
V
TT R

ESEA
R

C
H

 N
O

TES 2385
FEFTR

A
TM

. V
erification

ESPOO 2007 VTT RESEARCH NOTES 2385

FEFTRA is a finite element program package developed at VTT for the
analyses of groundwater flow in Posiva's site evaluation programme that
seeks a final repository for spent nuclear fuel in Finland. The code is
capable of modelling steady-state or transient groundwater flow, solute
transport and heat transfer as coupled or separate phenomena. This report
is a documentation of the verification cases that represent typical
hydrological applications in which the program package has been and will
be employed in the site evaluation programme. The comparison of the
FEFTRA results to the analytical, semianalytical and/or other numerical
solutions proves the capability of the code to simulate such problems.

Jari Löfman, Vesa Keto & Ferenc Mészáros

FEFTRATM

Verification

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

ISBN 978-951-38-6919-9 (soft back ed.) ISBN 978-951-38-6920-5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0605 (soft back ed.) ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)



 

 

 



 

 

VTT TIEDOTTEITA � RESEARCH NOTES 2385 

FEFTRATM 
Verification 

 

Jari Löfman & Vesa Keto 
VTT 

 
Ferenc Mészáros 

The Relief Laboratory 
 



 

 

ISBN 978-951-38-6919-9 (soft back ed.) 
ISSN 1235-0605 (soft back ed.) 
ISBN 978-951-38-6920-5 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp) 
Copyright © VTT 2007 

 

JULKAISIJA � UTGIVARE � PUBLISHER 

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT 
puh. vaihde 020 722 111, faksi 020 722 4374 

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT 
tel. växel 020 722 111, fax 020 722 4374 

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI-02044 VTT, Finland 
phone internat. +358 20 722 111, fax +358 20 722 4374 

 

 

VTT, Otakaari 3 A, PL 1000, 02044 VTT 
puh. vaihde 020 722 111, faksi 020 722 6390 

VTT, Otsvängen 3 A, PB 1000, 02044 VTT 
tel. växel 020 722 111, fax 020 722 6390 

VTT Technical Research Centre of Finland, Otakaari 3 A, P.O. Box 1000, FI-02044 VTT, Finland 
phone internat. +358 20 722 111, fax +358 20 722 6390 

 

 
 
 
 
 
 
Edita Prima Oy, Helsinki 2007 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

3 

Löfman, Jari, Keto, Vesa & Mészáros, Ferenc. FEFTRATM. Verification. Espoo 2007. VTT Tiedotteita �
Research Notes 2385. 103 p. + app. 4 p. 

Keywords modelling, groundwater flow, solute transport, heat transfer, nuclear waste, disposal 

Abstract 
FEFTRA is a finite element program package developed at VTT for the analyses of 
groundwater flow in Posiva�s site evaluation programme that seeks a final repository for 
spent nuclear fuel in Finland. The code is capable of modelling steady-state or transient 
groundwater flow, solute transport and heat transfer as coupled or separate phenomena. 
Being a typical research tool used only by its developers, so far the FEFTRA code has 
been short of a competent testing system and precise documentation of the verification 
of the code. 

The objective of this work was to reorganise all the material related to the existing 
verification cases and place them into the FEFTRA program path under the version-
control system. The work also included development of a new testing system, which 
automatically calculates the selected cases, checks the new results against the old 
approved results and constructs a summary of the test run. All the existing cases were 
gathered together, checked and added into the new testing system. The documentation 
of each case was rewritten with the LaTeX document preparation system and added into 
the testing system in a way that the whole test documentation (this report) can easily be 
generated in a postscript or pdf-format. 

At the moment the report includes mainly the cases related to the testing of the primary 
result quantities (i.e. hydraulic head, pressure, salinity concentration, temperature). The 
selected cases, however, represent typical hydrological applications, in which the 
program package has been and will be employed in the Posiva�s site evaluation 
programme, i.e. the simulations of groundwater flow, solute transport and heat transfer 
as separate or coupled phenomena. The comparison of the FEFTRA results to the 
analytical, semianalytical and/or other numerical solutions proves the capability of 
FEFTRA to simulate such problems. 

The report is available both in a printed and electronic format. As the report is in a 
constant state of evolution resulting from the current code development, the printed 
form represents a �snapshot� of its content at the date of publishing, while the electronic 
format represents always the most up-to-date version of the report. 



 

  4

Löfman, Jari, Keto, Vesa & Mészáros, Ferenc. FEFTRATM. Verification. Espoo 2007. VTT Tiedotteita �
Research Notes 2385. 103 s. + liitt. 4 s. 

Keywords modelling, groundwater flow, solute transport, heat transfer, nuclear waste, disposal  

Tiivistelmä 
FEFTRA on VTT:llä kehitetty elementtimenetelmään perustuva numeerinen virtausten 
simulointiohjelmisto. Posiva Oy:n käytetyn ydinpolttoaineen loppusijoituspaikka-
tutkimuksiin liittyviin pohjaveden virtausongelmiin suunniteltua ohjelmistoa voidaan 
soveltaa moniin erityyppisiin tapauksiin, jotka edellyttävät esimerkiksi veteen liuenneiden 
aineiden ja/tai veden lämpötilaeroista aiheutuvien veden tiheyserojen huomioimista. 
Koska ohjelmisto on ollut ennenkaikkea kehittäjiensä ja ylläpitäjiensä käyttöön tarkoitettu 
työkalu, siitä on tähän asti puuttunut kunnollinen testijärjestelmä sekä yksityiskohtainen 
dokumentaatio verifioinnista. 

Tämän työn tavoitteena oli järjestää uudelleen FEFTRAn hajallaan ollut verifiointi-
materiaali ja liittää se ohjelmistopakettiin versionhallintaohjelmiston hallintaan. Työssä 
kehitettiin testijärjestelmä, joka automaattisesti laskee halutut tapaukset, vertaa tuloksia 
aikaisemmin laskettuihin ja oikeaksi todettuihin tuloksiin sekä konstruoi yhteenveto-
raportin suoritetuista testiajoista ja niiden tarkastuksesta. Olemassaoleva hajallaan oleva 
testimateriaali koottiin yhteen, tarkistettiin ja liitettiin uuteen järjestelmään. Kustakin 
tapauksesta kirjoitettiin LaTeX-ohjelmalla uusi yksityiskohtainen dokumentaatio, joka 
liitettiin kehitettyyn järjestelmään siten, että koko dokumentti (tämä raportti) voidaan 
helposti generoida joko postscript tai pdf-formaatissa. 

Tämä raportti sisältää tällä hetkellä pääasiassa perustulossuureisiin (hydraulinen korkeus, 
paine, suolapitoisuus, lämpötila) liittyviä tapauksia, jotka kuitenkin edustavat sellaisia 
pohjaveden virtaukseen, suolan kulkeutumiseen ja lämmönsiirtymiseen liittyviä 
tilanteita, joiden simulointiin ohjelmistoa sovelletaan ydinjätteen loppusijoitukseen 
liittyvissä paikkatutkimuksissa. Lasketut tapaukset osoittavat FEFTRA-ohjelmiston 
soveltuvan hyvin kyseisten ongelmien simulointiin. 

Raportti on saatavissa sekä painettuna että sähköisessä muodossa. Painettu versio 
kuitenkin edustaa ainoastaan julkaisuhetkeä, kun taas sähköistä versiota tullaan jatkuvasti 
päivittämään ohjelmankehityksen mukana. 



Preface

Acknowledgement is given to Mr. Lasse Koskinen (VTT) for his critical review of this
report.
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1. Introduction

Background

Posiva Oy (a company responsible for nuclear waste management in Finland) is prepar-
ing for the final disposal of spent nuclear fuel into the crystalline bedrock in Finland.
The site for the repository will be chosen on the basis of the site investigations. Prelim-
inary site investigations (SITU stage) were carried out at five sites during 1986–1992.
Three sites (Romuvaara in Kuhmo, Kivetty in Äänekoski, Olkiluoto in Eurajoki) were
chosen for more detailed and comprehensive investigations (PATU stage) performed in
1993–1996. In addition, Hästholmen in Loviisa was included in the site selection pro-
gramme in 1997. In 1999, the latest investigations were finished for the four sites, and
Olkiluoto was proposed to be the primary site for the repository and subject to further
detailed characterisation. Currently the site investigation programme is focused on the
construction of an underground rock characterisation and research facility (ONKALO) in
Olkiluoto. The facility will consist of a 9000 m long and 520 m deep system of tunnels,
to be potentially extended with the drifts of the repository (Posiva 2006b). At the moment
(mid-March 2007) 1900 metres of the tunnels, extending to a depth of 180 metres, have
been excavated (http://www.posiva.fi).

The repository will be excavated in the bedrock at a depth of 400–700 m. The spent fuel
will be encapsulated in double layered copper-cast iron canisters. If the canisters fail,
radioactive material could be released from the repository into the biosphere as a result
of dissolution in the groundwater and subsequent migration along with the groundwater
flow to surface water systems. In addition, the amount of the groundwater flowing through
the repository and in its immediate vicinity affects the long-term durability of engineered
barriers as well as the rate of the dissolution of the spent fuel. Therefore, an analysis of
groundwater flow deep in the bedrock is an important part of the ongoing work for the
site investigation programme.

The open tunnel system may constitute a hydraulic disturbance to the site’s groundwa-
ter system for hundreds of years (e.g. inflow of groundwater into the open tunnels and
drawdown of groundwater table, intrusion of surface water containing oxygen and carbon
dioxide deep into the bedrock, upconing of deep saline groundwater). The essential part
of the site investigation programme is the analyses of the possible hydrological impacts
of the excavation of the ONKALO and repository tunnels.

The groundwater flow analyses carried out at VTT are based on representation of the
physical processes governing flow by the mathematical models. The applied models de-
pend on the characteristics of the area to be investigated. If density of water can be taken
to be constant (as in the Kivetty and Romuvaara sites), groundwater flow can be described
by flow equation only. However, consideration of density variations caused by a varying
salinity concentration of water (as in the Hästholmen and Olkiluoto sites) requires solving
coupled equations for flow and solute transport. Also, if the effects of the temperature rise
of the repository caused by the decay heat of spent nuclear fuel are to be considered in
the analyses, a heat transfer equation has to be included in the model as well.

7

http://www.posiva.fi


FEFTRA program package

FEFTRA (Taivassalo et al. 1991; Löfman & Taivassalo 1993; Koskinen et al. 1996) is a fi-
nite element program package developed at VTT for groundwater flow analyses in the site
investigation programme seeking a final repository of spent nuclear fuel (Figure 1.1). The
code is capable of modelling steady-state or transient groundwater flow, solute transport
and heat transfer as coupled or separate phenomena. The mathematical model consists
of partial differential equations written for hydraulic head/pressure, solute concentration
and temperature. The equations in the coupled cases are linked to each other by means
of the Darcy velocity as well as temperature and concentration-dependent properties such
as fluid density and viscosity. When simulating solute transport, the effect of matrix
diffusion can be taken into account, while highly convective cases can be handled with
different upwind methods. The water table drawdown caused by the excavation of the
tunnels can be simulated by employing the free-surface approach. The time discretisa-
tion in FEFTRA is based on the finite difference approximation. The matrix equations
resulting from the finite element formulation can be solved either using the direct frontal
solver or various iterative solvers. In coupled cases, a set of nonlinear algebraic equations
is solved applying the Picard iterative approach with options for the relaxation.

The FEFTRA code uses linear or quadratic one-, two- and three-dimensional elements.
Two-dimensional elements can also be applied in a three-dimensional mesh and one-
dimensional elements in both two and three-dimensional meshes. For example, in three-
dimensional groundwater flow simulations, the sparsely fractured rock between the hy-
drogeological zones can be described by three-dimensional elements, the zones or other
planar structures by two-dimensional elements and drillholes by one-dimensional ele-
ments. An advanced preprocessor includes thequadtree/octreealgorithm, which enables
an efficient local refinement of mesh around natural and engineered bedrock structures
(e.g. hydrogeological zones, tunnels, drillholes, sinks, etc.) (static mode) or at locations
with high hydraulic gradient (dynamic mode).

The most recent studies, in which the code has been applied, consist of the simulation of
hydraulic impact of ONKALO and repository (Löfman & Mészáros 2005a; Löfman 2005;
Löfman & Mészáros 2005b; Posiva 2007). In addition, supporting groundwater flow
analyses have been conducted for a description of the Olkiluoto site before the excavation
of the ONKALO (Posiva 2007) and for an expected evolution of a spent nuclear fuel
repository at Olkiluoto (Posiva 2006a).

Overview of the report

Being a typical research tool used only by its developers, the FEFTRA code has so far
been short of a competent testing system and a precise documentation of the verification
of the code. The FEFTRA program package has evolved during long-term development
and application work since the early 1980’s. The features of the first versions of the code
were quite limited, but the application of the program package to the various groundwater
flow analyses has required extensive further development. Thus, the new features have
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Figure 1.1. A schematic description of the components of the FEFTRA code.

9



been added, tested and documented within several different projects and reports (mostly
in Finnish). Accordingly, individual test cases (input/output files) have also been located
in several different project related directories, so the test runs and the examination of the
results of the cases have not been convenient.

The objective of this work is to reorganise all the material related to the existing verifica-
tion cases of FEFTRA and place them to the FEFTRA program path under the CVS ver-
sion control system (CVS 2007). The work also includes a development of a new testing
system, which automatically computes and documents all the test cases (see Appendix).
All the existing cases are gathered together, checked and added into the new testing sys-
tem. The documentations of the cases are rewritten and added into the system. Finally
not only the test run can be carried out automatically but also the test documentation (this
report) can easily be generated.

At the moment the report includes mainly the cases related to the testing of the primary re-
sult quantities (i.e. hydraulic head, pressure, salinity concentration, temperature, location
of groundwater table) in the FEFTRA modulesolvit, but more cases for the other mod-
ules will be added in the future. The selected cases, however, represent the applications,
in which FEFTRA has been employed.

The report is available both in a printed and electronic format. However, the report is in a
constant state of evolution resulting from the current code development. Thus, the printed
form represents a "snapshot" of its content at a date of publishing, while the electronic
format, which belongs to the FEFTRA package, represents always the most up-to-date
version of the report.
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2. Groundwater flow

2.1 Radial steady-state flow

de Marsily (1986) presented analytical solutions for various groundwater flow problems.
The case with a radial steady-state flow was selected to verify the capability of the FEF-
TRA code to use various types of elements (2D and 3D) and boundary conditions (flow
rates and fluxes).

The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/head/th3Dst_v(flow rate boundary condition in 3D)

• feftra/solvit/t/head/th3Dst(flux boundary condition in 3D)

• feftra/solvit/t/head/th2Dst_v(flow rate boundary condition in 2D)

• feftra/solvit/t/head/th2Dst(flux boundary condition 2D).

Definition of the problem

The case concerns a steady-state groundwater flow in a homogeneous and isotropic dis-
coid structure (Figure 2.1). The disc is pumped from the centre at a constant rate, while a
zero hydraulic head is used on an outer boundary. The density of water is assumed to be
constant. The resulting quantity is hydraulic head.

Mathematical model

A steady-state flow equation for hydraulic head is written as follows (Bear 1979; Huyakorn
& Pinder 1983; de Marsily 1986)

∇ · (K∇h) + Q = 0, (2.1)

xy

z

Qout

Constant

head

d

K

r0

Figure 2.1. Schematic figure of the radial steady-state flow problem.
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Table 2.1. Input parameters for the radial steady-state flow problem.

Symbol Parameter Equation Value
K Hydraulic conductivity 2.1, 2.3 10−8 m s−1

d Thickness of modelled disc 2.3 100 m
r0 Radius of modelled disc 2.3 2000 m

Qout Pumping rate 2.3 1.0 · 10−5 m3 s−1

whereK is the hydraulic conductivity [m/s],h the hydraulic head [m] andQ the rate of
flow per unit volume [1/s]. The parameter values are given in Table 2.1.

Numerical solution method

Due to the symmetry of the problem, only a sector of 11.25◦ of the disc was included into
the model, which gave an outflow rate

Qs = −Qout · 11.25◦

360◦
= −3.125 · 10−7m3/s (2.2)

at the vertex.

In order to test various elements and boundary conditions, different 2D and 3D element
meshes were constructed. The elements used in the meshes were hexahedrals, wedges,
quadrilaterals and trilaterals (Figure 2.2). The flow rate boundary condition was assigned
to the vertex nodes in the cases shown in Figures 2.2(a) and 2.2(c). In the cases shown in
Figures 2.2(b) and 2.2(d) the modelled sector was selected to begin at the distance of 20 m
from the vertex, and fluxq was specified through the innermost face/edge of the innermost
element. Table 2.2 summarises the use of the flow rate and flux boundary conditions.

The partial differential equation (2.1) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique with linear elements (Huyakorn &
Pinder 1983). The linear matrix equation resulting from the finite element formulation
was solved using the direct frontal method (Hinton & Owen 1977; Bathe 1982).

Table 2.2. Flow rates and fluxes given in the FEFTRA input files for different cases.

Case Flow rate [m3/s] Flux q Comment
3D; vertex Qs/2=−1.563 · 10−7 2 nodes at the vertex
3D; no vertex Qs/A=−7.97 · 10−10 m/s face A=392.0459 m2

2D; vertex Qs=−3.125 · 10−7 1 node at the vertex
2D; no vertex Qs/L=−7.97 · 10−8 m2/s edge L=3.920459 m
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(a) 3D case with vertex (82 nodes, 20 elements) (b) 3D case without vertex (84 nodes, 20 ele-
ments)

(c) 2D case with vertex (41 nodes, 20 elements)

x

z

y

(d) 2D case without vertex (42 nodes, 20 ele-
ments)

Figure 2.2. Finite element meshes in different cases with and without vertex.

Results

The simulated values were compared against the analytical drawdown of steady-state hy-
draulic headh as a function of radiusr [m] (de Marsily 1986)

∆h(r) = h(r0)− h(r) =
Qout

2πKd
ln(

r0

r
), (2.3)

wherer0 is the radius [m] andd the thickness [m] of the modelled disc. The hydraulic
heads are presented in Figure 2.3, which shows that the numerical results compare very
well with the analytical solution in all the cases considered.
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(a) 3D case with vertex
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(b) 3D case without vertex
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(c) 2D case with vertex
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(d) 2D case without vertex

Figure 2.3. Simulated and analytical hydraulic head as a function of radius. The corre-
sponding meshes of different cases are shown in Figure 2.2.

2.2 Radial transient flow

Theis (1935) considered temperature change of an infinite plane with an instantaneous
line-source coinciding with the normal of the plane. An analogous hydrologic prob-
lem (de Marsily 1986; Ségol 1994) examines transient change of hydraulic head induced
by an injection of water. The problem is used to verify the capability of the FEFTRA code
to simulate time-dependent problems and to use various types of elements (2D and 3D)
and boundary conditions (flow rates and fluxes).

