
V
TT RESEA

RCH
 N

O
TES 2387 Stylebase for Eclipse. A

n open source tool to support the m
odeling of quality-driven softw

are archit ecture

ESPOO 2007 VTT RESEARCH NOTES 2387

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

ISBN 978-951-38-6925-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

Katja Henttonen

Stylebase for Eclipse
An open source tool to support
the modeling of quality-driven
software architecture

VTT TIEDOTTEITA � RESEARCH NOTES 2387

Stylebase for Eclipse
An open source tool to support
the modeling of quality-driven

software architecture

Katja Henttonen

ISBN 978-951-38-6925-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)
Copyright © VTT 2007

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Leena Ukskoski

Text preparing Kirsi-Maarit Korpi

Cover picture http://www.flickr.com/photos/ilovetrance/298742832/

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.flickr.com/photos/ilovetrance/298742832/

3

Henttonen, Katja. Stylebase for Eclipse. An open source tool to support the modeling of quality-driven
software architecture [Tyylikanta Eclipseen. Avoimen lähdekoodin työkalu tukemaan laatuohjatun
ohjelmistoarkkitehtuurin mallintamista]. Espoo 2007. VTT Tiedotteita � Research Notes 2387. 61 p. +
app. 15 p.

Keywords Eclipse, open source software, modeling, quality-driven software, software architecture,
basecode, database design, stylebase, open source community

Abstract
Open source software has gained a lot of well-deserved attention during the last few
years. Eclipse is one of the most successful open source communities providing an open
development environment and an application lifecycle platform. Eclipse is a vendor-
neutral platform for integrating tools and services. My thesis work is a case study on
contributing to Eclipse. The contribution is a software architecture tool called
�Stylebase for Eclipse� which is implemented as an extension a.k.a. plug-in to Eclipse.

Quality-driven architecture design is an approach to software architecture design which
emphasizes the importance of qualities. Qualities are non-functional characteristics of a
software system such as security or maintainability. Stylebase is a knowledge base of
software patterns and architectural styles. It stores information that helps a software
architect in selecting patterns that best support the desired quality goals. Stylebase for
Eclipse is a tool for browsing and maintaining the stylebase. The purpose of the tool is
to improve the quality of design and increase information sharing and re-use of
architectural models in development teams.

In the case study, the plug-in is first developed and, after that, a new open source
community is formed around the plug-in project. In order to comply with the open
source development model, modularity is treated as the most important non-functional
requirement. In community building phase, efforts are concentrated on marketing the
new open source project and creating a good technical infrastructure for it.

The most interesting experiences gained during the study are related to various aspects
of open source development. They are � among others � re-using code from other
projects, licensing issues, tools to facilitate distributed development , and attracting new
users and developers.

4

Henttonen, Katja. Stylebase for Eclipse. An open source tool to support the modeling of quality-driven
software architecture [Tyylikanta Eclipseen. Avoimen lähdekoodin työkalu tukemaan laatuohjatun
ohjelmistoarkkitehtuurin mallintamista]. Espoo 2007. VTT Tiedotteita � Research Notes 2387. 61 s. +
liitt. 15 s.

Keywords Eclipse, open source software, modeling, quality-driven software, software architecture,
basecode, database design, stylebase, open source

Tiivistelmä
Avoimen lähdekoodin ohjelmistot ovat saanet paljon ansaittua huomiota viime vuosina.
Eclipse on yksi menestyneimmistä avoimen lähdekoodin yhteisöistä, joka tarjoaa
avoimen kehitysympäristön ja sovelluskehyksen. Eclipse on toimittajariippumaton
integrointialusta työkaluilulle ja palveluille. Opinnäytetyöni on tapaustutkimus, jossa
tehdään kontribuutio eli lahjoitetaan kehitystyötä Eclipse-yhteisölle. Kontribuutio
on �Stylebase for Eclipse� -niminen työkalu ohjelmistoarkkitehdeille, joka toteutetaan
Eclipse-laajennoksena.

Laatuohjattu arkkitehtuurisuunnittelu on lähestymistapa, joka painottaa laatuomi-
naisuuksien merkitystä ohjelmistoarkkitehtuurin suunnittelussa. Laatuominaisuuksilla
tarkoitetaan ohjelmiston ei-toiminnallisia piirteitä, esimerkiksi tietoturvallisuutta tai
ylläpidettävyyttä. Stylebase eli tyylikanta on tietovarasto, joka sisältää arkki-
tehtuurityylejä ja suunnittelumalleja. Tyylikantaan tallennetun tiedon avulla ohjel-
mistoarkkitehti osaa valita ne tyylit ja mallit, jotka parhaimmin tukevat määriteltyjä
laatutavoitteita. Stylebase for Eclipse on työkalu tyylikannan selaamiseen ja hallin-
taan. Työkalun tarkoitus on parantaa suunnittelutyön laatua sekä edistää tiedon
vaihtoa ja arkkitehtuurimallien uudelleenkäyttöä kehitystiimeissä.

Tutkimuksessa rakennetaan ensin laajennos ja sitten perustetaan oma avoimen läh-
dekoodin yhteisö jatkamaan laajennoksen kehitystyötä. Modulaarinen rakenne on laa-
jennoksen tärkein ei-toiminnallinen ominaisuus, koska se luo edellytykset avoimen
lähdekoodin kehitystyölle. Yhteisön perustamisvaiheessa keskitytään projektin markki-
nointiin sekä sen tarvitseman infrastruktuurin rakentamiseen.

Mielenkiintoisimmat kokemukset ja tulokset liittyvät avoimen lähdekoodin kehityksen
eri piirteisiin. Näitä ovat mm. ohjelmakoodin uudelleenkäyttö, lisensiointikysymykset,
hajautetun kehitystyön apuvälineet sekä uusien käyttäjien ja kehittäjien löytäminen.

5

Abbreviations
ANSI American National Standards Institute

COSI Co-development of Inner and Open Source in Software Intensive
Products (a research project)

CPL Common Public License

FLOSS Free/Libre/Open Source Software

CORBA Common Object Request Broker Architecture

DBMS Database Management System

DTD Document Type Definition

eCore The meta model used by EMF

EMF Eclipse Modeling Framework

EPL Eclipse Public License

GUI Graphical User Interface

GNU Gnu is Not Unix (a recursive acronym)

GPL GNU General Public License

HTML Hypertext Markup Language

IDE Integrated Development Environment

ITEA The International Technology Education Association

IEEE Institute of Electrical and Electronics Engineers

JBoss A Java-based, open source application server

JDBC Java Database Connectivity

MDA Model-Driven Architecture

MDD Model-Driven Development

MVC Model-View-Controller (an architecture pattern)

MQ Message Queue

MyISAM A storage engine for MySQL database

MySQL Database management system owned by MySQL Ab.

OMG Object Management Group

OSS Open Source Software

OSI Open Source Initiative

6

PC Personal Computer

QADA Quality-Driven Architecture Design and Analysis

SQL Structured Query Language

SQL-92 Third revision of SQL standard

SWT Standard Widget Toolkit

XMI XML Metadata Interchange

XML Extensible Markup Language

UML Unified Modeling Language

7

Contents

Abstract..3

Tiivistelmä...4

Abbreviations ..5

1. Introduction..9
1.1 Main terminology ...10
1.2 Motivation ..11
1.3 Problems, approach and limitations ...12
1.4 Research objectives and metrics...14
1.5 Document structure ..15

2. Architecture design, open source and Eclipse ...17
2.1 Software architecture design ..17

2.1.1 Software architecture modeling ...18
2.1.2 Quality-Driven Architecture Design ..20

2.2 Free and Open Source Software Development ..23
2.3 Eclipse Framework...27

3. Development of basecode ..30
3.1 Studying existing pattern tools for re-use...30
3.2 Requirement specification ..31

3.2.1 Initial functional requirements ...31
3.2.2 Encouraging evolution ...32

3.3 Database design..33
3.4 Plug-in architecture ..34

4. Community founding ...40
4.1 Choosing and applying license...40
4.2 Building infrastructure for information management.......................................41
4.3 Announcing and publicity ..43
4.4 Feedback and contributions from community..45

5. Discussion..47
5.1 Experiences and lessons learned ..47
5.2 Achievement of objectives ...49
5.3 Future work ..50

8

6. Conclusions..52

References ...54

Appendices
Appendix 1: Evaluation of existing pattern management plug-ins
Appendix 2: Requirement specification
Appendix 3: Database schema
Appendix 4: Concrete architecture description

9

1. Introduction
Open source software (OSS) has seen its popularity grow among software developers,
communities, and media for over a decade. Today, successful open source products
include Apache and MySQL and are dominating the market and big software companies
(such as IBM and Sun Microsystems) have made significant investments in open source
development projects. Research community has also been active in studying the subject
as demonstrated, for example, by the recent series of OSS conferences (Heizman 2003,
Deitel 2007). The open source movement is hard to understand unless one sees the two
sides of it. On the one hand, it is a largely technically oriented phenomenon, and on the
other hand, it is something that challenges conventional organizational and business
viewpoints (Helander & Mäntymäki 2006, 1).

Among the most successful open source projects, Eclipse is an open development
platform and application framework for building software. This Bachelors thesis is a
case study on contributing to Eclipse. The contribution to the Eclipse community is a
tool for managing a software architectural knowledge base, i.e. stylebase. The tool is
implemented as an Eclipse extension and published under a well-known open source
license. The result is available at http://stylebase.sourceforge.net. In this report,
contributing to Eclipse is studied both from technical and organizational perspectives.
First comes the technical task of developing the extension and then comes the
organizational task of founding a new open source community around it.

The tool itself is based on the original idea of an architectural knowledge base which
was published in IEEE Transactions journal (Niemelä et al.) in 2003. The first tool for
maintaining such a knowledge base � was implemented as an extension to a closed-
source modeling tool (Merilinna 2005). This work brings the concept into the open
source world for the first time.

In this section, I first provide definitions to the main terminology which is essential to
understanding the study. The motivation of the research is presented in order to
highlight both the need for an architectural knowledge management tool and the
benefits of going to open source. Thereafter, the objectives of the research are presented
together with respective metrics. Research problems, the scope of the study, and the
selected approach are discussed. The section ends with an overview on the structure of
this document.

http://stylebase.sourceforge.net

10

1.1 Main terminology

The model is described as an abstract presentation of a software system (Selic 2003a).
In this report, pattern�s data model refers to a presentation which describes pattern�s
components, their primary attributes, and relationships. Such presentation is typically,
but not necessarily, an UML diagram saved in XML format.

Model-Driven Development (MDD) is an approach to software development that
focuses on models � not programs � as primary software artifacts. Modeling helps to
analyze complex problems and their potential solutions before going through the effort
and expense of building the final product. (Selic 2003b.)

The software architecture is a structure (or structures) of a program or computing system.
The structures consist of software components plus their properties and interrelationships.
Software architecture controls program�s evolution. (Bass et al. 2004, 3.)

The quality-driven architecture design is an approach for software architecture design
which emphasis the significance of quality attributes. Quality attributes are gathered,
categorized, and documented and then the acquired knowledge is used in architecture
design. The approach is complemented by quality-driven architecture analysis, which is
a way of analyzing software architecture from the quality point of view. (Matinlassi et
al. 2002, 13; Matinlassi 2006, 14.)

Quality attributes describe externally or internally observable quality-characteristics of
a software component or system. (Niemelä & Immonen 2007.)

Stylebase is a reuse repository of software architectural styles and patterns. Stylebase is
an essential part of the quality-driven software architecture design and analysis
methodology. The idea is to improve the quality of software products by assisting
software architects in selecting models that best meet the desired quality goals.
(Matinlassi et al. 2002, 31.)

An architectural pattern expresses a fundamental structural organization schema for
software systems, which consists of predefined subsystems and specifies their
responsibilities and relations. In comparison to design patterns, architectural patterns are
larger in scale. (Bushmann et al. 1996, 13.)

A design pattern describes a schema of communicating objects and their relations,
which solves a general design problem in a particular context. While design patterns are
not language dependent, they are based on practical solutions which have been
implemented in mainstream programming languages. (Gamma et al. 1994, 2�4.)

11

Modularity is extent to which software is composed out of separate modules with
minimal interactions between the modules. Modules are parts of software which operate
independently, yet function �as a whole�. Modules communicate with each other via
predefined interfaces. Building a system to be modular produces many benefits, for
example, modular software is easier to maintain. (Gershenson et al. 2003.)

Open source software is software which is available with its source code and under an
open source license. Such a license permits anyone to study, change, improve, and
redistribute the modified or unmodified version of the software (Open Source Initiative
2006). In this report, free software is used synonymously with open source software.

Community is a group of people with a shared interest or goal who get to know each
other better over time. An open source community is a group of users and developers
who are all interested in the development of a particular open source product and
communicate with each other over Internet. (Goldman & Gabriel 2005, 32.)

Eclipse is an open source development platform and application framework for building
software. Eclipse assist in creating, integrating, and utilizing software tools. Eclipse is
also a community of users and developers who work together to improve the product.
(Eclipse Foundation 2006a.)

Platform is defined as subsystems or technologies that provide a coherent set of
functionality through interfaces and specified usage patterns. Subsystems that depend
on the platform need not be concerned on details of how the functionality provided by
the platform is implemented. (Miller & Mukerji 2003, 58.)

Plug-in is a bunch of code that enhances the functionality of an existing software
program (IBM Corporation and others 2003), in this study, Eclipse.

1.2 Motivation

Collecting styles and patterns into a knowledge base encourages designers to use them,
resulting in better utilization of existing software architectural know-how. The idea of
stylebase relates essentially to quality-driven architecture design. The stylebase assists a
software architect in selecting appropriate styles based on the quality requirements set
for the system at hand. It can also be utilized when analyzing software architectures
from the perspective of quality. Thus, the stylebase helps to improve the quality of
software products and increase knowledge sharing and re-use in development teams.
(Niemelä et al. 2003.)

12

A tool is needed for browsing and maintaining the stylebase. The first version of such a
tool was implemented as an extension to a proprietary modeling environment called
Tau/Developer in 2004 (Merilinna 2005). The decision limited potential users to those
already using this particular, fairly expensive modeling tool. In order to gain a wider
user base, an open source version of the tool is needed. The open source approach helps
to disseminate the idea of stylebase, making VTT�s research results available to much
more people. By going to open source, external developers can be attracted to the
project and code from other projects can be re-used.

