen 1992] FDI is simply 
divided into fault detection and fault isolation. The fault detection stage only 
determines whether a fault has occurred or not. The source of the fault is 
identified in the fault isolation stage - is it a sensor or a faulty actuator? A more 
profound classification is described in [Chiang et al. 2001], where FDI is divided 
into four stages: 

• Fault detection 

• Fault identification 

• Fault diagnosis 

• Process recovery 

Fault detection is the monitoring activity needed to recognize abnormal 
operation. This may simply be monitoring process variables or trends, threshold 
values and handling their alarms. Fault detection may also include advanced 
signal processing based on statistical or model-based methods (see 5.1 and 5.3). 
In these scenarios the detection of a fault or an abnormal condition is not 
obvious from single process variables. 

In the fault identification stage the observation variables most relevant to 
diagnosing the fault are identified. This helps to focus on the subsystems most 
relevant to the fault, making the elimination of the fault more efficient. 

Fault diagnosis determines which fault occurred. This means determining the 
type, location, magnitude and time of the fault. 
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The effect of the fault is removed in the process recovery stage. In most 
situations this is not possible automatically and it might need human assistance. 
A term other than process recovery would be more applicable in mobile 
machines, but the idea is the same.  

The normal FDI sequence is represented in Figure 19. If a fault is detected, fault 
identification, fault diagnosis and finally process recovery are employed.  

 
Figure 19. FDI sequence [Chiang et al. 2001] 

Another division of activities in fault diagnosis is from OSA-CBM (a MIMOSA 
activity). They have defined the interfaces of some essential functional 
components of a condition-based maintenance system (CBM). These 
components present functionalities, which may also be regarded as phases of a 
�CBM cycle�:  

• Data Manipulation  

• Condition Monitoring 

• Health Assessment 

• Prognostics  

• Decision Reasoning  

5.1 Model-based approach 

When somebody builds or uses a machine or vehicle he has a good idea of what 
it should do and how it should work. This view or idea is in a human�s head. If 
the development is done in an iterative way, the output is always compared with 
this general view of how things should work. If the output is not what is 
expected, some adjustment has to be done to the machine until the required 
output is achieved. 
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The basic idea of model-based diagnostics is that some machine operations are 
modelled to describe its functions. Generally, this model is first in the head of 
person that is developing the machine and finally in the head of the machine 
operator. This information can be put into a form that a computer can use as a 
reference model of how the system should work. If there is difference between 
this reference model and the actual response of the machine, there is an error 
somewhere (see Figure 20). 

 
Figure 20. Basic fault detection. 

Machine functions can be divided [Kurki 1995] into structural, functional and 
behavioural models. Functional models are impractical, expensive and difficult 
to update. Structural and behavioural information is generally available in some 
form.  

The topology of a machine is generally well known and documented. This 
component hierarchy, and their relationship information can be used when a 
structural model is derived. The reuse of this information is dependent on the 
applied method. Methods like rule-based systems, expert systems and fuzzy 
systems belong to this category. 

Behavioural models represent information on how the machine responds to 
dynamic control actions in the state the machine is in. Generally, these models 
include inputs, controls, variables and parameters. Knowing the context, 
dynamic behavioural can be monitored. An example of a machine�s low-level 
control functions can be found in the pressure control in a vehicle�s braking 
system. If the pressure doesn�t reach the target, a fault is detected. A high-level 
example of this system is when bringing the vehicle to a stop from its current 
speed. We all know that the speed is reduced slowly, depending on the force put 
into the brakes and some other factors that might be affecting the vehicle. In this 
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case the context and dynamic of the system is very important. There are various 
methods for detecting threshold overshoots, analogue signals for peaks, slopes 
and variations, durations of sequences and events. These are described in more 
detail in this chapter. 

Some requirements should be considered when modelling a machine function in 
practice [Kurki 1995]: 

• Model development has to be cost-effective and flexible. 

• Models have to be easy to customize and tailor. 

• Updating of the models has to be flexible. 

• Domain experts have to be able to configure and update the models. 

The most problematic reason for a model-based system not working is that the 
model is out of date. Usually, this means that it has worked fine until some 
modifications have been made to the machine. Such modifications can be either 
mechanical or electrical. Some procedures are required after any modifications 
to keep any possible model parameters correct. One way to automate this is to 
add adaptive functions to fix the required parameters. 

Basic control system models are mostly stable or easily modified. More 
complicated systems can use an adaptive approach, like parameter estimation 
techniques [Isermann 2004] or case-based reasoning techniques [Kolodner  
1993]. Adaptive systems can be very good if parameter modification is working 
properly.  They can also be useless if the parameters are totally wrong. 

Fault diagnosis is generally divided into fault detection, fault localization and 
recovery. In fault detection the actual input output data is compared with the 
model�s output, as in Figure 20. Models perform very well when detecting 
exceptions in system behaviour. But when is the system behaving in the wrong 
way? How big is the error? To make the detection accurate and reliable might 
require some threshold parameter tuning.  

It is easier to tell that something is wrong but harder to say what is actually 
causing the fault. Fault localization is tasked with giving the information on 
what caused the fault. The basic problem is that it might find zero, one or too 



 

  68

many causes for the fault. Structural models are good in fault localization 
because they generally exist and are quite reliable. Fuzzy rule-based systems and 
case-based methods are also common. One interesting way of getting fault 
localization information is to use inverted models [Rauma 1999]. 

The following chapters will present some methods that are generally used in 
diagnostics. Most are used to model the system or a part of it. The kind of 
system the model is based on is vague. Methods for clustering, e.g., expect some 
particular features of events, or methods for causality expect causal connections. 

5.2 Data-driven methods 

Data-driven methods directly use the data measured from the system. The high-
dimensional data (each measurement signal presents a �dimension�) can be 
transformed into a lower dimension with the aid of statistical computing. 
Interesting states in the process (usually faults) cannot always be seen directly 
from just a few measurement signals. It may well be possible to detect such 
states by analyzing the combined variability of a large number of signals in a 
reduced dimension (e.g. in two dimensions on an x-y chart). These methods are 
highly dependent on the quantity and quality of the measured data.  

Some typical data-based methods are principal component analysis (PCA), 
Fisher Discriminant Analysis (FDA) and partial least squares (PLS). PCA and 
FDA will be briefly described next. Statistical Process Control (SPC) is 
mathematically less complicated than PCA and FDA but it is more widely used 
in industrial applications. Typical application areas of data-based methods are 
complicated systems with a high number (e.g. hundreds) of continuous 
measurement signals. These are commonly found in the process industries.  

SPC is not a dimension reduction technique and it has a wider scope of 
application due to its simplicity and adaptability. 
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5.2.1 Principal Component Analysis  

Principal component analysis (PCA) is one of the dimension reduction 
techniques used in FDI. The basic idea of PCA is to represent the data in a 
lower-dimensional format while still preserving the correlation between the 
variables. This can be done because usually all the variables measured from the 
system are not the principal driving forces behind the system�s behaviour. PCA 
produces new variables that are linear combinations of the original 
measurements. These variables are presented with orthogonal axes. The first axis 
captures most of the variation from the original data. The full set of principal 
components has the same size as the original data but usually only two or three 
axes are enough to capture most of the variation.  

The number of principal components needed for this can be determined by 
several different methods. These methods include the percentage variance test, 
the screen test, parallel analysis and the PRESS (prediction residual sum of 
squares) statistic. Fault detection can be done using a T2 or Q statistic for the 
lower-dimensional PCA representation. Differences from the normal operating 
state usually have large effects on the Q and T2 statistics. Faults can be detected 
by using appropriate thresholds for the statistics. The T2 and Q statistics tend to 
detect faults differently and the best results can be achieved by using both 
statistics together. An example of this is presented in Figure 21, where �x� is data 
collected during normal operation, �+� is a fault that can be detected with the Q 
statistic and �o� is a fault detectable with the T2 statistic.   

 
Figure 21. Fault detection with Q and T2 statistics [Chiang et al. 2001]. 



 

  70

The simplest way of doing fault diagnosis with PCA is to define regions in the 
lower-dimensional space to classify different faults. Another method is to 
construct separate PCA models for each fault and then use some statistic (e.g. Q 
or T2) to predict which fault has most likely occurred. More information on 
using PCA and T2 or Q statistics in FDI can be found in [Chiang et al. 2001]. 

