
V
TT R

ESEA
R

C
H

 N
O

TES 2407 B
usiness Process M

odeling and Execution. Tools and technologies report for SO
A

M
eS project

ESPOO 2007 VTT RESEARCH NOTES 2407

VTT Tiedotteita – Research Notes

2385 Löfman, Jari, Keto, Vesa & Mészáros, Ferenc. FEFTRATM. Verification. 2007. 103 p. +
app. 4 p.

2386 Loikkanen, Torsti, Hyytinen, Kirsi & Koivusalo, Salla. Yhteiskuntavastuu ja kilpailu-
kyky suomalaisyrityksissä. Nykytila ja kehitysnäkymät. 2007. 118 s.

2387 Henttonen, Katja. Stylebase for Eclipse. An open source tool to support the
modeling of quality-driven software architecture. 2007. 61 p. + app. 15 p.

2388 Lanne, Marinka & Kupi, Eija. Miten hahmottaa security-alaa? Teoreettinen malli
Suomen security-liiketoiminta-alueista. 2007. 52 s. + liitt. 1 s.

2389 Leikas, Jaana & Lehtonen, Lauri. Ikääntyvien idealiike. Käyttäjälähtöisellä
innovoinnilla elämänmakuisia mobiilipalveluja. 2007. 34 s.

2390 Tuominen, Anu, Ahlqvist, Toni, Rämä, Pirkko, Rosenberg, Marja & Räsänen, Jukka.
Liikennejärjestelmän teknologiapalvelujen vaikutusarvioinnit tulevaisuudessa.
2007. 64 s. + liitt. 5 s.

2391 Mikkola, Markku & Pirttimäki, Antti. Tuotekehitys Kiinassa. Uhka, mahdollisuus
vai yhdentekevää? 2007. 31 s.

2392 Kettunen, Jari, Rakshit, Krishanu & Uoti, Mikko. Electronic India. Market trends
and industry practices in IT services, telecoms and online media. 2007. 98 p. +
app. 2 p.

2394 Herrala, Maila. The value of transport information. 2007. 87 p. + app. 5 p.

2395 Aarnisalo, Kaarina, Heiskanen, Seppo, Jaakkola, Kaarle, Landor, Eva & Raaska,
Laura. Traceability of foods and foodborne hazards. 2007. 46 p. + app. 2 p.

2396 Nylund, Nils-Olof, Erkkilä, Kimmo, Clark, Nigel & Rideout, Greg. Evaluation of
duty cycles for heavy-duty urban vehicles. Final report of IEA AMF Annex XXIX.
2007. 81 p. + app. 10 p.

2397 Helynen, Satu, Flyktman, Martti, Asikainen, Antti & Laitila, Juha. Metsätalouteen ja
metsäteollisuuteen perustuvan energialiiketoiminnan mahdollisuudet. 2007. 66 s.

2398 Jansson, Kim, Mikkola, Markku & Ryynänen, Tapani. Verkostoyhteistyöllä
Kiinaan? SeaChi-projektin loppuraportti. 2007. 46 s. + liitt. 6 s.

2399 Hänninen Hannu, Brederholm, Anssi, Saukkonen, Tapio, Gripenberg, Hans,
Toivonen, Aki, Ehrnstén, Ulla & Aaltonen, Pertti. Hot cracking and environment-
assisted cracking susceptibility of dissimilar metal welds. 2007. 182 p.

2400 Ailisto, Heikki, Matinmikko, Tapio, Häikiö, Juha, Ylisaukko-oja, Arto, Strömmer,
Esko, Hillukkala, Mika, Wallin, Arto, Siira, Erkki, Pöyry, Aki, Törmänen, Vili,
Huomo, Tua, Tuikka, Tuomo, Leskinen, Sonja & Salonen, Jarno. Physical browsing
with NFC technology. 2007. 70 p.

2401 Häkkinen, Tarja, Vares, Sirje, Huovila, Pekka, Vesikari, Erkki, Porkka, Janne,
Nilsson, Lars-Olof, Togerö, Åse, Jonsson, Carl, Suber, Katarina, Andersson, Ronny,
Larsson, Robert & Nuorkivi, Isto. ICT for whole life optimisation of residential
buildings. 2007. 207 p.

2403 Toivonen, Santtu. Web on the Move. Landscapes of Mobile Social Media. 2007.
56 p. + app. 3 p.

2404 Vares, Sirje & Lehtinen, Jarkko. Lasipakkausten keräysjärjestelmän tehostaminen ja
lasin hyötykäytön ympäristövaikutukset. 2007. 122 s.

2407 Koskela, Mika & Haajanen, Jyrki. Business Process Modeling and Execution. Tools
and technologies report for SOAMeS project. 2007. 63 p. + app. 2 p.

Mika Koskela & Jyrki Haajanen

Business Process Modeling and
Execution

Tools and technologies report
for SOAMeS project

ISBN 978-951-38-6958-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

VTT TIEDOTTEITA � RESEARCH NOTES 2407

Business Process Modeling
and Execution

Tools and technologies report
for SOAMeS project

Mika Koskela & Jyrki Haajanen

ISBN 978-951-38-6958-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2007

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 7024

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 7024

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 7024

Cover image: Stockxpert

Technical editing Maini Manninen

3

Koskela, Mika & Haajanen, Jyrki. Business Process Modeling and Execution. Tools and technologies
report for SOAMeS project. Espoo 2007. VTT Tiedotteita � Research Notes 2407. 63 p. + app. 2 p.