The study shall accumulate knowledge in founding an open source community and
keeping it active. The work forms a case study for an ITEA research project called
COSI. COSI Co-development using inner & open source in software intensive
products) project aims to create strong awareness of the industrial usage of distributed
collaborative software and open source. Inner source, which is not within the
framework of my thesis work, refers to the application of open source development
methods to closed source activities such as software development inside a company. My
thesis work is part of a work package that aims to define the best practices for
requirement analysis and architecture design management for open source software. A
task lead by VTT focuses on the various dimensions of integration and quality
assessment raised by open source development.

1.3 Problems, approach and limitations

The primary research problem address in my thesis can be stated as follows:

How to contribute to Eclipse by initiating a new plug-in project?

There are several ways of contributing to open source projects, e.g. fixing bugs and
providing new features. In this case study, contributing to Eclipse is considered a
twofold issue (Henttonen & Matinlassi 2007). On the one hand, a contribution, in this
case a plug-in, needs to be developed, and on the other hand, it needs to get published to
the community: users and developers (Beck & Gamma 2004). A good plug-in is
modular, because the only way an open source project can mature is by allowing a
number of people to participate in the development (Fleury & Lindfors 2001). The
primary research question can thus be divided into the following sub questions.

How to design a modular Eclipse plug-in?

How to launch a successful open source community?

13

The study focuses on contributing to Eclipse by founding a new plug-in project. Other
ways of contributing to Eclipse, e.g. committer contributions to the global Eclipse
release, are not within the scope of this study.

According to literature, successful open source projects are generally not launched
before their code already makes up a working application (Fogel 2005, 44; Weinstock &
Hissam 2005, 156). Goldman and Gabriel (2005, 256) write:

Remember that open source only works to incrementally improve what�s there � if
you only have design ideas that�s what the community will improve. Someone
needs to write a code for a minimal but working version before the community
will contribute any code.

It was therefore decided that a code artifact is implemented before announcing the
project. Mandatory requirements, which need to be implemented before announcing the
project, are identified in the requirement specification phase.

Marketing activities are an essential part of the study. While developing modular plug-
in is relatively straightforward (Gamma & Beck 2004), the acute question remains how
to get the modular plug-in to the open source �market�. In order to succeed, an open
source project needs marketing just like any other product (Goldman & Gabriel 2005).

The research is essentially empirical in nature. Figure 1 illustrates the empirical part of
the research process as a flow chart diagram.

Figure 1. Research process (empirical part).

14

Literature is reviewed in order to make positive decisions during the study. Experiences
are written down during the process and analyzed at the end of the study. The
experience report shall discuss how the approaches recommended in the literature did
work in practice. Further development is not in the scope of my thesis work. However,
the thesis work includes collecting the feedback from the user community which shall
then guide the further development of the Stylebase for Eclipse.

1.4 Research objectives and metrics

The concrete objectives of the research can be divided into technical, business-oriented,
and organizational. The three primary research objectives and their respective metrics
(Matinlassi & Henttonen 2007) are summarized in Tables 1�3.

Table 1. Technical Goal Summarized.

Objective Develop an Eclipse compatible version of the stylebase maintenance tool

Expected Result A modular Eclipse plug-in in Java

Metrics Tool demonstration, criteria defined in requirement specification

Data Collection Research log filled in during the development phase

Essential design decisions will be collected from the research log and reported and
analyzed in this document. Unified Modeling Language (UML) is used to illustrate
structure and behavior of the plug-in.

Table 2. Business Goal Summarized.

Because users and developers are geographically far apart, an open source project needs
good technical infrastructure for maintaining feedback loops (Goldman & Gabriel 2005,
175). Experiences on building such infrastructures are reported and analyzed in this
document. Marketing efforts are described and compared to changes in the number of
downloads and contacts.

Objective To initiate a plug-in project in the Eclipse community

Expected Result Stylebase plug-in listed at Eclipse Plug-in Central

Metrics The amount of downloads, the amount and quality of feedback and contacts
from users

Data Collection Project statistics, support and bug trackers, mailing lists, websites, emails
received by the project administrator

15

Table 3. Organizational Goal Summarized

Objective Deployment of active users in near future

Expected Result Contributions to the development of the plug-in

Metrics The amount of active users in the project, the quality and size of received
contributions

Data Collection Project statistics, source code repository, authors log

The third objective is not likely to be fully achieved before the thesis work is complete.
Experiences on working with external contributors will be reported if available.
Goldman and Gabriel (2005, 49) remind us that even successful open source projects
grow relatively slowly and it is not realistic to expect a surge of volunteer developers
joining the project right away.

1.5 Document structure

Section 2 provides the theoretical framework for the case study. It first discusses the
importance of software architecture and then introduces design approaches which are
essential to the motivations of the study. After that, an introduction is provided to open
source software development, as well as Eclipse.

Section 3 describes the technical tasks related to the development of the Stylebase for
Eclipse. Firstly, existing Eclipse extensions for pattern management were studied and
then the work proceeded from requirement specification to database design and
architecture development.

Section 4 describes primary tasks related to founding a new open source project. Firstly,
one needed to choose and apply an open source license and build infrastructure required
for open source development. Once the project had been made public, marketing
activities ware carried out for attracting users and developers. The chapter ends with a
subsection which takes a look at feedback and code contributions received from the
community.

Section 5 discusses acquired experiences, near-future research plans, and certain aspects
of the thesis process. The section also contains discussion on what was learned from the
experiences and how well the objectives of the study were achieved.

Conclusions in section 6 close the thesis. The last section summarizes the results of the
research, providing answers to the research questions.

16

The thesis is complemented by the following appendices. Appendix 1 contains a
comparison table of existing pattern management tools which were studied as part of the
thesis work. Appendix 2 provides an elaborate requirement specification of the
Stylebase for Eclipse tool. Appendix 3 contains detailed description of underlying
database schema. Appendix 4 presents the concrete architecture of the tool from
structural point of view by providing class diagrams and composite structure diagrams
of each component.

17

2. Architecture design, open source and Eclipse
This section introduces key concepts that are essential in understanding the title of the
thesis work, as well as the study itself. The first subsection views the meaning of
software architecture and provides an introduction to modeling. After that, it discusses a
quality-driven approach to architecture development and explains the role of stylebase
in supporting quality-driven design and analysis. The most important aspects of open
source software development are summarized in the second subsection. The third
subsection takes a look at Eclipse, both as an open source product and a community.

2.1 Software architecture design

In the last several years, there has been growing use of the word "architecture" in the
context of software development. According to Bass et al. (2004, 3) �software
architecture of a program or computing system is the structure of structures of the
system, which comprise software components, the externally visible properties of the
software components and relations between them�. In the same way as construction
architecture guides building of a house, the software architecture guides the
implementation of a software system. Software architecture has significant impact of the
properties of the software system as it influences the whole life cycle of the software
and guides its evolution (Matinlassi 2006, 13�14).

According to Bass, Clements and Kazman (2004, 26�29) software architecture is
important for the following three main reasons. (1) Software architecture represents a
common abstraction of a system which different stakeholders can use as a basis of
communication. (2) Software architecture manifests the early design decisions which
have significant, long-term impact on the development and maintenance of the software
system. This is the earliest point when these decisions can be analyzed. (3) Software
architecture constitutes transferable abstraction of a system � a model which can be
applied to other systems which exhibit similar requirements.

Software architecture design plays an important role in developing prime quality
software products. The following sections introduce two interrelated approaches to
software architecture design: architecture modeling and quality-driven architecture
design.

18

2.1.1 Software architecture modeling

A model is a simplified image of a system. Models and modeling are an essential part of
traditional engineering. Nobody would consider building a car or a sky scraper without
first constructing several specialized models. Models help to understand a complex
problem and its potential solutions through abstraction. Software systems, which are
often among the most complex engineering systems, can also benefit from the use of
modeling techniques. This requires that models are of high-quality, i.e. abstract,
understandable, accurate, predictive, and inexpensive. (Selic 2003b.)

Software architecture model is a description of software structures, presented by one or
many architectural views. A view is composed of one or more architectural diagrams
and represents the whole software system from a particular perspective. For example, a
view can be targeted to a specific stakeholder (e.g. customer, designer) or present only
certain properties of a system (e.g. performance model). Views can abstract away
details, and a single view can have several abstraction levels. Diagrams are developed in
accordance with the conventions established by an associated architectural view point.
There are no fixed set of views, view points, or abstractions levels, but all are defined
by the architecture design method at hand. (IEEE Standards Committee 2000.)

Model-Driven Development (MDD) is an approach to software engineering which treats
software models � not computer programs � as the focus and primary products of
software. The major advantage of MDD is that, compared to source code, models are
easier to specify, understand, and maintain. In some cases, modeling makes it possible
for domain experts to produce systems without knowledge on underlying
implementation technology. As models are less bound to the chosen computing
technology, they are also less sensitive to evolutionary changes in that technology.
MDD methods rely on automation and the benefits it brings. Models are not very useful
if their only end-up in documentation as such documentation becomes easily out-dated.
A key premise behind MDD is that concrete programs are automatically generated from
corresponding models. (Selic 2003a.)

Object Management Group (OMG) is driving Model-Driven Architecture (MDA)
initiative. MDA is a formalization of the MDD approach. As defined by the OMG
(2004), MDA is �a way to organize and manage enterprise architectures, supported by
automated tools and services, for both defining the models and facilitating
transformations between different model types�. MDA Manifesto (Booch et al. 2004)
introduces the three fundamental ideas of MDA (Figure 2) as follows. (1) The focus of
software development should shift from the technology domain to the problem domain.
Models should represent problems rather than be used as graphic syntax of
programming languages. (2) Automated tools must be used to transform domain-

19

specific models into implementation code. (3) Standards are efficient boosters of
technological progress. Open source development ensures the consistency of standards
and encourages vendors to use them.

Figure 2. The tenets of MDA (Booch et al. 2004).

In MDA, system functions are defined in a platform independent fashion. On the top-
level there is a platform independent model (PIM) which can be automatically
transformed to a platform specific model (PSM) and finally into running code (Miller &
Mukerji 2003). In this context, the term �platform� can be understood as defined by
Frankel (2003). According to him, platform is a formatting technology (e.g. XML
DTD), 3rd of 4th generation programming language (e.g. Java), distributed component
middle-ware (e.g. CORBA) or messaging middle-ware (e.g. WebSpare MQ).

 Unified Modeling Language (UML) serves as one of the corner stones of MDA. UML
is a widely-used graphical modeling language that uses standardized diagrams to
express the structure and behavior of software systems. The first version of the UML
did not have the rigor and precision required to support MDA to its full extent. New
modeling features were added to UML 2.0 in order to better meet with the requirements
of MDA. (Selic 2003a.)

Adoption of model-driven methods in software engineering has faced resistance to
change, mostly because code-centric approach is deeply rooted in the minds of software
specialists (Matinlassi 2006, 43). However, according to Selic (2003b), MDD/MDA can
bring significant reliability and productivity benefits that software needs to become a
stable engineering discipline. This is assuming that the methods are applied correctly
and quality issues are taken into account.

20

2.1.2 Quality-Driven Architecture Design

Quality issues play a significant role in the development of software products.
Therefore, quality of software should be evaluated in the earliest possible phase, i.e.
from the descriptions of the software architecture. Quality-driven architecture design
emphasizes the importance of addressing quality requirements in architecture design
phase. In order to evaluate quality on the architectural level, quality properties have to
be defined and represented in architectural models.

Quality attributes are non-functional quality characteristics of a software system.
According to Niemelä and Immonen (2007), they can be divided into two main
categories. (1) Execution qualities, such as security and usability, are observable at run
time. (2) Evolution qualities, such as extensibility and scalability, embody in the static
structure of the software system.

Quality-Driven architecture design relies on the assumption that architectural styles and
patterns, and also design patterns, embody different quality attributes. When patterns are
applied in the architecture, quality-characteristics of the selected patterns are reflected to
the entire software architecture (Matinlassi et al. 2002, 59�60). Architectural styles and
patterns are re-usable designs applied in many contexts. They offer standard, tested
solutions to common problems. Design patterns address coding problems, for example,
how to convert an interface class into another one when interfaces are incompatible
(Gamma et al. 1994, 22). Architecture patterns are larger in scale and address challenges
in architecture design, for example, how to separate user interface from application
logic (Bushmann et al. 1996, 13�14, 125).

As convertional modeling approaches do not support representation of quality
requirements, VTT has developed a quality-driven architecture design and analysis
methodology (QADA®1). QADA® provides a systematic way to transform quality
requirements into software architecture. Styles and patterns are used as a guide to carry
out quality requirements in architectural description with a documented design
rationale. (Matinlassi et al. 2002, 13)

QADA® contributes to quality-driven architecture modeling � among many other things
� by providing a predefined set of views which each use a set of diagrams for
representing software architecture from a particular view point. In the QADA® method,
there are four viewpoints: structural, behavioral, deployment, and development. The
structural view records the hierarchical structure of architectural elements: components,
their relationships, and responsibilities. The behavior view is used to describe actions
that are produced, ordered, and synchronized by the system. The deployment view
clusters conceptual components into deployment units and describes allocation of these

1 QADA® is a registered trademark of VTT Technical Research Centre of Finland.

21

units into physical computing nodes. The development view also includes a business
model as it defines who uses and who is responsible for services provided. Each
viewpoint has two levels of abstraction: conceptual and concrete. In the conceptual
architecture design phase, structure, behavior, and deployment of the system is modeled
and documented on abstract level. In the concrete architecture design phase, concrete
software components are defined in detail using the architecture descriptions produced
in conceptual design as input. (Matinlassi et al. 2002, 25�29; Matinlassi & Kalaoja
2002.)

QADA also offers several methods for evaluating quality properties of a software
system. The main focus is on evolution qualities. Evaluation is based on scenario-based
analysis methods. This means that (1) evaluation scenarios are defined when quality
requirements are defined, (2) they are taken into account while architecting and (3)
evaluation is based on architectural models.

Figure 3 illustrates different dimensions of the QADA® methodology. Many areas of
the method are not covered in this report.

Figure 3. QADA® methodology (Niemelä et al. 2004).

22

As seen in the above figure, the stylebase (i.e. a knowledgebase of software
architectural styles and patterns) is an important part of the QADA® method. According
to Matinlassi et al. (2002, 31) the stylebase �helps to shift from the notion of
architectural styles towards the ability to reason based on quality attribute-specific
models�. The goals of having a knowledge base are to (1) make architectural design
more routine and more predictable, (2) have a standard set of quality attribute based
analysis questions and (3) to tighten the link between design and analysis (Matinlassi et
al. 2002, 31).