The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/head/th3Dtr_v(flow rate boundary condition in 3D)
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• feftra/solvit/t/head/th3Dtr(flux boundary condition in 3D)

• feftra/solvit/t/head/th2Dtr_v(flow rate boundary condition in 2D)

• feftra/solvit/t/head/th2Dtr(flux boundary condition in 2D).

Definition of the problem

In the hydrologic analogue of the Theis’ problem (de Marsily 1986; Ségol 1994), water is
injected at a constant rate to the centre of a discoid structure with infinite boundaries. The
structure is assumed to be homogeneous and isotropic. The density of water is assumed
to be constant. Initially hydraulic head is constant in the structure, but it starts to increase
with the injection.

Mathematical model

The flow equation for hydraulic headh [m] is written as (Bear 1979; Huyakorn & Pinder
1983; de Marsily 1986)

∇ · (K∇h) + Q = Ss
∂h

∂t
, (2.4)

whereK is the hydraulic conductivity [m/s],Q the flow rate per unit volume [1/s] andSs

the specific storage of the medium [1/m]. The parameter values are given in Table 2.3.

Theis (1935) presented a solution for the case with an infinite structure. If the injection
of water is supposed to take place in a line segment with negligible diameter running
through the structure, the increase of hydraulic headh on the radiusr [m] at time t [s]
is (de Marsily 1986; Ségol 1994)

∆h(r, t) =
Qin

4πKd

∫ t

0

e−
r2Ss
4Kτ

τ
dτ, (2.5)

whereQin is the injection rate [m3/s] andd the thickness of the modelled structure [m].

Let

u =
r2Ss

4Kt
(2.6)

in Equation 2.5. Thus

∆h(r, t) =
Qin

4πKd

∫ ∞

u

e−τ

τ
dτ =

Qin

4πKd
W (u). (2.7)

The integralW (u) is the so-called Theis function, the values of which have been tabu-
lated (Ségol 1994; de Marsily 1986). They can also be given in the form (Gradshteyn &
Ryzhik 1980)

W (u) = −Ei(−u) = −0.5772− ln(u)−
∞∑

k=1

(−u)k

kk!
, (2.8)
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Table 2.3. Input parameters for the case with a radial transient flow.

Symbol Parameter Equation Value
K Hydraulic conductivity 2.4, 2.5, 2.6, 2.710−8 m s−1

Ss Specific storage 2.4, 2.5, 2.6 10−9 m−1

d Thickness 2.5, 2.7 100 m
Qin Injection rate 2.5, 2.7 1.0 · 10−5 m3 s−1

whereEi is an exponential integral function. Note that the series in Equation 2.8 is valid
only, if the parameteru > 0.

Numerical solution method

Due to the symmetry of the problem, only a sector of 11.25◦ of the disc was included into
the model, which gave the injection rate

Qs = Qin · 11.25◦

360◦
= 3.125 · 10−7m3/s (2.9)

at the vertex. The boundary of the model was selected to be far enough (2000 m) from
the centre of the sector to not affect the results in short modelling periods.

In order to test various elements and boundary conditions, different 2D and 3D element
meshes were constructed. The elements used in the meshes were hexahedrals, wedges,
quadrilaterals and trilaterals (Figure 2.4). Initially the hydraulic head was zero in the
structure. The constant injection rate was set from the first time step onwards. The flow
rate boundary condition was assigned to the vertex nodes in the cases shown in Fig-
ures 2.4(a) and 2.4(c). In the cases shown in Figures 2.4(b) and 2.4(d) the modelled
sector begins at the distance of 20 m from the vertex, and fluxq was specified through the
innermost face/edge of the innermost element. Table 2.4 summarises the use of the flow
rate and flux boundary conditions.

The partial differential equation (2.4) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique with linear elements (Huyakorn &
Pinder 1983). The fully implicit difference scheme was applied in the time discretisation.
The mass matrix resulting from the transient finite element formulation was formed by a
diagonalisation procedure known as "lumping" (Huyakorn & Pinder 1983), which gives
a more stable solution in practical problems than a "consistent" matrix. Finally, the linear
matrix equation was solved employing the conjugate-gradient method (Atkinson 1988).
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(a) 3D case with vertex (82 nodes, 20 ele-
ments)

(b) 3D case without vertex (84 nodes, 20 ele-
ments)

(c) 2D case with vertex (41 nodes, 20 ele-
ments)

x

z

y

(d) 2D case without vertex (42 nodes, 20 ele-
ments)

Figure 2.4. Finite element meshes in different cases with and without vertex.

Table 2.4. Flow rates and fluxes given in the FEFTRA input files for different cases.

Case Flow rate [m3/s] Flux q Comment
3D; vertex Qs/2=1.563 · 10−7 2 nodes at the vertex
3D; no vertex Qs/A=7.97 · 10−10 m/s face A=392.0459 m2

2D; vertex Qs=3.125 · 10−7 1 node at the vertex
2D; no vertex Qs/L=7.97 · 10−8 m2/s edge L=3.920459 m

Results

The simulated and analytical (Equation 2.7) hydraulic heads are presented in Figure 2.5.
The results representing an increase of head as a function of time at the distance of 20 m
from the injection point comprised 2D and 3D cases with flow rate or flux boundary
conditions. At the beginning the FEFTRA code overestimates hydraulic head slightly, re-
sulting probably from the instant increase of the injection rate from zero to the maximum
value. The difference between the simulated and analytical solution could be decreased
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(a) 3D case with vertex
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(b) 3D case without vertex
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(c) 2D case with vertex

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12

Time [s]

H
yd

ra
ul

ic
 h

ea
d 

[m
]

Case th2Dtr: 2D transient flow at r=20 m, flux boundary condition

Analytical
FEFTRA    

(d) 2D case without vertex

Figure 2.5. Simulated and analytical hydraulic head atr = 20 m. The corresponding
meshes of different cases are shown in Figure 2.4.

by optimizing the time steps. At later time steps the numerical results compare fairly well
with the analytical solution, until the effect of the injection reaches the boundary and the
model attains the steady state. Then, the model is not anymore compatible with the Theis
problem and the difference between the results starts to increase.

2.3 Transient flow from a borehole in a fractured permeable
medium

This test case was introduced in the international hydrologic code intercomparison project
(HYDROCOIN 1988) as the Case 1 of Level 1, and it concerns a transient groundwater
flow from a borehole penetrating a confined aquifer. The objective of the case was to
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Figure 2.6. Schematic figure of the problem Hydrocoin Level 1 Case 1 (HYDROCOIN
1988).

verify the ability of codes to model transient pumping tests in boreholes in order to get in-
formation about the hydraulic properties of a rock mass. The case was explicitly designed
to code testing rather than a realistic modelling.

The test case is located infeftra/solvit/t/head/th_hydrocoin_l1c1in the FEFTRA program
path.

Definition of the problem

A vertical and finite-radius borehole is assumed to penetrate a cylindrical volume of per-
meable rock (Figure 2.6). The saturated rock is underlain by a single horizontal fracture
and confined between impermeable horizontal boundaries. The pumping of water results
in a flow from the borehole to the fracture and the rock matrix and further to the boundary
of the modelled region. Due to the pumping hydraulic head in the borehole also changes
continuously from initial to final value. The top and bottom boundaries of the model are
impermeable to water, while a constant hydraulic head is specified on the vertical bound-
ary. Initially the same hydraulic head is applied in the borehole and the vertical boundary.
Both the matrix and the fracture are assumed to be homogeneous and isotropic. The ma-
trix is characterised by a hydraulic conductivity and a specific storage, while the fracture
is characterised by a transmissivity and a storage coefficient.
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Mathematical model

The flow equation for hydraulic headh [m] is written as (Bear 1979; Huyakorn & Pinder
1983; de Marsily 1986)

∇ · (K∇h) + Q = Ss
∂h

∂t
, (2.10)

whereK is the hydraulic conductivity [m/s],Q the rate of flow per unit volume [1/s]
andSs the specific storage of the medium [1/m]. The input parameter values are given
in Table 2.5. For the time-dependent hydraulic head imposed in the borehole a smooth
function is used

ha(t) = h(∞)(1− e−
t
τ ), (2.11)

whereh(∞) is the value that the hydraulic head approaches asymptotically andτ is a
time constant.

The analytical solution for the problem is presented by Hodgkinson & Barker (1985).

Numerical solution method

Due to the symmetry of the problem, only a sector of 11.25◦ of the cylinder was included
into the model. The modelled volume, which started from the distance of borehole radius
a, was discretised to mesh with 408 linear hexahedral elements for the rock matrix and
24 linear quadrangular elements for the fracture (Figure 2.7). The mesh consisted of 900
nodes. In the x-y plane the size of the elements increased towards the outer boundary,
while in the z direction the mesh was refined near the fracture.

The radial sides were assumed impermeable to water. The hydraulic headh = 1 ·10−10 m
was initially applied to both nodes representing the borehole and the nodes on the outer
boundary. The simulation period from 0 to 10 000 s was discretised into 21 time steps the
length of steps increasing from 0.001 to 5 000 s. The time steps and hydraulic head in the
borehole (Equation 2.11) are shown in Table 2.6.

Table 2.5. Input parameters for the problem Hydrocoin Level 1 Case 1 (HYDROCOIN
1988). Compared to the base case tenfold transmissivity was used for the fracture.

Symbol Parameter Equation Value
T Transmissivity of fracture 10−7 m2 s−1

S Storage coefficient of fracture 10−10

K Hydraulic conductivity of matrix 2.10 10−9 m s−1

Ss Specific storage of matrix 2.10 10−7 m−1

a Borehole radius 0.1 m
b Distance between borehole and boundary 10 m
d Thickness of rock matrix 5 m
τ Time constant for borehole head 2.11 0.1 s
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borehole
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b−a

fracture

d

Figure 2.7. Finite element mesh for the problem Hydrocoin Level 1 Case 1 (HYDROCOIN
1988).

Table 2.6. Time steps and hydraulic head in the borehole (Equation 2.11).

Timet [s] Hydraulic head [m] Timet [s] Hydraulic head [m]
0.0 1 · 10−10 5 1.0

0.001 0.00995 10 1.0
0.005 0.0488 20 1.0
0.01 0.095 50 1.0
0.02 0.181 100 1.0
0.05 0.393 200 1.0
0.1 0.632 500 1.0
0.2 0.865 1000 1.0
0.5 0.993 2000 1.0

1 1.0 5000 1.0
2 1.0 10000 1.0

The partial differential equation (2.10) describing groundwater flow was solved numer-
ically employing the conventional Galerkin technique (Huyakorn & Pinder 1983). The
fully implicit difference scheme was applied in the time discretisation. The linear matrix
equation was solved employing the direct frontal method (Hinton & Owen 1977; Bathe
1982).

Results

The computed hydraulic head was compared to the analytical solution provided by Hodgkin-
son & Barker (1985). Hydraulic heads as a function of time at a midpoint of the rock
matrix (r = 5 m, z = 2.5 m) and in the fracture (r = 5 m, z = 5 m) are presented in
Figure 2.8(a). In addition, heads as a function of radius one metre above the horizontal
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the horizontal fracture (z = 4 m, t = 100 s)
as a function of radius.

Figure 2.8. Results for the problem Hydrocoin Level 1 Case 1 HYDROCOIN (1988).

fracture (z = 4 m, t = 100 s) is shown in Figure 2.8(b). The computed heads compare
well with the analytical solution.

2.4 Steady-state flow in a rock mass intersected by fracture
zones

In the international hydrologic code intercomparison project (HYDROCOIN 1988) a case
with steady-state flow in a two-dimensional slice of a fractured bedrock was considered
as the Case 2 of Level 1. The case is used to verify the capability of the FEFTRA code
to model heterogeneous flow problems with large permeability contrasts. In addition, the
test case is employed to assess the performance of different representations of zones in
the finite element mesh. In thebasecase mesh both rock matrix and fracture zones were
represented by 2D elements. The FEFTRA code provides two additional approaches,
in which the elements of different dimensions can be used in the same mesh, i.e. 1D
elements for fracture zones and 2D elements for rock matrix. In the first, 1D elements
were located only along the edges of 2D elements (quadtreecase), and in the second
both along the edges and diagonal of 2D elements (diagonalcase). Corresponding three-
dimensional cases were also included to demonstrate the possibility of combining 2D
elements with 3D elements.

The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/head/th_hydrocoin_l1c2_2Dr2Dfz(2D base case, head field)

• feftra/solvit/t/head/th_hydrocoin_l1c2(2D quadtree case, head field)

• feftra/solvit/t/head/th_hydrocoin_l1c2_pa(2D diagonal case, head field)
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• feftra/solvit/t/head/th_hydrocoin_l1c2_3Dr3Dfz(3D base case, head field)

• feftra/solvit/t/head/th_hydrocoin_l1c2_3D(3D quadtree case, head field)

• feftra/solvit/t/head/th_hydrocoin_l1c2_pa_3D(3D diagonal case, head field)

• feftra/solvit/t/velo/tq_hydrocoin_l1c2_3Dr3Dfz(3D base case, velocity field)

• feftra/solvit/t/velo/tq_hydrocoin_l1c2_3D(3D quadtree case, velocity field)

• feftra/solvit/t/velo/tq_hydrocoin_l1c2_pa_3D(3D diagonal case, velocity field)

• feftra/flowpath/t/tfp_hydrocoin_l1c2_3Dr3Dfz(3D base case, flow path)

• feftra/flowpath/t/tfp_hydrocoin_l1c2_3D(3D quadtree case, flow path)

• feftra/flowpath/t/tfp_hydrocoin_l1c2_pa_3D(3D diagonal case, flow path)

The pressure, concentration and temperature analogues of this problem were solved in
quadtree cases and they are located in:

• feftra/solvit/t/press/tp_hydrocoin_l1c2(2D, pressure field)

• feftra/solvit/t/conc/tc_hydrocoin_l1c2(2D, concentration field)

• feftra/solvit/t/temp/tt_hydrocoin_l1c2(2D, temperature field)

• feftra/solvit/t/press/tp_hydrocoin_l1c2_3D(3D, pressure field)

• feftra/solvit/t/conc/tc_hydrocoin_l1c2_3D(3D, concentration field)

• feftra/solvit/t/temp/tt_hydrocoin_l1c2_3D(3D, temperature field)

Definition of the problem

The problem is an idealisation of the hydrogeological conditions encountered at a po-
tential site for a deep repository in bedrock. The case concerns steady-state flow in a
two-dimensional slice of a fractured bedrock intersected by two fracture zones with dif-
ferent widths (10 m and 15 m) and inclinations (Figure 2.9). The zones intersect deep in
the modelled 2D cross-section of rock and meet the surface in two valleys. A simple and
symmetric topography consisting of straight lines is assumed. The surface near the top
corners is horizontal for the first ten metres to define an unambiguous horizontal deriva-
tive at the top corners. Flow governed by Darcy’s law is influenced by the asymmetry of
the fracture zones. Both the zones and the rock matrix are homogeneous and isotropic.
The rainfall is assumed to cause the water table to be coincident with the surface. The
vertical and bottom boundaries are impermeable to flow.

Mathematical model

The steady-state flow equation is written for hydraulic head as follows (Bear 1979; Huyakorn
& Pinder 1983; de Marsily 1986)

∇ · (K∇h) = 0, (2.12)
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Figure 2.9. Schematic description of the problem Hydrocoin Level 1 Case 2 (HYDRO-
COIN 1988). The coordinates of the numbered points are given in Table 2.7.

Table 2.7. Coordinates of the numbered points in the modelled region of the problem
described Figure 2.9.

Point x [m] z [m] Point x [m] z [m]
1 0.0 150.0 11 1505.0 -1000.0
2 10.0 150.0 12 1495.0 -1000.0
3 395.0 100.0 13 1007.5 -1000.0
4 405.0 100.0 14 992.5 -1000.0
5 800.0 150.0 15 0.0 -1000.0
6 1192.5 100.0 16 1071.35 -566.35
7 1207.5 100.0 17 1084.04 -579.04
8 1590.0 150.0 18 1082.5 -587.5
9 1600.0 150.0 19 1069.81 -574.81

10 1600.0 -1000.0

whereK is the hydraulic conductivity [m/s] andh the hydraulic head [m]. Hydraulic
head

h(x, z) = z (2.13)

representing the elevation of water table (Figure 2.9) is used as the boundary condition
on the top boundary, while no-flow conditions are applied to the vertical (x = 0 m and
x = 1600 m) and the bottom (z = −1000 m) boundaries. The input parameters are
given in Table 2.8. The Darcy velocityq [m/s] required in the flow path calculations is
expressed as follows:

q + K∇h = 0. (2.14)
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Table 2.8. Input parameters for the problem Hydrocoin Level 1 Case 2 (HYDROCOIN
1988).

Symbol Parameter Equation Value
Kf Hydraulic conductivity of the fracture zones 2.12, 2.141.0 · 10−6 m/s
Kr Hydraulic conductivity of the rock matrix 2.12, 2.141.0 · 10−8 m/s
T1 Transmissivity of the fracture zones 2.15, 2.161.0 · 10−5 m/s
T2 Transmissivity of the fracture zones 2.15, 2.161.5 · 10−5 m/s

Numerical solution method

The finite element method with linear elements was applied when solving the case numer-
ically. In order to assess the performance of different representations of zones, the finite
element mesh was constructed with three different approaches. In thebasecase both rock
matrix and fracture zones were represented by triangular 2D elements (Figure 2.10(a)).
The elements for rock matrix were approximately of uniform size and the zone elements
followed exactly the given geometry including the physical thickness.

In thequadtree(Figure 2.10(b)) anddiagonal(Figure 2.10(c)) cases, the elements of dif-
ferent dimensions were used in the same mesh, i.e. 1D elements for the fracture zones
and 2D elements for the rock matrix. Thequadtreecase applied an adaptive and recursive
treealgorithm, which enables an efficient local refinement of mesh near desired locations
(e.g. fracture zones, sinks, tunnels). 1D elements were located along the edges of triangu-
lar 2D elements and the fracture zones in the mesh followed exactly the given geometry,
except the physical thickness. In thediagonalcase, the uniform mesh with quadrilateral
elements for the rock matrix was constructed first. 1D fracture zone elements were em-
bedded to the mesh afterwards both along the edges and the diagonals of the 2D matrix
elements. Due to the (finite) size of 2D elements, the lines representing the zones were
somewhat stepped compared to the given geometry.

As the 1D elements did not have physical thickness, the thickness of the zones was as-
signed in the transmissivityT [m2/s] for the flow equation and the Darcy velocity, which
for 1D elements are written as follows

∇ · (T∇h) = 0 (2.15)

and
q + T∇h = 0. (2.16)

Corresponding three-dimensional cases were also included to demonstrate the possibility
of combining 2D elements with 3D elements. Thus, the 3Dbasecase comprised of wedge
elements for both the rock matrix and the fracture zones. In the 3Dquadtreeanddiagonal
cases the rock matrix was modelled with wedges and hexahedrals, respectively, while the
fracture zones were described with quadrilaterals in both cases. In the 3D case, the flow
in 3D elements was expressed by Equations (2.12) and (2.14), and in 2D elements by
Equations (2.15) and (2.16).
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(a) 2D mesh for the base case (1554 nodes, 2957
elements).