Keywords business process modeling, business process execution, business process management,
service-oriented architecture

Abstract

This report presents the results of a survey on business process modeling and execution
technologies. The first phase of the research consisted of a broad survey on the available
language options. For business process execution, Business Process Execution
Language (BPEL for short, officially WS-BPEL or BPEL4WS depending on the
version) was considered as the only relevant option. Other executable languages were
either obsolete or academic proposals not suitable for industry use. For business process
modeling, Business Process Modeling Notation (BPMN) and UML Activity Diagram
(AD) were considered suitable. Other available options did not provide enough support
for transformations to executable languages.

The expressive power of the languages was evaluated by comparing how well the
languages support different workflow patterns. It was found out that there is a
significant gap between the expressive power of modeling and execution languages,
which means that all models cannot be directly transformed to executable code.
Between BPMN and UML AD, the differences in pattern support were minimal.
However, it was noted that the specifications are partly ambiguous, which can lead to
misinterpretations in the transformations.

The practical utility of the findings was demonstrated by testing two available tools that
supported BPMN and BPEL and that were considered prominent based on their
documented functionalities. The test results showed that the transformation
functionalities were to a large extent dependent on the expressive power of the
languages. It was concluded that the technologies have not yet fully matured, but first
steps in their adoption can already be taken, because by taking the known shortcomings
of the technologies into account in the modeling, automatic transformations from
models to code, and even vice versa, can be realized.

4

Preface

This report describes the research conducted in SOAMeS (Service Oriented
Architecture in Multichannel e-Services) in VTT Technical Research Centre of Finland
in collaboration with University of Helsinki. The project started in mid 2006 and it will
be finished during the year 2008. One objective of the project was to evaluate the
feasibility of existing technology that is used in service oriented environment. These
include, for example, business process modeling and execution languages. This report
focuses on tools and technologies on this domain.

The target audience of this document includes enterprises that are adopting business
process modeling and execution technologies and tools. Additionally, our research is
relevant to developers who work with the focal technologies or build custom tools based
on the discussed standards. This report should be valuable to people on many levels of
the organization. The introduction, conclusion and summary sections are accessible to
managers who need information to support their decision making on IT strategy. The
conducted tests and evaluations as well as the more detailed descriptions of the
technologies should be examined by the IT specialists of the enterprise. By reading the
more detailed sections of this report, the specialists can evaluate what kind of value the
discussed technologies can provide and what kind of requirements does their adoption
pose.

5

Contents

Abstract..3

Preface ...4

List of symbols ..7

1. Introduction..8
1.1 Background ..8
1.2 Motivation and objectives ..9

2. Business process modeling and execution...11
2.1 Modeling languages..11

2.1.1 Available options ...11
2.1.2 Business Process Modeling Notation (BPMN)....................................12

2.1.2.1 BPMN basics...12
2.1.2.2 Semantics of the elements...13

2.2 Execution languages...17
2.2.1 Available options ...18
2.2.2 Business Process Execution Language (BPEL)...................................18

2.2.2.1 Principles of BPEL..19
2.2.2.2 Basic BPEL elements..20
2.2.2.3 Abstract BPEL ..21
2.2.2.4 BPEL extensions ...21
2.2.2.5 Conclusion on BPEL...22

3. Workflow patterns and business process languages ..23
3.1 Control flow patterns..24
3.2 Data patterns...26

4. Existing research on BPMN-BPEL transformations ...28
4.1 Links and event handlers ..28
4.2 Links and diagram restructuring...29

5. Tool-based experiments on transformations..30
5.1 Principles for tool selection ..31
5.2 Selected tools..31

5.2.1 Intalio BPMS Community Edition...32
5.2.2 eClarus Business Process Modeler for SOA Architects36
5.2.3 Progress of the testing ..38
5.2.4 Test case descriptions...39

6

6. Test case results ...44
6.1 Transformations..44
6.2 Code quality ...46

7. Conclusions..50
7.1 Business process modeling and execution languages50
7.2 BPMN and BPEL tools � provided value and limitations................................51
7.3 Guidelines for tool selection...54
7.4 An outlook to the future ...56

8. Summary ..59

Acknowledgements ...60

References ...61

Appendix A: Language comparisons

7

List of symbols

AD Activity Diagram
BPD Business Process Diagram
BPDM Business Process Definition Metamodel
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BPM Business Process Management
BPMI Business Process Management Initiative
BPML Business Process Modeling Language
BPMN Business Process Modeling Notation
BPMS Business Process Management Suite
BPSS Business Process Specification Schema
EPC Event Driven Process Chain
ICT Information and Communication Technologies
EPML Event-Driven Process Chain Markup Language
IDEF3 Integrated DEFinition Method 3
MDA Model Driven Architecture
OMG Object Management Group
OWL-S OWL-Services
PIP Partner Interface Process
PNML The Petri Net Markup Language
RAD Role Activity Diagram
SOA Service-Oriented Architecture
UML Unified Modeling Language
WS-BPEL Web Services Business Process Execution Language
WS-CDL Web Service Choreography Description Language
WSCI Web Service Choreography Interface
WSCL Web Service Choreography Language
WSDL Web Service Description Language
WSFL Web Services Flow Language
XMI XML Metadata Interchange
XML eXtensible Markup Language
XPDL XML Process Definition Language
XSD XML Schema Document
YAWL Yet Another Workflow Language

8

1. Introduction
Modern enterprises are faced with global rivals and a tightening competitive
environment. At the same time the changes in the business environment and daily
routines are constant and occur at increasing pace. To survive in these conditions
companies are focusing on their core competencies and outsource other functions to
their business network partners for whom these functions are core competence. Hence,
modern business life is becoming increasingly networked. This networking is driven
and enabled by the recent rapid development in the Information and Communication
Technologies (ICT). Especially the Internet based communications and business process
and information system integration possibilities that became available since the mid
1990�s have contributed to this development.