Stylebase is utilized both in quality-driven architecture modeling and quality-driven
analysis of existing architectures. When constructing a new architecture model, an
architect searches the knowledge base according to the desired quality assets and selects
patterns on that basis. When used for model evaluation, an architect detects which
patterns have been used in an architecture model and then checks from the stylebase
which quality-attributes are associated with these patterns. (Niemelä et al. 2004.)

As stated previously, recognizing and defining quality attributes is an essential part of
the quality-driven architecture development. The quality attributes mentioned in this
thesis can be defined as follows:

Maintainability refers to the ease of which software can be modified or adapted to a
new environment. Modifications may include building extensions, making changes, and
porting to a new operating system. The following are sub-attributes of maintainability.
Extensibility refers to the ability of the system to acquire new components. Portability is
defined as the systems ability to run under different computing systems (hardware
and/or software). Modifiability means the ability to make changes quickly and cost
efficiently. (Matinlassi & Niemelä 2003.)

Scalability refers to the ability of software to handle a growing amount of work in a
graceful manner or to be readily enlarged. (Bondi 2000.)

Security is system�s ability to prevent unauthorized usage while continuing to provide
services for authorized users. Unauthorized usage includes unauthorized access, as well
as unauthorized operations by legitimate users. (Bass et al. 2004, 85�86.)

Usability is defined as ease with which users can employ software in order to achieve an
intended goal. This includes, for example, error handling, learnability and efficiency.
Learnability means the ease of which users can learn the system�s interface while
efficiency refers to the amount of time it takes to complete the task at hand. (Bass et al.
2004, 31.)

23

2.2 Free and Open Source Software Development

Open source software is software which is available with its source code and distributed
under a license that allows anyone to use, modify, and distribute the modified or
unmodified version of the software (Open Source Initiative 2006). Free software is an
alternative term to open source software, promoted by the Free Software Foundation.
Free software is not the same as freeware, software distributed at zero-cost (Fogel 2005,
11). The Free Software Foundation (2006a) describes free software as �a matter of
liberty, not price�. The definition of free software (Free Software Foundation 2006a) is
almost identical to the definition of open source software (Open Source Initiative 2006).
The primary differences between the free software and open source software
movements are ideological (Vainio & Vaden 2006) and not within the scope of this
thesis. In this work, the terms free software and open source software are used
synonymously. In many occasions, the acronym FLOSS (Free/Libre/Open Source
Software) is used as a neutral term.

Even though there are many different free and open source licenses, all of them say the
same thing in the most important respects. Such licenses grant everyone a right to
modify the source code and redistribute it either in original or modified form and state
that the authors provide absolutely no warranties. Licenses differ in what terms covered
software can be used in combination with other software. FLOSS licenses can be
grouped into three main categories: Firstly, there are licenses (e.g. the Apache License,
the MIT License) that allow any usage, including usage in closed-sources programs.
Secondly, there are licenses (e.g. GNU Lesser General Public License, Eclipse Public
License) that allow combining the unmodified version of the licensed program with a
closed-source program � on the condition that they are clearly separate works. However,
these licenses require that any modified version of the licensed work is distributed under
the same terms as the original work, i.e. remain open source. Thirdly, there are licenses
(most famously GNU General Public License) that do not allow combining the covered
source code with closed-sourced programs under any circumstances. These licenses
require that any software package, which contains non-trivial amount of licensed code,
is distributed under the same terms, with no additional restrictions. GPL-licensed
software can be combined with other open source software only if the terms of the two
licenses are legally compatible.

As everyone has a right to distribute copies freely, open source programs cannot be
traded the same way as proprietary, closed-source programs. Free and open source
software is traditionally developed by volunteers. Even though company involvement
and consequently the number of paid developers is increasing, the majority of FLOSS
developers still work without any monetary compensation (Vainio & Vaden 2006).
Many projects are created out of a personal need for a tool and the program is shared in

24

the hope that someone else with similar needs will expand it and fix its problems
(Raymond 2001, 24). People also have other differing motivations of attending, such as
self-enjoyment, peer-recognition, gift-giving, and learning (Vainio & Vaden 2006).
Raymond (2001, 21) likened open source software development to �a great babbling
bazaar of differing agendas and approaches." Such a �bazaar� welcomes people whose
motivations, skills, and participation time may vary significantly in working together
with no clearly defined roles.

FLOSS community roles are traditionally depicted using an onion model (Figure 4).
According to Vainio & Vaden (2006) people start at the outer layer of the onion as
passive users. Once they begin to explore how the system works, they become readers.
Some get more involved by reporting bugs. Some users may become developers who
fix bugs and make minor enhancements. A few developers then get more involved and
join the ranks of core developers, being granted a permission to check-in changes to the
source code. At the heart of the community there is occasionally a single person, the
project leader, who is one of the most active developers. The outer layer of the onion is
the largest group, the group size reduces when approaching the core.

Figure 4. The onion model of FLOSS communities (Vainio & Vaden 2006).

Every successful open source project has some form of governance. In most small and
medium sized projects, the authority making the final decision relies on one person who
is called the �benevolent dictator�. Despite the name given to the role, successful
benevolent dictators do not dictate much. It is know that good developers will not stay
around for long unless they can have influence on development decisions. Therefore,

25

the strategy is to let things sort out by themselves through discussion and
experimentation whenever possible. As projects mature, the governance model usually
moves away from benevolent dictatorship towards a consensus-based democracy. The
details on how such systems work vary, but two common elements can be recognized.
(1) The community works on consensus most of the time. (2) If a debate does not reach
consensus, a democratic decision is made by voting. Inability to reach a decision that
everyone can accept can lead to a revolt and cause the project to be forked. Project fork
happens when a developer, or a group of them, take a copy of source code and start to
develop a competing product independent of the original project. Forks are bad for all
parties because they duplicate the development effort and confuse users on which
package to choose. The possibility of forks has significant impact on the governance of
open source projects. The more the threat of a fork grows, the more people are ready to
compromise. (Fogel 2005, 88�91, 225�226; Goldman & Gabriel 2005, 233�234.)

FLOSS development model differs from its traditional counterpart. While traditional
software projects start with a detailed requirements document, open source project
usually start with vision and a code artifact which embodies that vision � at least in
spirit. Initial requirements are communicated to the community by means of the code
artifact. As the project matures, more requirements come in from the community. They
may arise from a discussion on a mailing list or be entered by regular users via a
requirements logging tool. Most requirements are post-hoc. This means that a feature is
added when a developer, who wanted the feature, has already provided the coding effort
to make it operational. (Scatcchi 2002, 24�38.) Implementation and testing are often
going on in parallel with the actual system specification. Individual developers select
small parts on which they like to work and they are free to design, implement, and test
them as they see fit. There are often competing design and implementations and at most
one of which is selected for the project. (Hissam & Weinstock 2005.) Following
Raymond�s (2001, 28�29) principle �release early, release often� open source products
generally undergo a lighter testing process compared to commercial off-the-shelf
components. End-users are relied upon in doing some of the testing.

In order to comply with the unconventional development model, the structure of an
open source program needs to be modular. Large monolithic software requires too much
intellectual investment to learn the architecture, which is daunting to potential
contributors and leads to a loss of conceptual integrity. On the contrary, in a well-
modularized system, developers can �carve off chunks� and work on them without
breaking other parts of source code. (Goldman & Gabriel 2005, 192�193; Hissam &
Weinstock 2005.) Marc Fleury (& Lindfors 2001), a founder of the JBoss open-source
project, wrote:

26

Modularity in open source is not just a good idea, it is the only way a project can
mature. Successful open source projects are usually measured by a number of
people who participate in the development. [�] the key to growing the code base
is to enable a lot of developers to work around the core.

Hence, it is not surprising that, when asked to select the most important quality
characteristic of the software architecture, almost all open source developers chose
modularity (Matinlassi 2007).

Open source developers typically work in a distributed development environment and
communicate via Internet. According to Raymond (2001, 34�36), good information
management is what prevents FLOSS projects from falling pray to Brooks law (Brooks
1995, 25), the belief that adding manpower to a late software project adds more time to
it. Open source projects utilize various technological tools to support the selective
capture and integration of information (Fogel 2005, 45). Any healthy open source
project applied at least the following five core tools: a website, mailing lists, bug
tracker, version control system, and real time chat. (1) Typically, the project website
serves both as one-way conduit of information to the public and as an administrative
interface to other project tools. It should contain documentation for both developers and
end-users and, of course, a link for downloading the product. (2) Mailing lists are
usually the primary communications forum. They also �record� development
discussions for future reference and thus form part of project�s documentation. (3) A
bug tracking system is a software application that is designed to help programmers keep
track of reported software bugs. It is sometimes regarded as a sort of issue tracking
system, maintaining and managing a list of various development issues, such as feature
and support requests. (4) Version control system refers to a combination of technologies
for managing multiple revisions of the same unit of information, in this case, source
code, web pages, and documentation related to an open source project. The system
keeps track of all work and all changes made to project files and enables several
developers to collaborate in a distributed environment. (5) Many projects also offer a
real-time chat rooms using Internet Relay Chat (IRC). In such forums, users and
developers can ask each other questions and get replies immediately. (Goldman &
Gabriel 2005, 138�147; Fogel 2005; 47�48.)

This section has given introduction to specific aspects of FLOSS development and
shown how FLOSS challenges conventional thoughts on software business, software
development models, and organizational structures. In the next section, one successful
open source project � Eclipse � is introduced.

27

2.3 Eclipse Framework

Eclipse is known as the most popular open source development environment and a
vendor-neutral platform for tools integration. Eclipse community has distinguished in
productivity and creativity (Kidane & Gloor 2005) and has developed new features that
are evolving Eclipse towards a platform that is integrating not only tools but also
applications and services (Gruber 2005). As a result, Eclipse is now more than a simple
development environment, it has become a platform that serves the entire application
life cycle (Varhol 2006). It can be said that Eclipse form an open eco-system around
royalty-free technology. (Henttonen & Matinlassi 2007.)

The architecture of Eclipse has been built from point of view of extensibility and
integration. Unlike most other IDE�s, Eclipse is what Birsan (2005) calls pure plug-in
architecture. In Eclipse, there are no core tools in the platform itself. All tools,
including the graphical user interface, have been implemented as extensions, a.k.a. plug-
ins. The only component that needs to be always loaded is a small kernel called plug-in
loader a.k.a. platform runtime, which takes care of activating the extensions (Hakala
2005). Each plug-in can define its own extension points which allow third party plug-ins
to enhance the existing plug-in in a controlled but loosely coupled manner (Clayberg &
Rubel 2006, 112).

The Eclipse platform is a package that includes the plug-in loader and four tools �
workspace, workbench, help system and team support � all implemented as plug-ins. (1)
Workspace is responsible for managing resources, i.e. projects, files, and folders, which
the user or tools interact with when using Eclipse. Projects are top-level containers
which map into user-specified directories in the file system and contain necessary files
and folders. Workspace maintains a low-level history of changes to each resource which
makes it possible to revert to a previously saved state. It also notifies interested tools
about changes to the resources concerned. (2) Workbench is the user interface of Eclipse
which provides a consistent front-end to the Eclipse tools. In addition to displaying
menus and toolbars, it is organized into views and perspectives. Unlike most Java
applications, Eclipse workbench looks and feels like a native application. This is
because it is built using Standard Widget Toolkit (SWT) � a graphics library that maps
directly to operating system�s native graphics � and JFace � a user interface toolkit
build on the top of SWT. SWT needs to be ported into each operating system, which is
one of the most debated aspects of Eclipse. As SWT has already been ported to dozens
of operating systems, it is not a concern in this study. (3) The Eclipse help component is
an extensible documentation system. Mirroring the way plug-ins extend other plug-ins,
tools documentation can insert topics into a pre-existing topic tree. (4) Team support is
a plug-in that enables the use of version control system for managing users� projects.
(Gallardo et al. 2003, 8�10.)

28

Eclipse Software Development Kit (SDK) consists of the basic platform plus two major
tools that are useful for plug-in development. The Java development tools (JDT)
implement a full featured Java development environment. The Plug-in Developer
Environment (PDE) adds specialized tools that facilitate the development of plug-ins.
Figure 5 illustrates the components of Eclipse SDK.

Figure 5. The Eclipse SDK architecture (IBM Corporation and others 2003).

Eclipse community is a group of users, developers, and documentation specialists who
share interest in the continuous development of the Eclipse ecosystem. The official
Eclipse projects consist of 9 open source projects with more than 50 subprojects
(Eclipse Foundation 2006a). In addition, there are hundreds (probably thousands) of
Eclipse plug-in projects hosted independently from the official Eclipse project
(Clayberg & Rubel 2006, 101). Table 4 summarizes the main stakeholders of the
Eclipse community (Beck & Gamma 2004). In this case study, I am acting in three
different stakeholder roles: extender, publisher, and enabler.

29

Table 4. Stakeholders in the Eclipse community.

Stakeholder Description

User Uses Eclipse as it is.

Configurer A user who customizes his/her experience of Eclipse within the limits envisioned by
the original programmer.

Extender A programmer who makes extensions by plugging in functionality.

Publisher An extender who makes extensions available to others for loading them.

Enabler A publisher who has defined one or more extension points for a plug-in, thus
enabling others to extend the contribution.

Committer Modifies the Eclipse code and incorporates changes into the global Eclipse release.
Requires trust of existing committer community.

The development of Eclipse is overseen by the Eclipse Foundation, which is a non-
profit entity formed to advance the creation, evolution, promotion, and support of
Eclipse. The foundation has full-time management organization that works with
commercial developers and consumers, academic and research institutions, standards
bodies, tool interoperability groups, and individual developers (Eclipse Foundation
2006a).

30

3. Development of basecode
As discussed previously (see 1.2), the open source project will be announced when the
code artifact has been implemented into a �minimal but working version�. This section
discusses the development of such a base code for the Stylebase for Eclipse. This does
not only mean implementing a certain amount of fixed functionality, but also designing
a core which is easy to expand.

3.1 Studying existing pattern tools for re-use

The development phase started by studying the existing pattern management tools. The
tools that are open source and have been integrated into Eclipse IDE were tested and
compared to each other. The study on existing tools was considered important for two
main reasons:

1) To avoid duplicating existing efforts

There are only a limited number of open source developers interested in the given area,
and it is hard enough to create one community of them, let alone two. One of the key
points of the open source philosophy is to avoid having to reinvent the wheel. If there
was already an active community with goals similar to ours, I should join their
endeavors. (Goldman & Gabriel 2005, 251; Fogel 2005, 19.)