(b) 2D mesh for the quadtree case (1450 nodes,
2940 elements).

(c) 2D mesh for the diagonal case (1537 nodes,
1520 elements).

Figure 2.10. Finite element meshes for the problem Hydrocoin Level 1 Case 2 (HYDRO-
COIN 1988).

The partial differential equations (2.12) and (2.15) describing groundwater flow was solved
numerically employing the conventional Galerkin technique (Huyakorn & Pinder 1983).
The matrix equation resulting from the finite element formulation was solved employ-
ing the conjugate-gradient method (Atkinson 1988). The flow paths (in 3D cases only)
were computed with the algorithm that uses the continuous Darcy velocity field obtained
by treatingq as an unknown variable and applying the finite element method to Equa-
tions (2.14) and (2.16) (Yeh 1981).

Results

Due to the complex geometry, no attempt was made to find an analytical solution for this
problem in HYDROCOIN (1988). Thus, the computed FEFTRA results were compared
to numerical solutions by the HYDROCOIN (1988) groups and Grundfelt (1984), which
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provided an initial attempt to solve the case using quadratic finite elements in a proposal
for a test problem. The computed hydraulic heads along horizontal lines are presented
in Figure 2.11, showing a good agreement between the FEFTRA and other results. The
baseresults by FEFTRA are nearly identical to those by Grundfelt (1984), whereas the
quadtreeanddiagonalcases give slightly lower heads (especially deeper in the bedrock).
Corresponding 3D heads were identical to the 2D results.

One flow path (no. 2 in HYDROCOIN (1988)) starting at point (x = 100 m,z = −200 m)
in the modelled region and accumulated distance as a function of accumulated time are
presented in Figure 2.12, which shows that the FEFTRA paths are in line with those com-
puted by the HYDROCOIN (1988) groups. However, in thequadtreeanddiagonalcases,
FEFTRA resulted in slightly shorter travel times, although the accumulated distance was
about the same.

The results proved that the representation of the fracture zones by lower dimensional
elements (1D elements in the 2D mesh and 2D elements in the 3D mesh) is a feasible
and efficient alternative to the use of uniform dimensional elements, which was already
shown by some HYDROCOIN (1988) groups.

2.5 Groundwater flow to a horizontal well in an unconfined
aquifer

The underground rock characterization facility ONKALO is currently being constructed
at Olkiluoto to investigate the suitability of the bedrock as a location for a final repository
of spent nuclear fuel (Posiva 2006b). The ONKALO will consist of a tunnel system
extending to a depth of520 m. The open tunnels will act as a sink in the groundwater
system and will therefore constitute a hydraulic disturbances to the site’s groundwater
system. For example, an inflow of groundwater into the open tunnel system might cause a
drawdown of the groundwater table. The FEFTRA code employs a free surface approach
(Huyakorn & Pinder 1983) to simulate the water table drawdown and its recovery to the
undisturbed conditions.

Zhan & Zlotnik (2002) considered a problem of water table drawdown caused by constant-
rate pumping at a horizontal well in an unconfined aquifer. The problem resembles the
disturbance of the ONKALO in the groundwater system of Olkiluoto, and is therefore
suitable for testing the free surface module of FEFTRA. Zhan and Zlotnik presented a
semianalytical solution for transient drawdown of the water table for their problem. The
solution was based on the inverse Laplace transformation and is available as a Fortran 77
code WHI (WHI 2003).

The test case is located in the FEFTRA program pathfeftra/solvit/t/head/tfs_ZhanZlotnik.
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Figure 2.11. Computed hydraulic heads along horizontal lines. The results by FEFTRA
and Grundfelt (1984) are presented in subfigures (a)–(d), whereas subfigures (e) and (f)
include the heads computed by the HYDROCOIN (1988) groups with the finest meshes.
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Figure 2.12. Path lines starting at point (x = 100 m,z = −200 m) in the modelled region
and accumulated distance as a function of accumulated time. The FEFTRA results in
subfigures (a) and (b) were computed with 3D meshes.

Definition of the problem

The simulation case concerns water table depression caused by constant-rate pumping at
a horizontal well located near the water table. Model geometry and boundary conditions
are illustrated in Figure 2.13. The initial model domain is an800 m× 800 m× 50 m box,
with a horizontal well of length40 m located at the centre of the domain at a depth of
10 m. The initial groundwater table is assumed to be completely flat.

A free surface boundary condition is assigned at the surface of the model, whereas a con-
stant hydraulic head boundary condition (h = 0 m) is applied for the lateral boundaries.
The base of the model is treated as impermeable using a no-flow boundary condition.
Infiltration is ignored in this problem.
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Figure 2.13. Schematic illustration of the initial model domain and applied boundary
condition types for the horizontal well case. The model domain is an 800 m× 800 m×
50 m box with an octagon-shaped free surface area at the models’ surface. A horizontal
well of length 40 m is located at the center of the model domain at a depth 10 m.

Mathematical model

The water table drawdown caused by the well is simulated by employing a free surface ap-
proach, in which only the saturated part of the bedrock is included in the modelled volume
and the transiently moving water table constitutes a free surface. The effect of storativity
is assumed to be negligible compared to that of the specific yield, and hence the ground-
water flow under the water table is governed by the steady-state flow equation (Bear 1979;
Huyakorn & Pinder 1983)

∇ · (K∇h
)

+ Qw = 0, (2.17)

whereK is the hydraulic conductivity tensor of rock [m/s], h is the hydraulic head [m]
andQw is the rate of water flowing out of the model by pumping [m3/s].

The flow equation (2.17) is subject to various boundary conditions (Neuman & With-
erspoon 1971; Huyakorn & Pinder 1983). On the free surface, of which location and
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Table 2.9. Input data for simulation of the horizontal well case.

Symbol Parameter Equation Value
K Hydraulic conductivity 2.17 1.0× 10−4 m/s
Qw Outflow rate by pumping 2.17 0.02 m3/s
Sy Specific yield (porosity) 2.19 0.2

ζ(x, y, 0) Initial free surface elevation 2.19 0 m

geometric shape area priori unknown, the atmospheric and the continuity condition must
be satisfied. Thus the following two boundary conditions must be simultaneously satisfied
at the free surface:

h = ζ (2.18)
(
K∇h

) · n = −Sy
∂ζ

∂t
nz (2.19)

whereζ = ζ(x, y, t) is the elevation of the free surface [m],n is the unit normal vector of
the free surface [–] andSy is the specific yield [–], which is approximated with the flow
porosity. The transient behaviour of the system follows from the conditions at the moving
free surface. Infiltration is not considered in this problem.

The flow equation (2.17) is a steady-state equation and needs no initial conditions, but
the transient continuity equation (2.19) has to be complemented with the initial condition
ζ(x, y, 0) = 0 m, indicating that the initial water table is completely flat.

The numerical values of all constants are presented in Table 2.9.

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally. In the implicit scheme suggested and treated in detail by (Neuman & Witherspoon
1971) and (Huyakorn & Pinder 1983) each time step involves a meshing and a finite ele-
ment analysis phase, of which the latter is further divided into two stages.

Meshing phaseThe meshing phase discretises the actual saturated zone bounded from
above by the free surface (the top of the water table). The discretisation of the irregu-
lar free surface was based on the recursiveoctree-algorithm. The FEFTRA/octreemesh
generator applies the algorithm to successively divide the saturated zone in tetrahedral
elements until the desired level of refinement is achieved. At the location of the free
surface, the element resolution is set significantly higher than elsewhere in the model to
successfully discretize the changing surface of the model. The meshing process of the
free surface concludes by removing all finite elements from above the free surface (i.e.
those representing the unsaturated zone). The initial mesh is shown in Figure 2.14 and
the adaptive meshing procedure is illustrated in Figure 2.15.
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Finite element analysis phaseThe finite element analysis phase receives the discretised
model from the meshing phase, uses the static hydrogeological properties defined in the
model input and prescribes the boundary conditions. The FEM-phase is divided in two it-
eration stages. The task of the first stage is to re-create the results of the previous time step
on the actual mesh, which are needed in calculating the transient term in Equation 2.19
during the second stage. The task of the second stage of the iteration is to actually com-
pute the new location of the free surface. This is accomplished by prescribing an implicit
and as yet unknown flux boundary condition (Equation (2.19)) over the free surface. The
new geometry for the free surface is then obtained from the solution of the flow equa-
tion (2.17), and a new adaptive mesh is constructed by continuing to the meshing phase.

The water table drawdown at the surface of the model is assumed to be restricted inside an
octagon, which is centred at the well (Figure 2.13). Outside the octagon, the water table is
assumed to remain at its initial position. At the free surface, the element size1.6 m proved
out to be sufficient. Element sizes as small as0.4 m were tested, but identical results were
obtained in both cases. In the vicinity of the well the mesh was refined to element size
0.8 m (Figure 2.14). The horizontal well was modelled as a set of nodes located along the
well screen. To model pumping, the total outflow rateQw = 0.02 m3/s was distributed
evenly at these nodes.

The simulation was run until the steady-state was reached. Time step sizes for the first
three time steps were∆t1 = 100.0 s, ∆t2 = 900.0 s and∆t3 = 1000.0 s, after which
they were increased steadily by the rule∆ti+1 =

√
2∆ti, i = 4, 5, . . .. Using this time

stepping scheme, the steady-state was reached in26 time steps (80 days in simulation
time).

Results

The FEFTRA results are compared to the semianalytical solution calculated with Zhan’s
Fortran 77 program (WHI 2003). The WHI code is based on the numerical inversion
of the Laplace transformation, which is prone to numerical errors and instabilities close
to the well (Zhan & Zlotnik 2002). Therefore the results should not be compared in the
immediate vicinity of the well, but at some distance apart. The semianalytical WHI results
were obtained by constructing a regular grid of observation points at a distance2 m apart
from each other, calculating the semianalytical solution at each of the observation points
and finally interpolating the solution linearly between the points to construct a surface.

Figure 2.16 compares the simulated water table with the semianalytical one along the ver-
tical cross–sections atx = 0 m andy = 1 m at four time steps (the horizontal well is
centred atx = y = 0 m and oriented along the x-axis). Locationy = 1 m was selected
instead ofy = 0 m, since the well is oriented parallel to this plane and the semianalyt-
ical solution would be erroneous were it calculated over the well, see the manual of the
semianalytical code (WHI 2003).

The results calculated with FEFTRA compare well with the semianalytical ones. At early
times, the peak drawdown close to the well lags behind the semianalytical solution, but the
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Figure 2.14. The initial computational mesh used in the horizontal well case. The initial
mesh comprises of3400000 tetrahedral elements ranging from0.8 m (close to the well) to
35.0 m (lateral boundaries). As the water table depresses with time, the top of the mesh
is deformed to match with the free surface. The subfigure illustrates the mesh refinement
near the horizontal well. The well is oriented along the x-axis at a depth of10 m at the
centre of the model.

shape of the curves already at a distance of10 m from the well are indistinguishable. With
increasing time, the curves approach each other and, as the steady-state is reached, they
are almost identical. The actual calculated (FEFTRA and WHI) free surface representing
the water table is shown in Figure 2.17.
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Figure 2.15. The illustration of the adaptive meshing phase that discretizes the models’
surface to match with the current free surface at the time stepst = 100 min, t = 700 min
and t = 22 h. The location of the free surface at each time step is obtained from the
solution of the flow equation(2.17)subject to the atmospheric pressure (Equation(2.18))
and the continuity (Equation(2.19)) boundary conditions on the free surface. For illus-
trational purposes only half of the mesh is shown here.
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Figure 2.16. The calculated free surface (the water table) along the vertical cross sections
x = 0 m (left) andy = 1 m (right). The horizontal well is centred atx = y = 0 m
and oriented along the x-axis. The FEFTRA results are presented in blue, whereas the
black curves denote the semianalytical approximation calculated with the WHI code (WHI
2003).
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Figure 2.17. The free surface (the water table) calculated with the FEFTRA code (left)
and the semianalytical WHI approximation (right).
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2.6 Mariño’s experiment

Mariño conducted laboratory investigations of the growth and decay of groundwater
ridges using the Helen-Shaw model under the effect of infiltration (Ségol 1994). Mariño
set up a 2D experiment, applied a constant recharge on the top and made systematic mea-
surements of the water table height as a function of time. He also compared the observed
results to an analytical solution of the corresponding mathematical problem. Neglecting
the effect of the unsaturated zone, this experiment along with the analytical solution is
suitable for testing the free surface module of FEFTRA both with 2D and 3D elements.

The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/head/tfs_marino2D (2D mesh)

• feftra/solvit/t/head/tfs_marino3D (3D mesh)

Definition of the problem

The problem concerns transient development of a free surface (water table) due to in-
filtration into the soil. The initial domain is assumed to be a rectangular, vertical cross
section taken through a homogeneous and isotropic medium (Figure 2.18). For the simu-
lation with 3D elements the domain is extended in the third spatial dimension. A constant
recharge is applied as a flux boundary condition at the left part of the surface while keep-
ing all other boundaries closed. As water cannot exit the model, the water content of the
system increases by recharge and a ridge begins to develop at the free surface.

Mathematical model

The growth of the groundwater ridge with a recharge of water is simulated by employing a
free surface approach, in which only the saturated part is included in the modelled volume

200 cm

11.3 cm

No-flow

No-flow No-flow

Free Surface

23.8 cm

Recharge

Figure 2.18. The initial model domain and boundary conditions for the simulation of
Mariño’s Experiment. The initial domain is a rectangle with a recharge-strip at the top-
left corner. For the simulation with 3D elements, this domain is extended in the third
spatial dimension by160 cm.
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Table 2.10. Input data for the Mariño’s case.

Symbol Parameter Equation Value
K Hydraulic conductivity 2.20 4.2× 10−3 m/s
Sy Specific yield (porosity) 2.22 1.0
I Infiltration rate 2.22 5.6× 10−4 m/s

Initial free surface height 11.3 cm

and the transiently moving water table constitutes a free surface. Assuming that the effect
of storativity is negligible compared to that of the specific yield, steady-state groundwater
flow is governed by the well-known equation (Bear 1979; Huyakorn & Pinder 1983)

∇ · (K∇h
)

= 0, (2.20)

whereK is the hydraulic conductivity tensor of rock [m/s] andh is the hydraulic head
[m].

The flow equation (2.20) is subject to the following boundary conditions (Neuman &
Witherspoon 1971; Huyakorn & Pinder 1983). On the free surface, of which location and
geometric shape area priori unknown, the atmospheric and the continuity condition must
be satisfied

h = ζ (2.21)
(
K∇h

) · n =
(
I − Sy

∂ζ

∂t

)
nz, (2.22)

whereζ = ζ(x, y, t) is the elevation of the free surface [m],n is the unit normal vector of
the free surface [–],I is the rate of vertical infiltration through the free surface [m/s] and
Sy is the specific yield [–], which is approximated with the flow porosity. The transient
behaviour of the system follows from the conditions at the moving free surface.

Numerical solution method

The implicit scheme suggested and treated in detail by Neuman & Witherspoon (1971)
and Huyakorn & Pinder (1983) was employed. Each time step involves a meshing and a
finite element analysis phase, of which the latter is further divided into two stages.

Meshing phaseThe meshing phase discretises the actual saturated zone bounded from
above by the free surface (the top of the water table). The discretisation of the irregular
free surface was based on the recursivequadtree/octree-algorithm. The FEFTRA/quadtree
mesh generator applies the algorithm to successively divide the saturated zone in trian-
gular elements until the desired level of refinement is achieved (2D case). The FEF-
TRA/octreemesh generator applies the same algorithm to successively divide the sat-
urated zone in tetrahedral elements for the 3D simulations. At the location of the free
surface the element resolution is set significantly higher than elsewhere in the model to

38



successfully discretize the changing surface of the model. The meshing process of the
free surface concludes by removing all finite elements from above the free surface (i.e.
those representing the unsaturated zone).

Finite element analysis phaseThe finite element analysis phase receives the discretised
model from the meshing phase, uses the static hydrogeological properties defined in the
model input and prescribes the boundary conditions. The FEM-phase is divided in two it-
eration stages. The task of the first stage is to re-create the results of the previous time step
on the actual mesh, which are needed in calculating the transient term in Equation (2.22)
during the second stage. The task of the second stage of the iteration is to actually com-
pute the new location of the free surface. This is accomplished by prescribing an implicit
and as yet unknown flux boundary condition (Equation (2.22)) over the free surface. The
new geometry for the free surface is then obtained from the solution of the flow equa-
tion (2.20), and a new adaptive mesh is constructed by continuing to the meshing phase.

The initial domain for the 2D finite element simulation was chosen to be a rectangle (Fig-
ure 2.18). For 3D simulation this domain was extended in the third dimension. The time
discretization was set up using 23 time steps of length of 30.0 s with total simulation time
of 660 seconds. This time stepping proved to be fine enough to ensure the convergence of
the proposed iterative solution method in this application.

On the vertical sides and the bottom of the model, a no-flow boundary condition was
assumed, whereas at the top of the model a free surface boundary condition was applied.
A constant infiltration rate was applied at the 23.8 cm long strip over the top of the model,
providing a recharge of water into the model.

Results

The evolution of the watertable during the simulation is shown in Figure 2.19. The
groundwater ridge develops steadily during the simulation period. Initially the watertable
rises only under the recharge strip, but as the simulation proceeds and the recharge water
re-distributes, the watertable begins to rise also further away from the strip.

The results from the simulations are compared to the analytical solution provided by Mar-
iño (Ségol 1994) at two locations x = 0.0 cm and x = 60.0 cm (Table 2.11 and 2.12, Figure
2.20). The computed results are in good agreement with the analytical solution, regard-
less of a small deviation. The difference between the analytical and simulated results is
almost constant at the beginning of the simulation but increase as the simulation proceeds,
indicating a small cumulative error in the numerical solution.

For 3D-simulation the error is a bit higher than for the 2D-simulation, because, in 2D
simulation, the actual free surface is discretized faithfully by adjusting the location of the
nodes at the free surface to correspond with the exact elevation of the surface, whereas,
in the 3D model, the surface is approximated by tetrahedral elements to the size of a few
centimetres and the location of the surface is determined by the calculated head at the
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surface nodes. However, the error is small and qualitative results compare well with the
analytical results.
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Figure 2.19. The simulated height of the watertable at different time-steps in the Mariño’s
Experiment (2D case). Note the different scales at the vertical and horizontal axis.
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Table 2.11. The analytical (Ségol 1994) and simulated results at point x = 0.0 cm in the
Mariño’s Experiment.