[Mattila 2003, Chiang et al. 2001, Matlab] 

5.2.2 Fisher Discriminant Analysis 

Fisher Discriminant Analysis (FDA) is a dimension reduction technique well 
suited to classification of data. While PCA is optimal in capturing the variance 
of the data, FDA separates the data into different classes maximizing the scatter 
between the classes and minimizing the scatter within each class. FDA can be 
applied to data collected during normal operation and when different faults have 
occurred. Fault detection can be done easily if the data during normal operation 
can be separated from the different fault classes. Similarly, fault diagnosis is 
possible if the fault classes are reasonably separated.  

In Figure 22 presents the classification of the same testing data in three classes 
using FDA and PCA. It can be seen that FDA separates the classes better. 
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Figure 22. Classification of data with FDA and PCA [Chiang et al. 2001]. 

5.2.3 Statistical Process Control  

Statistical Process Control (SPC) is a collection of methods suitable for a wide 
range of process control and monitoring applications and quality management. 
Here we describe some of SPC�s features applicable to simple machine 
condition monitoring and fault detection.  
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The most common visual presentation of an SPC system is a process control 
chart showing a trend plot of measurement samples and levels for upper and 
lower warnings and alarms. The limits for the warnings and alarms may be 
based on the standard deviation of the variable, measured during a certain warm-
up period. Examples of commonly used limits are ±3σ and ±5σ (�three times 
sigma or five times sigma�), sigma being the measured variation of the process 
variable. SPC methods assume that the input data is normally distributed 
[Oakland 1990], 

Figure 23 shows how the means of measured samples can be used in process 
control. The distribution of the sample means is on the left. The lower warning 
limit is n/2σ  and approximately 1 in 40 samples will be over the limit. In 
FDI, similar limits for different measurements (e.g. pressure) can be calculated 
from historical data. Measured means exceeding the predefined limits indicate 
faults or degrading of condition. Several limits can be used to classify the 
severity of the fault. 
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Figure 23. Mean control chart [Oakland & Followell 1990]. 

5.3 Analytical methods 

Analytical methods use features generated from the input and output using 
detailed mathematical models. Fault detection and diagnosis is done by 
comparing the features from the models with the features associated with normal 
operating conditions. The features normally used include residuals, parameter 
estimates and state estimates [Chiang et al. 2001, Mattila 2003]. An essential 
requirement for the case is that a model needs to be created. Here it helps if the 
system and its dynamic behaviour are well known by the engineers. The model 
needs to be precise enough to produce reliable fault diagnosis, but, on the other 
hand, modelling is very time consuming and it may have to be repeated 
whenever the system changes even a little. This causes major model 
management efforts.  
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Residual-based methods are most commonly used and are referred to as 
analytical redundancy methods. The residuals are the differences between the 
measured signals and the corresponding signals of the mathematical model. 
Ideally the residuals should be zero when the system operates normally and non-
zero in the presence of faults and disturbances. Non-zero residuals are also 
generated by noise, disturbances and modelling errors, making distinguishing of 
the residuals caused by faults very challenging. The faults can be detected by 
using appropriate thresholds for the residuals if the residuals caused by the faults 
are larger than those caused by noise, disturbances and modelling errors [Chiang 
et al. 2001, Mattila 2003, Simani et al. 2003]. 

The residuals are usually generated by one of the following methods [Chiang et 
al. 2001, Simani et al. 2003]: 

• Parameter estimation 

• Observers 

• Parity relations. 

Figure 24 shows a typical structure of an analytical FDI system. Residuals are 
generated from the measured inputs and outputs. The residuals should be close 
to zero when no faults have occurred. Next, the residuals are evaluated to 
determine if a fault has occurred and, possibly, diagnose the fault more 
precisely.  
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Figure 24. Typical structure of an analytical FDI system [Simani et al. 2003]. 

For analytical methods the faults can be seen as either additive or multiplicative. 
The additive faults are usually caused by changes in actuators, sensors or 
immeasurable state variables. The multiplicative faults may be caused by 
parametric faults or modelling errors. The modelling error may be due to 
inaccuracies in physical parameters, simplification of a higher-order model or 
because of approximation of a non-linear model with a linear model. Additive 
faults affect the output by summation, whereas the multiplicative faults affect 
the output by multiplication. If the input is doubled, the effect of the faults also 
doubles for the multiplicative faults. For additive faults the effect would remain 
the same.  

Analytical FDI methods are discussed in [Tan & Sepehri 2002, Patton & Chen 
1992 and Patton 1991].   

5.3.1 Parameter estimation 

Parameter estimation is applicable when the faults affecting the system are 
multiplicative and the basic mathematical structure of the model is known. The 
parameters of the models can be estimated with standard parameter estimation 
techniques, which are not discussed here. When the model is constructed from 
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first-principles (physical facts, laws of nature) the model parameters have direct 
physical meanings. Thresholds can then be set between nominal and estimated 
parameters for fault detection. 

The parameter estimation follows the following sequence: 

1. Define the process equations that relate the input and the physical model 
parameters to the output 

2. If necessary, simplify the model or combine the physical parameters so 
that the model parameters can be determined uniquely 

3. Estimate the nominal model parameters from historical training data 

4. Calculate estimates of the physical parameters from the estimated model 
parameters 

5. Faults can be detected during operation by comparing the estimated 
physical parameters with those obtained from the training data. Fault 
isolation can be done by comparing changes in the parameters with 
historical observations in a database 

[Chiang et al. 2001, Mattila 2003] 

5.3.2 Observer-based methods 

Observer-based methods are best suited to situations where the faults are 
additive - i.e. faults affecting sensors, actuators or immeasurable state variables. 
These methods need detailed mathematical models that are derived from first-
principles so that the states have a physical meaning. 

Fault detection can be done based on residuals. For the measurable states the 
residual is the difference between the measured and the estimated state. The 
immeasurable states can be constructed from measurable inputs and outputs with 
a Luenberger observer or Kalman filter. The residuals used with these are 
generated from the difference between measured and estimated output. Usually, 
the states are not measurable and a Luenberger observer or Kalman filter should 
be used for FDI. 

[Chiang et al. 2001, Mattila 2003 and Simani et al. 2003] 
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5.3.3 Parity relations 

Another analytical method for residual generation is parity relations. When using 
parity relations for FDI the residual vector is generated from the observations. A 
transfer function matrix, W, is used to separate the faults from other disturbances 
in the residual. The transfer function matrix W should be designed so that non-
zero residuals only occur when faults are present. In real-life situations the 
residual is also affected by noise, modelling errors and disturbances.  

The effect of the noise on the residual can be reduced by using low-pass 
filtering; Kalman filtering can be used on more complex noise signals. Although 
the effect of the noise can be rather easily reduced, some effect on the residual 
will still remain and some threshold on fault detection must be used. The effect 
of the modelling error on the residual is more difficult to handle. According to 
[Chiang et al. 2001], there are two mainly used methods in the literature for this. 
These are robust residual generators and structured residuals with an unknown 
input observer. The modelling errors can be modelled as disturbances and the 
transformation matrix W can be designed so that the residual is insensitive to 
these disturbances as well. This approach requires the number of disturbances 
and model uncertainties to be small. 

Ideally, the residual generated with the transformation matrix W will be 
sensitive to each type of fault. A triggering limit can be used to measure the 
sensitivity to each fault. The exact definition of the triggering limit is not 
considered here but can be found in [Chiang et al. 2001] or [Mattila 2003]. 

[Chiang et al. 2001, Mattila 2003] 

5.4 Knowledge-based methods 

Knowledge-based methods use qualitative models instead of the highly 
mathematical models used in analytical fault detection methods. Unlike many 
other method groups, knowledge-based methods are not used for fault detection. 
Instead, they provide human-like �expert� help for identifying faults detected by 
other means. These models can be constructed with causal modelling, expert 
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interviews, non-mathematical system modelling and case-based reasoning 
(CBR). Using qualitative models is applicable when the mathematical model is 
impossible or very difficult to construct. Experienced engineers can usually 
diagnose the system�s, e.g. the motor�s, condition without knowing the exact 
mathematical model. As experienced engineers are expensive and often not 
available all the time, some other approach is needed for FDI. Knowledge-based 
methods try to remove the need for an engineer to monitor the system all the 
time [Chiang et al. 2001, Chow 1997, Mattila 2003].  

5.4.1 Causal Analysis 

Causal analysis uses causal modelling of fault-symptom relationships for FDI. 
These methods are best suited to fault diagnosis. Signed directed graph and 
expert systems are some examples of methods based on causal analysis. 