2) To find re-usable code

According to Robbins (2005, 251), open source projects which re-use existing code
efficiently tend to be more successful. This is because they can demonstrate results
sooner, focus on the added-value, and adhere to the community�s culture of re-use
(Robbins 2005, 251). It was thought that, even if a project was not worth joining, time
could be saved by copying some of the source code.

From these two perspectives, I started looking at the tools listed under category
�pattern� on the Eclipse plug-ins homepage (www.eclipseplugins.info). Other sources
of information, Freshmeat and SourceForge websites, for example, were also used.
Seven open source pattern management plug-ins for Eclipse were found. Even though
two of them had no information on license, they were probably intended to be open
source.

Comparison of the tools was time-consuming due to the lack of documentation. Website
provided some feature lists, but there was often no clear distinction between

31

implemented and planned features. In practice, the only way to check a plug-in was to
download it, play with it, and try to figure out how it works. Appendix 1 provides the
full list of the examined plug-ins, their primary features, as well as their advances and
disadvantages. PSE (Pattern support for Eclipse) appeared the only interesting tool for
our purposes. Despite not being compatible with any UML modeling tool, it contains a
considerable amount of potentially re-usable code. WebOfPatterns could become
interesting if the promised feature of browsing online pattern repositories is
implemented. SEDS plug-in should be evaluated as soon as its user interface has been
translated into English.

As PSE had not been published under GPL or any other OSI-approved open source
license, it was not clear if its source code could be used. The University of Linz, the
holder of the tool�s copyright, was contacted and I received permission to use PSE�s
source code in Stylebase project as I wish (Sametinger 15th May 2006, e-mail message).
Some commercial Eclipse extensions, for example, that of Borland (Borland Software
Corporation 2006), are known to include pattern management tools. These were not
evaluated in detail, because closed-source projects do not compete for the same
developer resources and do not provide a possibility of code re-use.

3.2 Requirement specification

In FLOSS development model, requirements engineering process is user-driven and
decentralized (see section 2.2) and therefore the requirements are most likely to increase
beyond those foreseen. The core of the product should be designed so that the growing
requirements lists does not lead into a major �feature creep�, a situation were
implementing originally unplanned functionality lowers the quality of the product
(Robins 2005, 250). In addition to identifying the requirements for the initial code
artifact, it is essential to identify the requirements that enable the product to evolve
according to the needs of the user community. The requirement specification of the
Stylebase for Eclipse has been divided into two subsections. The respective sections
define (1) the functional and directive quality requirements that need to be implemented
before, or at least very soon after, the project is made public and (2) functionality and
quality characteristics which prepare the product for continuous evolution.

3.2.1 Initial functional requirements

Initial functional requirements of the Stylebase for Eclipse were gathered by exploring
the functionality of the stylebase tool implemented in 2004 (see section 1) and
interviewing VTT personal (Niemelä 15 May 2006; Matinlassi 18 May and 4 September

32

2006; Merilinna 20 May and 3 August 2006; Tarvainen 20 September 2006,
interviews). The most essential functional and directive quality requirements are
summarized in Table 5. These features must all be implemented before the project was
to be made public. For a more detailed requirement specification, which also includes
requirements implemented by external contributors, please see Appendix 2.

Table 5. Summary of essential functional requirements.

Functional Requirement Directive Quality Requirements

● Store architecture and design patterns plus
associated quality attributes in DBMS.

● For each pattern, store name, description, data
model (xml), diagram picture and instructions for
usage (html)

Extensibility: ● Support to store macro, micro and
reference architectures (plus other so for undefined
model types) ● Support to store the data model in
any (textual) form desired

● Provide a database interface for accessing the
pattern repository and managing its data

Scalability: ● Support for several different tools and
several users per tool to access the data
simultaneously

Security: ● User authentication with read/write
permissions

● Provide GUI for browsing, searching and
updating patterns

● Include searching by quality attributes and a free
text search on the pattern description

Usability: ● Fast and easy browsing for end user
satisfaction

Scalability: ● Independence of any particular UML
modeling tool

Provide GUI for exporting/importing pattern files
to/from DBMS

Security/Usability: ● Locking to prevent users from
overwriting each others changes

3.2.2 Encouraging evolution

Table 1 (see Section 1.1.5) presented the hierarchical stack of stakeholders of the
Eclipse community. The stack is built from a technical point of view. That is, publishing
an Eclipse extension does not require making it extendable. Although this is true,
attracting an active open source community, as stated previously (see Section 1.1.4),
requires a modular architecture, which in this case includes the efficient use of Eclipse
extension mechanisms.

Stylebase for Eclipse must implement modularity on two levels:

1) The internal architecture of the Stylebase for Eclipse must be modular. The core
application is split into independent modules by following a commonly-accepted
software architectural pattern.

(2) The Stylebase for Eclipse must provide functionality which lets users build custom
extensions without touching the source code of the Stylebase for Eclipse. To achieve

33

this, Stylebase for Eclipse provides both access points and extension points for
dependent plug-ins to use.

Access points define a set of functions which developers of third-party plug-ins may use
without detailed understanding of their internal workings. Access points form an
application programming interface (API) of Stylebase for Eclipse. Extension points let
users, not only to use, but also enhance the functionality of the main plug-in.

3.3 Database design

Stylebase for Eclipse is based on a database management system (DBMS). MySQL was
selected over other open source DBMS (e.g. PostgreSQL, Firebird and Ingress) because
it is a most widely used one. The popularity means better tool support, more resources,
and a larger community to help with technical problems (Gebert 2003). Despite not
fully complying with the ANSI standard, the latest version supports all commonly used
SQL-92 features, for example, sub-selects, word indexes, transactions, views, and stored
procedures (MySQL Ab 2005, 4�12).

Maintainability, not performance was the main consideration when designing the
database schema. This is because as the product is likely to manage mostly small or
medium sized databases. In order to keep data model simple and easy to maintain, the
database was designed in the third normal form (3NF). In the relational database theory,
normalization is the process of reconstructing the logical schema of a database in order
to eliminate redundancy, improve efficiency and prevent errors during data operations.
The third normal form is a normalization level which requires that (1) values in each
column of a table are atomic (2) all columns of a table depend directly on the primary
key. (Halpin 2001, 627�633.)

Three database tables are required to store the contents of the stylebase. The tables are
summarized in Table 6.

Table 6. Database tables summarized.

Table name Description

Patterns The table contains name and properties of each pattern. Most importantly it
contains large object fields for storing guide, picture, and model.

Quality Attributes The table contains information on which patterns are associated with which
quality attributes, as well as respective rationales

Attribute Definitions The table contains names and definitions of all quality attributes used

34

Guide is the documentation of a pattern, typically stored in HTML format. It includes
application areas, instructions for usage, plus textual descriptions on the role of each
component. Picture is graphical representation of the pattern in binary format (e.g.
JPEG, GIF). In this context, model is the data model of a pattern, i.e. structural
representation of its components and their interrelations. Typically, the text field
contains an UML diagram in XML format (see section 2.1.1).

Figure 6 presents the most essential fields of the tables and illustrates dependencies
between them. The fields that form the primary key of a table are underlined. The
abbreviations �PK�, �U�, and �I� stand for primary key, unique index and index (non-
unique) respectively.

Figure 6. Database Schema.

For more detailed description of the database schema, see Appendix 3.

3.4 Plug-in architecture

It was decided that the architecture of the Stylebase for Eclipse should apply the well-
known model-view-controller architectural pattern (see e.g. Bushmann et al. 1996, 125).
The MVC architecture is a way of breaking an application into three parts: model, view,
and controller. The user input, the manipulation of data, and the visual feedback to the
user are separated and handled by controller, model, and view objects respectively.

35

MVC architecture was selected for the following reasons (Henttonen & Matinlassi
2007):

1) It promotes extensibility by allowing multiple representations (views) of the same
information (model). This makes it easy to update the graphical user interface, which is
especially prone to change requests, and/or customize views based on user�s profile.

2) It promotes code re-use by allowing the same view to show data from different
models. By adding a new model, one could adjust the tool to entirely manage different
types of data with minimum recoding effort.

3) It eases maintenance by allowing an individual developer to focus on one aspect of
the application at a time. Multiple developers can simultaneously update the interface,
logic, or input of an application without affecting other parts of the source code.

4) MVC architecture is well suited for Eclipse plug-in development, because the view
classes of Eclipse can receive any other class as an input object. Eclipse platform itself
has a model-view-controller architecture (Griffin 2004).

The QADA method (see section 2.1.2) defines two abstraction levels for software
architecture modeling � conceptual and concrete. This section describes the software
architecture on conceptual level from three different viewpoints: structural, behavioral,
and deployment. UML elements have to be used in a non-standard way in order to
present some of the viewpoints as defined by the QADA method. The concrete level
architecture description can be found in Appendix 4.

Structural View

Figure 7 shows how the plug-in implements a model-view-controller pattern. In order to
increase the level of modularity, the three main components communicate with each
other via predefined interfaces.

The view is responsible for providing a graphical user interface. A controller is
responsible for mapping GUI events to application response. A model contains the core
functionality of the application. It is divided into two subcomponents: container holds
pattern data during programs execution and admin encapsulates methods that
manipulate it. Model attaches to database for which servers are a permanent storage for
the pattern data.

36

Figure 7. The Stylebase for Eclipse � Structural View.

The requirement specification determines (see Section 3.1.2) that Stylebase for Eclipse
must provide access and extension points for downstream plug-ins. They are described
in Table 7 and Table 8 respectively.

Table 7. The access points provided by the Stylebase for Eclipse.

Controller The interface provides access to the control component. It lets users associate
the functions of Stylebase for Eclipse with the GUI of another plug-in.

Model The interface gives access to the model component. It provides a set of methods
for retrieving and updating essential data in the Stylebase.

Database (SQL) The interface provides SQL-level access to the underlying database. It helps in
implementing specific functionality not provided by the model interface.

Table 8. The extension points provided by the Stylebase for Eclipse.

Model Extension
Point

The extension point provides the means of adding new models, units for storing,
and handling different types of data.

GUI Extension
Point

The extension point provides the means of customizing the user interface of the
Stylebase for Eclipse. It allows users to add their own views and/or menu items
to the main view of the Stylebase for Eclipse. The controller component is
extended respectively.

37

Behavioral View

Figure 8 illustrates the communication between the main components.

Figure 8.The Stylebase for Eclipse � Behavioral View.

The view component attaches to a model and shows its contents on the display. The
model notifies the view when its contents have changed and then the view redraws the
affected part of the image to reflect these changes. The view detects GUI events (e.g.
mouse click, button press) and sends them to the controller. A controller receives events
from the view and then instructs the admin part of the model(s) to perform actions based
on the input. The model admin updates data both in the model container and the remote
database. Upon initialization of the program, the model admin reads data from database
and fills the container.

38

Deployment View

Figure 9 illustrates how the Stylebase for Eclipse is deployed.

Figure 9. The Stylebase for Eclipse � Deployment View.

The Stylebase for Eclipse is an extension to the Eclipse IDE (see section 2.3) which is
always deployed on the client machine. The Stylebase for Eclipse includes two third-
party subcomponents: JDBC Driver and an XML Object Model. JDBC Driver is a
client-side program which sends and receives requests to/from DBMS. An XML object
model is a programming interface for processing XML Documents with Java. It
includes a separate component which does the actual parsing. Database server is
typically deployed on server machines. If desired, one computer can act both as a server
and a client, in which case, all applications are installed on the same physical machine.
In any case, a client-server type connection is established between the database server
and the client libraries.

Development View

The Stylebase for Eclipse project is by no means a unique case � it is dependent on
various tools developed by other open source communities. Figure 10 shows the
selected technologies and their providers.

39

Figure 10. The Stylebase for Eclipse � Development View.

MySQL DBMS (see section 4.3) and the associated JDBC Driver, namely MySQL
J/Connector, are provided by the company called MySQL Ab and the FLOSS
community it supports. XOM was selected as an XML object model mostly for
licensing choices as shall be explained later in the document. Eclipse Platform (see
section 2.4) and Eclipse Plug-in Development Environment (PDE) are developed by
respective communities under the official Eclipse project. The development of Standard
Widgets Toolkit (see section 2.4) is managed by the Eclipse platform community, but
new widgets originate from the Nebula project which is a source of additional SWT
widgets and an �incubator� for SWT.

40

4. Community founding

4.1 Choosing and applying license

Many factors have an effect on the licensing policy of an open source project (see
section 2.4). Both Fogel (2005, 33) and Goldman and Gabriel (2005, 190) state that it is
best to choose one of the well-known existing licenses, rather trying to create a new
one. A new license, even if short and clearly written, is an additional hurdle that limits
outside participation. I decided to use the GNU General Public License (GPL), which
has been written by the Free Software Foundation. Many contributors are familiar with
it as it is the most widely used open source license, which is, according to Fogel (2005,
34) a big advantage on its own. GPL ensures that the Stylebase plug-in can be
unambiguously combined with MySQL client libraries which are also GPL licensed. As
GPL prohibits distributing the project source code as part of a closed-source product, it
encourages contributing extensions and improvements back to the community (Fogel
2005, 237; Godlman & Gabriel 2005, 123�125). The main drawback is that the terms of
the GPL may put companies off contributing to a project (Goldman & Gabriel 2005,
190). On the other hand, one should note that GPL does not prevent a company from
using the product as part of a closed in-house system � it only impacts software vendors
who intend to sell a derived work (Rowan 2006). Another disadvantage of GPL is the
incompatibility with Eclipse Public License (EPL) (Free Software Foundation 2006c).
There are expectations that the issue may be solved by GPL version 3 (O�Riordan
2006).

Merely stating that the program is distributed under a certain license is not sufficient for
legal purposes. For that, the software itself must contain the license. The normative way
to do this is to place the full license text in the file called COPYING (or LICENCE) and
then put a short notice on top of each source file which states the copyright holder, the
license, and the location of the full license text. In addition, a README file with the
copyright and licensing statements may be placed into each subdirectory containing
binary files.

The following text (Free Software Foundation 2006d) was added into respective source
and README files of the Stylebase for Eclipse:

Copyright(C) 2006 VTT Technical Research Centre of Finland

This file is part of Stylebase for Eclipse.

Stylebase for Eclipse is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

41

Stylebase for Eclipse is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License more details.

You should find full license text in the file called COPYING. If
you did not receive a copy of the GNU General Public License
along with this program, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.

It is notable that, as external libraries distributed with the program have not been
modified, their copyright remains intact. This is recognized by mentioning the copyright
holders of third-party libraries in the primary README file as well as in respective sub
directories.