Time [s] Analytical [cm] FEFTRA 2D [cm] FEFTRA 3D [cm]
30 12.9 12.7 12.8
60 14.2 13.9 14.0

120 16.1 15.8 15.9
180 17.5 17.3 17.9
270 19.4 19.1 19.3
360 20.8 20.5 20.1
450 22.1 21.8 21.3
540 23.2 22.8 22.3

Table 2.12. The analytical (Ségol 1994) and simulated results at point x = 60.0 cm in the
Mariño’s Experiment.

Time [s] Analytical [cm] FEFTRA 2D [cm] FEFTRA 3D [cm]
90 11.5 11.6 11.7

150 12.0 12.0 12.5
210 12.6 12.6 13.6
300 13.5 13.6 14.8
390 14.5 14.7 15.6
480 15.3 15.7 16.6
570 16.3 16.7 17.6
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Figure 2.20. The analytical (Ségol 1994) and simulated results at points x = 0 cm and x
= 60.0 cm in the Mariño’s Experiment.
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2.7 Site-scale flow at the Olkiluoto site

Site-scale groundwater flow modelling has been an essential part of the site investigation
programme for seeking the repository for the final disposal of spent nuclear fuel. The ob-
jective of the modelling has been to characterise the overall groundwater flow conditions
at the investigation sites as well as provide support and site-specific data for the safety
analyses.

The study by Hartley et al. (2002) consisted of a site-scale model testing, in which a
steady-state 3D groundwater flow (without a consideration of salinity) was calculated for
the Olkiluoto site. The simulations were carried out with the NAMMU program pack-
age (NAMMU 2007). In this section the corresponding FEFTRA simulations (Löfman &
Mészáros 2002) are presented and the results are compared against those obtained with
NAMMU. The case is introduced to compare FEFTRA to a similar code in a real-life,
site-scale groundwater flow problem in 3D. In addition, as the fracture zones are repre-
sented by 3D elements in NAMMU and 2D elements in FEFTRA, the performance of the
differing representations of the zones can also be assessed with this case.

The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/press/tp3Dst_olkiluoto(pressure field)

• feftra/solvit/t/velo/tp3Dst_olkiluoto(velocity field)

• feftra/flowpath/t/tp3Dst_olkiluoto(flow paths)

• feftra/frate/t/tp3Dst_olkiluoto(flow rates)

Definition of the problem

The case was comprised of a steady-state site-scale simulation of groundwater flow as-
suming freshwater conditions. As a site-specific flow model is practically identical to the
one employed in the latest study by Löfman (1999), most of the details are omitted here
and only a summary and modifications to the previous model are presented.

The size of the modelled bedrock volume was 6.3 km× 4.3 km× 1.5 km (Figure 2.21).
The modelled area and the inner refined area (the area covered by the borehole inves-
tigations) were slightly enlarged compared to (Löfman 1999). The modelled bedrock
volume was conceptually divided into the hydrogeological zones and the sparsely frac-
tured rock between the zones (Figure 2.22). The equivalent-continuum model was applied
separately for each hydrogeological zone and the sparsely fractured rock, which were as-
sumed to consist of five hydrological layers (Tables 2.13–2.15). The geometry of the 33
planar zones was based on a revised bedrock model by Saksa et al. (1998). The following
slight modifications were made to some of the zones compared to (Löfman 1999):

• AR3, AR6, AR8, R1, R4, R4I, R5 and R27 were extended to the outer boundary of
the model

• AR5 was excluded, because of the location near R5
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• AR1, AR6, R1, R4, R7 were slightly simplified

• R6L was included in the name R6, and R18L in R18 (no changes)

• zone R28A and R28B renamed to R28AB (no changes)

The internal structure of the repository located at a depth of 500 metres was not considered
in detail, but the repository was modelled as a two-dimensional structure (Figure 2.23)
based on the layout by Löfman (1999). Specified pressure corresponding to the elevation
of the groundwater table relative to the sea level (where water table data was available) or
a simple linear transformation of the topography (watertable = 0.56 ·topography, where
water table data was not available) was applied on the surface (Figure 2.24), and no flow
on other boundaries.
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Figure 2.21. Outlines of the modelled area and the inner refined area on the ground
surface.
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Figure 2.22. Conceptual geometry of the hydrogeological zone for the Olkiluoto site.
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Figure 2.23. The layout for the repository located at a depth of 500 meters.
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Figure 2.24. The present groundwater table of the Olkiluoto island on the surface of the
model (Posiva 2005). The values are based on the measured means of hydraulic head in
shallow boreholes and multilevel piezometers.

Mathematical model

The flow equation in a steady-state is written for the residual pressurepr [Pa] (the to-
tal pressure without the hydrostatic component of freshwater) as follows (Bear 1979;
Huyakorn & Pinder 1983; de Marsily 1986)

∇ ·
(

ρk

µ

(∇pr + (ρ− ρ0)g∇z
))

= 0, (2.23)

whereρ is the density of water [kg/m3], ρ0 is the density of the freshwater [= 998.6
kg/m3], k is the permeability tensor of rock [m2], µ is the dynamic viscosity of water [=
1.0·10−3kg/m/s], g is the gravitational acceleration [= 9.81m/s2], andz is the elevation
relative to the sea level [m].

The velocity required in the flow path calculations is expressed in terms of the residual
pressure as follows

v +
k

µφ

(∇pr + (ρ− ρ0)g∇z
)

= 0, (2.24)

whereφ is the flow porosity[−].

The permeabilityk in Equations (2.23) and (2.24) is related to the hydraulic conductivity
K [m/s]

k =
µ

ρg
K . (2.25)

The input parameter values for the equations are given in Tables 2.14 and 2.15.
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Table 2.13. Classification of the hydrogeological zones by transmissivity.

Class Hydrogeological zones
A R3, R4, R5, R6, R7, R19HY, R20HY, R21, R24HY, R25, R27, R28, R29,

AR-zones
B R1, R2, R8, R9HY, R10HY, R11, R16, R17HY, R18, R22, R23

Table 2.14. The transmissivity of the hydrogeological zones[m2/s] and the hydraulic
conductivity of the sparsely fractured rock[m/s]. The transmissivity of5.0 · 10−8[m2/s]
was used for the repository located at a depth of 500 metres. The thickness of the zones
and the repository were selected to be 10 and 5 m, respectively.

Depth [m] Zones (class A) Zones (class B) Sparsely fractured rock
0− 100 2.53 · 10−4 5.75 · 10−6 2.88 · 10−9

100− 200 9.14 · 10−5 2.08 · 10−6 1.04 · 10−9

200− 400 2.53 · 10−5 5.74 · 10−7 2.87 · 10−10

400− 900 3.18 · 10−6 7.23 · 10−8 3.61 · 10−11

900− 1500 5.87 · 10−7 1.33 · 10−8 6.66 · 10−12

Table 2.15. The flow porosity[−] of the hydrogeological zones and the sparsely fractured
rock.

Depth [m] Flow porosity
0− 100 5.19 · 10−4

100− 200 3.36 · 10−4

200− 400 1.93 · 10−4

400− 900 7.33 · 10−5

900− 1500 2.44 · 10−5

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally with FEFTRA. All 33 fracture zones were included explicitly in the modelled vol-
ume, which was meshed with 537 000 hexahedral elements for the sparsely fractured rock
and 106 000 triangular/quadrilateral elements for the hydrogeological zones and reposi-
tory (Figure 2.25). The mesh was created by adding the 2D elements on the faces and/or
diagonals of the 3D elements in the existing base mesh consisting of the 3D elements
only. Due to the (finite) element size of the base mesh, the surfaces representing the
hydrogeological zones in the mesh (Figure 2.25) are somewhat stepped compared to the
corresponding planes defined in the bedrock model (Figure 2.22). As the 2D elements did
not have physical thickness, the thickness of the zones and repository was assigned in the
transmissivity of Equations (2.23) and (2.24). The size of the 3D elements in the inner
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refined area at the centre of the island was 27 m× 27 m× 25 m down to a depth of 1000
metres.

The partial differential equation (2.23) describing groundwater flow was solved numer-
ically employing the conventional Galerkin technique (Huyakorn & Pinder 1983). The
matrix equations resulting from the finite element formulation of Equation (2.23) was
solved employing the conjugate-gradient method (Atkinson 1988). The flow paths and
travel times were computed with the algorithm that uses the continuous Darcy veloc-
ity field obtained by treatingq as an unknown variable and applying the finite element
method to Equation (2.24).

In the NAMMU finite element model the hydrogeological zones are represented implic-
itly (Hartley et al. 2002) by manipulating the hydraulic conductivity tensor of the 3D
elements crossed by the planes of the zones. The apparent inconsistency arising from
the representation of the zones (of thickness 10 m) by 3D elements (of size about 25 m)
was resolved by assigning an average permeability to the elements crossed by the zones,
which ensures that the flow through the elements is correct. However, the porosity was not
averaged, but the porosity of the sparsely fractured rock was assigned to all the elements
(whether crossed by the zones and repository or not).

The finite elements around the repository in the NAMMU mesh were of size 25 m by 27
m by 5 m (Hartley et al. 2002). The horizontal discretisation is similar to the FEFTRA
mesh, but there is greater vertical discretisation in the NAMMU model. In particular: the
vertical element size is 10 m from -400 m to -480 m and 5 m from -480 m to -520 m,
while below -520 m a graded discretisation was used, which starts with finite elements of
size 5 m increasing to elements of size about 20 m. The NAMMU mesh consisted of 863
000 elements. Similarly to FEFTRA, a preconditioned conjugate gradient method was
used to obtain the solution for groundwater flow.

Results

The result quantities calculated in the test case were:

• pressure along the boreholes KR1–KR5,

• flow paths starting at three points near the repository,

• flow rates through a box surrounding the repository (the box is intersected by the
zones R10HY and R16) , and

• infiltration based on the computed flow rate through a horizontal plane at a depth of
10 metres.

The pressures along the boreholes KR1–KR5 are presented in Figure 2.26 showing an
excellent agreement between the FEFTRA and NAMMU results. The computed net flow
rates through a box surrounding the repository (Table 2.16) are also essentially in good
agreement. The differences on the north-west and north-east side of the box can likely
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Figure 2.25. Finite element mesh for the Olkiluoto site in the FEFTRA model. The three-
dimensional elements (537 000) represent the sparsely fractured rock (top) and the two-
dimensional elements (106 000) the hydrogeological zones (bottom). Compare to Fig-
ure 2.22.
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Table 2.16. Computed net flow rates [m3/a] through a box surrounding the repository (+
denotes inflow and - outflow). The height of the box is 50 metres and the area of the top
and bottom faces is 800000 m2, whereas the distance between the repository and the faces
of the box is about 20–30 metres. The box is intersected by the zones R10HY and R16.
The inaccuracy of mass balance in the NAMMU flows results from the fact that the box
was not coincident with finite elements (Hartley et al. 2002).

Face FEFTRA NAMMU
Bottom face −24.98 −21.82
South-west side 0.58 0.58
South-east side 0.53 0.70
North-east side −0.11 −0.20
North-west side −0.60 −1.48
Top face 24.51 21.64
Mass balance −0.07 −0.58

be attributed to the the different representation of the hydrogeological zones between the
two models, which results in the northern corner of the box clipping several zones in
the NAMMU model and gives different local flows in this area (Hartley et al. 2002). The
computed infiltrations (34.3 mm/a in the FEFTRA and 33.5 mm/a in the NAMMU model)
are in excellent agreement.

The final positions and lengths of the flow paths (Table 2.17 and Figure 2.27) show a pretty
good agreement between the FEFTRA and NAMMU models. However, the travel times
of the flow paths computed with FEFTRA are shorter than the corresponding NAMMU
times. After leaving the repository the NAMMU paths (especially path 1 and 3) seem to
stay much longer in the sparsely fractured rock than the FEFTRA paths. Due to the low
velocity of the sparsely fractured rock, a small change in the path through the sparsely
fractured rock may lead to a disproportionately large change in the travel time. Thus,
the times are sensitive to the behaviour of the flow field in the sparsely fractured rock
between the repository and the nearest zones. The discrepancies in the local flow field,
on the other hand, can probably be attributed to the different representations of the hy-
drogeological zones and/or different discretisation in the vicinity of the repository (see
subsection "Numerical solution method" above). Especially, the implicit representation
of the zones in the NAMMU model may overestimate the travel times, because the per-
meability of the zones was reduced by averaging the permeability over the volumes of the
finite elements crossed by the zones (Hartley et al. 2002).

The results proved that the representation of the hydrogeological zones by lower dimen-
sional elements (2D elements in the 3D mesh) is a feasible and efficient alternative to the
use of uniform dimensional elements, which was already shown in Section 2.4.
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Figure 2.26. Residual pressure along the cored boreholes KR1–KR5 at the Olkiluoto site.
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Table 2.17. Flowpaths computed with FEFTRA and NAMMU.

FEFTRA NAMMU
Path 1 Path 2 Path 3 Path 1 Path 2 Path 3

Initial position [m]x 5596 5596 5596 5596 5596 5596
y 2288 2288 2288 2288 2288 2288
z −500 −475 −525 −500 −475 −525

Final position [m] x 5683 5680 5677 5697 5690 5693
y 3526 3545 3554 3503 3521 3505
z 0 0 0 0 0 0

Pathlength [m] 1677.7 1680.4 1723.8 1738.1 1745.4 1747.1
Travel time [a] 1321.0 1097.8 1614.9 2487.0 1358.9 2582.0

north west

up

north west

up

repository

fracture zone R21
(bedrock model)

NAMMU FEFTRA

Final positions

Initial positions

repository
(z = −500 m)

Initial positions
(z = −475 m)

Final positions

FEFTRA

NAMMU NAMMU 

FEFTRA

fracture zone 
R21 (FEFTRA
mesh)

fracture zone 
R21 (bedrock
model)

fracture zone 
R21 (FEFTRA
mesh)

Path 2:

Paths 1−3:

Path 2 :

north

west

Paths 1 and 3:Final positions

FEFTRA

NAMMU 

fracture zone R21
(bedrock model)

repository

Figure 2.27. Computed flowpaths in the FEFTRA and NAMMU models. All three paths
with the repository and hydrogeological zone R21 (the bedrock model) are presented on
top-left. Flow path 1 and 3 are shown on top-right, whereas flow path 2 is presented at
the bottom.
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3. Coupled groundwater flow and solute transport

During the hydrogeochemical field investigations at the coastal sites (Olkiluoto, Hästhol-
men) in the Finnish site evaluation programmes, saline groundwater was observed. Salt
content of groundwater usually increases with depth, but high salinity concentrations have
also been observed relatively close to the ground surface. The variations in salt concen-
tration not only affect the chemical stability of the bentonite clay surrounding the disposal
canisters but also groundwater flow through the variations in the density. Thus, the simu-
lation of coupled groundwater flow and solute transport constitute an important part of the
ongoing site investigation programme as well as repository design and safety assessment.

3.1 Henry’s seawater intrusion problem

One of the classic tests for variable density groundwater models is Henry’s seawater intru-
sion problem (Henry 1964), which concerns a coupled groundwater flow and salt transport
in a coastal aquifer. The problem describes an advance of a saltwater front in a confined
aquifer initially charged with freshwater, for which Henry (1964) provided a semianalytic
steady-state solution. Henry’s problem has subsequently been widely used as a test case
for numerical groundwater flow - salt transport codes (Lee & Cheng 1974; Voss & Souza
1987; Ségol 1994; Croucher & O’Sullivan 1995; Oldenburg & Pruess 1995; Ackerer et al.
1999).

Although the case is two-dimensional, the corresponding case with 3D elements was com-
puted as well. The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/press_conc/tpc2Dst_Henry(2D mesh)

• feftra/solvit/t/press_conc/tpc3Dst_Henry(3D mesh)

Definition of the problem

The case is comprised of a vertical cross section (2 m× 1 m) taken through a homo-
geneous isotropic aquifer confined above and below by impermeable boundaries (Fig-
ure 3.1). Freshwater enters the aquifer at a constant rate from the left inland boundary,
mixes with intruding salt water, and discharges to the sea through the upper right bound-
ary. Salt water intrudes from the sea side until an equilibrium is reached with the opposing
freshwater inflow. At the inland side the concentration is zero corresponding freshwater,
while along the coastal boundary it is equal to the seawater concentration. The hydrostatic
pressure based on the seawater density is assumed along the right vertical boundary.
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Figure 3.1. Schematic description of Henry’s problem.

Mathematical model

The steady-state flow equation is written for the residual pressurepr [Pa] (total pressure
without the hydrostatic component of freshwater) as follows (Bear 1979; Huyakorn &
Pinder 1983; de Marsily 1986)

∇ ·
(

ρk

µ

(∇pr + (ρ− ρ0)g∇z
))

= 0, (3.1)

whereK is the hydraulic conductivity tensor of rock [m/s], g is the gravitational accel-
eration [m/s2], ρ is the density of water [kg/m3], ρ0 is the density of freshwater [kg/m3],
andz is the elevation relative to the sea level [m].

The equation describing salt transport is written in terms of salt concentrationc [g/l] as
follows (Bear 1979; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (D∇c)−∇ · (qc) = 0, (3.2)

whereq is the Darcy velocity [m/s],D is the dispersion tensor [m2/s ], which in this case
includes only the molecular diffusion and is expressed as

Dij = D0δij, (3.3)

whereD0 is the molecular diffusion coefficient [m2/s] andδij is the Kronecker delta func-
tion [-].

Equations (3.1) and (3.2) are coupled by the Darcy velocityq [m/s]

q = −k

µ
(∇pr + (ρ− ρ0)g∇z) (3.4)

and the densityρ [kg/m3], which is expressed as a linear function of the salt concentration
c [g/l] as

ρ = ρ0 + acc. (3.5)
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Table 3.1. Input parameters for Henry’s problem (Henry 1964; Voss & Souza 1987; Ségol
1994).

Symbol Parameter Equation Value
K Hydraulic conductivity 3.6 1.0 · 10−2 m/s
g Gravitational acceleration 3.1, 3.4 9.81 m/s2

ρ0 Freshwater density 3.1, 3.4–3.71000 kg/m3

D0 Effective diffusion coefficient 3.2, 3.8 6.6 · 10−6 m2/s
ac Coefficient for density dependence on salinity 3.5 0.7
Q Freshwater flux 3.7, 3.8 6.6 · 10−5 m2/s
cs Salt concentration in seawater 35.714 g/l
d Aquifer thickness 3.7 1.0 m

whereac is the coefficient of density dependence on concentration [−]. The permeability
k in Equations (3.1) and (3.4) is related to the hydraulic conductivityK [m/s]

k =
µ

ρg
K . (3.6)

The input parameter values for equations are given in Table 3.1.