Signed directed graph (SDG) consists of nodes and signed branches that 
represent system variables and faults, and the relationships between them. The 
nodes represent the state or process variables, such as flow rate. First, thresholds 
for high and low values are assigned for each variable. A node takes a value of 
0, + or � according to the variable�s value - i.e. normal, high or low. The nodes 
can also represent system faults or component failures, such as a stuck valve or a 
leak. The signed branches represent the cause-effect relationships between the 
nodes. A branch has a value of + if the cause and effect change in the same 
direction. Respectively, the branch will have a value of � if the change is in the 
opposite direction.  

Fault diagnosis can be done by tracing through the net to the root node that is 
causing the abnormal behaviour. �The goal of utilizing a SDG for diagnosing 
faults is to locate the root node(s) representing the system faults based on the 
observed symptoms. To achieve this, the measured node deviations are 
propagated from effect nodes to cause nodes via consistent arcs until the root 
nodes are identified. An arc is consistent if the sign of the cause node times the 
sign of the arc times the sign of the effect node is positive.� [Chiang et al. 2001], 

The use of SDG for FDI is covered in [Shiozaki et al. 1989].  
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5.4.2 Expert Systems 

Human-like problem solving can be applied to FDI with expert systems. A well-
developed expert system is able to: 

• represent existing expert knowledge 

• accommodate existing databases 

• accumulate new knowledge 

• make logical inferences 

• make recommendations 

• make decisions with reasoning 

[Chiang et al. 2001] 

Usually, the expert systems consist of a knowledge base, an inference machine 
and a human system interface. 

The knowledge base contains the required knowledge of the system. Expert 
systems can be seen as being either shallow-knowledge or deep-knowledge 
systems, depending on how the knowledge base is built. Various types of 
representations can be used for the stored knowledge. The quality and quantity 
of the information in the knowledge base is essential for the system to work 
properly. The knowledge base has to be updateable to benefit from the new 
knowledge and experience received during operation.  

The knowledge base is used by the inference engine for evaluation of the current 
situation. The most common inference mechanism is forward/backward 
chaining. Other inference mechanisms include hypothesis test, heuristic search 
or artificial neural networks [Chiang et al. 2001, Mattila 2003]. 

The ability of an experienced engineer to diagnose faults in shallow-knowledge 
expert systems is formulated into IF-THEN rules. These rules can be obtained 
without a deep understanding of the system mechanisms or physics. Shallow-
knowledge expert systems are flexible and, usually, the conclusions on the 
system can be easily verified. The results from the system are strongly 
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dependent on adequate knowledge. When faced with a novel situation, a solution 
for the problem might not be found.  

Deep-knowledge expert systems are based on engineering fundamentals, a 
structural description of the system or a description of the system�s components� 
behaviour during faults and normal operation. As is the case with analytical 
methods, a mathematical model of the system is usually needed for building 
deep-knowledge expert systems. 

More information on expert systems is available from [Correcher et al. 2002] 
and [Ready 1991]. 

5.4.3 Artificial Neural Networks 

An artificial neural network (ANN) is an FDI method that is difficult to place 
into just one of the described three method categories. Here it is placed under 
knowledge-based methods since it is in a way similar to human thinking. ANN 
tries to emulate the structure of the human brain. Neural networks are also used 
for hybrid FDI systems that use more than one method. Some examples of this 
are described in Chapter 3.4. 

Several different network architectures have been developed. According to 
[Kohonen 1990], the network architectures can be categorized into three main 
types: Feed forward networks, Recurrent networks and Self-organizing 
networks. 

The feed forward network will be described more accurately since 80% of all 
ANN applications [Chow 1997] are of this type. Self-organizing maps (SOM) 
are also discussed because they are better suited to classification problems. The 
classification capabilities of ANNs are interesting for FDI. In addition to 
classification, the other task that ANNs are usually used for is function 
approximation [Koivo 2004].  
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5.4.4 Feed forward neural network 

The feed forward neural network consists of several neurons in different layers. 
The basic structure of a neuron is shown in Figure 25: 

 
Figure 25. Structure of an artificial neuron  [Chow 1997] 

All the inputs x = [x1, x2, �, xn] T of the neuron are multiplied by weights w = 
[w1, w2, �, wn]T. The neuron has also an optional bias term, b. The sum of the 
weighted inputs and the bias form the activation value s. The output, o, of the 
neuron is formed from the activation value with the activation or transfer 
function f: o = f(s). Typical activation functions are: Threshold function, 
Piecewise linear and Sigmoid functions [Koivo 2004]. 

Of these, the sigmoid functions are most popular because they behave in the 
same way as the human neuron [Chow 1997]. The sigmoid functions are also 
bounded and monotonically decreasing, and are differentiable everywhere 
[Chiang et al. 2001].  

The network has one input layer, one output layer and one or more hidden 
layers. Every neuron in the hidden layers and the output layer receives inputs 
from the previous layer. In a feed forward network the neurons are only 
connected to the neurons in the next layer and there are no cyclic connections. If 
every neuron in a layer is connected to every neuron in the next layer, the 
network is called fully connected. Otherwise, the network is partially connected. 
Figure 26 shows the structure of a feed forward network: 
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Figure 26. Basic structure of a multilayer feed forward network [Chow 1997] 

A network with one hidden layer is called a three-layer network and is the most 
popular choice for the network structure. 

A single neuron in the network is not computationally very powerful in itself. 
However, the numerous neurons form a complex network in which the inputs are 
propagated through the layers to finally get the outputs. Each connection 
between the neurons has a weight associated with it and it is by these weights 
that the network is trained. Initially, the user has to choose the structure of the 
network - i.e. the number of layers, the number of neurons in each layer and the 
initial weights. After this, only the connection weights are modified. 

Training the network is done by updating the weights of the connections 
according to the error of the network outputs. The weights are updated until the 
error is within the tolerance level the user has defined. Different training 
algorithms are used to determine how the connection weights are adjusted to 
minimize the error. The most used algorithm is the back propagation algorithm.  

One way of using neural networks in FDI is to classify the inputs into different 
fault classes. In this case the number of neurons in the input layer is equal to the 
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number of process variables and the number of neurons in the output layer equal 
to the number of different fault classes. The number of outputs is then equal to 
the number of faults in the training data. It has to be noted that neural networks 
cannot operate properly with measurements outside the training data. This means 
that only faults that appear in the training data can be identified. The neural 
network has to be retrained for new faults.  

Information on using neural networks in FDI can be found in [Sorsa et al. 1991]. 
[McCormik & Nandi 1996] have made a comparison of neural networks and 
statistical methods in condition classification. 

5.4.5 Case-Based Reasoning  

Case-Based Reasoning (CBR) is an �intelligent systems� (�knowledge-based 
systems�, �expert-systems�, etc.) methodology developed in the Artificial 
Intelligence research community during the 1990s [Watson 1997, Kolodner 
1993]. Previous achievements in this research domain are the Rule-based expert 
systems (70s and 80s). Rule-based means that knowledge of, for example, a 
diagnostics task is formulated as a set of logical rules, and when a new fault 
occurs these rules are supposed to lead to the roots of the problem and suggest a 
solution. However, transforming expert knowledge of a certain domain or 
system into a set of rules is not always feasible or even possible. The knowledge 
of an area of expertise may be poorly structured or new situations simply cannot 
be solved by chains of abstracted (generalized) rules. Case-Based Reasoning 
does not involve rules; instead, it utilizes a stored base of earlier experiences or 
cases. In this way the CBR method tries to mimic human and animal reasoning, 
which is based on memorized solutions to earlier situations. The stored case base 
can be queried and the retrieved solutions can be reused. Important issues are 
how stored cases are presented and how new situations are described to the 
system to make queries for similar or closely matching situations. 

A basic CBR cycle has the following steps (Figure 27): 
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Figure 27. CBR cycle [Watson 1997]. 

1. A problem occurs 

2. Describe the problem�s features as a query 

3. Retrieve similar or closely matching cases from the case base 

4. Decide which case is the best representative of the current situation and 
reuse it as a proposed solution 

5. Revise the proposed case (solution), if necessary, to a confirmed 
solution 

6. Retain the new case and solution by storing it in the case base. 

[Kolodner 1993, Watson 1997]  

Kaidara�s Advisor is a CBR tool [Kaidara 2004] that is used by Wärtsilä in the 
CBM of engines. The condition of the engine is evaluated by comparing the 
current maintenance data on major engine components with referenced cases. It 
is also used by Citroën to help the after-sales personnel diagnose faults in 
vehicles.  
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5.5 Data mining 

In this section we describe data mining, how it is defined, why it is applied, what 
is involved in the data mining process, typical methods, etc. Much of the text 
below is based on Klösgen & Zytkow [2002a] and Berry & Linoff [2004]. At the 
end we present an example on how data mining can be applied; methods suitable 
for time series handling are emphasized a bit. We by-pass many important topics 
related to data mining, like data warehousing, knowledge representation 
techniques and model validation, to name a few. Often, the knowledge 
representation is tightly connected to the mining method, but not always.  