The plain focus on core competencies is not enough in competitive business conditions.
Companies need to keep fit and develop their processes and infrastructure constantly.
This also means that their customers and business partners will require constant changes
on their common business processes and information system interoperability. At the
same time, information systems and business architectures of the companies are going
through changes. The keywords for these changes are: loose-coupling, reusability,
isolation of technology and business requirements, interoperability and automation.
Once these changes have taken place, we will have totally different looking enterprises
with less or no stove-pipe departmental information systems, monolithic applications, etc.
At this point, the time is ripe for the introduction of next generation enterprise computing,
based on model driven business process management, execution and integration.

1.1 Background

Business Process Management (BPM) is an interdisciplinary domain which deals with
the continuous development of business processes with the help of IT. BPM has gained
lots of popularity in recent years due to the rise of the Service-Oriented Architecture
(SOA) paradigm and related technologies that can be applied to execute and manage IT-
enabled business processes. To align the business requirements with the executable
processes, the modeling should start from high level processes, which would be refined
to more detailed and exact models and finally to executable code. This development is
outlined in Figure 1. To improve productivity of the IT organization and maintainability
of the models, the transformations between models and code should be automated as
much as possible. This kind of approach can be related to the Model Driven
Architecture (MDA) framework, although the MDA-related technologies are not
necessarily used. In this report, it is evaluated how well the state-of-the-art BPM
technologies fulfill the promise that executable code could be automatically generated
from business process models.

9

Manual
Elaboration

High Level
Diagram

Automatic
Transformation

Detailed
Diagram +
Execution

Details

Executable
Process

Figure 1. Development from business process diagram to executable process.

1.2 Motivation and objectives

As a part of the SOAMeS project, the state-of-the-art in business process modeling and
execution is examined. Recognizing and managing business processes in companies is
not a new phenomenon, but business process automation and integration have gained
momentum in recent years, much because the enabling SOA-related standards and
technologies. Mastering BPM is not a straightforward task, however: according to
Gartner, only a small proportion of companies adopting BPM will succeed in stages
beyond intra-process automation and control in the near future (Melenovsky & Sinur
2006). Enabling and supporting IT solutions are one of the success factors in this
maturity model, but for many companies this field can be confusing due to the wide
variety of available options and contradicting promises and claims made by different
instances. It is, therefore, important to find out what can be expected from these
technologies today, and to give directions for future BPM-related IT investments.

The purpose of this research is to examine which technologies are currently most
prominent for business process modeling and execution in industry use. In the survey, a
special emphasis is put on the relationship between modeling and execution languages.
In other words, it is examined how well business process models can be transformed to
executable processes and, to some extent, vice versa. This kind of research is considered
relevant, because the requirements and possible limitations are not clearly stated by tool
vendors or the standardization organizations. A complementary goal is to outline the
relationship between BPM as a management domain and the topical technologies. For
example, this means assessing the role of the state-of-the-art modeling standards in
companies modeling and managing business processes: in order to really provide value
to the organization, the notations that align with the executable processes should be
accessible by both IT and business users.

The specific phases and objectives of the research include:

− to clarify the current state of the languages in the Business Process Management
domain

10

− to evaluate the most prominent standards in business process modeling and
execution languages based on their expressive power, suitability and tool support;
a special emphasis is put on how well they could enable transformations between
modeling and execution languages

− to identify potential problems in transformations based on gaps in expressive
power; this is done by discussing the existing research on the workflow pattern
support of the languages

− to demonstrate the transformations and their possible shortcomings using prominent
tools

− to provide guidelines for companies adopting BPM tools now and in the near future.

It should be pointed out that the purpose of the expressive power analysis is not provide
a complete evaluation of each language independently, but to point out the possible
differences between the languages and to act as a background for the tool testing. An
overview is still given, and a more detailed investigation can be carried out with little
effort by business IT experts, using the introduced earlier research. Also, it should be
noted that the purpose of the tool test is not to provide purchasing recommendations.
The introduced tools are advanced and good candidates for experimenting with the
technologies, but a valid tool comparison would have required more candidates and
different criteria for tool selection and evaluation than was used in this research. The
field is also constantly evolving, which means that in-depth tool benchmarking can only
be considered valid for a relatively short period of time. However, based on our
experiences, guidelines for tool selection are formulated. Additionally, the recognized
shortcomings can be used as criteria for more specific and demarcated tool evaluation in
companies.