Henry (1964) introduced two dimensionless parametersa andb for the problem as follows

a =
Q

d
· ρ0

K(ρs − ρ0)
, (3.7)

b =
D0

Q
= 0.1. (3.8)

whereQ is the freshwater flux from the inland boundary [m2/s], d the aquifer thickness
[m], andρs the density of seawater [kg/m3]. The input parameters (Table 3.1) and Equa-
tion (3.5) result in the valuesρs=1025 kg/m3, a = 0.263 andb = 0.1 for the seawater
density and Henry’s parameters.

Numerical solution method

The finite element method with linear elements was applied in solving the case numer-
ically. The modelled region was discretised to a uniform mesh with 5000 quadrangular
elements of size 0.02 m× 0.02 m (Figure 3.2). The mesh consisted of 5151 nodes. The
corresponding 3D mesh consisted of hexaedral elements.

The partial differential equation (3.1) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique (Huyakorn & Pinder 1983), whereas
the streamline-upwind/Petrov-Galerkin (SUPG) method (Brooks & Hughes 1992; Laiti-
nen 1995) was applied for the transport equation (3.2). The Darcy velocity (3.4) for the
transport equation (3.2) was computed by taking directly the derivative of the computed

54



Figure 3.2. Finite element mesh (2D) for Henry’s problem (5000 elements, 5151 nodes).

finite element approximation for the pressure (3.1). The resulting matrix equations for the
flow and transport equations were solved employing the conjugate-gradient and Gauss-
Seidel methods (Atkinson 1988).

The steady-state solution was attained with the Picard iteration scheme (Huyakorn &
Pinder 1983), which was applied sequentially for the flow and the transport equations
until the convergence was attained (50 iteration sweeps). At the end of each iteration
sweep the concentration result was updated using an underrelaxation scheme to reduce
the oscillations of concentration changes from iteration to iteration

ci = ci−1 + 0.2(c− ci−1), (3.9)

whereci−1 andc denote the result of the previous iteration and the current iteration, re-
spectively, andci is the final value of concentration at the current iteration sweep. The
coefficient0.2 in Equation (3.9) was found by trial and error.

Results

Henry (1964) developed a semianalytic steady-state solution for this problem, but no nu-
merical model so far has been able to closely match his solution. On the other hand,
several numerical models based on the different methods have given nearly identical re-
sults for the problem, which has indicated some inaccuracy in the original result by Henry.
However, Ségol (1994) presented a revised calculation of Henry’s semianalytic solution,
and the previously observed differences between numerical and analytic results seem to
be disappeared.

The computed FEFTRA results were compared to Henry’s original and revised (Ségol
1994) solution as well as some numerical (Lee & Cheng 1974; Voss & Souza 1987;
Croucher & O’Sullivan 1995) results. The contours of the nondimensional concentration
c′ = c/cs presented in Figure 3.3 show that the FEFTRA results compare very well
with the revised analytic solution. On the other hand, Figure 3.4, which summarises
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Henry’s original solution with some numerical results for the contour ofc′ = 0.5, reveal
the similarity of the FEFTRA results to the ones computed by Voss & Souza (1987)
and Croucher & O’Sullivan (1995). Some slight differences to the Voss & Souza (1987)
result can be observed near the coastal boundary, because they used the different boundary
condition on the upper part of the boundary. However, it is clear that Henry’s original
analytic and numerical solution by Lee & Cheng (1974) do not match the other results;
this can probably be attributed to some inconsistencies in the models by Henry and Lee
& Cheng (1974). The computed FEFTRA results in 3D were identical to the 2D results.
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Figure 3.3. The FEFTRA and revised analytical solution to the Henry’s problem for the
contours ofc′ = c/cs = 0.1− 1.0 (step0.1).

Figure 3.4. Henry’s original and some previous numerical solutions to Henry’s problem
for the contour ofc′ = c/cs = 0.5 (b = 0.1). The label ’present analysis’ denotes the
results by Croucher & O’Sullivan (1995).
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3.2 Elder’s free convection problem

Elder (1967) presented experimental and numerical studies concerning thermal convec-
tion produced by heating a base of a porous layer. Elder conducted the studies to verify
his finite difference model for the numerical analysis of thermally driven convection. The
numerical results of Elder (1967) for the problem of complex natural convection was sug-
gested by Voss & Souza (1987) as a basis for verification of transport simulators as well.
The objective of the solute analogue of Elder’s problem was to verify the models in rep-
resenting fluid flow driven purely by density differences. The large maximum density
change (20 %) makes this a strongly coupled flow and solute transport problem, which
has become a widely used test for variable density groundwater models (Oldenburg &
Pruess 1995; Kolditz et al. 1998; Ackerer et al. 1999; Frolkovič & De Schepper 2001).

Although the case is two–dimensional, the corresponding case with 3D elements was
computed as well. The test case is located in the FEFTRA program path as follows:

• feftra/solvit/t/press_conc/tpc2Dtr_elderS(coarse 2D mesh)

• feftra/solvit/t/press_conc/tpc2Dtr_elderL(fine 2D mesh)

• feftra/solvit/t/press_conc/tpc3Dtr_elderL(fine 3D mesh)

Definition of the problem

The problem concerns transient and coupled groundwater flow and solute transport in a
closed box, where a dense fluid lies on top of the less dense fluid (Figure 3.5). The box is
assumed to be a rectangular, vertical cross section (600 m× 150 m) taken through a ho-
mogeneous and isotropic medium. A source of solute with constant concentration (1 g/l)
is specified at the top of the domain (150 m≤ x ≤450 m), while a zero concentration
is maintained along the entire base. Pressure is initially hydrostatic and a zero pressure
is held at the two upper corners of the domain. Solute enters the initially freshwater by
diffusion, increases its density, and thereby begins a circulation process.

300 m

600 m

z

x
c = 0 g/l

150 m

c = 1 g/l
p  = 0 Parp  = 0 Par

Figure 3.5. Schematic description of Elder’s free convection problem.
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Mathematical model

The transient flow equation is written for the residual pressurepr [Pa] (total pressure
without the hydrostatic component of freshwater) as follows (Bear 1979; Huyakorn &
Pinder 1983; de Marsily 1986)

∇ ·
(

ρk

µ

(∇pr + (ρ− ρ0)g∇z
))

=
∂

∂t
(ρφ) (3.10)

wherek is the permeability tensor of rock [m2], µ is the dynamic viscosity of water
[kg/m/s],ρ is the density of water [kg/m3], ρ0 is the density of freshwater [kg/m3], g is
the gravitational acceleration [m/s2], z is the elevation relative to the sea level [m], andφ
is the porosity [−].

The equation describing transient salt transport is written in terms of salt concentrationc
[g/l] as follows (Bear 1979; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (D∇c)−∇ · (qc) = φ
∂c

∂t
, (3.11)

whereq is the Darcy velocity [m/s] andD is the dispersion tensor [m2/s ], which in this
case includes only the molecular diffusion and porosity, and is expressed as

Dij = φD0δij, (3.12)

whereD0 is the molecular diffusion coefficient [m2/s] andδij is the Kronecker delta func-
tion [−].

Equations (3.10) and (3.11) are coupled by the Darcy velocity

q = −k

µ
(∇pr + (ρ− ρ0)g∇z) (3.13)

and the densityρ, which is expressed as a linear function of the salt concentrationc as

ρ = ρ0 + acc, (3.14)

whereac is the coefficient of density dependence on concentration [−].

Assuming the medium incompressible and the porosity only a function of pressure, and
employing Equation (3.14), the right-hand side of Equation (3.10) can be written with salt
concentration as follows

∂

∂t
(ρφ) = φ

∂ρ

∂t
+ ρ

∂φ

∂t
= φac

∂c

∂t
. (3.15)

The last equality follows from the assumption that fluid flow is driven purely by density
differences. The input parameter values for equations are given in Table 3.2.
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Table 3.2. Input parameters for Elder’s free convection problem (Voss & Souza 1987).

Symbol Parameter Equation Value
k Permeability tensor of the medium 3.10, 3.13 4.845 · 10−13 m2

φ Porosity 3.10, 3.11, 3.120.1
µ Dynamic viscosity of water 3.10, 3.13 1.0 · 10−3 kg/m/s
g Gravitational acceleration 3.10, 3.13 9.81 m/s2

ρ0 Density of freshwater 3.10, 3.13, 3.141000 kg m−3

D0 Molecular diffusion coefficient 3.12 3.565 · 10−6 m2/s
ac Density dependence on concentration 3.14 200.0

Numerical solution method

The finite element method with linear elements was applied in solving the case numer-
ically. Although the problem is symmetrical with respect to the central vertical plane,
the whole modelled region was discretised to check the ability of the code to produce
symmetric results. As the problem has been reported to be sensitive to coarse discretisa-
tion (Oldenburg & Pruess 1995; Kolditz et al. 1998) two uniform quadrangular meshes
(Figure 3.6) were employed: a coarse mesh (1100 elements of size 13.6× 6 m) similar
to the discretisation used by Elder (1967), Voss & Souza (1987) and Kolditz et al. (1998)
and a fine mesh (4400 elements of size 6.8× 3 m) similar to the fine discretisation used
by Kolditz et al. (1998). The 3D mesh corresponding to the fine 2D mesh consisted of
4400 hexaedral elements. The simulation period of 10 years was discretised into 101
uniform time steps of size 0.1 years.

The partial differential equation (3.10) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique (Huyakorn & Pinder 1983), whereas
the streamline-upwind/Petrov-Galerkin (SUPG) method (Brooks & Hughes 1992; Laiti-
nen 1995) was applied for the transport equation (3.11). The Darcy velocity (3.13) for
the transport equation (3.11) was computed by taking directly the derivative of the com-
puted finite element approximation for the pressure (3.10). The resulting matrix equations
for the flow and transport equations were solved employing the conjugate-gradient and
Gauss-Seidel methods (Atkinson 1988). The solution was attained with the Picard itera-
tion scheme (Huyakorn & Pinder 1983), which was applied sequentially for the flow and
the transport equations until the convergence was attained (5 iteration sweeps per time
step). The fully implicit difference scheme was applied in the time discretisation.

Results

As there is no analytic solution for the problem, the numerical solution can only be as-
sessed by comparison to other numerical solutions. Elder’s free convection problem has
been studied by many authors employing various numerical methods. Elder (1967) used a
finite difference method for his original thermal convection problem, while Voss & Souza
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(a) Coarse mesh (1170 nodes, 1100 elements)

(b) Fine mesh (4539 nodes, 4400 elements)

Figure 3.6. Finite element meshes (2D) for Elder’s free convection problem.

(1987) developed the first finite element model for the corresponding salt transport prob-
lem. Subsequently, Oldenburg & Pruess (1995) implemented a standard finite difference
model for the problem, whereas Kolditz et al. (1998) studied the case with two Galerkin
finite element models employing various numerical techniques. On the other hand, new
numerical models were applied for the problem by Ackerer et al. (1999), whose model
was based on a mixed hybrid and discontinuous finite element methods, and by Frolkovič
& De Schepper (2001), who used a barycentre-based finite volume method. Although the
various numerical solutions show general agreement, there are differences between the
solutions, which show the complexity of Elder’s problem. On the other hand, a perfect
agreement cannot be expected, because of the different numerical methods and/or spatial
discretisations.

The FEFTRA results were compared to the original results by Elder (1967) and Voss &
Souza (1987) applying the coarse mesh (Figure 3.6(a)) as well as the subsequent results
by Kolditz et al. (1998), who applied the fine mesh (Figure 3.6(b)) and similar numerical
method (the Galerkin finite element method) as FEFTRA. The contours of 20 % and 60 %
concentration for the coarse mesh att = 2, 4 and 10 years are presented in Figure 3.7,
which show that the FEFTRA results compare reasonably well with the results by Elder
(1967) and Voss & Souza (1987), especially att = 10 years. Although there are some
differences at early times, all three solutions indicate similar physical behaviour of the
system. The FEFTRA results computed with the fine mesh (Figure 3.8) are in excellent
agreement with those given by Kolditz et al. (1998). The application of two different
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spatial discretisation also confirms observations of the sensitivity of Elder’s problem to
the discretisation (Oldenburg & Pruess 1995; Kolditz et al. 1998).
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(a) FEFTRA (t = 2 years) (b) Voss & Souza (1987) and Elder (1967)
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(c) FEFTRA (t = 4 years) (d) Voss & Souza (1987) and Elder (1967)

0 100 200 300 400 500 600
−150

−100

−50

0

x [m]

z [m
]

Contours of concentration at t = 10 years

0.6

0.2

(e) FEFTRA (t = 10 years) (f) Voss & Souza (1987) and Elder (1967)

Figure 3.7. Contours of 20 % and 60 % concentration for Elder’s free convection problem.
The FEFTRA results on the left side have been computed with the coarse mesh presented
in Figure 3.6(a). The solid lines on the right side are the finite element results by Voss &
Souza (1987), while the dashed lines are the finite difference results by Elder (1967) for
the analogous temperature problem.
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Figure 3.8. Contours of 20 % and 60 % concentration for Elder’s free convection problem.
The FEFTRA results on the left side have been computed with the fine mesh presented in
Figure 3.6(b). The dimensions are vertically exaggerated to match the plots by Voss &
Souza (1987).
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3.3 Salt dome problem

This test case was introduced in the international hydrologic code intercomparison project
(HYDROCOIN 1988) as the Case 5 of Level 1, and it concerns variable density ground-
water flow over a hypothetical salt dome with a largely simplified geometry. The case
was designed to simulate coupled groundwater flow and solute transport with density of
water strongly dependent on concentration. Although the highly non-linear salt dome
problem has its deficiencies, it has still been a subject of interest to many authors (Herbert
et al. 1988; Oldenburg & Pruess 1995; Konikow et al. 1997; Kolditz et al. 1998; Younès
et al. 1999) and it has become one of the standard tests for variable density groundwater
models.

Although the case was two-dimensional, the corresponding case with 3D elements was
computed as well (flow paths were computed only in 3D case). The test case is located in
the FEFTRA program path as follows:

• feftra/solvit/t/press_conc/tpc_hydrocoin_l1c5(pressure and concentration in 2D)

• feftra/solvit/t/press_conc/tpc_hydrocoin_l1c5_3D(pressure and concentration in 3D)

• feftra/solvit/t/velo/tq_hydrocoin_l1c5(velocity in 2D)

• feftra/solvit/t/velo/tq_hydrocoin_l1c5_3D(velocity in 3D)

• feftra/flowpath/t/tq_hydrocoin_l1c5_3D(flow paths in 3D)

Definition of the problem

The problem is an idealisation of the geological conditions and groundwater flow over the
salt dome, which is a potential site for a deep repository in bedrock. The case concerns
steady-state flow in a vertical two-dimensional slice (900 m× 300 m) of a homogeneous
isotropic rock (Figure 3.9). Impermeable lateral and bottom boundaries as well as a lin-
early varying pressure (from 105 Pa to 0 Pa) on the top boundary induce an inflow of
freshwater into the domain on the top left and outflow on the top right. The salt concen-
tration on the top is zero for the inflow region (0 m≤ x ≤ 202.5 m). The middle third
of the bottom represents the top of the salt dome, where a constant concentration of 1 g/l
is assumed. The rest of the bottom and the side walls as well as the outflow region of the
top are taken as impermeable to dispersive salt transport. Eventually, the dispersing salt
water reaches an equilibrium with the opposing freshwater inflow.
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Figure 3.9. Schematic description of the salt dome problem.

Mathematical model

The steady-state flow equation is written for the residual pressurepr [Pa] (total pressure
without the hydrostatic component of freshwater) as follows (Bear 1979; Huyakorn &
Pinder 1983; de Marsily 1986)

∇ ·
(

ρk

µ

(∇pr + (ρ− ρ0)g∇z
))

= 0, (3.16)

wherek is the permeability tensor of rock [m2], µ is the dynamic viscosity of water
[kg/m/s],ρ is the density of water [kg/m3], ρ0 is the density of freshwater [kg/m3], g is
the gravitational acceleration [m/s2], andz is the elevation relative to the sea level [m].

The equation describing salt transport is written in terms of salt concentrationc [g/l] as
follows (Bear 1979; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (D∇c)−∇ · (qc) = 0, (3.17)

whereq is the Darcy velocity [m/s] andD is the dispersion tensor [m2/s], which is ex-
pressed as

Dij = εT |q|δij + (εL − εT )
qiqj

|q| , (3.18)

whereεL is the longitudinal dispersion length [m],εT is the transversal dispersion length
[m] andδij is the Kronecker delta function [-].

Equations (3.16) and (3.17) are coupled by the Darcy velocityq [m/s]

q = −k

µ
(∇pr + (ρ− ρ0)g∇z) (3.19)

and the densityρ [kg/m3], which is expressed as a function of salt concentrationc [g/l]
as

1

ρ
=

c

ρs

+
1− c

ρ0

, (3.20)
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Table 3.3. Input parameters for the salt dome problem (HYDROCOIN 1988).

Symbol Parameter Equation Value
k Permeability tensor of the medium 3.16, 3.19 1.0 · 10−12 m2

µ Dynamic viscosity of water 3.16, 3.19 1.0 · 10−3 kg m−1s−1

g Gravitational acceleration 3.16, 3.19 9.81 m s−2

ρ0 Freshwater density 3.16, 3.19, 3.201000 kg m−3

ρs Salt water density 3.20 1200 kg m−3

εL Longitudinal dispersion length 3.3 20 m
εT Transversal dispersion length 3.3 2 m

whereρs is the salt water density [kg/m3]. The input parameter values for equations are
given in Table 3.3.

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally. The modelled region was discretised to a mesh with 12899 triangular and quadran-
gular elements (Figure 3.10). The mesh was refined near the salt dome so that the size of
the smallest elements were of order of 1 metre. The corresponding 3D mesh consisted of
wedge and hexaedral elements.

The partial differential equation (3.16) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique (Huyakorn & Pinder 1983), whereas
the streamline-upwind/Petrov-Galerkin (SUPG) method (Brooks & Hughes 1992; Laiti-
nen 1995) was applied for the transport equation (3.17). The Darcy velocity (3.19) for the
transport equation (3.17) was computed by taking directly the derivative of the computed
finite element approximation for the pressure (3.1). The resulting linear matrix equations
for the flow and transport equations were solved employing the conjugate-gradient and
Gauss-Seidel methods (Atkinson 1988).

The steady-state solution was attained with the Picard iteration scheme (Huyakorn &
Pinder 1983), which was applied sequentially for the flow and the transport equations
until the convergence was attained (60 iteration sweeps). At the end of each iteration
sweep the concentration result was updated using an underrelaxation scheme to reduce
the oscillations of concentration changes from iteration to iteration

ci = ci−1 + 0.49(c− ci−1), (3.21)

whereci−1 andc denote the result of the previous iteration and the current iteration, re-
spectively, andci is the final value of concentration at the current iteration sweep. The
coefficient0.49 in Equation (3.21) was found by trial and error.