5.5.1 What is data mining? 

Some people use �Knowledge discovery in Databases (KDD)� as a synonym for 
data mining. Data mining refers to a broad set of different techniques - for 
example, the database can be understood as the Internet - but it also refers to the 
process of building data mining solutions. Some of the methods handled in 
Chapter 5 are often included in the concept of data mining. A Google search on 
�define:data mining� gives a long list of possible definitions for data mining. 
Here is one: 

�An information extraction activity whose goal is to discover hidden facts 
contained in databases. Using a combination of machine learning, statistical 
analysis, modeling techniques and database technology, data mining finds 
patterns and subtle relationships in data and infers rules that allow the 
prediction of future results. Typical applications include market 
segmentation, customer profiling, fraud detection, evaluation of retail 
promotions, and credit risk analysis.� 
(http://scianta.com/technology/datamining.htm [Referenced 10.04.2006]) 

We show three other definitions just to get an idea of what data mining is: 

�The comparison and study of large databases in order to discover new data 
relationships. Mining a clinical database may produce new insights on 
outcomes, alternate treatments or effects of treatment on different races and 
genders.� 

http://scianta.com/technology/datamining.htm
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(http://www.theebusinesssite.com/IT%20Terms/Health%20Terms.htm 
[Referenced 10.04.2006]) 

�A technique to analyse data in very large databases. Analysis can reveal 
trends and patterns and can be used to improve vital business processes.� 
(http://www.knowledgepoint.com.au/starting_out/glossary.htm [Referenced 
10.04.2006]) 

�A new discipline lying at the interface of statistics, data base technology, 
pattern recognition, and machine learning, and concerned with secondary 
analysis of large data bases in order to find previously unsuspected 
relationships, which are of interest of value to their owners.� 
(http://www.alz.washington.edu/NONMEMBER/DATA2000/GERALD1/tsl
d003.htm [Referenced 10.04.2006]) 

Taking a narrow view, data mining usually involves large data repositories and 
utilizes a collection of tools and techniques to discover something from the data. 
However, data mining can be seen as an activity where actions are based on 
learning, decisions are informed, and measuring the results is found beneficial.  
In other words, data mining also refers to the process of applying the tools and 
techniques. Some people say that KDD is the process while data mining refers to 
the methods that may be applied during the process. To apply data mining, we 
have to be able to observe and collect data, learn from the collected data and 
base actions, and act on what was learned. See Klösgen & Zytkow [2002b]. 

5.5.2 Why data mining?  

The main motivation for data mining is to efficiently gather knowledge, and then 
use the knowledge. At the moment, we have many knowledge discovery tools 
available. The knowledge can be used for exploration, description, prediction, 
optimization and explanation [Klösgen & Zytkow 2002b, Berry & Linoff 2004].  

In the exploration, weak knowledge is used to take the first look at the data. This 
may give hints on dependencies between variables, thus leading to descriptions 
with further data mining efforts. For example, we may not yet know which 
variables influence the target variable and by exploration we gain background 

http://www.theebusinesssite.com/IT%20Terms/Health%20Terms.htm
http://www.knowledgepoint.com.au/starting_out/glossary.htm
http://www.alz.washington.edu/NONMEMBER/DATA2000/GERALD1/tsl
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knowledge on the problem. Often, the data mining process starts with 
exploration and, after the initial results, the target is set to get descriptions and 
predictions. 

In the description, knowledge presents dependencies among variables. Note that 
this is not the same as prediction, but rather an empirical equation, an 
understandable overview of components and their lifecycles, etc. For instance, 
we may have a complete but easily understandable description of the benefits 
and nuisances a product modification causes for different customers.  

In the prediction, the knowledge can be used to make future forecasts, like 
estimating the time a component will work. Another use is to predict a property 
of a case, such as to classify a component as broken (e.g., based on variables that 
do not directly measure the component). Sometimes, confidence intervals can be 
given, how accurate the classifications are.  

The optimization here is an application of the knowledge to seeking the best 
solution to a combinatorial optimization problem. The knowledge could be 
derived from a database containing many examples of production events. We 
may not know the exact function that describes the quality of a process or 
product in the terms of parameters. This feature distinguishes the optimization 
usage of data mining from mathematical optimization. 

In the explanation, deep knowledge (at the level of principles) is used to derive a 
description that applies to a class of special situations. This is usually difficult to 
achieve.  

Often, conventional data analysis methods can be applied too, but sometimes 
data mining gives better results. Data mining works well when the problem has a 
large number of potentially relevant variables, when data mining is applied to 
multidimensional relations that vary in different subpopulations, when no 
statistical model has been made, and when surprising results can be expected for 
subpopulations. Often, conventional data analysis benefits from simultaneous 
data mining efforts and vice verse.   

Typical challenges include very large data sets - that is, a large number of tuples 
and variables and the data coherence and consistence compared with the real 
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world. For instance, if the data is collected for process control, some of the 
assumptions needed for conventional data analysis may not hold. Other 
challenges include help given by external data, problems in a large-scale search 
through the hypothesis space, sampling versus weak relationships, complex 
versus simple models, robustness and accuracy, hypothesis space formations, 
constructive induction (e.g. derived variables), meaningfulness  of hypotheses 
(statistical significance, novelty, simplicity, usefulness) and data mining system 
integration with other systems. See Klösgen & Zytkow [2002b]. 

5.5.3 Data mining process 

The data mining process can be divided into four phases: business 
understanding, data transformation into information, action taking and outcome 
measuring [Berry & Linoff 2004]. Figure 28 shows a data mining process that is 
divided into four phases. Usually, the process starts when a need is recognized, 
such as gaining an understanding of the demographic differences in the ways the 
customers use machines (our products). Another target could be to derive 
knowledge on how the weather conditions affect the maintenance of the 
machines. To be able to transform data into information, we have to be able to 
collect the data. It may take time to find the relevant attributes to be stored in the 
databases. (See also [Klösgen & Zytkow 2002c].) 

Business
understanding

Data
transformation

Outcome
measuring

Action
taking

 
Figure 28. Data mining process. 
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In this example we need data typically collected from customers, data about 
locations where the machines are used, and data collected from the machines in 
use. The data is classified based on location, customer and malfunction type. 
Moreover, survival analysis is applied to derive typical lifetimes for components 
for given customer and location types. This is essentially similar to the 
remaining-useful-lifetime - that is, in RUL analysis. Based on this derived 
information, it is possible to improve the design of the machine for the 
environments that are both difficult and important. At the same time, the 
classification gives insights into the user groups and, together with the survival 
analysis, we are able to find the components of the machine that require 
additional work. These findings help to make the maintenance more cost-
efficient, which is assessed in the last phase. After these phases, everything starts 
again. Now we want to transform the survival analysis into a predictive 
maintenance process to obtain quick alerts on the components showing 
symptoms of breaking in the near future. 

Figure 29 shows an example of two survival curves. They show the likelihood 
that one the components will be still useful at a particular point in time. These 
curves represent the same components but from different vendors. The curves 
can be constructed from retention curves, which are, in turn, basically 
cumulative histograms. There are several ways of forming survival curves. We 
are now able to measure the difference between two components, and here the 
different component vendors form our initial conditions. The initial conditions 
could be based on different maintenance operations for the same fault, on 
different locations, customers, etc. This approach is called stratification. See 
Berry & Linoff [2004]. 
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Figure 29. Survival curves for survival analysis. 
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We may add more phases into the above process description to further describe 
the data mining activities. These could be data selection and data understanding, 
model set creation, data problem fixing, modelling, evaluation and deployment. 
Each phase has own objectives, work items and deliverables. The business 
understanding phase includes determining the business objective, assessing the 
situation, determining the data mining goals and making a project plan. Data 
understanding includes collecting the initial data, describing the data, verifying 
the data quality and exploring the data. See Reinartz [2002]. 

Model set creation and data problem fixing includes describing the data set, 
selecting, cleaning, constructing, integrating and formatting the data. In the 
modelling we select the modelling technique, generate the test design, build and 
assess the models. The evaluation phase means evaluating the results, reviewing 
the process, listing possible actions and making decisions. Deployment may 
include making a deployment plan, maintenance plan, final report and project 
review. See Reinartz [2002]. 