11

2. Business process modeling and execution

2.1 Modeling languages

Visual business process modeling, i.e., drawing a business process diagram, is ideally
the first step of the business process lifecycle. Numerous notations are available for this
purpose and on the highest abstraction level, one can even visualize the core diagram
elements using arbitrary shapes and lines. Also XML-based languages can sometimes
be categorized as modeling languages. However, in this research we investigated visual
business process modeling languages that are detailed enough to express executable
processes so that code could be generated based on the diagrams. We use the term
modeling language instead of modeling notation in order to stress that the discussed
standards aim at specifying the detailed behavior that the modeling elements indicate,
not only the visual notation.

2.1.1 Available options

To narrow down the options for modeling languages, we investigated languages that were
discussed in (List & Korherr 2006). For a table comparing these languages, see Table 5 in
Appendix A. From their list, we omitted proprietary languages, academic proposals,
languages with no specified visual notation and languages that were not intended for
modeling executable processes. This left us with two prominent options: Business Process
Modeling Notation (BPMN) (Object Management Group 2006) and UML Activity
Diagram (AD) (Object Management Group 2005). These languages were compared based
on their expressive power, status and support. Expressive power refers to the language�s
ability to present different kinds of process constructs, patterns and situations that appear
in business processes. It was evaluated based on existing workflow patterns research
(Section 3). The later section provides more detailed discussion on the topic. At this point,
we conclude that the differences in the expressive powers of BPMN and UML AD are not
significant. In some situations, BPMN provides better expressive power than UML AD,
however. It should also be noted that for both modeling languages, the specification is
in some cases too vague and it is thus unclear whether certain patterns can be expressed.

The deciding factor for this study was thus tool support: very few tools for generating
executable business process code from UML Activity Diagrams were available. The
original organization responsible of BPMN also stated that UML has a different viewpoint
on business processes, i.e., it focuses more on software design (OMG.org 2004). Although
this statement must be taken with caution because it was given by the developers of
another standard, we do think that BPMN is more easily accessible for both business
and IT users. This can be considered an important factor in business process modeling.

12

2.1.2 Business Process Modeling Notation (BPMN)

BPMN is one of the youngest business process modeling languages available but it has
already gained a notable amount of popularity nevertheless. At the time of writing, there
are 43 BPMN implementations, i.e., tools which the standardization organization, the
Object Management Group (OMG), considers to support BPMN, and many of them
support BPEL generation (OMG.org 2007). The first BPMN specification was released
in May 2004 by BPMI.org. The current version is 1.0 Final Draft, driven by Object
Management Group which merged with BPMI.org (Object Management Group 2006).

From one perspective, the aim of BPMN is to provide a notation that both IT and
business users understand. This means that the basic elements of the language should be
easy to access. From a second perspective, BPMN is designed to act as a visual notation
for executable languages. BPMN is able to present private processes, public processes
and collaboration processes. The idea is simply that one can freely choose the level of
granularity to use when modeling processes with BPMN. Most BPMN elements can be
mapped to execution but some are used purely for informative purposes. One of the
shortcomings of BPMN is that it lacks formal semantics, and the specifications for
certain elements can also be considered inadequate for execution purposes. Additionally,
the specification does not include an XML interchange format for BPMN diagrams. For
this purpose, OMG has subsequently introduced the Business Process Definition
Metamodel (BPDM) specification but it is not yet supported by the available tools.

2.1.2.1 BPMN basics

In this report, we introduce the basics of BPMN so that readers, who are not familiar
with it, capture the general idea of BPMN modeling and the research we have
conducted. The detailed discussions in the following sections often require more in-
depth understanding of BPMN and the underlying execution language. We do not cover
all the necessary details here. Instead, we target those sections to people with basic
knowledge of the technologies. However, it can be said that learning BPMN does not
require tremendous efforts, especially if one is familiar with some business process
modeling language. In addition to the specification (Object Management Group 2006),
we recommend the introductory article (White 2004a) and the BPMN tutorial (White
2006). The author of the both articles has also contributed in the official specification
and these documents are available on the official BPMN web site1.

1 http://www.bpmn.org.

13

In BPMN, a Business Process Diagram (BPD) is a visual presentation of a business
process. The term model is also often used to refer to the outcomes of BPMN modeling.
The specification does not make a clear distinction between these concepts. However,
the term model usually implies that also the necessary execution details (e.g., variable
information) have been specified, whereas the concept of Business Process Diagram
refers only to the graphical constructs. A BPD consists of elements whose visual
appearance and semantics is defined in the BPMN specification. The elements consist
of Activities, and the actors carrying out those activities. The actors are represented by
Pools which can be further divided into sub-actors by Lanes. These are used on purely
informative purposes and they do not affect the execution of the process. Additionally,
the progress of the process is determined by Events. Inside a pool, which often
represents an independent IT system, the sequence of activities is represented by
Sequence Flow. Interaction with other pools is indicated by Message Flows. The
progress of the Sequence Flow is often described using the concept of a token which
passes through the flow objects. When discussing the control flow of the process, the
term upstream is used to refer to the elements or tokens that appear or are generated
before the discussed point in the process. Similarly, the term downstream refers to the
parts that follow the discussed point. The control flow can diverge based on specified
conditions. The conditions are directly attached to the flow or different kinds of
Gateways are used to indicate decision points. These basic elements are depicted in
Figure 2.