The flow paths (in 3D cases) were computed with the algorithm that uses the continuous
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Figure 3.10. Finite element mesh for the salt dome problem (12900 elements, 6700 nodes).

Darcy velocity field obtained by treatingq as an unknown variable and applying the finite
element method to Equation (3.19).

Results

As there is no analytic solution for the the salt dome problem, the numerical solution of
the problem can only be assessed on the basis of the expected physical behaviour of the
system and the other numerical solutions. On the basis of the nature of the case, pressure
should decrease from left to right and from the bottom to the top across the domain,
whereas salt should form a plume flowing to the right and upwards from the salt dome.
On the other hand, the pathlines starting at the top-left of the domain should first descend
downwards and then move to the right and upwards across the domain.

The HYDROCOIN (1988) project indicated that the salt dome problem is numerically
very difficult to solve. In the project the problem was solved by five different teams
(Table 3.4) employing various computer codes with various special numerical methods.
Although the overall flow field computed by the teams showed general agreement, there
were significant differences in pressure and concentration fields as well as pathlines. On
the other hand, it was concluded that the results of teams 1, 2 and 4 (Table 3.4) were reli-
able, because they were fairly close to each other and included all the expected physical
features.

Since the HYDROCOIN project the salt dome problem has been tackled by several au-
thors (Herbert et al. 1988; Oldenburg & Pruess 1995; Konikow et al. 1997; Kolditz et al.
1998; Younès et al. 1999), who have corrected deficiencies in the original specification of
the problem and provided some variations for the input parameters. However, the subse-
quent solutions still have some differences, which show the difficulty of the problem. On
the other hand, a perfect agreement between the numerical solutions cannot be expected,
because the codes employ different numerical methods.
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The computed FEFTRA results were compared with the numerical solutions by the orig-
inal HYDROCOIN (1988) teams (Table 3.4). The result quantities were pressure and
salinity distribution along horizontal lines at different depths, the vertical Darcy velocity
along the top boundary, contours of salt concentration and pathlines starting at the top-left
of the domain. The computed pressure at the depths of 50 m and 250 m is presented in
Figure 3.11 showing a good agreement between the FEFTRA results and those of teams
1, 2 and 4, although the differences in the pressure increase downwards. The vertical
Darcy velocities (Figure 3.12) are in excellent agreement. The five FEFTRA pathlines
(Figure 3.13) are also essentially in line with those computed by the HYDROCOIN teams
1, 2 and 4. However, the computed salt concentration distribution indicates some discrep-
ancies between the FEFTRA and other results. The concentrations along the horizontal
lines (Figure 3.14) show a more dispersive solution by FEFTRA than teams 1, 2 and 4.
FEFTRA overestimates the salt concentrations near the top-right corner and towards the
right boundary at the depths of 100 and 200 m. On the other hand, the FEFTRA concen-
tration compared well with that of team 1 at the bottom boundary. The same observations
can also be made on the basis of the contours of the salt concentration (Figure 3.15). The
computed FEFTRA results in 3D were identical to the 2D results.

The possible reasons for the discrepancies might be the use of non-continuous Darcy
velocity in the transport equation (3.17) by taking directly the derivative of the computed
finite element approximation for the pressure. On the other hand, the Picard iteration
scheme with underrelaxation may not have ended up to full convergence. In addition,
there were some inconsistencies in the original specification of the case that may have
caused numerical problems.

The salt dome case also proved to be very difficult to solve for the FEFTRA code. In
the first efforts, FEFTRA resulted in a significant overestimation of the salt concentration
near the top-right corner of the domain. This was finally overcome only by assigning
convective mass flux through the right side of the top boundary (697.5 m≤ x ≤ 900 m,
Figure 3.9). The flux was calculated self-consistently by the code from the Darcy velocity
and concentration. It should be noted that the two top corners constitute a source of
inconsistency in the original problem specification (HYDROCOIN 1988; Herbert et al.
1988).

Table 3.4. HYDROCOIN (1988) teams and computer codes used in the salt dome problem.

No Team Computer code
1 CFEONW CFEST
2 NAMAER NAMMU
3 MTRRIV METROPOL
4 SWITUB SWIFT
5 SW2SAN SWIFT2
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Figure 3.11. Computed pressures along two horizontal lines. The HYDROCOIN (1988)
teams with corresponding computer codes are summarised in Table 3.4.
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Figure 3.12. Computed vertical component of the Darcy velocity along top boundary. The
HYDROCOIN (1988) teams and computer codes are summarised in Table 3.4.
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with corresponding computer codes are summarised in Table 3.4.
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Figure 3.14. Computed salt concentration along four horizontal lines. The HYDROCOIN
(1988) teams with corresponding computer codes are summarised in Table 3.4.
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3.4 Saltwater upconing beneath a pumping well

As a part of seeking a final repository for spent nuclear fuel an underground rock charac-
terization facility, to be potentially extended with the drifts of the repository, is currently
being excavated in the bedrock of Olkiluoto. The open tunnel system will constitute a
hydraulic disturbance to the site’s natural groundwater system. In particular, the upward
flow below the tunnels may give rise to the upconing of more saline groundwater observed
deep in the bedrock of Olkiluoto. Saline water is a major concern with regard to the per-
formance of the tunnel backfill material after tunnel closure, because it may significantly
decrease the swelling pressure and increase the hydraulic conductivity of the backfill.

Zhou et al. (2005) have investigated the effect of dispersion in saltwater upconing and de-
cay beneath a pumping well. They simulated a constant-rate pumping of an axisymmetric,
anisotropic and confined aquifer, equipped with a layer of seawater underlying freshwater.
Their model was a modification of the model introduced by Voss & Souza (1987). The
simulations were carried out using FEAS code, which uses a Eulerian-Lagrangian frame-
work for solving the advective-dispersive salt transport equation and should produce an
accurate salinity distribution near sharp concentration fronts. Although not originally pre-
sented as a case for testing of groundwater simulation software, this case is suitable for
cross-code testing of FEFTRA for the simulation of the saline water upconing phenom-
enon.

The test case is located in the FEFTRA program pathfeftra/solvit/t/press_conc/tpc_upconing.

Definition of the problem

The case concerns upconing of saline water in an axisymmetric disc of radius of2000
m, with a 20 m long well screen centred at the top and set to pump at a constant rate
(Figure 3.16). Recharge of water occurs only at the external radial boundary. Initially, a
20 m thick layer of saltwater rests at the bottom of the domain and a2 m thick transition
zone separates the saltwater from freshwater in the upper part. A hydrostatic pressure
distribution is assumed as an initial condition for the flow equation. The inner radial
boundary as well as the top and bottom of the domain are impermeable, while at the
external boundary dynamic boundary conditions are used to maintain a zero concentration
gradient normal to the boundary. At the external boundary the pressure distribution is
hydrostatic thorough the simulation.

Mathematical model

Transient flow equation is written for residual pressurepr [Pa] as (Bear 1979; Huyakorn
& Pinder 1983; de Marsily 1986)

∇ ·
(

ρk

µ
(∇pr + (ρ− ρ0)g∇z)

)
− ρQout =

∂

∂t
(ρφ), (3.22)
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Figure 3.16. Schematic description of the axially (the vertical side on the left) symmet-
ric saltwater upconing problem. The inner boundary as well as the top and bottom are
impermeable, whereas the external boundary on the right is open for recharge of water.

wherek is the permeability tensor of the porous media [m2], µ is the dynamic viscosity of
water [kg/m/s],ρ is the density of water [kg/m3], ρ0 is the density of freshwater [kg/m3],
g is the gravitational acceleration [m/s2], z is the elevation relative to the top of the
modelled domain [m], andφ is the porosity of the media [-]. The termρQout represents
the sink in the model domain, whereQout is the volumetric outflow rate [m3/s].

The transient salt transport equation is written as (Bear 1979; Huyakorn & Pinder 1983;
de Marsily 1986)

∇ · (D∇c)−∇ · (qc) + cinQin − cQout = φ
∂c

∂t
, (3.23)

whereq is the Darcy velocity [m/s] andD is the dispersion tensor [m2/s]. The dispersion
tensor is expressed as

Dij = εT |q|δij + (εL − εT )
qiqj

|q| , (3.24)

whereεL is the longitudinal dispersion length [m],εT is the transversal dispersion length
[m] andδij is the Kronecker delta function [-].

Equations (3.22) and (3.23) are coupled by the Darcy velocity

q = −k

µ
(∇pr + (ρ− ρ0)g∇z), (3.25)

the density
ρ = ρ0 + acc, (3.26)
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Table 3.5. Input data for the Case A and Case C of the saltwater upconing problem.

Symbol Parameter Equation Value
kx, ky Horizontal permeability 3.22 2.56× 10−11 m/s

kz Vertical permeability 3.22 1.00× 10−11 m/s
φ Porosity 3.22 0.2
µ Viscosity 3.22 1.0× 10−3 kg/ms

Qw Pumping rate of the well 3.28 2400 m3/d
csw Concentration of saltwater 3.29 35.0 g/l
cfw Concentration of freshwater 3.29 0.0 g/l
εL Longitudinal dispersivity, Case A 3.24 1.0 m

Longitudinal dispersivity, Case C 3.24 10.0 m
εT Transverse dispersivity, Case A 3.24 0.5 m

Transverse dispersivity, Case C 3.24 1.0 m
∆T Time-step size - 5 d
nit Number of Picard iterations - 200
ω Relaxation in Picard iterations 0.08

whereac is the coefficient of density dependence on concentration [−], and the dynamic
viscosity

µ = µ0

(
1 + 1.85

c

1000
− 4.1(

c

1000
)2 + 44.5(

c

1000
)3

)
. (3.27)

The input parameters for the equations are given in Table 3.5.

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally. Due to the axial symmetry of the problem, it is sufficient to select the computational
domain as a2000 m wide wedge with opening angle of5 degrees. At the inner radial
boundary wedge elements are used, while the rest of the domain is discretized using brick
elements. The computation mesh is extensively refined at the location of the pumping
well, and also at the location of the initial interface of seawater and freshwater as well as
near the top and bottom of the domain. The characteristic element size varies between0.5
m at the well and25 m at the distant parts of the model. The total number of elements in
the mesh is34 000 and the total number of nodes is68 000.

To model the pumping well, equidistant nodal sinks are placed at the top of the inner
radial boundary. The pumping rate at the well is adjusted to produce the correct outflow
rate at the inner boundary of the model,

Qout = Qw × 5◦

360◦
= 33.3 m3/d . (3.28)

The outflow rate is distributed uniformly along the20 m long line of nodes.
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The partial differential equation (3.22) describing groundwater flow was solved numeri-
cally employing the conventional Galerkin technique (Huyakorn & Pinder 1983), whereas
the streamline-upwind/Petrov-Galerkin (SUPG) method (Brooks & Hughes 1992; Laiti-
nen 1995) was applied for the transport equation (3.23). The Darcy velocity (3.25) for the
transport equation was computed by taking directly the derivative of the computed finite
element approximation for the pressure (3.22). The resulting matrix equations for the flow
and transport equations were solved employing the conjugate-gradient and Gauss-Seidel
methods (Atkinson 1988). The non-linear coupling of the equations is resolved using200
Picard iterations with underrelaxation. A suitable relaxation parameter to ensure conver-
gence was found to beω = 0.08. Time-steps are of the constant size of5 days and total
simulation time is approximately 4 years, comprising of 300 time-steps.

Results

Zhou et al. (2005) presented three different cases with regard to the dispersion parameters.
For Case A they defined the longitudinal dispersivityεL = 1 m and, for Case BεL = 0.2
m and for Case C they used the valueεL = 10 m. Only the upconing part of Cases A
and C are simulated with FEFTRA. Case B is excluded since the extremely long period of
time to be simulated would have reserved excessive amounts of computational resources.

The results are presented using a normalized mass-fraction as the primary quantity, de-
fined as

C =
c− cfw

csw − cfw

, (3.29)

wherecfw = 0 g/l is the TDS of freshwater andcsw = 35 g/l is the TDS of the saline
water.

When the FEFTRA results were checked against the ones computed with the FEAS code
in the simulation of Case A, the contour line of0.02 mass-fraction does not extend as
close to the well along the inner radial boundary as in the reference results for time step
1 year (Figure 3.17). However, at2 years, the0.02 mass-fraction has already reached
the pumping well atz = 100 m, which corresponds well with the reference result. At
distances20 m and100 m from the inner boundary the FEFTRA distribution of mass-
fraction compares almost identically with the FEAS code values (Figure 3.18). Similarly,
in Case C (Figure 3.19), the salinity contour lines calculated with the FEFTRA and FEAS
codes match very well. As a conclusion, all of the results compare well with the results
obtained by Zhou et al. (2005), indicating good consistency between the two codes FEAS
and FEFTRA.
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Figure 3.17. The computed mass-fraction distribution in Case A of the saltwater upconing
problem. On the left, the reference results by Zhou et al. (2005); on the right, those
computed with FEFTRA.

76



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Mass fraction
z
 [

m
]

mass fraction at r = 20m and t = 0.5 year
mass fraction at r = 100m and t = 0.5 year
mass fraction at r = 20m and t = 3.0 year
mass fraction at r = 100m and t = 3.0 year

Figure 3.18. The computed mass fraction along vertical lines at two locations and time-
steps in Case A of the saltwater upconing problem. On the left, reference results by Zhou
et al. (2005); on the right, those computed with FEFTRA.

Figure 3.19. The computed mass-fraction distribution in Case C of the saltwater upconing
problem. On the left, the reference results by Zhou et al. (2005); on the right, those
computed with FEFTRA.
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4. Heat transfer

The heat output of spent fuel will raise the temperature of the repository and the sur-
rounding bedrock several tens of degrees. The temperature rise not only affects the chem-
ical stability of the bentonite clay surrounding the disposal canisters but also may cause
changes to flow conditions over distances of several hundred metres for many centuries.
Thus, the simulation of heat transfer separately or coupled to flow constitute an important
part of the ongoing repository design and safety assessment.

4.1 Heat transfer induced by repository

Rae & Robinson (1979) and Ratigan (1977) introduced simple test cases in which the
repository-induced heat transfer in a homogeneous rock was considered. The cases are
used to verify the capability of the FEFTRA code to simulate heat transfer by both con-
duction through rock and convection with flowing water. The test cases are located in the
FEFTRA program path as follows:

• feftra/solvit/t/temp/tt2DcondC(Case 1: constant source)

• feftra/solvit/t/temp/tt2DcondE(Case 2: decaying source)

• feftra/solvit/t/temp/tt2DcondEF(Case 3: decaying source with imposed flow)

Definition of the problem

The case consists of a planar uniform repository located in an isotropic and homogeneous
rock at a depth of 500 metres (Figure 4.1). The repository, which has the same properties
as the surrounding rock, acts as a heat source, which raises temperature in the surround-
ings. The modelled region is comprised of a quadratic vertical cross section of size 3 km
× 3 km with a line source representing the repository. Three different cases are consid-
ered. In two cases, the heat transfer mechanism is assumed to be conduction through rock
induced by a constant (Case 1) and decaying (Case 2) source. In the third case a decaying
source and a constant horizontal flow across the modelled region is assumed resulting in
heat transfer by both conduction through rock and convection with flowing water.

Mathematical model

The equation for heat conduction is written in terms of temperatureT [K] as (Carslaw &
Jaeger 1959; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (λ∇T
)−∇ · (ρcwq∇T

)
+ H = ρrcr

∂T

∂t
, (4.1)

whereλ is the thermal conductivity tensor of rock [W/m/K], q is the Darcy velocity
[m/s], cw is the specific heat of water [J/kg/K] H is the heat source [W/m3], ρr is the
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Figure 4.1. Schematic description of a test case with the repository induced heat transfer.

density of rock [kg/m3], cr is the specific heat of rock [J/kg/K] and t is time [s]. The
second term in the left-hand side of Equation (4.1) represents the convective heat flux,
which is not considered in Cases 1 and 2, assuming only conductive heat transfer.

The heat sourceH in Equation (4.1) is assumed to be as follows

H =

{
H0 in Case 1
H0(0.882eλ1t + 0.118eλ2t) in Case 2 and 3,

(4.2)

whereH0 is the initial heat power of the repository [W/m3], andλ1 andλ2 are the decay
coefficients [1/s].

The prescribed zero temperature rise is applied on the earth surface and no heat flow on
other boundaries. The input parameter values are given in Table 4.1.

Table 4.1. Input parameters for the repository-induced heat transfer case.

Symbol Parameter Equation Value
λ Thermal conductivity of rock 4.1 2.05 W m−1 K−1

ρr Density of rock 4.1 2800 kg m−3

cr Specific heat of rock 4.1 735 J kg−1K−1

cw Specific heat of water 4.1 4180 J kg−1K−1

H0 Initial heat power of the repository 4.2 5.25 W/m3

λ1 Decay coefficient of heat power (Case 2 and 3) 4.2 7.3 · 10−10 s−1

λ2 Decay coefficient of heat power (Case 2 and 3) 4.2 4.4 · 10−11 s−1

qx Darcy velocity in x-direction (Case 3) 4.1 2.0 · 10−9 m/s
qy Darcy velocity in y-direction 4.1 0.0 m/s
qz Darcy velocity in z-direction 4.1 0.0 m/s

79



Figure 4.2. Finite element mesh with 3200 elements and 6400 nodes.

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally. The modelled volume was discretised into mesh with 3 200 triangular (rock) and
line (repository) elements (Figure 4.2). The mesh was refined near the repository so that
the smallest elements were of an order of 5 metres. In Case 1 (constant source), the sim-
ulation period was discretised into 45 time steps, while 93 steps were applied in Cases 2
and 3 (decaying source with and without imposed flow).

The partial differential equation (4.1) describing heat transfer was solved numerically em-
ploying the conventional Galerkin technique (Huyakorn & Pinder 1983). The fully im-
plicit difference scheme was applied in the time discretisation for Equation (4.1). The
mass matrix resulting from the transient finite element formulation of Equation (4.1)
was formed by a diagonalisation procedure known as "lumping" (Huyakorn & Pinder
1983), which gives a more stable solution to practical problems than a "consistent" ma-
trix. Finally, the linear matrix equation was solved employing the conjugate-gradient
method (Atkinson 1988).

Results

The simulated temperature rises were compared against the analytical and numerical so-
lutions given by Rae & Robinson (1979) at the repository centre and peripheries. The
numerical comparison values were calculated with the NAMMU program package. The
results as a function of time are presented in Figure 4.3, which shows a good agreement
between FEFTRA and other solutions.
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(e) Analytical and NAMMU: case 3.
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Figure 4.3. Analytical and computed temperature rises as a function of time at the repos-
itory centre and peripheries in Case 1 (constant source), Case 2 (decaying source) and
Case 3 (decaying source with flow). The analytical (crosses) and numerical (NAMMU,
solid) comparison values on the left were taken from Rae & Robinson (1979).
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4.2 Heat conduction in an anisotropic medium

The thermal properties of bedrock surrounding the disposal canisters are essential fac-
tors in the repository design. The geological field investigations in the boreholes at the
Olkiluoto site have indicated that the thermal conductivity tends to be dependent on the
direction of measurement. The anisotropic nature of conductivity results from anisotropic
structures of rock such as foliation and layering, which prevent heat to transfer as effec-
tively perpendicular to the structures as it does parallel to the structures.