Once GPL has been applied to the program, its terms of redistribution are contagious �
they get passed into anything else that code is incorporated into (Fogel 2005, 237). It
was thus essential to examine that all third-party files distributed with the Stylebase
plug-in, including icons, have been published under a GPL compatible license. The Free
Software Foundation maintains a useful list showing which free software licenses they
consider as GPL-compatible (Free Software Foundation 2006b). Initially, the Stylebase
for Eclipse tool was used as an XML object model called JDOM. It was published under
its own open source license specifically written for the JDOM project. Due to the fact
that JDOM uses a permissive license similar to the MIT (Massachusetts Institute of
Technology) license, I considered it to be GPL-compatible. Later, I found out that the
clause that prohibits the use of the name JDOM in derivative works can be seen as an
additional restriction and this would rule out the GPL-compatibility (Rowan 2006). A
polite posting (Henttonen, 28 September 2006, e-mail message) to an open source
forum regarding the GPL-compatibility of JDOM caused an intense �flame war�. It was
decided to switch to another XML object model which was published under GNU
Lesser General Public License � a license which can unambiguously combined with
GPL.

4.2 Building infrastructure for information management

Every open source project needs technical tools to facilitate distributed development
and encourage information sharing (see section 2.2). According to Fogel (2005, 45), the
success of an open source project is dependent on the skill of the project leaders in using
these tools and persuading others to use them. An easiest way to set up the required
tooling environment is to subscribe to a canned hosting site, i.e. a server that offers
prepackaged web areas with all tools needed to run an open source project. The free
hosting services provide e.g. web hosting, mailing lists, revision control, and issue
trackers (see section 2.2). Using a canned site saves a lot of time and effort, because the

42

provider takes care of selecting and configuring the tools, as well as maintaining them,
e.g. taking backups of the data stored in the tools. The other advantage of canned sites is
that they offer huge amount of bandwidth and server capacity, making sure that
unexpected peaks in the number of visitors can hardly bring the site down. On the other
hand, the canned sites are adjustable only with certain parameters and thus setting up a
project site by oneself gives more freedom. Considering the limited resources and the
laborious effort of self-hosting a project, it was decided to use one of the canned hosting
sites. (Fogel 2005, 84�85.)

For selecting a hosting facility, the most well-known, general-purpose hosting facilities �
SourceForge.net, Savannah, BerliOS � were evaluated by using an evaluation framework
created by Dr. So (2005). The all evaluated facilities are so called infrastructure sites, this
means that most information about the projects hosted is stored in databases and a user
interface is provided for setting up a project. They all run a collaborative software
development management system originally called �SourceForge�. SourceForge.net uses
a closed-source proprietary version of this software, while the two other websites run free
versions forked from the last open source version of SourceForge. They all essentially
provide the same range of tools and services, BerliOS slightly falling behind the two
others. Savannah provided by the Free Software Foundation was selected as a hosting
provider because it is ad-free, provides the most professional looking user-interface, and
monitors the quality of the projects hosted.

Savannah is dedicated to free software advocacy and has strict hosting policies, such as
code review before accepting a new project as a Savannah project. The Savannah
administration requires that all hosted software 1) is licensed under a free software
license compatible with the GNU General Public License, 2) runs on at least one free
operating system such as Linux, and 3) is not dependent on any non-free software. Non-
free software includes all proprietary programs (such as Macromedia Flash and the
Microsoft SQL Server), non-free file formats (such as the Graphic Interchange Format),
and non-free programming languages (such as the Sun implementation of Java). (Free
Software Foundation 2006c.) Savannah administration also imposes strict requirements
on how a free software license should be applied to the code artifact, including external
libraries. The purpose is to ensure that all code distributed at Savannah is �legally
sound� (Robson 12th December 2006, e-mail message). In the case of the Stylebase
plug-in, this meant a lot of additional work. For example, one needed to open the JAR
(Java Archive) file of the MySQL client, place a README file into dozens of sub
directories, and then to package the source code and binaries back into a JAR file.
Savannah also requires that the source code of all external libraries is distributed with
the plug-in. It is not sufficient to provide instructions on where to download the source
code (Robson 12 October 2006, e-mail message).

43

The application process to Savannah took longer than expected. Due to the strict
deadline of publishing the project, it was eventually decided to subscribe to
SourceForge.net instead of Savannah. SourceForge.net has a semi-automatic acceptance
process and therefore our application was processed in less than a day. The main
disadvantages of SourceForge.net are online ads, although relatively non-disturbing,
requirement to place SourceForge banner on each hosted webpage and the difficulty to
�stand out� from over hundred thousand miscellaneous projects hosted. On the other
hand, SourceForge.net is the most well-known service � which can be seen as an
advantage � and also provides the best tools for collecting and analyzing project
statistics.

The following tools were configured at SorceForge.net: a version control system, two
mailing lists � one for users and another for development discussions � and three issue
trackers � for bug reports, support issues, and feature requests. The project website at
http://stylebase.sourceforge.net is a portal to all aspects of the project. It provides access
to the project tools and documentation and naturally a page where users can download
the product and its source code. The name of an IRC channel, which can be visited to
meet developers, is also mentioned at the website.

In addition to end-user documentation required for any software product, open source
projects needs clear development documentation. If the internal structure of a program
is well-documented, it is easier for new developers to learn their way around the source
code. According to Goldman & Gabriel (2005, 139), the easier it is to learn enough to
get started, the more developers a project will attract. The design documentation has to
be kept up-to-date and, ideally, external contributors should document their own code
(Goldman & Gabriel 2005, 140). To facilitate distributed maintenance of development
documentation, a wiki was set up for the project. A wiki is a website that allows any
visitor to edit or extend its content. Development documentation of the Stylebase for
Eclipse was placed at http://eclipse-wiki.info, a wiki server dedicated to hosting wiki
pages of Eclipse related projects.

4.3 Announcing and publicity

Marketing is an essential part of founding a new open source community (see section
1.2.4). In order to make the project known to the public, it was decided to publish
announcements on some popular, open source related websites and to send one-time
postings to carefully selected mailing lists. I chose not to send email to several large
mailing lists because such postings are easily considered as spam. As well as regular
internet users, open source developers dislike irrelevant information that is blocking
their communication channels (Raymond & Moen 2006). Instead, I posted to mailing

http://stylebase.sourceforge.net
http://eclipse-wiki.info

44

lists where our project should be clearly topical and of interest, e.g. lists targeted at
developers of Eclipse-compatible modeling tools. The Eclipse Plug-in Central (EPIC) is
obviously a website where I wanted the plug-in to be listed. This is a place where
Eclipse users search for commercial and open source plug-ins. An announcement was
also placed at a few open source development portals, at FreshMeat.net and Tigris.org,
for example. Tigris.org is an open source software development community focused on
development tools. Freshmeat.net, which Fogel (2005, 43) mentions as the number one
place to be seen, is a very popular website that allows people to keep track of the latest
FLOSS releases and updates. Furthermore, I promoted the project at various open
source related events, such as the Open Mind conference. Open Mind
(www.openmind.fi) is the leading annual international open source conference in
Finland, covering both business and technological sides of the matter. A brochure and
poster were designed for marketing the project. I also contacted lecturers of software
development courses at some universities and offered the Stylebase for Eclipse project
as a practical work for their students.

Goldman & Gabriel (2005, 246) stresses the importance of establishing strong, positive
connections with other communities, especially closely-related ones. The Stylebase for
Eclipse should be seen part of the Eclipse community, not as an isolated plug-in project.
In order to establish credibility with other members of the Eclipse crowd, it was decided
to apply for membership of the Eclipse Foundation. Associate membership is free of
charge for non-commercial entities like universities and research institutes. The Eclipse
Foundation requires that associate members commit to 1) deliver added value to the
Eclipse community within 12 months and 2) publicly announce joining the Eclipse
Foundation within 90 days (Eclipse Foundation 2006b). While the associate
membership does not grant decisive power, it grants rights to participate in project
reviews, project creation, and discussions on Eclipse intellectual property policy. It also
entitles the member to use the Eclipse Foundation Member logo in marketing activities
(Eclipse Foundation 2006c). VTT published a press release on joining an Eclipse
Foundation and it was also used as a means of advertising the plug-in.

Table 9 summarizes some of the activities which assisted in making the Stylebase for
Eclipse project better known. The list is by no means complete, but gives an idea of
different channels used in promoting the project.

45

Table 9. Summery of the most important marketing activities.

Week Activity

41/06 Stylebase for Eclipse was mentioned as part of a lecture on software architectures at the
University of Oulu.

Lectures of software engineering courses at the University of Oulu and the Oulu University of
Applied Sciences were informed about the project.

42/06

The Stylebase for Eclipse was mentioned as part of a lecture on Quality-Driven Driven Model-
Transformation at VTT.

One-time postings were made to a few selected mailing lists 43/06

The project was announced at Eclipse Plug-in Central (eclipseplugincentral.com) and Tigris
(www.tigris.org)

Tool demonstrations were delivered and brochures were handed out at VTT booth at the
Open Mind event.

44/06

Another research project on open source software (OSSI) was contacted and co-operation
was suggested in the form of using the tool and giving feedback

47/06 VTT joined the Eclipse Foundation and announced it in a press release which also mentioned
the Stylebase for Eclipse project.

A presentation on the Stylebase for Eclipse project was delivered in a seminar of an
international research project in Malaga, Spain.

48/06

Project was advertised to the representatives of the Fatih University in Turkey. Co-operation
is planned.

49/06 A presentation on the Stylebase for Eclipse was delivered in a public seminar held at VTT.
Brochures were handed out.

Project was announced at FreshMeat.net.

Project was advertised to the representatives of the University of Linz in Austria.

51/06

An article on the Stylebase for Eclipse was published at the website of FSFE (Fellowship of
Free Software Foundation Europe).

08/07 The Stylebase for Eclipse tool was demonstrated to some staff members of the engineering
faculty of Fatih University in Istanbul.

11/07 The release of Beta 1.0 was announced at the internet forums where the project had been
previously advertised (e.g. Freshmeat.net and Eclipse-plug-in central).

12/07 A lecture on the Stylebase for Eclipse project was delivered to engineering students at the
Fatih University. A poster was made for advertising the lecture.

4.4 Feedback and contributions from community

Users of the Stylebase for Eclipse send feedback mostly by sending e-mail directly to
the project administrator or entering comments into the support issue tracker. It seemed
difficult to direct conversations to the mailing lists instead. Some users commented and
rated the plug-in at Eclipse Plug-in Central (http://www.eclipseplugincentral.com). By
the time of writing, 14 users have contacted us, which is over 10% of the number of
downloads made. Some users have only reported one issue while others committed to
longer conversations on the development plans of the plug-in.

Generally speaking, it seems that many users are responsive to the idea of maintaining a
knowledgebase of architectural models. Users stated for example as follows.

http://www.eclipseplugincentral.com

46

Thanks for this marvelous plug-in! I was looking for such a

plug-in for quite a while.

The idea [of having a knowledge base] is excellent!

Cool project! I am thinking that I can use this for my own projects and possibly
work since I am doing�.

I love the idea of the Stylebase plug-in!

Essentially all of the negative feedback concerned the installation process of the plug-in.
Most users wanted to keep a small knowledge base for themselves � rather than share
one with a large development team � and therefore installing a database system brought
no benefits for time. Installation process was made even more laborious by the fact that
many were unfamiliar with MySQL. A few excerpts from user feedback are provided
below.

You assume that the installer has a strong understanding of mysql. Bad idea.

The installation process is too time-consuming and error-prone.

How can you justify using a mysql database? Loading each pattern into the
database involves too much work. [�] Please simplify the installation and
configuration process.

How about supporting two persistence models. The default would be a simple
local file collection of stylebase models. The other persistence model would use a
MySQL database. The simple local file based model would allow export/import
so that the models could be shared by sneaker net, email or CVS.

As part of the marketing activities, university lecturers of software engineering courses
where contacted and the development of the Stylebase plug-in was offered as practical
work for their students. As a result, two students from the Oulu University of Applied
Sciences contributed to the development. During the period of six months, the students
used a few hours each week implementing new features to the plug-in. Primary
contributions were the following: context-sensitive help, GUI for managing various
configuration parameters and GUI for modifying quality attribute definitions. The
contributions improved usability and simplified the configuration process. Put together,
the contributions presented approximately 100 hours of productive programming work,
not counting time spent on learning.

47

5. Discussion
This thesis work aimed at accumulating knowledge in Eclipse and open source software
development by means of a �hands-on� experiment. It had three concrete, measure
objectives (see section 1.4) which were labeled as technical, business and
organizational. The first subsection summarizes some interesting experiences and
discusses the lessons learned and the questions that arose. In the next subsection, the
achievement of concrete objectives is assessed. After that, near-future development
work and research interests are viewed. The section is closed by some notes on the
thesis process.

5.1 Experiences and lessons learned

The technical implementation of the plug-in was relatively straightforward for an
experienced Java programmer. Naturally, learning to use SWT graphics library (see
Section 2.3) and getting familiar with Eclipse programming interface took time. The
most interesting experiences were related to founding and managing an open source
community. This section discusses experiences on code re-use, selection of hosting
facilities, marketing activities, and parallel development.

Even though the reviewed literature proclaimed the benefits of code re-use (see section
3.1), the matter proved to be complex in practice. Some time was initially saved by
copying code from another plug-in project, but this soon backfired as a lot of time was
spend in harmonizing code styles and debugging the foreign part of the code base. It
seems that � unless the amount of re-usable code is immense � there are many good
reasons for writing ones own code from scratch. However, studying source code of the
other plug-in was very useful for learning to develop Eclipse plug-ins. It seems that, as
also stated by Souza (2003), the most important benefit of code reuse is knowledge
reuse.