2.1.2.2 Semantics of the elements

BPMN defines several special versions of these elements. For example, Activity can be
a sub-process or a looping activity. In turn, an Event can be a start event, intermediate
event or an end event and it can represent an incoming or an outgoing message or an
error. Besides activities and their connectors, BPMN defines Artifacts such as Data
objects which can be annotated to indicate the inputs and outputs of the activities.
(Object Management Group 2006)

The End Event indicates when the process will end. BPMN includes different kinds of
End Events, which define different results for the process. A very typical end event is a
Message End Event, which implies that a message is sent as the outcome of the process.
Other types include, e.g., Error (an error is thrown), Compensation (the process is rolled
back), Terminate (all activities in the process immediately end) and Empty (the result is
not specified). Terminate End Events are special because when they are triggered, all
activities are ended. In the case of other type of End Events, all tokens for the process
have to be consumed by an End Event before the process instance is considered
completed.

14

In BPMN, Gateways are used to control the sequence flow and in, more complex
situations, the use of them is compulsory. There are two basic types of gateways: Data-
based which evaluate the chosen path based on, e.g., values of variables and Event-
based which depend on, e.g., an arriving message. They can be splitting, forking
merging or joining, i.e., they can split one sequence flow to several (alternative or
parallel) paths or combine them together. Forking or merging without a gateway is
referred as uncontrolled. The gateways can be inclusive (OR), exclusive (XOR),
complex or parallel (AND). In exclusive gateways, the sequence flow can take only one
of the outgoing paths. In merging, they are often not required. Parallel processing
creates multiple tokens which are combined back together at the merging phase. In
inclusive gateways, all of the combinations of the independent paths can be taken.
Parallel gateways define multiple paths that are executed concurrently. In forking, they
can often be left out. In merging, they indicate that all of the inputs have to be available
before the execution is continued. Complex gateways can be used to combine the
behavior of several linked gateways. The forking or merging behavior of the complex
gateway can be determined by an expression which can, e.g., evaluate process data to
determine which flows to select. (Object Management Group 2006)

The behavior indicated by different kinds of forks and joins should be understood in
order to understand the test case examples in Section 5. In Tables 1 and 2, the semantics
of different splits and joins in BPMN are described informally. Example diagram
constructs are presented in Figures 3 and 4. It should be pointed out that the join
number one is only a special case of join number two, but it is presented separately in
order to clarify the behavior indicated by unsynchronized merge in BPMN.

It should be noted that in many cases the exactly same behavior can be realized both by
gateways and uncontrolled flow. An example of this is given in the context of AND-
split Figure 3. In OR- XOR-splitting, Conditional Sequence Flow (arrows with attached
diamonds) must be used if gateways are omitted. The attached conditions tell whether or
not the choice is exclusive (see for example the XOR-split in Figure 3 � it is implicit
that either yes or no can be taken, but not both). It is often more clearer to use gateways,
because, for example, the gateways explicitly indicate that the alternative paths are
exclusive. If uncontrolled flow is used, this restriction must come up in the conditions
attached to the control flow. One should also note that the exclusive (XOR) gateway can
be modeled with or without the drawing in it � the indicated process behavior is exactly
the same.

15

Table 1. Process behavior indicated by BPMN splits according to (Object Management
Group 2006).

Construct Explanation

Split: XOR-split
(exclusive OR)

The control flow splits into more than one branch. Only one of them
can be chosen during runtime.

Split: OR-split
(inclusive OR)

A branching point where all paths are independent: all combinations of
the paths can be taken.

Fork: AND-split
(parallel split)

A branching point where a single path of sequence flow is divided into
two or more parallel paths. A token is immediately sent to each of the
outgoing Sequence Flow.

Table 2. Process behavior indicated by BPMN splits according to (Object Management
Group 2006).

Construct Explanation

Merge: XOR-join
Combining multiple paths of sequence flow into one. The process shall
continue when any of the incoming tokens arrives to the joining point,
without considering other incoming paths.

Merge: XOR-join
of parallel activities

The process will continue immediately when one of the incoming
flows produces a token. There will be more than one incoming token,
which means that an instance of the merging activity will be created
for each of them.

Merge: OR-join Combining multiple paths of sequence flow into one. The process will
wait for all the tokens produced upstream to arrive before continuing.

Join: AND-join
Synchronizing multiple paths of sequence flow. The process will wait
for all of the incoming paths to produce a token before continuing.
In other words, all paths must be available.

Based on these tables, it can be said that the splitting behavior of BPMN is very clear
and easy to understand. The joining behavior, however, is not so straightforward and it
is likely to create misunderstandings among people who are familiar with other
modeling notations. For example, it is not very obvious that sequence flows that merge
without gateways proceed independently of each other, thus creating multiple instances
of their common activity if the flows are parallel. In UML AD, for instance, a merge
node is used in these kinds of situations. Additionally, based on the specification
document, it is not exactly clear how the number of possibly incoming tokens is

16

determined. The OR-join has been stated to be inadequately specified, e.g., by Ouyang
et al. (2006). Because of this, it was also not used in the test case processes. However,
based on these kinds of issues, it must be noted that the standard has not fully matured
yet. Also, because formal semantics is not included in the specification, it is possible
that tool vendors misinterpret the rules. This results in potentially incorrect enactment
behavior, although executable code could be created based on the model.