Carslaw & Jaeger (1959) presented analytical solutions for various heat conduction prob-
lems. The case with a continuous point source is employed to verify the capability of
FEFTRA for anisotropic heat conduction problems. For comparison, an isotropic case is
considered too. The test cases are located in the FEFTRA program path as follows:

• feftra/solvit/temp/tt3DcontPa(anisotropic case)

• feftra/solvit/temp/tt3DcontP(isotropic case)

Definition of the problem

The problem is comprised of a point source, which releases heat at a constant rate per
unit time resulting in temperature rise in an infinite, anisotropic porous rock (Carslaw
& Jaeger 1959). The thermal conductivities were assumed to be different along each
principal direction located parallel to the global coordinate axes. The time period to be
considered starts from the release of heat and continues up to 70 days onward.

Mathematical model

The equation governing heat conduction in a porous medium is based on the law of conser-
vation of energy; it can be written in terms of the temperatureT [K] as follows (Carslaw
& Jaeger 1959; Huyakorn & Pinder 1983; de Marsily 1986):

∇ · (λ∇T
)

+ H = ρc
∂T

∂t
, (4.3)

whereλ is the thermal conductivity tensor of medium [W/m/K], H is the internal heat
source [W/m3], ρ is the density of the medium [kg/m3], andc is the specific heat of the
medium [J/kg/K]. The first term in the left-hand side of Equation (4.3) represents con-
ductive heat flux to or from the system, while the right-hand side describes the temporal
change in the heat content.

The thermal conductivity tensorλ in Equation (4.3), which takes into account the anisotropy
of the medium, is expressed as

λ = AT λ′A, (4.4)
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where

λ′ =




λx′ 0 0
0 λy′ 0
0 0 λz′


 (4.5)

is a diagonal matrix including the thermal conductivitiesλx′ , λy′ , λz′ [W/m/K] along the
principal directions(x′, y′, z′) rotated from the global coordinate system(x, y, z). A is
a general rotation matrix, which transforms the conductivities along the principal direc-
tions to the global coordinate system. Thus, the consideration of an arbitrary directed
anisotropic thermal conductivity requires the knowledge of six different parameters: the
conductivities along the principal directionsλx′ , λy′ , λz′ and the corresponding Euler’s
angles(α, β, γ). However, if the principal axes(x′, y′, z′) are parallel to the global coor-
dinate axes(x, y, z) the Euler’s angles are zero and the global conductivity matrix (4.4)
reduces to the diagonal matrix (4.5) (Löfman 2001).

The thermal properties of bedrock and the heat source are presented in Table 4.2. The
properties of the rock were based on the averages of the measurements of Olkiluoto mica
gneiss at the temperature of 60◦C (Kukkonen 2000). The conductivities along the prin-
cipal directions were modified from an average value. The heat power of the point source
was assumed to be approximately the power of one disposal canister for the fuel of burnup
of 35MWd/kg after cooling for 30 years (Raiko 1996).

Numerical solution method

Due to the symmetry of the case, only 1/8 of the volume around the point source was
included into the model of cubic shape (Figure 4.4). The length of the edges of the cube
were chosen to be 10 metres, which was sufficient considering the short duration (70
days) of the simulation. No heat is assumed to transfer through the faces of the cube.
The modelled volume was discretised into mesh with 3400 linear hexaedral elements
(Figure 4.4), while the simulation period was discretised into 31 time steps.

Table 4.2. The thermal properties of rock at the temperature of 60◦C (Kukkonen 2000)
and the heat power in the test case with continuous point source. The conductivity of 2.61
W/m/K is used for the isotropic case.

Symbol Parameter Equation Value
λx′ Thermal conductivity along the principal axisx′ 4.5, 4.6 3.61W/m/K
λy′ Thermal conductivity along the principal axisy′ 4.5, 4.6 2.61W/m/K
λz′ Thermal conductivity along the principal axisz′ 4.5, 4.6 1.61W/m/K
ρr Density of rock 4.3 2749kg/m3

cr Specific heat of rock 4.3 784J/kg/K
P Power of heat source 4.3, 4.6 1600W
(x0, y0, z0) Location of heat source 4.6 (0, 0, 0)
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Figure 4.4. Finite element mesh with 3375 elements in the test case with continuous point
source.

The partial differential equation (4.3) describing the heat conduction was solved numer-
ically employing the conventional Galerkin technique (Huyakorn & Pinder 1983), and
the fully implicit difference scheme for the time discretization. The mass matrix result-
ing from the transient finite element formulation of the heat conduction equation was
formed by a diagonalization procedure known as "lumping" (Huyakorn & Pinder 1983),
which gives a more stable solution in practical problems than a "consistent" matrix. Fi-
nally, the resulting linear matrix equation is solved employing the conjugate-gradient
method (Atkinson 1988).

Results

The simulated values were compared against the analytical solution provided by Carslaw
& Jaeger (1959) as follows

T (x, y, z, t) =
P

4π
√

λy′λz′(x− x0)2 + λx′λz′(y − y0)2 + λx′λy′(z − z0)2
·

erfc

√
ρrcr

4t

(
(x− x0)2

λx′
+

(y − y0)2

λy′
+

(z − z0)2

λz′

)
, (4.6)

whereP is the power of the heat source[W ], (x0, y0, z0) is the location of the point heat
source [m], anderfc is the complementary error function (Zwillinger 1996).

The results at the distance of 0.88 metres from the source as a function of time and after
37 days as a function of distance from the source are presented in Figures 4.5 and 4.6,
which show that the numerically computed temperatures compare well with the analytical
solutions both in the isotropic and anisotropic cases.

.
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Figure 4.6. Temperature at 37 days in the test case with continuous point source.
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4.3 Heat conduction induced by disposal canister

The spent nuclear fuel will be encapsulated in final disposal canisters made of cast iron
enclosed in a copper shell. The canisters will be emplaced in holes drilled at the bottom of
the repository tunnels. The canisters are surrounded with bentonite clay, which expands
when it absorbs water. The clay not only prevents direct groundwater flow to the surface
of the canister, but also protects the canister against minor bedrock movements. In order
to guarantee the chemical stability of the bentonite, one of the basic design requirements
for the repository is that the surface temperature of the disposal canisters will not be
allowed to exceed a limit of 100◦C. The heat production of spent nuclear fuel will raise
the temperature of the canisters and the surrounding bedrock several tens of degrees.
Thus, in order to avoid too high temperatures in the bentonite layer the thermal analyses
of the canisters is an important part of the repository design.

This case is employed to verify the capability of the FEFTRA code to simulate detailed
canister-scale heat conduction problems required in the repository design. The case is
located infeftra/solvit/temp/tt3Dcanisterin the FEFTRA program path.

Definition of the problem

The case is comprised of one disposal canister surrounded by a bentonite clay layer (Fig-
ure 4.7), and located in an infinite porous rock with an isotropic and homogeneous prop-
erties. The canister acts as a cylindrical and exponentially decreasing heat source, which
raises temperature in the canister, bentonite and surrounding bedrock. The real disposal
canister consists of a cast iron insert with an outer shell of copper. Because the thermal
conductivity of the metal canister is two orders of magnitude higher than the surrounding
bentonite and rock, the canister will be practically at a uniform temperature and all the
thermal gradients will prevail in the bentonite and rock around the canister. Thus, the can-
ister can be assumed to be homogeneous in the simulations. The period to be considered
starts from the moment of disposal and continues up to 20 years onward.

Mathematical model

The equation governing heat conduction in a porous medium is based on the law of conser-
vation of energy; it can be written in terms of the temperatureT [K] as follows (Carslaw
& Jaeger 1959; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (λ∇T
)

+ H = ρc
∂T

∂t
, (4.7)

whereλ is the thermal conductivity tensor of medium [W/m/K], H is the internal
heat source [W/m3], ρ is the density of medium [kg/m3], and c is the specific heat of
medium [J/kg/K]. The first term in the left-hand side of Equation (4.7) represents con-
ductive heat flux to or from the system, while the right-hand side describes the temporal
change in the heat content.
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Figure 4.7. Schematic description of the test case with one disposal canister. The bound-
aries of the cubic-shaped model are located at a distance of 100 metres from the mid-point
of the canister. The dimensions of the canister are based on Raiko (1996) and Raiko &
Salo (1999).

The thermal conductivity tensorλ in Equation (4.7) is a diagonal matrix

λ =




λ 0 0
0 λ 0
0 0 λ


 , (4.8)

in whichλ is the isotropic thermal conductivity [W/m/K].

The thermal properties of the canister were assumed to be those of copper, while the
properties of rock were based on the averages of the measurements of Olkiluoto mica
gneiss at the temperature of 60◦C (Kukkonen 2000). The saturation of the bentonite clay
around the canister varies depending on the heat of the canisters and the supply of water in
the surrounding rock. The thermal conductivity varies with saturation and can be nearly
twice as high in a fully saturated bentonite than in the dry one. However, as the degree
of saturation is very uncertain, a conservative assumption was made and the properties of
dry bentonite were employed in this work (Raiko 1996; Ageskog & Jansson 1999). The
thermal properties of the canister, bentonite clay and rock, as well as the dimensions of
the canister, are presented in Table 4.3.

The heat generation of the disposal canister depends on the amount, burnup and cooling
time of the fuel. In this study, the cooling time of 30 years was assumed, and an exponen-
tially decreasing fit for the heat power of one canister was constructed on the basis of the
computations on the heat output of spent nuclear fuel of burnup of 35MWd/kg during
the period between 20 and 200 years of cooling time (Raiko 1996). The fit is defined (as
years after disposal) by

P (t) = 2319e−0.0245t + 620.7e−0.0028t, −10 ≤ t ≤ 170 years after disposal, (4.9)

which is presented with the corresponding data points in Figure 4.8.
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Table 4.3. The thermal properties of the canister, bentonite clay around the canister and
rock in the test case with one disposal canister.

Symbol Parameter Equation Value
λc Thermal conductivity of the canister (copper) 4.8 380W/m/K
ρc Density of the canister (copper) 4.7 8930kg/m3

cc Specific heat of the canister (copper) 4.7 390J/kg/K
rc Diameter of the canister 1.05m
hc Height of the canister 4.8m
λb Thermal conductivity of the bentonite clay 4.8 0.75W/m/K
ρbcb Heat capacity of the bentonite clay 4.7 2.2MJ/m3/K
db Thickness of the bentonite clay 0.35m
λr Thermal conductivity of rock 4.8 2.61W/m/K
ρr Density of rock 4.7 2749kg/m3

cr Specific heat of rock 4.7 784J/kg/K
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Figure 4.8. An exponential fit for heat power of one disposal canister for the fuel of
burnup of 35MWd/kg based on the data by Raiko (1996) during the period between 20
and 200 years of cooling time (i.e. between -10 and 170 years after disposal).
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Figure 4.9. Finite element mesh with 1584 elements in the case with one disposal canister.
Due to symmetry the mesh contains only 1/8 of modelled volume (see Figure 4.7).

Numerical solution method

Due to the symmetry of the case, only 1/8 of the volume around the mid-point of the
canister was included into the model of the cubic shape (Figure 4.9). As the simulation
was carried out from the moment of disposal to up to 20 years onward, the length of the
edges of the cube was chosen to be 100 metres, which is far enough from the canister
not to have any effect on the temperature distribution in the model during the simulation
period. No heat is assumed to transfer through the boundaries of the model. The modelled
volume was discretised into mesh with 1600 linear hexaedral elements (Figure 4.9), while
the simulation period was discretised into 45 time steps.

The partial differential equation (4.3) describing the heat conduction was solved numer-
ically employing the conventional Galerkin technique (Huyakorn & Pinder 1983), and
the fully implicit difference scheme for the time discretization. The mass matrix result-
ing from the transient finite element formulation of the heat conduction equation was
formed by a diagonalization procedure known as "lumping" (Huyakorn & Pinder 1983),
which gives a more stable solution in practical problems than a "consistent" matrix. Fi-
nally, the resulting linear matrix equation is solved employing the conjugate-gradient
method (Atkinson 1988).

Results

The simulated values were compared against the analytical solution given by the analyt-
ical REPTEM code (Hautojärvi et al. 1987; Carslaw & Jaeger 1959). The results in the
canister as well as in rock at a distance of 1.8 and 12.3 metres from the centre of the can-
ister are presented in Figure 4.10, from which a good agreement is observed between the
numerical and analytical solution. Small discrepancies can be attributed to the different
fit in the analytical and numerical models for the heat power. In addition, differences be-
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tween the line source model employed in the REPTEM code for the canister and the fully
three-dimensional canister model employed in the FEFTRA code may have some effects
on the results, although the surface area of the canister in both models has been adjusted
to correspond to each other.

4.4 Thermally induced groundwater flow in a saturated
permeable medium

The heat output of spent nuclear fuel will raise the temperature of the repository and the
surrounding bedrock several tens of degrees, which may cause changes to the flow con-
ditions over distances of several hundred metres for many centuries. Although the effects
of temperature rise can usually be considered to be short-term, there are situations that
require the estimation of the phenomenon. The international Hydrologic Code Intercom-
parison project (HYDROCOIN 1988) introduced a test case (Level 1, Case 4), in which
thermally induced groundwater flow in a saturated permeable medium was considered.
The case is used to verify the capability of the FEFTRA code to simulate buoyancy-driven
groundwater flow coupled with heat transfer. The test case is located in the FEFTRA pro-
gram path as follows:

• feftra/solvit/t/press_temp/tpt_hydrocoin_l1c4(base case)

• feftra/solvit/t/press_temp/tpt_hydrocoin_l1c4s(coarse mesh)

• feftra/solvit/t/temp/tt_hydrocoin_l1c4s(coarse case with temperature only)
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Definition of the problem

The case consists of a spherically idealised uniform repository located in an infinite rock
with isotropic and homogeneous properties (Figure 4.11). The repository, which has the
same properties as the surrounding rock, acts as an exponentially decaying heat source,
which raises the temperature in the surroundings. Due to low permeability of the rock,
the effect of convection with flowing water was considered insignificant, and the dominant
heat transfer mechanism could be assumed to be conduction through rock. The temporal
variations of the flow field were assumed to follow solely from the time-dependent heat
output of the repository. In addition, the density of water was assumed to be dependent
on temperature, whereas constant viscosity and the thermal expansion coefficient of water
were applied.

Mathematical model

The flow equation is written for the residual pressurepr [Pa] (the total pressure without the
hydrostatic component of freshwater) as follows (Bear 1979; Huyakorn & Pinder 1983;
de Marsily 1986)

∇ ·
(

ρk

µ

(∇pr + (ρ− ρ0)g∇z
))

= 0, (4.10)

whereρ is the density of water [kg/m3], ρ0 is the density of the freshwater [kg/m3], k is
the permeability tensor of rock [m2], µ is the dynamic viscosity of water [kg/m/s], g is
the gravitational acceleration (= 9.81m/s2), andz is the elevation relative to the sea level
[m]. The flow equation (4.10) was written in a steady-state form, because the temporal
variations of the flow field were assumed to follow solely from the heat output of the
repository.

The equation for heat conduction is written in terms of temperatureT [K] as (Carslaw &
Jaeger 1959; Huyakorn & Pinder 1983; de Marsily 1986)

∇ · (λ∇T
)

+ H = ρrcr
∂T

∂t
, (4.11)

whereλ is the thermal conductivity tensor of rock [W/m/K], H is the heat source
[W/m3], ρr is the density of rock [kg/m3], cr is the specific heat of rock [J/kg/K] andt
is time [s].

The heat sourceH in Equation (4.11) is assumed to decay exponentially as

H =
3W0

4πr3
eλt, (4.12)

whereW0 is the initial heat power of the repository,r is the radius of the sphere repre-
senting the repository andλ is the decay constant of the heat power.
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Table 4.4. Input parameters for the HYDROCOIN Level 1, Case 4 (HYDROCOIN 1988).

Symbol Parameter Equation Value
k Permeability of rock 4.10 10−16 m2

λ Thermal conductivity of rock 4.11 2.51 W m−1 K−1

ρr Density of rock 4.11 2600 kg m−3

cr Specific heat of rock 4.11 879 J kg−1K−1

ρ0 Density of freshwater 4.10, 4.13992.2 kg m−3

β Thermal expansion coefficient of water 4.13 3.85 · 10−4K−1

µ Dynamic viscosity of water 4.10 6.529 · 10−4 kg m−1s−1

r Radius of the sphere (repository) 4.12 250 m
W0 Initial heat power of the repository 4.12 10 MW
λ Decay constant of heat power 4.12 7.3215 · 10−10 s−1

Equations (4.10) and (4.11) are coupled with the density of waterρ, which is dependent
on temperatureT as follows

ρ = ρ0 + ρ0βT, (4.13)

whereβ is the thermal expansion coefficient of water.

Initially, both residual pressure and temperature are assumed to be zeros in the repository
and rock. The input parameter values are given in Table 4.4.

Numerical solution method

The finite element method with linear elements was applied in solving the case numeri-
cally. Due to the symmetry of the case, it was not necessary to consider the whole sphere,
but only the vertical slice of the angle of 12.5◦ was included into the model (Figure 4.11).
As the repository was assumed to locate in an infinite rock, the radius of the vertical slice
was chosen to be 7000 metres, which was considered to be far enough to avoid the bound-
ary conditions having an effect on the results during the simulation period of 10000 years.
Neither heat nor water was assumed to transfer through the boundaries of the model.
The modelled volume was discretised into mesh with 5900 tetrahedral and hexahedral
elements (Figure 4.11), while the simulation period was discretised into 104 time steps.

The partial differential equations (4.10) and (4.11) describing flow and heat conduction
were solved numerically employing the conventional Galerkin technique (Huyakorn &
Pinder 1983). The fully implicit difference scheme was applied in the time discretisa-
tion for Equation (4.11). The mass matrix resulting from the transient finite element
formulation of Equation (4.11) was formed by a diagonalisation procedure known as
"lumping" (Huyakorn & Pinder 1983), which gives a more stable solution in practical
problems than a "consistent" matrix. Finally, the linear matrix equations resulting from
the finite element formulation of Equations (4.10) and (4.11) were solved, employing the
conjugate-gradient method (Atkinson 1988).
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Figure 4.11. Finite element mesh for the HYDROCOIN Level 1 Case 4 (5900 elements,
4300 nodes).