Savannah was first selected as a hosting facility, but the project was eventually set up at
SourceForge (see section 4.2). One of the experienced advantages of Savannah was that
it would host only carefully reviewed projects � causing the disadvantage of long
drawn-out acceptance process. The process was slow most probably due to the
following reasons. Not all the requirements for application were clearly stated at the
same time, but rather mentioned one after another on a weekly basis. The voluntary
nature (Vainio & Vaden 2006, 13) of open source communities was really put into
action when our emails were replied to mostly on weekends and there was often a long
delay before receiving a reply. In comparison, the application to SourceForge was
processed in less than a day. Considering the amount of bogus projects found at

48

SourceForge.net, the quick approval appears to reflect a loose hosting policy rather than
efficiency. (Henttonen & Matinlassi 2007)

It became necessary to replace a subcomponent with another one because the initially
chosen component was published under a non-standard license whose legal
compatibility with GPL was questionable (see section 4.1). The incident highlighted the
risks of using source code from projects which use self-written licenses. It seems that
whenever a project uses a non-standard license, compatibility issues are a matter of
debate. Problems with incompatibility of GPL with other FLOSS licenses also raised
questions on the selected licensing scheme. A non-contagious license (see section 4.1)
would cause less incompatibility problems. GNU Lesser General Public License
(LGPL) and Common Public License (CPL) are among possible alternatives. Such
licenses would allow software vendors to sell Stylebase for Eclipse as part of a closed-
source package under certain conditions. It does not seem like such closed-source
distribution could harm the project, however, the issue is still to be studied further.

SourceForge platform provided all tools needed and, generally speaking, it was easy to
set them up and running. It was possible to customize the tools to meet with the specific
needs of the Stylebase for Eclipse project. However, the value of statistics gathered by
SourceForge was diminished by the fact that the most interesting data is only archived
for less than a month. The improved statistics collection good be a reason to self-host a
project, if required resources were available.

SourceForge.net does not work as a marketing channel. Nobody visited the project at
SourceForge before I actively started marketing. Dozens of new projects, ranging from
games to hardware drivers are added to SourceForge every day and it is obviously
difficult to stand out from such a large, heterogeneous crowd. In comparison, much
valuable feedback came in as a response to the announcement at Tigris.org (see section
4.3). As Tigris also provides hosting services, it might have been a better choice as a
hosting provider. Instead of hosting a huge amount of miscellaneous projects, Tigris
focuses on development tools and is visited by the target audience I was looking for. It
is still to be studied whether switching the project hosting to Tigris would be worth the
effort.

The most effective marketing activity seemed to be giving a demonstration at a seminar
targeted for a special audience interested in open source. A concrete metric set for
assessing the effectiveness of marketing activities was provided by the number of
downloads at stylebase.sourceforge.net. A few days after the demonstration I was able
to witness nearly 50 downloads from different IP addresses. Announcement at websites
FreshMeat.net and EclipsePluginCentral.com did not bring significant amount of
visitors to the site. The measurement was easy as both sites keep record on URL hits.

49

Almost all traffic occurred while the respective announcement was less than 5 days old,
after that the number of hits fell dramatically.

The external developers got started with the development after relatively little time
spent it learning. This tells a positive message on the learnability of the selected
architectural style and the clarity of development documents. Some gaps in the
documentation triggered e-mail discussions � which now complete serve as a reference
for new contributors. However, the architecture based on model-view-controller pattern
did not support parallel development in the most effective way possible. Most new
features would require a developer to enhance all three components � model, view, and
controller � and therefore the application needed to be split in another way. The
application was divided into several dependent plug-ins. Such division effectively
enabled many people to work on the code simultaneously, did not cause any additional
coding effort, and was invisible to the end-user. Model-View-Controller architecture
integrates very well into the architecture of the Eclipse platform and therefore I would
not call it a bad choice. Experiences with parallel development just further highlighted
the need to keep the core small and implement additional features as dependent plug-
ins. Carefully-planned access and extension points to the core plug-in (see section 2.3)
proved to be extremely useful.

5.2 Achievement of objectives

The first objective was to develop a modular Eclipse plug-in for maintaining the
Stylebase. The achievement of the objective was supposed to be measured by a tool
demonstration, more precise criteria being defined as part of the requirement
specification. In Autumn 2006, the tool was demonstrated at various events and
superficially tested before a first beta release was published. In January 2007, students
were used to test the tools both against the requirement specification and the end-user
documentation. Even though some bugs were found, both testing and end-user feedback
confirmed that the plug-in functioned as intended. First experience with parallel
development supported the conclusion that plug-in was modular and easy to integrate
with other plug-ins.

The second objective was to found a plug-in development project, which is listed at the
Eclipse Plug-in Central (EPIC). Performance was to be measured by the number of
downloads, as well as the amount of quality feedback received from users and
contributors. The plug-in project was published at SourceForge at 19th of October 2006
and a few days after it was also listed at EPIC. By the time of writing, there has been
approximately 450 downloads from different IP addresses. A quick look was taken at
random SourceForge projects of roughly the same age and none of them had as many

50

downloads. Approximately 5 % of people who downloaded the product gave us
feedback in some form. Most feedback was quite brief, only a couple of users got
involved in longer discussions and a few reported bugs. There were no statistics
available on average proportion of the number of contacts to the number of downloads.
Generally speaking, it is expected that the vast majority of the users stay passive and
only some become more active (Vainio & Vaden 2006). Nevertheless, new ways for
encouraging communication could be explored in the future.

The third objective was to gain active users who contribute to the development of the
plug-in. Performance was to be measured by the amount and quality of received
contributions, if any. Completion of objectives during the time provided for this thesis
work was not expected. Two students from Oulu University of Applied Sciences
contributed to the development, the combined size of the contributions being 2�3
working weeks. Even though these contributions were initiated by myself, and did not
genuinely rise from the needs of the community, they were useful in accumulating
experience in working with external contributors. More contributions are expected to
come in as the project matures. In fact, three new users have recently contacted me and
expressed interest in participating in the development of the tool.

5.3 Future work

Feedback from user community was consistent on the point that the installation and
configuration process of the plug-in needs to be simplified. It was decided that the
Stylebase for Eclipse should offer its users a choice between a file system based version
and a DBMS based version of the tool. Current version requires all users to install a
MySQL database which makes the installation process too time-consuming and error-
prone. Furthermore, there are no benefits from the use of DBMS when a user wants to
manage a pattern repository locally.

To support the new functionality, the database schema shall be redesigned so that all
information is stored in the XML format. This facilitates us to implement the file-
system based version smoothly, without being doomed to maintain two entirely
different versions of the tool. It also improves extensibility of the database. The tool
currently stores unparsed XML documents in one large text field. As the role of XML is
growing, it might be necessary to find a more efficient way to store XML in a relational
database. This is a challenge because MySQL and other open source database do not
have built-in XML features, like some closed-source database systems have already.
One solution could be an approach which uses middle-ware for storing and retrieving
XML data into/from MySQL database (Kurt et al. 2004). Further study on the subject is
needed.

51

The design and implementation of this variation point � the choice between file-system
based and RDBMS-based implementation � will be coordinated as an open source
project. Further marketing activities are required to attract external contributors. The
development of the variation point shall be used as an industrial example to test the
Integrability and Extensibility Evaluation method (IEE) developed at VTT. IEE is a
scenario-based evaluation method for assessing how integrability and extensibility
requirements are met in the software architecture.

52

6. Conclusions
This thesis work was a case study on contributing to Eclipse. The primary research
question was �How to contribute to Eclipse by initiating a new plug-in project�? The
study covered both technical and organizational aspects of the matter, i.e. development
of the plug-in and founding an open source community. The primary research question
was divided into two sub questions, which are answered below. Most interesting
findings were related to various aspects of FLOSS development.

The first sub question was �How to develop a modular Eclipse plug-in?�. Modularity
should be implemented on two levels. (1) Firstly, the internal architecture of a plug-in
must be modular. This can be achieved by designing the architecture in accordance with
a tested and commonly-approved architecture pattern. The model-view controller
pattern was selected because it supports maintainability, facilitates parallel development
and complies with the architecture of the Eclipse platform. (2) Secondly, the plug-in
must provide pre-defined interfaces for the downstream plug-ins to use. This can be
achieved by (a) building access points by implementing a well-defined programming
interface and (b) defining extension points with the Eclipse extension point mechanism.
Experiences highlighted that breaking the application into several dependent plug-ins is
by far the most effective way to support parallel development. It was also noticed that
code re-use does not necessary quicken the development process � its primary benefits
are in learning and knowledge re-use.

The second sub question was �How to launch a successful open source community?�
Launching an open source community is much more than just publishing source code on
the Internet. In order to found an open source community one needs to (1) choose a
license and apply it to the code artifact (2) build technical infrastructure to support
communications and distributed development (3) market the project intensely.
Conclusions based on experiences in community building are as follows.

GPL was selected as a license because it is well-known and encourages contributing
extensions and improvements back to the community. When integrating open source
components, resolving legal compatibility issues takes time and therefore should be
taken into account in schedules. It is best to avoid subcomponents that have been
published under non-standard licenses and, regarding the GPL license, one should only
use open source components with GPL compatible licenses accepted by the Free
Software Foundation. If closed-source forks or extensions are not seen as harmful to the
community, a more permissive license could be chosen to diminish incompatibility
issues.

53

For building the technical infrastructure, subscribing to a canned hosting facility is a
good option � and the only option if resources are scarce. If a hosting facility reviews
the source code of proposed projects, one should prepare for a lengthy acceptance
process. It may become necessary to modify the source code as requested by the
administrators of the respective hosting facility. The most popular hosting facility,
SourceForge.net, does not do code review and therefore new projects get accepted
quickly.

General purpose hosting facilities cannot be relied on as marketing channels. Marketing
via other channels � such as OS related internet forums and seminars � deemed to be
crucial for attracting users and contributors. The marketing activities caused an
immediate tenfold increase in code downloads at the project website.

User community was responsive to the idea of maintaining an architectural
knowledgebase. Essentially all negative feedback concerned the fact that the installation
process was thought to be time-consuming. It seems that giving a good initial
impression to users includes getting them started with only a few mouse clicks. The
future development challenge is to ease the installation and configuration process of the
Stylebase for Eclipse plug-in. As for research interests, the next goal is to use the plug-
in as an industrial case to test an evaluation method for assessing extensibility and
integrability of software architecture.

54

References
Printed References

Bass, L., Clements, P. & Kazman, R. 2004. Software Architecture in Practice. Second
Edition. Boston: Addison-Wessley.

Beck, K. & Gamma, E. 2004. Contributing to Eclipse. Dr. Dobb's Journal 29(9), 74�78.

Birsan, D. 2005. On Plug-ins and Extensible Architectures. Queue 3(2),40�46.

Bondi, A. 2000. Characteristics of scalability and their impact on performance. In the
Proceedings of the 2000 Workshop on Software Performance (WOSP2000).Ottawa,
Canada.

Booch, G., Brown, A., Iyengar, S., Rumbaugh, J. & Selic, B. 2004, s. 18, 19. An MDA
Manifesto. Business Process Trends/MDA Journal 2004(05).

Brooks, F. 1995. The Mythical Man-Month and Other Essays on Software Engineering.
Second Edition. Boston: Addison-Wessley.

Bushmann, F., Meunier, R., Rohnert, H., Sammerlad, P. & Stal, M. 1996. Pattern
Oriented Software Architecture: A System of Patterns. Chichester: John Wiley & Sons
Ltd.

Clayberg, E. & Rubel, D. 2006. Eclipse. Building Commercial Quality Plug-ins.
Massachusetts: Pearson Education, Inc.

Dibona, C. 2005. OS and Proprietary Software Development. In: Cris Dibona et al.
(eds). Open Sources 2.0. Sebastopol: O�Reilly.

Fogel, A. 2005. Producing Open Source Software. How to run a successful free
software project. Sebastopol: O'Reilly.

Frankel, D. 2003. Model-Driven Architecture, applying MDA to enterprise computing.
Indianapolis: Wiley Publishing Inc.

Gallardo, D., Burnette, E. & McGovern, R. 2003. Ecipse in Action. A Guide for Java
Developers. Greenwitch: Meaning.

55

Gamma, E. & Beck, K. 2004. Contributing to Eclipse � Principles, Patterns, and Plug-
Ins. New York: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1994. Desing Patterns. Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley.

Gebert, I. 2003. Open-Source Database Management Systems in Small and Medium-
Sized Companies. Seminar Paper. Rostock: University of Rostock.

Gershenson, J., Prasad, G. & Zhang, Y. 2003. Product Modularity: definitions and
benefits. Journal of Engineering Design 14(3), 295�313.

Goldman, R. & Gabriel, R. 2005. Innovation Happens Elsewhere. Open Source as
Business Strategy. San Fransisco: Elsevier.

Griffin, C. 2004. Tranformations in Eclipse. 18th European Conference on Object-
Oriented Programming. Oslo, Norway.

Gruber, O. 2005. The Eclipse 3.0 platform: adopting OSGi technology. IBM Systems
Journal 44(2), 289�99.

Hakala, A. 2005. Tool Integration in Eclipse. Jyväskylä: University of Jyväskylä.
Department of Mathematical Information Technology. Pro gradu thesis.

Halpin, T. 2001. Information Modelling and Relational Databases. San Fransisco:
Morgan Kauffman Publishers.

Helander, N. & Mäntymäki, M. 2006. Empirical Insights on Open Source Software
Business. BRC Research Report #34. Tampere: Tampere University of Technology and
the University of Tampere.

Henttonen, K. & Matinlassi, M. 2007. Contributing to Eclipse: A Case Study. In the
Proceedings of the 2007 Conference on Software Engineering (SE2007). Hamburg,
Germany.

Hissam, S. & Weinstock, C. 2005. Making Lighting Strike Twice. In: Feller, J. et al.
(eds.) Perspectives on Free and Open Source Software. Massachusetts: Massachusetts
Institute of Technology, MIT Press Ltd., 143�159.

56

IEEE Standards Committee 2000. IEEE Recommended Practice for Architecture
Description of Software Intensive System (IEEE1471-2000). New York: IEEE
Computer Society.

Kidane, Y. & Gloor, P. 2005. Correlating Temporal Communication Patterns of the
Eclipse Open Source Community with Performance and Creativity. In: Proceedings of
NAACSOS Conference, Notre Dame. North American Association for Computational
Social and Organizational Science.

Kurt, A., Sevkli, Z. & Mercan, M. 2004. A middleware approach to storing and
querying XML documents in relational databases. Advances in Information Systems:
Lecture Notes in Computer Science 3261(1), 223�233

Matinlassi, M. 2005. Quality-Driven Software Architecture Model Transformation. In
Proceedins of 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA'05).

Matinlassi, M. 2006. Quality-Driven Software Architecture Model Tranformation.
Towards Automation. Espoo: VTT Publications.

Matinlassi, M. 2007. Role of Software Architecture in Open Source Communities.
Accepted to the proceedings of Sixth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2007). Mumbai, India.

Matinlassi, M. & Henttonen, K. 2007. Submission for COSI project deliverable D.3.3.7.
Case Study Selection.