It should also be pointed out that if the use of splits and joins is not carefully analyzed,
erroneous models can be created. Based on these models, accurate executable code may
even be generated, but the problems occur when the processes are being executed.
Three typical classes of problems can be identified: deadlocks, livelocks and multiple
instances. In a deadlock, the execution ceases because the process waits for tokens
which will never be generated. This can happen, e.g., if OR- and AND-splits are
wrongly paired. In a livelock the process constantly changes its state, but does not
progress, e.g., loops infinitely. Multiple instances of the same activity can lead to
unnecessary resource consumption, or even incorrect business results.

Figure 2. Examples of BPMN elements.

17

Figure 3. BPMN splits: A) XOR B) OR C) & D) AND (equivalent behaviour).

Figure 4. BPMN joins: A) XOR B) XOR (parallel activities) C) OR D) AND.

2.2 Execution languages

In the context of the SOAMeS research project, business process modeling focuses on
processes that will be automated and executed in Service-Oriented environment.
Therefore, the study on business process modeling tools also involves investigating
executable business process languages.

18

2.2.1 Available options

The business process management domain includes several XML-based languages, but
few of them can be actually used to execute automated business processes without
translating them into another format. In this research, we first briefly inspected the
languages listed in a relatively comprehensive survey by Mendling et al. (2004). From
this list we omitted choreography languages, pure academic proposals, visual modeling
languages and clearly superseded options. We then studied Business Process Execution
Language (BPEL), Business Process Modeling Language (BPML), Business Process
Definition Metamodel (BPDM) and XML Process Definition Language (XPDL). The
only language that was considered suitable for automated execution was BPEL. Other
three languages were obsolete (BPML) or focused more on process interchange than
automated execution (BPDM and XPDL). XLANG and WSFL are also both options for
execution languages, but they are directly included in BPEL versions that are currently
in use. To limit the scope of the stidy, academic proposals such as Yet Another
Workflow Language (YAWL) were excluded from this research. Therefore, BPEL was
considered the only relevant execution language for this research. The categorization of
the XML-based languages is summarized in Table 7 of Appendix A.

2.2.2 Business Process Execution Language (BPEL)

Business Process Execution Language (BPEL4WS 1.1 and WS-BPEL 2.0) (Andrews et
al. 2003; OASIS 2007) was introduced in previous SOAMeS research notes (Kanniainen
& Haajanen 2007). In short, BPEL is an XML-based language for specifying business
processes in Web Service environment. It is used together with Web Service
Description Language (WSDL) and other related technologies. This means that BPEL is
used to define how the business process is built from Web Service invocations and what
kind of interaction with external participants does the process involve.

BPEL can be seen as an XML-programming language for Web Service compositions.
Like most programming languages, BPEL is complex and the specification is extensive.
In-depth understanding of BPEL requires software development competence as well as
knowledge of the Web Service technologies it is built on. Therefore, we only provide a
brief introduction to BPEL here, in order to provide a basis for latter sections. For those
who want to master BPEL, several books have been published. For an online
introduction, see, e.g., (Miguel 2006).

The current BPEL standard is the result of combining different specifications developed
by different organizations. The BPEL4WS language was originally proposed by
Microsoft and IBM in July 2002. BPEL4WS combined properties from Microsoft�s

19

WSFL and IBM�s XLANG. The revised version of BPEL4WS (Andrews et al. 2003)
has been widely adopted by tool vendors. In version 2.0, the language was renamed to
WS-BPEL which was approved as an OASIS standard in 2007 (OASIS 2007). In this
report, the acronym BPEL is generally used to refer to both versions because the older
version cannot be considered obsolete. Clear distinction between the versions is made
whenever necessary. The new version involves syntactic changes and improved
alignment with other XML technologies such as XPath. Therefore, BPEL processes are
not directly backward compatible.

2.2.2.1 Principles of BPEL

BPEL can be used to specify both executable and abstract processes. In the first case,
the full implementation logic of the process is defined, whereas in the latter case only
the message exchange between process participants is included. The core elements of a
BPEL document include:

− Roles of the process participants

− Port types required from the participants

− Orchestration: the actual process flow

− Correlation information: definition of how messages can be routed to correct
composition instances, i.e., how to map abstract specifications to running instances.

In this report, we focus on executable aspects of BPEL, for three reasons. Firstly,
mappings between the modeling languages and BPEL do not currently cover abstract
processes. Secondly, it has been convincingly stated that BPEL does not suit well for
defining abstract processes (van der Aalst et al. 2005). This is because BPEL processes
are always presented from the point of view of one partner. Consequently, business
partners do not need to agree on using BPEL. Finally, the focus of this report is on
executable processes, not incomplete process descriptions which are closely related to
choreographies. Hence, abstract BPEL is also discussed in the choreography language
report, which is also published within the SOAMeS research project. However, we
describe the principles of abstract BPEL and, additionally, demonstrate the use of
executable processes in collaborative settings in one of our test cases.