Results

The simulated pressure and temperature rises were compared against the analytical so-
lutions given in HYDROCOIN (1988) on the vertical centreline (x = 0, y = 0) of the
sphere. The results as a function of time between 1 and 10000 years forz = 0, 125, 250
and 375 metres and as a function of distance betweenz = 0 andz = 750 metres for times
of 50, 100, 500 and 1000 years are presented in Figures 4.12 and 4.13, which show an
excellent agreement between FEFTRA and analytical solutions.
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Figure 4.12. Temperature rises as a function of time and distance. Analytical values taken
from HYDROCOIN (1988).
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(a) Pressure rise as a function of time at four points on the vertical centreline of the
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Figure 4.13. Pressure rises as a function of time and distance. Analytical values taken
from HYDROCOIN (1988).
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5. Summary

FEFTRA is a finite element program package developed at VTT for groundwater flow
analyses in the site investigation programme seeking for a final repository of spent nuclear
fuel. The code is capable of modelling steady-state or transient groundwater flow, solute
transport and heat transfer as coupled or separate phenomena. Being a typical research
tool used only by its developers, the FEFTRA code has so far been short of a competent
testing system and a precise documentation of the verification of the code.

The objective of this work was to reorganise all the material related to the existing veri-
fication cases and place them into the FEFTRA program path under the version control
system. The work also included a development of a new testing system, which automati-
cally computes the selected cases, checks the new results against the old approved results
(i.e. the results that have been compared with analytic or other numerical results) and con-
structs a summary of the test run. All the existing cases were gathered together, checked
and added into the new testing system. The documentation of each case was rewritten and
added into the system in a way that the whole test documentation (this report) can easily
be generated with one command in a postscript or pdf-format. The report is available
both in a printed and electronic format. As the report is in a constant state of evolution
resulting from the current code development, the printed form represents a "snapshot" of
its content at the date of publishing, while the electronic format represents always the
most up-to-date version of the report.

At the moment the report includes mainly the cases related to the testing of the primary
result quantities (i.e. hydraulic head, pressure, salinity concentration, temperature). The
selected cases, however, represent typical hydrological applications in which the program
package has been employed in the Posiva site evaluation programme.

Groundwater flow

The simplest cases related to groundwater flow with constant density were comprised
of steady-state and transient flow problems in a homogeneous and fractured bedrock.
The cases with a radial steady-state (Section 2.1) and transient (Section 2.2) flow in a
homogeneous and isotropic discoid structure were the simplest problems and they were
selected to verify the use of various types of elements and boundary conditions (flow rates
and fluxes) in 2D and 3D. The modelling of transient pumping tests was considered with
the case (Section 2.3) in which the pumping of water results in a flow from the borehole
to a single fracture and rock matrix. In all cases the FEFTRA results compared well with
the analytical solutions (Figures 2.3, 2.5, 2.8(a) and 2.8(b)).

The problem (Section 2.4) concerning a steady-state flow in a two-dimensional slice of a
fractured bedrock intersected by two hydrogeological zones was introduced to verify the
code for heterogeneous flow problems with large permeability contrasts. The case, which
is an idealisation of the hydrogeological conditions at a potential site for a deep repository
in bedrock, was also employed to assess the performance of different representations of
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zones in the finite element mesh. The representation of rock matrix and zones by uniform
dimensional elements were compared to the two approaches, in which the elements of dif-
ferent dimensions can be used in the same mesh, i.e. 1D (2D) elements for zones and 2D
(3D) elements for rock matrix. The computed results showed a good agreement between
the FEFTRA and other numerical results. The results proved also that the representation
of the zones by lower dimensional elements is a feasible and efficient alternative to the
use of uniform dimensional elements

The study by Hartley et al. (2002) consisted of a site-scale model testing, in which a
steady-state groundwater flow in 3D was computed with NAMMU and FEFTRA pro-
gram packages for the Olkiluoto site and the results compared. In this work, the case was
documented and examined with regard to the modelling performed with FEFTRA (Sec-
tion 2.7). The result quantities computed in the test case were pressure along the bore-
holes KR1-KR5, flow paths starting at three points near the repository, flow rates through
a box surrounding the repository and infiltration. Pressure (Figure 2.26), flow rates (Ta-
ble 2.16), infiltration and the final positions and lengths of the flow paths (Table 2.17 and
Figure 2.27) showed an excellent agreement between the FEFTRA and NAMMU models.
On the other hand, the travel times of the flow paths computed with FEFTRA were shorter
than the corresponding NAMMU times, which can probably be attributed to the different
representations of the hydrogeological zones and/or different discretisation in the vicinity
of the repository. However, the case verified further the capability of the FEFTRA code
to simulate real-life site-scale groundwater flow problems employing 2D elements for the
zones in the 3D mesh.

The underground rock characterization facility ONKALO, which is currently being ex-
cavated in the bedrock of Olkiluoto, will constitute hydraulic disturbances to the site’s
groundwater system. In particular, an inflow of groundwater into the open tunnels may
cause a drawdown of the groundwater table. The FEFTRA code employs a free surface
approach to simulate the water table drawdown and its recovery back to the undisturbed
conditions. The code’s free surface approach was verified with two test cases. In the first,
a pumping at a horizontal well in an unconfined aquifer results in the water table draw-
down (Section 2.5), whereas the Mariño’s experiment considers the growth and decay of
a groundwater ridge caused by the infiltration (Section 2.6). In the horizontal well case,
the results were evaluated with the semianalytical solution (Zhan & Zlotnik 2002), which
compared very well with the one from FEFTRA (Figure 2.16 and Figure 2.17). Only at
the beginning of the simulation did the results differ slightly in the immediate vicinity of
the well; this was because the semianalytical solution is prone to errors close to strong
sinks. The Mariño’s experiment was realized with FEFTRA as 2D and 3D simulations,
and results were compared with the analytical solution (Ségol 1994). In the 2D case the
results are well in line with the analytical solution (Figure 2.20). In the 3D case there is a
slight deviation, which is probably due to insufficient discretization of the free surface.
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Coupled groundwater flow and solute transport

The capability of FEFTRA to simulate coupled groundwater flow and solute transport
was verified with three classic test cases designed for variable density flow and transport
problems. Henry’s seawater intrusion problem (Section 3.1) concerns a steady-state flow
and an advance of a saltwater front in a coastal aquifer initially charged with fresh water.
Freshwater enters the aquifer from the inland boundary and mixes with salt water intrud-
ing from the sea side until an equilibrium is reached. Elder’s free convection problem
(Section 3.2) deals with flow driven purely by density differences. In a closed box, solute
enters the initially freshwater by diffusion, increases its density, and thereby begins a cir-
culation process. The salt dome problem (Section 3.3) is an example of a steady-state
flow in idealised geological conditions over the salt dome, which is a potential site for a
deep repository in bedrock. A linearly varying pressure on the top boundary induces an
inflow of freshwater into the domain, while the middle third of the bottom represents the
top of the salt dome. Eventually, the dispersing saltwater reaches an equilibrium with the
opposing freshwater inflow. In Henry’s problem the density variations are small (2.5 %).
However, in addition to the highly non-linear density dependence on salt concentration in
the salt dome problem, Elder’s and the salt dome problem are strongly coupled cases due
to the large density variations (20 %), thus they present a challenge to the codes.

Due to their non-linear nature, there are generally no analytic solutions for the variable
density flow and transport problems, with the exception of the semianalytic solution for
Henry’s problem. Thus, the numerical solution can usually be assessed by comparison
to other numerical solutions only. In Henry’s case the computed FEFTRA results (Fig-
ure 3.3) compared very well with a revised semianalytic solution. In Elder’s case the
FEFTRA and other solutions computed with the coarse mesh compared reasonably well
(Figure 3.7), while the results computed with the fine discretisation were in excellent
agreement (Figure 3.8).

In the salt dome problem the FEFTRA results were compared with the numerical solu-
tions by the original HYDROCOIN (1988) teams 1, 2 and 4 (Table 3.4). The problem
proved to be very difficult to solve. Although pressure (Figure 3.11), the Darcy velocity
(Figure 3.12) and pathlines (Figure 3.13) were in line with those computed by the HY-
DROCOIN teams, salt concentration distribution (Figures 3.14 and 3.15) indicated some
discrepancies, which may be attributed to the use of non-continuous Darcy velocity, the
possible unconvergence of the Picard iteration scheme and/or the inconsistencies in the
original specification of the case.

The open underground rock characterization facility ONKALO may also give rise to the
upconing of deep saline groundwater observed in the bedrock of Olkiluoto. Saline water
is a major concern with regard to the performance of the tunnel backfill material after
tunnel closure. The capability of the FEFTRA code to produce the correct behaviour of
the upconing phenomenon was verified with the case, which considers a vertical pumping
well in an aquifer with a saline water layer residing at depth (Section 3.4). A cross-
code verification was performed by comparing the results from FEFTRA with the ones
calculated with another simulation code, FEAS, Voss & Souza (1987). The results from
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FEFTRA and FEAS are in good agreement, which can be observed from the contour lines
of salinity distribution (Figure 3.17 and Figure 3.19) and the mass-fractions at different
locations and time steps (Figure 3.18).

Heat transfer

The capability of the FEFTRA code to simulate various heat transfer problems was ver-
ified with cases that concern conduction through isotropic (Section 4.1) and anisotropic
rock (Section 4.2) as well as convection with flowing water. In the simplest cases, the
repository is represented by a point or line-like heat sources, but a detailed cylindrical
disposal canister surrounded by bentonite clay layer is considered in one case as well
(Section 4.3). Heat output is assumed to be either constant or it decayed exponentially.
In all cases the computed FEFTRA results compared well with the analytical or other
numerical solutions (Figures 4.3, 4.5 and 4.6 and 4.10).

Simulation of coupled groundwater flow and heat transfer was verified in the case in which
the decay heat of spent nuclear fuel induces a buoyancy-driven groundwater flow in an
infinite rock with an isotropic and homogeneous properties (Section 4.4). Conduction is
the dominant heat transfer mechanism and the temporal variations of the flow field follow
solely from the exponentially decaying heat output of the repository. The simulated pres-
sure (Figure 4.13) and temperature (Figure 4.12) rises agreed very well with the analytical
solutions.
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Appendix A

Automatic testing system

The FEFTRA program package includes a testing system that automatically computes and
documents the test cases. The system has been implemented in Unix and Linux environ-
ments with the GNU’s(g)make program (http://www.gnu.org) and theawk language.
Each module of FEFTRA (e.g.solvit, flowpath, etc.) includes a test subdirectoryt (e.g.
solvit/t, flowpath/t, etc.), in which all the cases related to the module have been placed. All
the material related to the individual cases is located in the their own subdirectory. Test
cases are run by the command(g)make test in the current home directory of FEFTRA
(Table A.1). The command results in a computation of all the test cases located in the
directories defined in a variableTESTDIR in feftra/Makefile, a check of the new results
against the old approved results (i.e. the results that have been compared with analytic
or other numerical results) and a summary of the test run. The summary (see example
in Appendices B–D) is written in the filetest.login the FEFTRA home directory and in-
cludes a version number of FEFTRA, information on the current computer system, a date
of the test run, a list of all the cases computed, a name of a directory in which the cases
are located and information as to whether the case has passed or failed testing, or if the
case is not run by default, ("Skipped by user (TEST_FEFTRA = NO)" ).

The tasks executed by the command(g)make test are defined inMakefiles in the cur-
rent FEFTRA home directory and in the test directories of the modules.Makefiles execute
the scriptsfef123 (cases for modulesolvit) andprgtest (cases for other modules) in
the directoryfeftra/bin. The case is not run by default if the variableTEST_FEFTRA =

NOin Makefilein the case-specific directory.

The documentation of the test cases (this report) is generated by the command(g)make

test.ps (postscript format) or(g)make test.pdf (pdf format) in the FEFTRA home
directoryfeftra. The command results in the generation of the whole document in the file
test.psor test.pdfin the directoryfeftra/docs(note that the size of the postscript file may
be quite large i.e. about∼50 MB). The tasks that the command executes are defined in
feftra/Makefileand require the installation of the LATEXdocumentation preparation system.

Table A.1. Summary of(g)make test commands in the current home directory of FEF-
TRA. The summary of the test run is located in the current home directory, whereas the
test document is located indocs directory.

Command Results
gmake test Run all test cases and create summary of the test run
gmake test.ps Build test document (this report) in postscript format
gmake test.pdf Build test document (this report) in pdf format

http://www.gnu.org
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Example of a run of the testing system

###
### Testing feftra-4.0
###
### system:
Linux vertigo.ketfys.vtt.fi 2.6.19-1.2288.2.4.fc5 #1 SMP
Sun Mar 4 15:57:52 EST 2007 x86_64 x86_64 x86_64 GNU/Linux
### date:
Thu Mar 15 16:14:41 EET 2007
### all output is also saved in test.log

### Cases for concentration in directory
/users/waste/lofman/feftra/solvit/t/conc

tc_hydrocoin_l1c2 : ................ Passed
tc_hydrocoin_l1c2_3D : ................ Passed

### Cases for hydraulic head in directory
/users/waste/lofman/feftra/solvit/t/head

t1h : ................ Passed
t1h+ : ................ Skipped by user (TEST_FEFTRA = NO)

th2Dst : ................ Passed
th2Dst_is : ................ Passed

th2Dst_v : ................ Passed
th2Dtr : ................ Passed

th2Dtr_v : ................ Passed
th3Dst : ................ Passed

th3Dst_is : ................ Passed
th3Dst_v : ................ Passed

th3Dtr : ................ Passed
th3Dtr_v : ................ Passed

th_hydrocoin_l1c1 : ................ Passed
th_hydrocoin_l1c2 : ................ Passed

th_hydrocoin_l1c2_2Dr2Dfz : ................ Passed
th_hydrocoin_l1c2_3D : ................ Passed
th_hydrocoin_l1c2_3Dr3Dfz : ................ Passed
th_hydrocoin_l1c2_pa : ................ Passed
th_hydrocoin_l1c2_pa_3D : ................ Passed

tfs_ZhanZlotnik : ................ Passed
tfs_marino : ................ Passed

### Cases for pressure in directory
/users/waste/lofman/feftra/solvit/t/press

tp2Dst : ................ Passed
tp2Dst_is : ................ Passed

tp2Dst_v : ................ Passed
tp2Dtr_v : ................ Passed

tp3Dst : ................ Passed
tp3Dst_olkiluoto : ................ Skipped by user (TEST_FEFTRA = NO)

tp3Dst_v : ................ Passed
tp3Dtr : ................ Passed
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tp3Dtr_v : ................ Passed
tp_hydrocoin_l1c1 : ................ Passed
tp_hydrocoin_l1c2 : ................ Passed

tp_hydrocoin_l1c2_3D : ................ Passed

### Cases for coupled pressure and concentration in directory
/users/waste/lofman/feftra/solvit/t/press_conc

tpc2Dst_Henry : ................ Passed Passed
tpc2Dst_is : ................ Passed Passed

tpc2Dst_is5x5 : ................ Skipped by user (TEST_FEFTRA = NO)
tpc2Dtr_elderL : ................ Passed Passed
tpc2Dtr_elderS : ................ Passed Passed

tpc2Dtr_is : ................ Passed Passed
tpc3Dst_is : ................ Passed Passed
tpc3Dtr_is : ................ Passed Passed

tpc_hydrocoin_l1c5 : ................ Passed Passed
tpc_hydrocoin_l1c5_3D : ................ Skipped by user (TEST_FEFTRA = NO)

tpc_upconing : ................ Passed Passed

### Cases for coupled pressure and temperature in directory
/users/waste/lofman/feftra/solvit/t/press_temp

tpt_hydrocoin_l1c4 : ................ Skipped by user (TEST_FEFTRA = NO)
tpt_hydrocoin_l1c4s : ................ Passed Passed

### Cases for temperature in directory
/users/waste/lofman/feftra/solvit/t/temp

tt2DcondC : ................ Passed
tt2DcondE : ................ Passed

tt2DcondEF : ................ Passed
tt2Dst_is : ................ Passed

tt2Dst_v : ................ Passed
tt2Dtr_v : ................ Passed

tt3Dcanister : ................ Passed
tt3DcontP : ................ Passed

tt3DcontPa : ................ Passed
tt3Dst_v : ................ Passed
tt3Dtr_v : ................ Passed

tt_hydrocoin_l1c2 : ................ Passed
tt_hydrocoin_l1c2_3D : ................ Passed

tt_hydrocoin_l1c4s : ................ Passed

### Cases for velocity in directory
/users/waste/lofman/feftra/solvit/t/velo

tp3Dst_olkiluoto : ................ Skipped by user (TEST_FEFTRA = NO)
tq2Dh_hori_quad : ................ Passed

tq2Dh_hori_tri : ................ Passed
tq2Dh_is_quad : ................ Passed

tq2Dh_is_quad_1d : ................ Passed
tq2Dh_is_tri : ................ Passed

tq2Dh_vert_quad : ................ Passed
tq2Dh_vert_quad_1d : ................ Passed

tq2Dh_vert_tri : ................ Passed
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tq2Dp_is_quad : ................ Passed
tq2Dp_is_quad_1d : ................ Passed

tq2Dpc_is_quad : ................ Passed
tq3Dh_hori_hexa : ................ Passed

tq3Dh_is_hexa : ................ Passed
tq3Dh_is_hexa_2d : ................ Passed

tq3Dh_is_wedge : ................ Passed
tq3Dh_vert_hexa : ................ Passed

tq3Dp_is_hexa : ................ Passed
tq3Dp_is_hexa_2d : ................ Passed

tq_hydrocoin_l1c2_3D : ................ Passed
tq_hydrocoin_l1c2_3Dr3Dfz : ................ Passed
tq_hydrocoin_l1c2_pa_3D : ................ Passed

tq_hydrocoin_l1c5 : ................ Passed
tq_hydrocoin_l1c5_3D : ................ Skipped by user (TEST_FEFTRA = NO)

### Cases for flowpath in directory
/users/waste/lofman/feftra/flowpath/t

tfp3Dq_hori_hexa : ................ Passed
tfp3Dq_hori_wedge : ................ Passed

tfp3Dq_is_hexa : ................ Passed
tfp3Dq_is_wedge : ................ Passed

tfp_hydrocoin_l1c2_3D : ................ Passed
tfp_hydrocoin_l1c2_3Dr3Dfz : ................ Passed
tfp_hydrocoin_l1c2_pa_3D : ................ Passed

tp3Dst_olkiluoto : ................ Skipped by user (TEST_FEFTRA = NO)

### Cases for dvelom in directory
/users/waste/lofman/feftra/dvelom/t

tdm2Dh_hori_quad : ................ Passed
tdm2Dh_is_tri : ................ Passed

tdm2Dpc_is_quad : ................ Passed

### Cases for frate in directory
/users/waste/lofman/feftra/frate/t

th3Dfrate : ................ Passed
tp3Dfrate : ................ Passed

tp3Dst_olkiluoto : ................ Skipped by user (TEST_FEFTRA = NO)

All tests done
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