5.5.4 Methods used in data mining 

Some of the methods presented in Chapter 5 can be used when mining data. For 
a wider introduction to the different techniques, see Klösgen & Zytkow [2002] 
and Berry & Linoff [2004].  

Sometimes, the application of certain techniques is either required, like data 
warehousing (data cleaning and administration), or almost essential, which is the 
case with data reduction, if there are large amounts of data available. Different 
data reduction techniques include sampling, feature selection, feature 
aggregation and discretization of numerical attributes. See Klösgen & Zytkow 
[2002, pp. 205�225]. 

Exploration activities include different visualization techniques, like interactive 
statistical graphics and different animation techniques. Spatial and demographic 
data can be explored using geographical information systems. See Klösgen and 
Zytkow [2002, pp. 226�253, 409�417 and 509�523]. 
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In the classification, a method is given a pre-defined, usually well-defined, set of 
classes, and then the method should assign an object to one of the classes. To do 
the classification, we may apply decision trees, decision rules, Bayesian 
classification, nearest-neighbour methods, regression, neural networks (several 
models) and multicriteria classification methods. Clustering is related to 
classification, except that the pre-defined classes are not available. In clustering, 
a heterogeneous population is segmented into homogeneous sub-groups or 
clusters. Approaches to clustering include numerical and conceptual clustering, 
and the algorithms can be classified into partition-based, density-based and 
hierarchical clustering algorithms. Typical methods include discriminant 
analysis, decision trees, decision rules, Bayesian classification, nearest 
neighbour methods, minimal consistent sets, Monte Carlo Sampling, neural 
networks (several models), rough sets, etc. See Klösgen and Zytkow [2002, pp. 
254�442]. 

Figure 30 shows an example of a decision tree. Each node has a condition that is 
used to divide the tree into sub-trees. The left branch is for false condition and 
the right for true. Finally, leaves present the partition of the data into classes. 
From the tree we obtain decision rules that are easy to interpret by specialists. If 
the classes are not known in advance, we may apply clustering. The right side of 
the figure presents clusters formed with SOM (self-organizing map), which, in 
this example, provides a non-linear mapping of data into two dimensions. The 
size of a hexagonal presents the number of similar objects found from the data - 
that is, they tell the densities. By looking the map we may conclude that there 
could be 5�9 classes available, which can further guide our classification efforts.  

cach < 27

mmax < 6100 

mmax < 1750 syct < 360 
chmin < 5.5 

mmax < 28000

cach < 96.5mmax < 11240 cach < 56

1.089 1.427
1.699 1.974 1.280 1.827 2.135

2.324 2.268 2.667

 
Figure 30. Classification and clustering examples. 
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Another set of methods is related to rule discovery. Decision trees and decision 
rules naturally belong here. Rough sets, characteristic rules, association rules and 
methods based on inductive logic programming can also be applied. 

In the subgroup discovery, we may do deviation analysis or change analysis, or 
apply drill-down methods. Equation fitting, in turn, includes different equation 
finders and multidimensional regression analysis. Other methods include spatial 
and demographic analysis (spatial clustering, spatial classification, spatial 
characterization), and probabilistic and causal networks. See Klösgen & Zytkow 
[2002, pp. 254-442].  

5.5.5 Data mining time series 

In this section we pick up a few methods suitable for time series data mining. In 
the next section we have an (artificial) example and some of the methods 
presented there can also be applied to time series. Many of the above methods 
can be applied to time series analysis. Time series analysis is interesting from 
the viewpoint of process control, predictive maintenance and the like. Time 
series data mining includes special issues on representing time series, indexing 
and retrieving, and detecting changes, and on classifying time series. See Last, 
Kandel & Bunke [2004].  

For example, the classification of a time series is a more demanding task than 
the classification of �static� objects, since the time series (or a sequence of data 
points) is a complex object when handled as a single object. It is possible to 
handle this conventionally: first, there could be some preprocessing and then 
some classification method like a decision tree. Anyhow, the classification can 
be hard to understand and the preprocessing is often problem-dependent. By 
considering the time series directly it is possible to utilize temporal concepts that 
are easy to understand, like permanence in a region for a certain time or 
temporal literals (like increases or always in the region). Note that the time 
series used for building the classifier and used in the classification can have 
different lengths and partial �examples� are possible. In this way it is possible to 
classify the time series before the event producing the time series has finished. 
See Gonzalez & Diez [2004]. 
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Keogh et al. [2002] show how to find surprising patterns in time series. They 
start by defining a pattern to be surprising if the frequency of its occurrence 
differs substantially from that expected by change, given some previously seen 
data. Note that they are not requiring an explicit definition of surprise. The 
method is given a collection of observed data that is considered normal, and 
newly observed data is considered relative to this data collection. Further, the 
surprise of a pattern is not tied exclusively to its structure but rather to the 
departure of the frequency of the pattern from its expected frequency.  

The outline of the method is as follows: first, the data is discretised to use a 
finite alphabet so that each symbol is equiprobable. To do this, the user has to 
select the feature window length and to provide a method of extracting features 
from the feature window. These features are coded in the given alphabet as the 
time series is processed. In the next step we build up suffix trees from the 
discretised time series; the suffix trees are used to construct Markov models. The 
stationary and transition probabilities of Markov models are used to find the 
probabilities of occurrences of patterns and how surprising they are. Last, when 
we have the probabilities, we compare them with the user-provided threshold 
value and the samples exceeding the threshold will be shown to the user.  

A benefit of the above method is the versatility of the definition of �surprising 
pattern�. Further, it is straightforward to apply the method as there are only a 
few parameters the user has to provide and the user-provided �feature extraction 
from window� method is often natural in the problem context.  

If the period is unknown (a period has to be less than the length of the feature 
window in the previous method), we may follow Elfeky et al. [2004]. They also 
start by discretising the time series: This time the alphabet is set, and it is binary. 
Modified convolution is applied on the binary vector, and the resulting values 
are analyzed to determine the symbol periodicities and the periodic single-
symbol patterns. After this, a set of candidate periodic patterns is formed and 
support for each pattern is estimated. The method is reported to find periodic 
patterns efficiently, and it tolerates certain types of noise well. However, this 
method has difficulties when the length of the period is not stable over time. In 
the next section we will present another method to overcome the difficulty of 
obscure periods occurring in real-world time series. 
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5.5.6 Example: Anomaly detection 

Data mining has been applied to widely different fields. Here we present a 
general approach to anomaly and misuse detection. Figure 31 shows how 
anomaly detection relates to the OSA-CBM architecture; in this case health 
assessment and automatic decision reasoning levels are involved and, of course, 
we suppose that the lower layers supply data and that the seventh, the 
representation layer, is also used. Prognostics can easily be added into this 
example. We speculate with this later. 
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Figure 31. Part of the OSA-CBM architecture description  (adopted from Lebold 
et al. [2003]). 

Our �business problem� is to identify faulty components, and to recognize any 
causal relations between events or between patterns observed from data that 
indicate anomalies. We have microphones on the devices and signals from 
several machines can be collected. At the same time, we may collect data on 
how the machine is used, including user actions and machine state information 
with time-stamps.  

Figure 32 presents an overview of a base for a system to be used in anomaly and 
misuse detection. This follows the OSA-CBM architecture, including the data 
repositories. The detection modules belong to the health assessment layer, while 
the data and knowledge repositories are the glue needed for making decisions. 
Data and knowledge can be used to generate new knowledge automatically with 
methods for discovering fuzzy rules, for example [Luo & Bridges 2000]. They 
are also used to make inferences and later decisions (e.g. alerts) based on the 
current observed behaviour of the system. 
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Figure 32. An architecture of anomaly and misuse detection system (adopted 
from Siraj et al. [2001]). 

Siraj et al. [2001] describe how to use a fuzzy cognitive maps (FCMs) to support 
the decision making when detecting anomalies and misuses in a network. We 
mimic their classification example, but in a different environment. Anomaly 
detection modules detect the abnormal behaviour of a component in a machine. 
We want to recognize when a component is breaking in a machine by analyzing 
a sound signal from a microphone. Anomaly and misuse detection modules have 
several FCMs for different types of �suspicious events� - that is, for different 
kinds of sound patterns. These patterns are formed in the Data Manipulation 
layer. The anomaly detection module uses the pattern data and triggers the 
events.  