When transformations between business process languages are carried out, the adopted
representation paradigm is an especially important question. Two basic categories can
be recognized: block-oriented languages and graph-oriented languages. The first ones
define the control flow by nesting different kinds of control primitives. The second ones
specify it using different kinds of nodes and arcs. Arcs connect nodes with one another,

20

presenting temporal or logical connections. Transformations between these
fundamentally different languages are problematic, because graph-oriented languages
can express process patterns that block-oriented cannot. BPEL is for the most part
block-oriented. Graph-oriented structures can be partially expressed using links.
Modeling languages, in contrast, are often graph-oriented. (Mendling et al. 2006)

2.2.2.2 Basic BPEL elements

BPEL activities can be either basic or structured activities. The basic activities
correspond to actual components of the process. They are realized through Web Service
interaction, i.e., through invocations of WSDL operations. These activities include for
example the following operations:

− <invoke>: calls an operation
− <receive>: waits for an input message
− <reply>: sends an output message
− <assign>: updates variable values
− <wait>: blocks the execution for a certain period of time.

The structured activities resemble control structures of conventional programming
language. They constitute the block-oriented part of BPEL, which originates from
XLANG. Structural activities of BPEL include:

− <sequence>: set of activities to be executed in the listed order

− <switch>: condition-activity pairs from which the first activity with true

− condition is executed. In WS-BPEL 2.0, this activity is replaced by <if> construct
(OASIS 2007, p. 263)

− <pick>: list of event-activity pairs. When the first event from list occurs, the
corresponding activity is executed. Handling of race conditions is not specified.

− <while>: one activity and condition. The activity is executed while the condition
is true

− <flow>: the activities inside this activity are executed in parallel. A flow is
completed when all of the parallel activities are completed.

Additionally, BPEL specifies handlers for events and faults. For each handler, an event,
a scope and a corresponding activity to handle the event is defined.

The order of execution inside a <flow> element can be controlled using <link>
elements. This defines the graph-oriented nature of BPEL, which originates from

21

WSFL. Consequently, BPEL links have an important role when business process
diagrams are transformed into executable processes. In using BPEL links, the following
restrictions apply, however (OASIS 2007):

− links cannot cross the boundaries of repeatable constructs such as <while>, and in
WS-BPEL 2.0 only outbound links can cross <catch>, <catchAll> and
<terminationHandler> scopes

− a <link> declared in <flow> cannot create a control cycle.

2.2.2.3 Abstract BPEL

In business-to-business settings, one is often interested in capturing the interactions
between participants and messaging sequences without revealing the internal processing
details for each participant. Abstract BPEL captures these kinds of processes.
Essentially, abstract BPEL processes differ from executable processes by allowing
internal details to be omitted from the process description. Thus, the process cannot be
directly executed, but one can build different kinds of executable processes that
correspond to the defined abstract process. In abstract BPEL, process information can
be left unspecified in two ways: omission or opacity. In short, omission is an implicit
form of opacity. This means that, for example, the variable reference attributes for web
service invocations can either be left out or explicitly defined as opaque.

WS-BPEL 2.0 (OASIS 2007) specifies the role of abstract processes in more detail than
BPEL4WS 1.1 (Andrews et al. 2003). According to (OASIS 2007, p. 147), abstract
processes have different kinds of use cases. Therefore, the specification defines a
Common Base for abstract processes. It can be refined by defining profiles for specific
use cases. In the Common Base, all activities, expressions, attributes and data sources
can be opaque. The profiles can restrict these opacity rules to make the process
descriptions accurate enough for the purposes of the use case. The WS-BPEL 2.0
specification defines two abstract process profiles: a profile for observable behavior and
a profile for process templates. In short, the first profile is meant for controlling
business process contracts and the second profile for a high-level process representation
in an organization.

2.2.2.4 BPEL extensions

Several BPEL extensions have been introduced, for example BPEL4People for
presenting human activities in BPEL processes and BPEL Subprocesses for reusable
subprocesses. The status of these specifications varies and detailed study of them was

22

not included in this research. It should be pointed out, however, that relying on
extensions decreases the portability of BPEL processes, meaning that a process created
for one engine cannot necessarily be executed in another engine.

2.2.2.5 Conclusion on BPEL

In conclusion, we state that BPEL is a relatively powerful language with a strong
position and it is currently the best possible option for executing business processes.
This is mainly because it does not have any serious competitors in the industry,
considering process execution. In comparison with conventional programming
languages such as Java, BPEL provides powerful mechanisms for typical business
process interactions such as long-term transactions, asynchronous messaging and
parallel activities. This means that it would require much more effort and lines of code
to express the process in a conventional programming language. The downside is the
syntactic restrictiveness of BPEL which is one source of problems in the BPMN
transformations.

Although BPEL is an important standard, it lacks some features and complementary
languages are needed. For process execution in electronic business networks, better
support for collaboration processes is required. Choreography languages such as WS-
CDL should be used for this purpose and use BPEL to implement the internal processes.
The term choreography refers to the collaborations between interacting parties, i.e., the
global process that each participant needs to agree on (van der Aalst et al. 2005, p. 10).
For example, based on the global definitions described in a WS-CDL document, each
party can implement solutions that conform to their role in the global process
(Kavantzas et al. 2004). Choreography languages are also investigated in SOAMeS
project. The results are delivered in a separate report.

23

3. Workflow patterns and business
process languages

Workflow patterns are a popular and systematic method for evaluating workflow
languages and tools. The terminology can be confusing, because in this report we have
discussed the modeling and execution of business processes. In the academia, different
views exist on the definitions of a workflow and a business process. The distinction is
partly based on the different formalisms adopted in these two camps. For example, it
has been stated that, in contrast to workflows, business processes can represent more
dynamic situations in which processes and the relationships among its participants
evolve as the process executes (Smith & Fingar 2003). On the other hand, Business
Process Management can be merely seen as an extension of Workflow Management,
covering also other lifecycle phases than modeling and execution, such as process
monitoring. For the purposes of this research, however, it is enough to point out that
workflow patterns are fully applicable to the tools and technologies under discussion.