Matinlassi, M. & Kalaoja, J. 2002. Requirements for Software Architecture Modelling.
In Proceedings of the Workshop of Software Modeling Engineering of UML 2002.
Dresden, Germany.

Matinlassi, M., Niemelä, E. & Dobrica, L. 2002. Quality-driven architecture design and
quality analysis method. A revolutionary initiation approach to a product line
architecture. Espoo: VTT Technical Research Centre of Finland, VTT Publications.

Matinlassi, M. & Niemelä, E. 2003. Impact of Maintainability on Component based
Software Systems. In: Proceedings of 29th EUROMICRO Conference
(EUROMICRO'03). Turkey.

Merilinna, J. 2005. A Tool for Quality-Driven Architecture Model Transformation.
Espoo: VTT Publications 561. 106 p. + app. 7 p.

57

Miller, J. & Mukerji, J. 2003. MDA Guide Version 1.0.1. Massachusetts: Object
Management Group.

MySQL Ab 2005. Inside MySQL 5.0. A DBA�s Perspective. MySQL Business White
Papers 2005(10). Ordered at
http://www.mysql.com/why-mysql/white-papers/mysql_wp_inside50.php.

Niemelä, E. & Immonen, A. 2007. Capturing the Quality Requirements of Product
Family Architecture. Accepted to the Journal of Information and Software Technology.
Elsivier.

Niemelä, E., Kalaoja, J. & Lago, P. 2003. Toward an Architectural Knowledgebase for
Wireless Service Engineering. IEEE Transactions of Software Engineering.

Niemelä, E., Matinlassi, M. & Immonen, A. 2004. Quality-driven development of
software product family. Espoo: VTT Publications . Available at
http://virtual.vtt.fi/qada/images/qada_esite_final.pdf.

O'Riordan, C. 2006. Speech by Eben Moglen (Section 7e). The Transcript of the the
Opening Session of the First International GPLv3 Conference on January 16th 2006.
Dublin: Irish Free Software Organization. Available at
http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html.

Raymond, E. 2001. The Cathedral and the Bazaar. Sepastobol: O'Reilly.
Partially available at at http://catb.org/~esr/writings/cathedral-bazaar/.

Robbins, J. 2005. OSSE Practices by Adopting OSSE Tools. In Compilation Joseph
Feller (edit) Perspectives on Free and Open Source Software. Massachusetts:
Massachusetts Institute of Technology, MIT Press, 245�254.

Rowan, W. 2006. Open Source Development � An Introduction to Ownership and
Licensing Issues. Oxford: University of Oxford. Available at http://www.oss-
watch.ac.uk/resources/iprguide.xml.

Scacci, W 2002. Understanding the requirements for developing open source software
systems. IEEE Software.

Selic, B. 2003a. Model-Driven Development of Real-Time Software Using OMG
Standards. In the Proceedings of the Sixth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC�03). Washington: IEEE Computer
Society.

http://www.mysql.com/why-mysql/white-papers/mysql_wp_inside50.php
http://virtual.vtt.fi/qada/images/qada_esite_final.pdf
http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html
http://catb.org/~esr/writings/cathedral-bazaar/
http://www.oss-watch

58

Selic, B 2003b. The Pragmatics of Model-Driven Development. IEEE Software 20(5),
19�25.

So, H. 2005. Construction of an Evaluation Model for Free/Open Source Project
Hosting Sites. Melbourne: RMIT University.
Available at www.ibiblio.org/fosphost/eval_fosphost090.pdf.

Souza, B. 2005. How Much Freedom Do You Want? In Compilation Chris Dibona et.
al.(edit.) Open Sources 2.0. Sebastopol: O'Reilly, 219�224

Vainio, N. & Vaden, T. 2006. Sociology of Free and Open Source Software
Communities: Motivations and Structures. In compilation Niina Helender & Hanna
Martin-Vanhanen (eds.) Multidisciplinary Views to Open Source Software Business.
BRC Research Report #33. Tampere: Tampere University of Technology and the
University of Tampere, 10�19.

Varhol, P. 2006. Leaving the Crystall Ball Behind in App Development. Eclipse
Review 1(3), 29�32.

Electronic References

Borland Software Corporation 2006. Borland® Together® technologies.
http://www.borland.com/us/products/together/index.html#eclipse. Date of data acquisition
1 January 2007.

Deitel 2007. Open Source Resource Center. Open source conferences.
http://www.deitel.com/OpenSource/OpenSource_ResourceCenter_Page10.html#Confer
ences. Date of data acquisition 16 March 2007.

Eclipse Foundation 2006a. About Us. http://www.eclipse.org/org/ Date of data
acquisition 1 November 2006.

Eclipse Foundation 2006b. Eclipse Membership Applicaton of Change in
Reprentation.http://www.eclipse.org/membership/become_a_member/Membership%20
Application.pdf. Date of data acquisition 26 October 2006.

Eclipse Foundation 2006c. Eclipse Rights by Membership Catogory.
http://www.eclipse.org/membership/become_a_member/How2Join%20Eclipse%20Righ
ts%20by%20Membership%20Category.pdf. Date of data acquisition 25 October 2006.

http://www.borland.com/us/products/together/index.html#eclipse
http://www.deitel.com/OpenSource/OpenSource_ResourceCenter_Page10.html#Confer
http://www.eclipse.org/org/
http://www.eclipse.org/membership/become_a_member/Membership%20
http://www.eclipse.org/membership/become_a_member/How2Join%20Eclipse%20Righ

59

Fleury, M. & Lindfors, J. 2001. Enabling component architectures in JVMX.
http://www.onjava.com/pub/a/onjava/2001/02/01/jmx.html. Date of data acquisition 30
June 2006.

Free Software Foundation 2006a. Free Software Definition.
http://www.gnu.org/philosophy/free-sw.html Date of data acquisition 11 November
2006.

Free Software Foundation 2006b. Various licenses and comments about them.
http://www.fsf.org/licensing/licenses/index_html Date of data acquisition 20 October
2006.

Free Software Foundation 2006c. Savannah Services and Requirements.
https://savannah.nongnu.org/register/requirements.php Date of data acquisition 20
October 2006.

Free Software Foundation 2006d. How to use GPL and LGPL.
http://www.fsf.org/licensing/licenses/gpl-howto.html Date of data acquisition 27
October 2006.

Gabriel, R. & Joy, W. Sun Community Source Licensing (SCSL) � Principles.
http://www.sun.com/software/communitysource/principles.xml. Date of data acquisition
26 October 2006.

Heizman, D. 2003. An introduction to open computing, open standards, and open
source. http://www-128.ibm.com/developerworks/rational/library/1303.html. Date of
data acquisition 16 March 2007.

Henttonen, K. Incompatibility with GPL. Newsgroup jdom- interest@jdom.org. 28
September 2006. Available at http://www.jdom.org/pipermail/jdom-interest/2006-
September/015549.html

Henttonen, K. Stylebase for Eclipse. Free software for maintaining an architectural
knowledge base. http://stylebase.sourceforge.net. Date of data acquisition 15 December
2006.

IBM Corporation and others 2003. Eclipse Plug-in Developer Guide. Eclipse Platform
Help System. Available also at www.eclipsehelp.org.

http://www.onjava.com/pub/a/onjava/2001/02/01/jmx.html
http://www.gnu.org/philosophy/free-sw.html
http://www.fsf.org/licensing/licenses/index_html
https://savannah.nongnu.org/register/requirements.php
http://www.fsf.org/licensing/licenses/gpl-howto.html
http://www.sun.com/software/communitysource/principles.xml
http://www-128.ibm.com/developerworks/rational/library/1303.html
http://www.jdom.org/pipermail/jdom-interest/2006-
http://stylebase.sourceforge.net

60

ITEA 2006. COSI project. http://itea-cosi.org Date of acquisition 27 October 2006.
Object Management Group 2004. MDA Success Story. Model Driven Software
Development and Offshore Outsourcing.
http://www.omg.org/mda/mda_files/M1Global.htm. Date of data acquisition 24 August
2006.

Open Source Initiative. 2006. Open Source Definition.
http://www.opensource.org/docs/definition.php. Date of data acquisition 28 June 2006.

Open Source Watch. 2006. What is open source software? http://www.oss-
watch.ac.uk/resources/opensourcesoftware.xml. Date of data acquisition 27 October
2006.

Raymond, E. & Moen, R. 2006. How to Ask Smart Questions The Smart Way.
http://catb.org/esr/faqs/smart-questions.html. Date of data acquisition 27 October 2006.

Robson, S. [task #5865] Submission of Stylebase. Recipients: Katja Henttonen and
savannah-register-public@gnu.org. 24 September 2006. Available at http://www.mail-
archive.com/savannah-register-public@gnu.org/msg06275.html

Robson, S. [task #5865] Submission of Stylebase. Recipients: Katja Henttonen and
savannah-register-public@gnu.org. 12 October 2006. Available at http://www.mail-
archive.com/savannah-register-public@gnu.org/ msg06347.html

Robson, S. [task #5865] Submission of Stylebase. Recipients: Katja Henttonen and
savannah-register-public@gnu.org. 12 December 2006. Available at http://www.mail-
archive.com/savannah-register-public@gnu.org/msg06777.html

Sametinger, J. Re: Can we continue the development of PSE?. Recipient: Katja
Henttonen 15 May 2006.

Smith, D. RE: Question on Eclipse membership. Recipient: Katja Henttonen. 2 October
2006.

Interviews

Niemelä, Eila, Research Professor, VTT Technical Research Centre of Finland.
Interview on 15 May 2006.

Matinlassi, Mari, Project Manager, VTT Technical Research Centre of Finland.
Interviews on 18 May 2006 and 4 September 2006.

http://itea-cosi.org
http://www.omg.org/mda/mda_files/M1Global.htm
http://www.opensource.org/docs/definition.php
http://www.oss-watch
http://catb.org/esr/faqs/smart-questions.html
http://www.mail-archive
http://www.mail-archive
http://www.mail-archive

61

Merilinna, Janne, Research Scientist. VTT Technical Research Centre of Finland.
Interview on 20 May 2006 and 3 August 2006.

Tarvainen, Pentti, Serior Research Scientist. VTT Technical Research Centre of Finland.
Interview on 20 September 2006.

 1/1

Appendix 1: Evaluation of existing pattern
management plug-ins

The following table lists the main characteristics of the existing, open source Eclipse
plug-ins that include pattern management features.

Table 1. Summery of the pattern tools evaluated.

IBM Design Pattern Toolkit License: CPL 1.0

Features

The tool generates applications based on customizable model-driven
architecture patterns. The application model is implemented as an XML file
and then used for code generation and validation. Tool support to pattern
distribution is included.

Comments All generated applications have a Model-View-Controller structure. Models
are defined in a rather complex and non-standard manner, which is not
compatible with any UML tool. There is an OSS community, mostly
consisting of IBM developers.

Pattern Box License: none

Features

Pattern Box generates source code from predefined, well-known design
patterns (e.g. Singleton, Iterarator, Observer). Users cannot create new
pattern descriptions. They neither have much control on the usage of
existing patterns.

Comments There is no OSS community. However, users are encouraged to sent new
pattern templates to project maintainers by e-mail. The plug-in does
practically nothing but provides code templates.

J2EE Design Pattern Generator License: CPL 1.0
Features

The tool generates the code of J2EE design patterns and includes support
for J2EE refactorings. It has a user friendly wizard for creating new pattern
descriptions. Pattern descriptions are stored in XML files.

Comments Pattern descriptions are non-standard and not compatible with any UML
tool.There is only one developer in the associated OSS community.The
tool is limited to J2EE

PatternBox2 License: GPL 1.0

Features

BatternBox2 generates source code from design motifs described in PADL
(Pattern and Abstract-level Description Language).
There are two other OSS-tools available from the same author:
1. PITJ which analyzes source code by locating pattern’s used.
2. Caffeine which analyzes the execution of a Java program.

Comments

Description language is non- standard and extremely complex. It is a meta-
model devised for author’s Ph.D. thesis There is no OSS community and
none of the tools are actively maintained by the author. It seems that the
tool was created to demonstrate subjects of a thesis rather than to serve
ordinary users.

Pattern Support for Eclipse (PSE) License: none
Features

PSE generates source code from pattern descriptions stored in a XML file.
The generator prompts user to assign component roles and their
relationships (allowing only choices compatible with the pattern
description). The tool provides view for navigating the defined design
patterns and browsing their documentation. It also finds patterns from
source code based on comments added by the generator.

 1/2

Comments The description language is non-standard and not compatible with any
UML modeling tool. However, it seems efficient, simple and easy to learn.
The tool which browses documentation is clearly similar to one needed by
Stylebase. It seems that there was a lot of interest in the product and an
active user community until authors abandoned the project. The tool does
not run in the latest version of Eclipse.

SEDS Design Pattern Plug-in License: GPL 1.0

Features

The website states: “Makes easier writing Java application with usage of
design patterns. There are basic built in patterns … but also user can
configure other patterns or some class hierarchy.”

Comments The tool was not tested because the user interface is only available in
Polish. However, the website promises that the tool will be internationalized
soon.

Web Of Patterns (WOP) License: CPL 1.0

Features

WOP scans pattern instances from Mandarax projects. The user can
aggregate the results. It has a user-friendly wizard for creating pattern
descriptions and associated application rules by using Mandarax classes.
The website claims that the tool “has a pattern browser that can be used to
browse online pattern repositories”

Comments Mandarax in an open source tool for for defining, managing and querying a
knowledge base of deduction rules. The pattern browser mentioned on the
website does not seem to work. The product is related to a research
project on software ontology. It does not have an open source developer
community.

 2/1

Appendix 2: Requirement specification
This document defines the functional and directive quality requirements for the base code of
Stylebase for Eclipse. The sub-requirements which should be implemented and moderately
tested before the project is published are marked with an asterisk (*). The requirements
which were implemented by external contributors are marked with a hash (#).

Table 1. Functional and quality requirements.

Requirements Sub-requirements Related quality-requirements

Store architecture
and design patterns

Store the following data for
each pattern:
name, description, type, data
model, picture and guide (*)

Extensibility: Support to store macro
architectures, micro architectures and
reference architectures (and other, so
far undefined, types of patterns)
Extensibility: Support to store data
model and guide in any selected form
(Defaults will be XML and HTML
respectively.)