Figure 33 shows a simple example of how FCM is used to trigger an event. 
Specialists and their knowledge are used to construct these kinds of FCMs. In 
this example FCM is used to identify the component breakdown by observing 
the sound signal (noise) and the machine state (e.g., orientation, position, 
velocity, acceleration of a component) during an operation. The activation of the 
event �Noise_Same_state_Same_machine� can be captured with a one fuzzy 
rule: 

If duration of operation is long and duration of noise is short and this happened 
for the same machine and during the same operation (state) then 
Noise_Same_state_Same_machine is activated highly. 
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Figure 33. Example FCM for capturing suspicious events - that is, capturing the 
concept �Noise_Same_state_ Same_machine�. The right side represents a 
network of concepts and a few weights on how concepts affect each other. 

The nodes of the FCM correspond to different concepts and the edges denote the 
causality between the concepts. We could have several rules for one FCM. In 
this example the inverted influence of the duration of the noise is used because, 
occasionally, the environment generates noise lasting longer and we have several 
FCMs for capturing other types of noise patterns as �suspicious events�. We 
combine concepts related to the �suspicious events� from different FCMs at the 
inference modules into the �main� FCM, in which the individual concepts have 
their own weights when generating the alert levels on the inference processes. 
Figure 33 depicts a network of concepts. The structure resembles recurrent 
neural networks. For details, see Siraj et al. [2001]. 

The above method is suitable when there is expertise available. FCMs are 
simple, and are thus easy to build and deploy. In addition to fault detection, 
FCMs can be used to model and simulate complex systems, control processes, 
etc. Aquilar [2005] provides a survey. 

However, if we do not have expertise - for instance, if we want to deepen our 
knowledge of the typical patterns that occur in the sound signals - we have to 
revert to other methods. This can also be seen as work for the data manipulation 
layer (or as a second iteration through data mining process). For example, we 
may wish to determine the main clusters of typical sound signals. Furthermore, 
we may have a lot of data available that is related to a large set of components 
and we want to identify the patterns occurring over time. In the rest of this 
section we first discuss an approach to analyzing signals, and then discuss a 
method of classifying time series. 
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Ramsay & Silverman [2002] analyze different time series by applying functional 
data analysis. They give methods and expose a way of thinking on how to 
(effectively) represent time series (or functional data), to smooth them, to 
investigate variability and mean characteristics, and to build models. In 
functional data analysis, conceptually, functional data are continuously defined; 
the individual datum is the whole function and smoothness or other regularity is 
often a key aspect of the analysis. 

Let us assume that we have observed the sound signal from 50 devices, 
repeating the measurement 20 times on similar usage (state, condition). First, we 
want to find the mean characteristics for individual devices and then compare 
the devices. Figure 34 (a) shows a signal for one device. We are mainly 
interested in the larger �hill�. Our first action is to represent the curve (signal) in 
an appropriate base, and we use B-splines in this case. After that, we smooth the 
curve - that is, we construct a new curve that approximates the old one and in 
which the curvature (the second derivate of the curve) is penalized a bit.  

When every curve is smoothed, we register them. This is shown in Figure 34 
(b). The curves may vary in phase or in amplitude and in this example we are 
not interested in phase because we think that user actions have little influence on 
it. Thus the solid line is registered to the landmarks marked with Xs, shown as a 
dotted line. Now we see that there is a small variation between the dotted and 
dashed lines in amplitude in the region of interest. The aim is to construct a set 
of curves that only vary in amplitude for further analysis. Registration is 
therefore a time transformation, called time warping in the literature. (The use of 
landmarks is not always necessary.) 

(a) (b) (c)

X

X

X

 
Figure 34. Smoothing, registering, and applying functional principal component 
analysis. 



 

  98

Last, Figure 34 (c) shows a mean of the individual signals for one device in the 
solid line. Further, the other lines are the two first smoothed functional principal 
components, explaining part of the variation for this particular device. An 
interpretation could be that the dotted line is for devices that are �normal� or 
fully functional while the dashed curve is for machines that work somehow 
abnormally. Similarly, we carry out analysis between different devices. Figure 
34 (c) could represent this too. 

Note that we could have carried out principal component analysis normally and 
smoothed the results, while Ramsay & Silverman [2002] present a smoothed 
functional principal component analysis technique with reasons why their 
approach should be followed. (This example is modified from one given by 
Ramsay & Silverman [2002]. The data and curves are not from any real 
application.) 

Now, as we have obtained our first insights into the data, we are ready to apply 
other data mining techniques. Bengtsson et al. [2004] show how to detect faults 
in the gearboxes of industrial robots by comparing sound signals and by using 
case-based reasoning (CBR). Figure 35 shows the architecture needed for this 
system. After the feature vector has been assembled from the sound signal, it is 
matched with the vectors in the case library. Bengtsson et al. [2004] use the 
nearest neighbour algorithm as a similarity measurement. 
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Figure 35. Architecture for case-based fault diagnosis system (from Bengtsson et 
al. [2004]). 

When the case library contains both faulty and healthy cases the similarity 
measure finds feature vectors that are analogous to the new sample. Earlier 
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samples divide the space of all samples, and as more samples are collected the 
system learns and the performance increases continuously. If a sample does not 
fit into the existing set of samples, the sample can be shown to a specialist and 
can then be added into the database. Other benefits reported by Bengtsson 
[2004] include: the method is easily accepted by engineers; it transfers 
experience, it is possible to make manual comparisons between sounds and the 
system does not have to be complete from start. When applying CBR we have to 
choose an appropriate set of training records, choose an efficient way of 
representing the records, and choose the distance function.  

If we do not have specialists available to do the initial classification of devices 
into faulty and healthy, we have to resort to other methods. We want to quickly 
recognize surprising and meaningful patterns from each sound signal. Further, 
we want to recognize surprising and meaningful patterns from a collection of 
sound signals so that we will be able to see how the patterns change over time 
for a particular device. There might be typical patterns over time that can be 
used in prediction. The approaches presented in Section 5.5.5 can be applied. 
Other recent approaches to time series data mining are provided by Aref et al. 
[2004] and Pei et al. [2004]. 

5.6 Combinations of various methods and techniques 

Because some methods are better suited to fault detection and others to fault 
diagnosis it is sometimes useful to combine several different methods. Some 
methods also work better with certain applications than others. Some typical 
ways of combining different methods are represented next.   

5.6.1 Neurofuzzy networks 

Neurofuzzy networks try to combine the advantages of artificial neural networks 
and fuzzy logic. This is a rather new field of study since little effort was put into 
research prior to the early 1990s. Different kinds of approaches to combining 
these two techniques can be used. One common way is to use fuzzy logic in the 
learning algorithm of the neural network. The idea is to use fuzzy rules in 
updating the weights of the connections. Another common approach is to use 
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fuzzy neurons in the network. These neurons have some or all of their 
components and parameters described by fuzzy logic. Neural networks can also 
be used to process the data before a fuzzy model. This helps to reduce the size of 
the model, which can often be a real problem if the number of inputs is large. 
The previously described dimension reduction techniques, especially PCA, can 
also be used to pre-process the data in fuzzy models [Koivo 2004]. 

5.6.2 Fuzzy logic and analytical methods 

Fuzzy logic can also be used in combination with analytical methods. Most 
analytical methods, including those described in Chapter 5.3, use residuals for 
FDI. Fuzzy logic can be used to transform the residuals into qualitative 
knowledge - i.e. fault indications. First the residuals are fuzzified into fuzzy sets. 
Different faults can then be identified by IF-THEN rules. Another approach is to 
use fuzzy logic in determining the threshold used for the residuals. Due to noise 
and other disturbances, the residual is not zero, even if faults have not occurred, 
and some threshold for the residual must be used. If the residual is too small, 
false alarms will occur. On the contrary, too high a residual will leave some 
faults undetected. With fuzzy logic the threshold can be adjusted to the situation 
at hand. 

5.6.3 Neural networks and expert systems 

Neural networks can be used in expert systems to serve as the knowledge base of 
the expert system. This can improve the data acquisition, which often is the 
bottleneck in expert systems. On the contrary, expert systems can also be used to 
improve neural networks. As the results from neural networks are quantitative 
and possibly hard to understand for humans, expert systems can be used to 
interpret these results and execute fault diagnosis. Retraining the neural network 
for new situations is another way of using expert systems with neural networks 
[Chiang et al. 2001]. 
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6. Establishing sensor fault modes 
In order to develop comprehensive diagnostic services for components (like 
sensors and actuators) and sub-systems, we need to know the relevant fault 
modes of the devices or sub-systems under diagnosis. In the following we will 
provide an example of how to establish the fault modes of sensors with the 
special cases of potentiometer sensors, encoders and proximity switches. 

6.1 General fault modes 

A typical sensor system consists of a sensor element with internal or external 
signal conditioning (and possibly an internal communications interface) and a 
programmable microcontroller, which involves software to read the value from 
the digital output interface of the signal conditioning electronics and to convert 
the binary value to engineering units. Such a sensor system may introduce faults 
in different phases along the signal path from the physical interface to the 
application process. Figure 36 illustrates the potential points of faults. 
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Figure 36. Potential points of faults in a sensor system. 

As illustrated in the figure above, the following faults are possible (Table 6): 
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Table 6. Fault categories. 

Fault 
category 

Fault type Remarks 

A Design faults  

B Mechanical interfacing 
faults 

E.g. the sensor is accidentally detached 
from the physical object 

C Sensor internal faults  

D Signal transfer faults Short-circuits, breaks or noise in signal 
wires; communication errors 

E Signal conditioning faults Typically, hardware faults 

F Software faults  

G Workmanship faults During manufacturing, packaging, 
shipping, storage, installation, operation 
and maintenance; includes software 
update faults and calibration faults 

 

The interface between the physical transducer and the rest of the system varies. 
For a simple sensor element, like a potentiometer sensor, the sensor wires are 
attached to the controller module, which includes the signal conditioning 
electronics. Some transducers include transmitters to convert the measured 
magnitude to a standardised voltage or current range. For more sophisticated 
sensors, a communication protocol is applied to transmit the measured value in a 
digital format. In the latter case the sensors are normally more intelligent in 
other respects as well, including, e.g., linearization curves and diagnostic 
features. In the case of an intelligent sensor, all the ingredients depicted in 
Figure 36 (sensor element, signal conditioning and software manipulation) are 
included in the transducer. 

Any fault in any of the fault categories presented in Table 6 may cause deviations 
in the reported physical magnitude. We may here apply the guide words presented 
in the hazard and operability study (HAZOP) standard IEC 61882 [2001] to 
express the set of relevant deviations in this context (see Table 7). 
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Table 7. Possible deviations in the reported physical magnitude. 

HAZOP 
guide word 

Example interpretation of the deviation in the context of a sensor 
signal 

No Signal is stuck at a fixed value, like ground potential; or, in a case of data 
communication, no messages arrive 

More Signal value is higher than the real physical magnitude 

Less Signal value is lower than the real physical magnitude 

As well as Signal includes noise or other accidentally modulated signals 

Part of Intermittent signal 

Other than Signal value belongs to a sensor other than expected 

Reverse The absolute value of the signal is correct, but its sign is opposite to the 
reality 

Early Signal comes too early 

Late Delay in signal 

Before Signal events occur in the wrong order 

After Signal events occur in the wrong order 

Excessive 
variations1 

Excessive noise (value domain); excessive jitter (time domain) 

1 This guide word is not presented in the standardised set of HAZOP guide words. 

Thus we have two views of the sensor system problems: sensor system fault 
modes and sensor signal deviations. When planning the diagnostics methods for 
the sensor types under study, both views may be useful in finding effective 
diagnostics methods. For simple sensor elements with no transmitters or digital 
communication interface, a fault mode analysis may provide a better way oof 
finding effective diagnostics methods, whereas in the case of sensors with 
transmitters or digital communication interface a deviation analysis may be more 
suitable.  

The list of deviations in Table 7 is generic and is applicable to all the sensor 
types under study. The fault modes, however, are more sensor type-specific, at 
least for categories B and C (see Table 6). In the following three chapters the 
fault modes of potentiometers, encoders and inductive sensors are established. 
The fault modes presented below mainly include faults from categories C and D. 



 

  104

6.1.1 Potentiometer fault modes 

The typical potentiometer fault modes are the following [Ernsberger & Kordecki 
1992][Anon. 1995]: 

• Excessive contact resistance between the wiper and the track 

• Other wear-out or contamination phenomena causing noise and 
parameter drift 

• Breaks in the contact points between the end terminals and the track, as 
well as between the wiper terminal and the wiper  

• Packaging failures (e.g. with oil-filled potentiometers the oil may spill 
out). 

The packaging failures can be regarded as a root cause of some of the actual 
fault modes, such as noise and wear-out. Hence packaging failures are not 
included later in the list of fault modes. 

In the machine directive harmonised standard EN ISO 13849-2  (Safety of 
machinery - Safety related parts of control systems - Part 2 Validation; formerly 
known as prEN 954-2) the following fault modes of potentiometers are listed: 

• "Open-circuit of individual connection 

• Short-circuit between all connections 

• Short-circuit between any two connections 

• Random change of value: 0,5 Rp < R < 2Rp, where Rp is the nominal 
value of resistance." 

Furthermore, an organisation called AREMA (American Railway Engineering 
and Maintenance-of-way Association) that makes specifications for train 
applications lists the following potentiometer failure modes [Anon 2003]: 

• Open 

• Short 

• Resistance increase over plus tolerance, to open 

• Resistance decrease under minus tolerance, to short 
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• Increase in contact resistance of slider 

• Change in division ratio. 

Contact breaks between the wiper and the resistive element can be intermittent, 
caused by shocks and vibration. The reference [Antonelli et al. 1999]9 estimates 
such a discontinuity as lasting 0.1 ms or longer. 

In the reference [Ernsberger & Kordecki 1992] the authors (from CTS Corp.) 
report the analysis of field returns from automotive throttle position 
potentiometric sensors: 87.6% of the field return sensors were found to fall into 
the no-trouble-found category; packaging and other failures comprised 11.2 % of 
the failures, and only 1.2% of the failures indicated element wear and electrical 
noise. Hence the authors concluded that excessive contact resistance is a minor 
problem. Instead, the authors suspected internal and external termination 
contacts to be the major cause of the field replacement of the sensors that are 
later judged to be no-trouble-found items in the failure analysis laboratory. 
However, the authors from CTS Corporation could not estimate how many of 
the no-trouble-found items really had terminal contact problems; it is quite 
possible that most of the no-trouble-found sensors were replaced in vain. 
Nevertheless, if we consider a 'worst case' scenario with all no-trouble-found 
items to be unnecessary replacements, the percentage of element wear and 
electrical noise fault modes only rises to about 10%.   

In the reference [Saitoh & Osada 1991] the authors (from ALPS Electric Co. 
Ltd.) report the operational life and dither tests of their newly (in 1991) 
developed potentiometric sensors, which indicated the same results as 
Ernsberger & Kordecki [1992]; the contact resistance increase is a minor 
problem. During the operational life test of 10 million sliding cycles the rise in 
the contact resistance, compared with the initial contact resistance (which was 
about 2% of the total resistance), is negligible. The authors claim that contact 
resistance values below 15% of the total resistance are tolerable. The operational 
life tests up to 40 million cycles and the dither cycle test up to nearly 109 cycles 
indicated that the contact resistance value does not even cross the 10% line 
much. 

                                                      
9 The particular reference derived the information from a precision potentiometers 
catalog #752 of Vernitron Motion Control Group 
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As a summation, the CTS and ALPS studies suggest that excessive contact 
resistance is a minor problem. Note also that the fault modes listed by EN 
13849-2 do not include excessive wiper contact resistance. However, we 
hypothesise here that the variance of the contact resistance value may provide 
information on the quality of the resistive track.  

The reference [Anon. 1995] supplies statistics on potentiometric sensors as well 
as normal rotary potentiometers. The statistics on potentiometric sensors are 
assembled from only eight fault cases and are thus neglected here. The statistics 
on normal potentiometers report 38.2 % of the faults to be unknown; out of 
specification takes the second position with 21.5%; wear-out, noise, 
contamination and corrosion problems take 13.2 % of the share; open contact 
faults have 4.5%, and the other faults take the rest, except for a fault category 
'broken', which takes 17.7% of the failure distribution. This latter category is 
non-informative. 

As a consequence, it is expected here that most of the field returns, let's say 40% 
- 90%, fall into the no-trouble-found category. One of the goals of the Kodie 
project was to minimise this number. This can be achieved by providing the 
service personnel with reliable information on the health of the sensors. Another 
conclusion is that intermittent contact problems are most probably the main fault 
mode to be focused on; monitoring of excessive contact resistance does not 
contribute much to the health assessment of a potentiometric sensor, although, 
depending on the measurement method, it may provide information on the other 
fault modes as well. 

The fault modes supplied above mainly include only the electrical fault modes. 
Mechanical faults are another fault mode category to be considered. Such faults 
include shaft misalignment, slipping of the shaft mounting and bearing wear-out 
or contamination. 