 Manage two levels of
repositories: local (and
global/company (*)

Provide a database
interface for
accessing the
pattern repository

Implement interface functions
such as select, update, insert,
delete (*)

Modularity/Maintainability: Keep the
database interface separate from other
components e.g. user interface
Scalability: Support for several
different tools and several users per
tool to access the knowledge base at
the same time
Security: User authentication,
read/write permissions
Usability: Simultaneous updates must
be handled without errors (locking)

 Provide an initial pattern
library containing popular
patterns (*)

Provide a dialog for searching
patterns (by name, description
and quality attributes) and
show search results in a view
(*)

Usability: Browsing shall be easy and
fast for end user satisfaction

Provide a possibility to delete
a pattern or update its
properties (*)

Security: Permissions required

Provide a graphical
user interface (GUI)
for browsing and
updating the patter
repository.

Provide dialogs for
downloading/uploading
patterns to/from local file tree
(*)

Security/Usability: Locking to prevent
users from overwriting each others
changes

Provide a tool for browsing
pattern’s documentation (*)

Usability: Documentation must be
accessible directly from the remote
database (without exporting the file).

 2/2

Provide self-selecting help for
using Stylebase for Eclipse (#)

Integrability: The help files shall
extent the document tree of the Eclipse
platform help
Usability: Help files shall be
accessible without network connection.

Provide a dialog for adding
and editing the definitions of
quality attributes (#)

Provide a pattern
creation wizard

Control input to make sure
that a pattern is inserted
correctly

 Provide a template for
pattern’s documentation

Save new pattern locally and,
if requested, upload it into
global/company level
database

Provide a GUI for
configuring the plug-
in (#)

Set configuration parameters
such as database connection
parameters, default file types
and file locations (#)

Integrability: GUI shall be an
extension into the preferences page of
the Eclipse platform

 3/1

Appendix 3: Database schema
This document contains a detailed description of the schema of the database which is
used by Stylebase for Eclipse. Figure 1 presents the relational model of the database.
Fields which form a primary key are underlined. Tables 1�3 list columns of each table
and describe the information they contain.

Figure 1. Database schema of Stylebase plug-in.

 3/2

Table 1. Descriptions of fields in table �Patterns�.

TABLE PATTERNS

Column name Value range Purpose

id integer from 0
to 4294967295

Contains a unique id which is used to identify the pattern.
When a new pattern is inserted, the field is automatically
assigned to the next available value.

name up to 30
characters

Contains the primary name by which the pattern is known.
Values in the field “name” and “type” must form a unique
combination.

description up to 250
characters

May be used to describe the intent of the pattern and/or list
its alternative names. Users may search patterns based on
any word on this field. If preferred, may only contain a list of
search words.

guide ascii data up
to 216 bytes

Stores natural language documentation for the pattern. The
documentation should include, for example, component
descriptions, motivation, applications and instructions on
usage.

datamodel ascii data up
to 216 bytes

Stores pattern’s data model in XML or other mark-up
language used by modeling tools. It is typically an UML
diagram saved in XMI format.

picture binary data up
to 216 bytes

Stores pattern’s data model as a picture, typically in GIF or
JPG format. The picture is meant to complement
documentation and it’s not used by the application logic.

type integer from 0
to 255

Integer representing pattern type. Values currently in use:
1=design pattern
2=architecture pattern

lockedby up to 20
characters

Stores user name of the user who is currently holding
update lock on the pattern. Empty string indicates no
locking.

Table 2. Descriptions of fields in table �Attribute_definitions�.

TABLE ATTRIBUTE_DEFINITIONS

Column name Value range Purpose

attributeid integer from 0
to 255

Contains a unique id which is used to identify the quality
attribute. When a new attribute definition is inserted, the
field is automatically assigned to the next available value.

name up to 30
characters

Contains the name of the quality attribute
(e.g. “portability” or “reliability”)

 3/3

Table 3. Descriptions of fields in table �Attribute_definitions�.

TABLE QUALITY_ATTRIBUTES

Column
name

Value range Purpose

attributeid (see above) Reference to column “attributeid” in table
“attribute_definitions”.

patternid (see above) Reference to column “id” in table “patterns”.

rationale up to 250
characters

Brief explanation on why the pattern has been associated
with the quality attribute.

 4/1

Appendix 4: Concrete architecture description
This document describes the static architecture of the Stylebase for Eclipse on concrete
level. It should be read along with the conceptual level architecture description in
chapter 3.4. The document presents the static structure of Java classes and explains their
responsibilities and interrelations.

In the Stylebase for Eclipse source code, Java classes are arranged into packages called
�model�, �view� and �controller�, corresponding to conceptual level components. The
below diagram illustrates the packages and names of concrete interface objects between
them. Responsibilities of the interface objects are discussed in subsections that describe
the concrete structure of each package.

Figure 1. Packages and Interfaces of the Stylebase plug-in.

View

View component provides the graphical user interface, which consists of views and
dialog windows. Every view with actions is dependent on its controller interface. Every
dialog is dependent on an action, to which it sends user input events for processing via
interfaces IWorkBenchAction and IViewAction Events which cause nothing but a
cosmetic change on display (e.g. enable a menu option) are not sent to the controller,
but handled inside the view component. Instead of a direct association, dialogs
communicate with their parent view via an interface (IViewHandler). This makes it

 4/2

possible to open the same dialog from more than one view. Views and dialogs receive
their content from the model component via IPatternContainer interface.

The below diagram illustrates the structure of the view component.

Figure 2. Structure of the view component.

The below diagram presents the detailed structure of the classes, including the real
names of methods and attributes.

 4/3

Figure 3. Class diagram of the View component.

Controller

Controller component manages actions. In Eclipse IDE, an action is a non-user
interface part of the command that can be run by a user, usually associated to a GUI
element like a toolbar button or menu. Actions are implemented as Java classes with
certain compulsory methods (e.g. run). In the implementation of Stylebase for Eclipse,
the action classes are reusable: it is possible to associate the same action with more
than one view.

There is one controller class per each view with actions. Because the base code contains
only one such view, there is only one controller classs: DatabaseViewController. This
class contains all actions which can be launched from the main view. The actions are
created and destroyed at the same time with its controller object.The upload action is
not managed by the controller, because it is launched from the Eclipse work bench. It is

 4/4

declared as a workbench extension and its constructor is called implicitly by Eclipse.
IActions modify the model component via IPatternAdmin interface.

Figure 4 illustrates the structure of the controller component.

Figure 4. Controller composite structure.

The below diagram presents the detailed structure of the classes, including the real
names of methods and attributes.

 4/5

Figure 5. Class diagram of the Controller component.

Model

The model component is divided into two singleton classes, this is classes that can have
only one instance during program�s execution. The methods which manipulate the data
are implemented in a subcomponent called �PatternAdmin�. It connects to a remote
database and retrieves, inserts and updates the data according to the instructions

 4/6

received from the controller. �PatternContainer� is a passive storage object which keeps
the pattern data in memory and provides contents for the view. The instance of the
admin class is the only object which is allowed to change the data in the container.
When the plug-in is started, the admin class retrieves information from the database and
fills the container. Later on, it updates the database and the container according to the
instructions received from the controller component. Figure 6 shows the structure of the
model component.

Figure 6. Model composite structure.

The below diagram presents the detailed structure of the classes, including the real
names of methods and attributes.

 4/7

Figure 7. Class diagram of the model component.

System components

In addition to the model, view and controller, the plug-in implementation contains two
other components. The database component encapsulates database access functions.
Other components use it via an interface. System component is a package of classes that
implement system methods. These include, e.g., methods for writing to log file, reading
configuration file and managing session parameters. Each class has only one instance
and methods can be called from any part of the system.

 4/8

The below diagram presents the detailed structure of the classes, including the real
names of methods and attributes.

Figure 8. Class diagram of the system component.

Access points

In addition to serving as �gateways� of communication between the main components
of the plug-in, interfaces server as access points to downstream plug-ins. The following
table maps the interface classes into the access points defined at the conceptual level.

Table 1. Concrete interface objects mapped to access points.

Access point Concrete Interface Object
Model IPatternAdmin, IPatternContainer

Controller IController, IViewAction, I WorkbenchAction

Database IDatabase

 Series title, number and
report code of publication

VTT Research Notes 2387
VTT-TIED-2387

Author(s)
Henttonen, Katja
Title
Stylebase for Eclipse
An open source tool to support the modeling of quality-driven software
architecture
Abstract
Open source software has gained a lot of well-deserved attention during the last few years.
Eclipse is one of the most successful open source communities providing an open development
environment and an application lifecycle platform. Eclipse is a vendor-neutral platform for
integrating tools and services. My thesis work is a case study on contributing to Eclipse. The
contribution is a software architecture tool called �Stylebase for Eclipse� which is implemented
as an extension a.k.a. plug-in to Eclipse.
Quality-driven architecture design is an approach to software architecture design which
emphasizes the importance of qualities. Qualities are non-functional characteristics of a
software system such as security or maintainability. Stylebase is a knowledge base of software
patterns and architectural styles. It stores information that helps a software architect in
selecting patterns that best support the desired quality goals. Stylebase for Eclipse is a tool for
browsing and maintaining the stylebase. The purpose of the tool is to improve the quality of
design and increase information sharing and re-use of architectural models in development
teams.
In the case study, the plug-in is first developed and, after that, a new open source community
is formed around the plug-in project. In order to comply with the open source development
model, modularity is treated as the most important non-functional requirement. In community
building phase, efforts are concentrated on marketing the new open source project and
creating a good technical infrastructure for it.
The most interesting experiences gained during the study are related to various aspects of open
source development. They are � among others � re-using code from other projects, licensing
issues, tools to facilitate distributed development, and attracting new users and developers.

ISBN
978-951-38-6925-0 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Tiedotteita � Research Notes
1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

12370

Date Language Pages
May 2007 English, Finnish abstr. 61 p. + app. 15 p.

Name of project Commissioned by

Keywords Publisher
Eclipse, open source, modeling, software architecture,
quality-driven

VTT Technical Research Centre of Finland
P.O.Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Julkaisun sarja, numero ja
raporttikoodi

VTT Tiedotteita 2387
VTT�TIED�2387

Tekijä(t)
Henttonen, Katja
Nimeke
Tyylikanta Eclipseen
Avoimen lähdekoodin työkalu tukemaan laatuohjatun
ohjelmistoarkkitehtuurin mallintamista
Tiivistelmä
Avoimen lähdekoodin ohjelmistot ovat saanet paljon ansaittua huomiota viime vuosina. Eclipse
on yksi menestyneimmistä avoimen lähdekoodin yhteisöistä, joka tarjoaa avoimen
kehitysympäristön ja sovelluskehyksen. Eclipse on toimittajariippumaton integrointialusta
työkaluilulle ja palveluille. Opinnäytetyöni on tapaustutkimus, jossa tehdään kontribuutio eli
lahjoitetaan kehitystyötä Eclipse-yhteisölle. Kontribuutio on �Stylebase for Eclipse� -niminen
työkalu ohjelmistoarkkitehdeille, joka toteutetaan Eclipse-laajennoksena.
Laatuohjattu arkkitehtuurisuunnittelu on lähestymistapa, joka painottaa laatuominaisuuksien
merkitystä ohjelmistoarkkitehtuurin suunnittelussa. Laatuominaisuuksilla tarkoitetaan ohjel-
miston ei-toiminnallisia piirteitä, esimerkiksi tietoturvallisuus tai ylläpidettävyys. Stylebase eli
tyylikanta on tietovarasto, joka sisältää arkkitehtuurityylejä ja suunnittelumalleja. Tyylikantaan
tallennetun tiedon avulla ohjelmistoarkkitehti osaa valita ne tyylit ja mallit, jotka parhaimmin
tukevat määriteltyjä laatutavoitteita. Stylebase for Eclipse on työkalu tyylikannan selaamiseen
ja hallintaan. Työkalun tarkoitus on parantaa suunnittelutyön laatua sekä edistää tiedon vaihtoa
ja arkkitehtuurimallien uudelleenkäyttöä kehitystiimeissä.
Tutkimuksessa laajennos ensin rakennetaan ja sitten perustetaan oma avoimen lähdekoodin
yhteisö jatkamaan laajennoksen kehitystyötä. Modulaarinen rakenne on laajennoksen tärkein ei-
toiminnallinen ominaisuus, koske se luo edellytykset avoimen lähdekoodin kehitystyölle.
Yhteisön perustamisvaiheessa keskitytään projektin markkinointiin sekä sen tarvitseman
infrastruktuurin rakentamiseen.
Mielenkiintoisimmat kokemukset ja tulokset liittyvät avoimen lähdekoodin kehityksen eri
piirteisiin. Näitä ovat mm. ohjelmakoodin uudelleenkäyttö, lisensiointikysymykset, hajautettuun
kehitystyön apuvälineet sekä uusien käyttäjien ja kehittäjien löytäminen.

ISBN
978-951-38-6925-0 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Tiedotteita � Research Notes
1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

12370

Julkaisuaika Kieli Sivuja
Toukokuu 2007 Englanti, suom. tiiv. 61 s. + liitt. 15 s.

Projektin nimi Toimeksiantaja(t)

Avainsanat Julkaisija
Eclipse, open source, modeling, software architecture,
quality-driven

VTT
PL 1000, 02044 VTT
Puh. 020 722 4404
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT RESEA

RCH
 N

O
TES 2387 Stylebase for Eclipse. A

n open source tool to support the m
odeling of quality-driven softw

are archit ecture
ESPOO 2007 VTT RESEARCH NOTES 2387

ISBN 978-951-38-6925-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

Katja Henttonen

Stylebase for Eclipse
An open source tool to support
the modeling of quality-driven
software architecture

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Abbreviations
	Contents
	1. Introduction
	1.1 Main terminology
	1.2 Motivation
	1.3 Problems, approach and limitations
	1.4 Research objectives and metrics
	1.5 Document structure

	2. Architecture design, open source and Eclipse
	2.1 Software architecture design
	2.1.1 Software architecture modeling
	2.1.2 Quality-Driven Architecture Design

	2.2 Free and Open Source Software Development
	2.3 Eclipse Framework

	3. Development of basecode
	3.1 Studying existing pattern tools for re-use
	3.2 Requirement specification
	3.2.1 Initial functional requirements
	3.2.2 Encouraging evolution

	3.3 Database design
	3.4 Plug-in architecture

	4. Community founding
	4.1 Choosing and applying license
	4.2 Building infrastructure for information management
	4.3 Announcing and publicity
	4.4 Feedback and contributions from community

	5. Discussion
	5.1 Experiences and lessons learned
	5.2 Achievement of objectives
	5.3 Future work

	6. Conclusions
	References
	Appendix 1: Evaluation of existing pattern
	Appendix 2: Requirement specification
	Appendix 3: Database schema
	Appendix 4: Concrete architecture description

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