The following figure (Figure 37) and the subsequent table (Table 8) establish the 
relevant electrical and mechanical fault modes in potentiometers. 
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Figure 37. Potentiometer electrical and mechanical fault modes. 

Table 8. Potentiometer electrical and mechanical fault modes descriptions. 

Case 1 Clockwise (CW) terminal internal break 

Case 2 Counter-clockwise (CCW) terminal internal break 

Case 3 Change in the resistance value of the resistance element 

Case 4 Intermittent break due to vibration or shocks 

Case 5 Excessive wiper contact resistance 

Case 6 Noise due to wear-out, contamination, etc. 

Case 7 Wiper terminal internal break 

Case 8 CW terminal external break 

Case 9 Wiper terminal external break 

Case 10 CCW terminal external break 

Case 11 External short-circuit of all terminals 

Case 12 External short-circuit of CW and wiper terminals 

Case 13 External short-circuit of CW and CCW terminals 

Case 14 External short-circuit of wiper and CCW terminals 

Case 15 Noise induced in wires 

Case 16 Mechanical problems with the shaft (no movement, slippage, etc.) 
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6.1.2 Encoder fault modes 

In the case of a normal quadrature encoder, four wires are needed - power 
supply, ground, channel A and channel B wires - whereas in the case of a sensor 
with RS 422 interface, the channels A and B are differential outputs with A+ and 
A- wires, as well as with B+ and B- wires. However, in this case the encoder 
under study is a normal quadrature sensor with single-ended outputs. 
Furthermore, the particular sensor types facilitate totem pole outputs with active 
pull up and pull down. 

Encoder fault modes include the typical open-circuit and short-circuit fault 
modes. Furthermore, the power supply voltage may be incorrect or noisy. Of 
course, channel A and B lines may be noisy as well, also including spikes and 
blips. Internal fault modes include grating cracks and fractures, LED faults and 
other electronic faults, which may cause unwanted pulses, intermittently lost 
pulses or total loss of pulses on either of the two channels, or the planned 90º 
phase shift is distorted. External mechanical faults include antenna slippage, for 
example.  

The reference [Anon. 1995] presents fault mode statistics on thirty field return 
encoders. For thirteen of them, the fault mode is unknown; for eleven of them 
'no movement' or incorrect antenna rotation is reported, indicating mechanical 
faults. Other fault modes include cracks, design faults, loose casing, optical 
assembly fault, resistor failure and incorrect marking, each with a single fault 
case. 

The relevant fault modes of an optical quadrature encoder are presented in 
Figure 38. Single-ended channel lines are assumed. Short-circuits between more 
than two wires are not included. 
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Figure 38. Encoder electrical and mechanical fault modes. 

Table 9 supplies descriptions of the fault cases presented in Figure 38. 

Table 9. Encoder electrical and mechanical fault modes descriptions; suggested 
detection methods. 

Case Fault Symptom Detection 

1 LED and other internal 
electronics faults, including 
noise problems 

Decreased current 
level 

Missing pulses 

Current level 
measurement 

Pulse length check 

2 Cracks, fractures or 
contamination in the grating 

Increased current 

Incorrect pulse 
timing 

Current level high 

Timing check 

3 Antenna mechanical 
problems (no or incorrect 
rotation, bearing fault) 

Missing pulses 

Overheating 

Pulse train check 

Temperature 
measurement 

4 Channel A short-circuit to 
supply voltage 

Ch A stuck at high 

 

State transition check 

Current level change 

5 Channel B short-circuit to 
supply voltage 

Ch B stuck at high 

 

State transition check 

Current level change 
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6 Supply voltage short-circuit 
to ground 

Increased current 
level 

Current level 
measurement 

7 Channel A short-circuit to 
Channel B 

Ch A and B in the 
same phase 

State transition check 

8 Channel A short-circuit to 
supply ground 

Ch A stuck at low State transition check 

Current level change 

9 Channel B short-circuit to 
supply ground 

Ch B stuck at low State transition check 

Current level change 

10 Supply wire break Dead sensor Current level low 

11 Channel A wire break Ch A stuck at low 
or high 

State transition check 

12 Channel B wire break Ch B stuck at low 
or high 

State transition check 

13 Ground wire break Dead sensor Current level low 

14 Noise induced in wires Short extra pulses Pulse length check 

Pulse count check 

Filtering 

15 Index wire short-circuit to 
supply ground 

Index stuck at low Pulse count check 

Current level change 

16 Index wire short-circuit to 
supply voltage 

Index stuck at to 
high 

Pulse count check 

Current level change 

17/18 Index wire short-circuit to  
Ch A/Ch B 

Too many index 
pulses 

Pulse count check 

19 Index wire break Index stuck at 
low/high 

Pulse count check 

20 Shield break Disturbances Pulse length check 

In this case it may be fruitful to analyse the deviations in the encoder channel A 
and channel B signals as well. The possible deviations listed in Table 7 are 
applied to the encoder channel A signal in Table 10 (channel B signal deviations 
are identical). 
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Table 10. Encoder channel A signal deviations. 

HAZOP guide word Quadrature encoder channel A deviation 

No No pulses 

More Too many pulses 

Less Too few pulses 

As well as Too many pulses 

Part of Missing pulses 

Other than Channel A mixed with channel B 

Reverse Channel A and channel B pulses come in the wrong order 

Early Channel A pulse edge appears too early compared with channel 
B pulse edge 

Late Channel A pulse edge appears too late compared with channel B 
pulse edge 

Before Channel A and channel B pulses come in the wrong order 

After Channel A and channel B pulses come in the wrong order 

Excessive 
variations1 

Excessive jitter (in time domain) -- the time difference between 
channel A and channel B pulse edges varies excessively (only 
applicable in a case of constant rotation) 

1 This guide word is not presented in the standardised set of HAZOP guide words. 

6.1.3 Proximity switch fault modes 

In the machine directive harmonised standard EN ISO 13849-2 (Safety of 
machinery - Safety related parts of control systems - Part 2 Validation; formerly 
known as prEN 954-2) the following fault modes of proximity switches are listed: 

• "Permanently low resistance at output, see EN 60947-5-3 (IEC 60947-5-3) 

• Permanently high resistance at output 

• Interruption in power supply 

• No operation of switch due to mechanical failure 

• Short-circuit between the three connections of a change-over switch." 
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We develop here a somewhat more detailed fault mode model. Figure 39 depicts 
the fault model for a three-wire proximity sensor (NPN or PNP).   
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Figure 39. Three-wire proximity sensor fault modes.  

Table 11 lists the fault modes depicted in Figure 39. 

Table 11. Three-wire proximity sensor fault modes. 

Case 1 Coil break 

Case 2 Output transistor constant low resistance 

Case 3 Output transistor constant high resistance 

Case 4 Other internal electronics problems 

Case 5 Assembly error (mechanical faults) 

Case 6 Output short-circuit to supply voltage  

Case 7 Supply voltage short-circuit to ground 

Case 8 Output short-circuit to ground 

Case 9 All wires short-circuited together 

Case 10 Supply wire break 

Case 11 Output wire break 

Case 12 Ground wire break 

Case 13 Noise induced in wires 

A deviation model is also provided in Table 12. 
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Table 12. Three-wire proximity sensor output signal deviations. 

HAZOP guide word Quadrature encoder channel A deviation 

No Constant low or constant high 

More NA 

Less NA 

As well as NA 

Part of Intermittent operation 

Other than NA 

Reverse High when should be low or low when should be high 

Early NA 

Late Output level changes after too long a delay 

Before NA 

After NA 

Excessive variations1 The output level changes at a different distance at different 
times. 

1 This guide word is not presented in the standardised set of HAZOP guide words. 
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7. Conclusions 
The KODIE project behind this research work showed us that it is difficult to 
carry out diagnostics-related research projects so that a lot of generic results can 
be gained. Normally, the diagnostics issues are very application-specific and 
tightly baked into the actual application software. Hence the best diagnostics 
solutions are heavily tailored to the particular application or machine type. 
However, there are issues that are, or at least could be, common to several 
machine manufacturers, like diagnostics architectures and diagnostics protocols. 
In this document we have tried to bring forth such things. As a consequence, this 
document is a mixed bag of machine diagnostics-related issues that could be 
utilised by several machine automation companies. The most remarkable of 
these, as we see it, is the idea of a well defined diagnostics strategy that is 
included in the RAMS specifications that cover reliability, availability, 
maintainability and safety. 
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