Informally, patterns describe workflow constructs that represent certain process setting,
originating from business requirements. They resemble design patterns in software
engineering. Originally, van der Aalst et al. (2003, p. 6) recognized four different
perspectives for workflow patterns:

− control-flow perspective: activities and their execution order
− data perspective: process and business data on top of the control perspective
− resource perspective: human and device roles responsible for executing the activities
− operational perspective: elementary actions of activities.

Workflow patterns constitute an active area of research. Information on the patterns and
their support is maintained by the Workflow Patterns Initiative2 on their website. The
number of different patterns in each category has increased since their first introduction
and also new perspectives have been introduced: exception handling perspective deals
with causes and control of exceptions in workflows and service interaction patterns
describe the possible interactions between different processes or processes and resources.

Comparing languages based on workflow patterns can be used to evaluate their suitability
and expressive power (van der Aalst et al. 2003, p. 7). A language may be able to express
a pattern, i.e., have expressive power, but the resulting expression might be, e.g., very
hard to understand, i.e., unsuitable. Different workflow patterns represent different
settings. Therefore, all patterns are not equally relevant to all purposes and domains.

2http://www.workflowpatterns.com/.

24

According to van der Aalst et al. (2003, p. 6) the control flow and data perspectives
include the most important patterns while the perspectives on resources and operations
have a supplementary role. Based on its relatively short history, same can be stated
about the exception handling perspective. Service interaction perspective can be
considered relevant to SOA but its focus is more on choreography than on execution.
Additionally, modeling issues have not been considered. Here we present control flow
patterns because they constitute the dominant workflow perspective. Also the data
pattern support of the languages is briefly discussed. These patterns act as a basis for the
test cases in which both suitability and expressive power is evaluated in the context of
language transformations.

The Workflow Patterns initiative has also evaluated the pattern support of certain
workflow products, including, for example, WebSphere and SAP. Because none of
these products is fully based on standard modeling and execution languages, the pattern
evaluations are not further discussed here.

3.1 Control flow patterns

The original body of work (van der Aalst et al. 2003) defines 20 control flow divided in
five categories. The work on control flow patterns continues and at the time of writing
there are currently 43 pattern descriptions available on the Workflow Patterns initiative
website. The new patterns are mostly based on the original ones so that an old pattern
has been divided into several new patterns because of the different situations it may
occur in. The original patterns have also been re-evaluated and revised to avoid
ambiguities. The control flow patterns include: (Workflow Patterns Initiative 2007)

− 5 basic control flow patterns: elementary aspects of process control similar to the
initial definitions of WfMC (e.g., sequence, parallel split)

− 12 advanced branching and synchronization patterns: more complex branching
and merging (e.g., multi-merge)

− 5 structural patterns: behavioral design restrictions (cycles, termination)

− 7 multiple instance patterns: situations where multiple execution threads relating
to same activity are active at the same time

− 7 state based patterns: situations dependent on the process state (defined by broad
set of data)

− 5 cancellation patterns: variants of the activity cancellation concept

− 2 triggers to trigger activities by a signal from another part of the process or from
the external environment.

25

The most important control flow patterns whose supports differ in the focal languages
are summarized in Table 3. These act as a basis for recognizing possible shortcomings
in the transformations between modeling and execution languages.

Table 3. Selected control flow patterns and their support according to (van der Aalst et
al. 2003; Workflow Patterns initiative 2007).

Pattern name Description BPEL 1.1 BPMN 1.0 AD 2.0

Discriminator The convergence of two or
more branches into a
single subsequent branch.
Only one token is
accepted, others will be
blocked.

no support partial;
specification on
join condition
unclear
(structured)

partial;
specification on
join condition
unclear
(structured)

Multi-merge The merging of multiple
parallel paths without
synchronization.

no support support support

Arbitrary cycles Cycles with more than one
entry or exit point.

no support support support

Multiple
Instances
with a Priori
Design-Time
Knowledge

Creating a multiple
instance activity when the
required number of
instances is known at
design time.

no support; no
support for
multiple activity
instances

support support

Multiple
Instances
with a Priori
Run-Time
Knowledge

Creating a multiple
instance activity when the
required number of
instances may depend on
runtime factors but is
known beforehand.
instance creation

no support; no
support for
multiple activity
instances

support support

Explicit termination Process is terminated if it
reaches a certain state.

no support support support

Acyclic
Synchronizing
Merge

Two or more branches
converge into a single
subsequent branch.
Synchronization is made
based on the information
locally available to the
merge construct.

support no support partial;
specification on
join condition
unclear

Structured
Synchronizing
merge

Same as above, but in a
structured context, i.e., so
that there is a join of the
same type for each split.

support support no support; the
specification on
join condition to
achieve this
unclear

Based on the pattern comparison it can be concluded that graph-oriented visual
modeling languages have better support of control flow patterns than the highly block-
oriented execution language. Some contrary exceptions can be recognized, however.
These include Acyclic Synchronizing Merge: in BPMN, for example, the OR-join is

26

used to realize synchronizing merge. However, it can only be used in Structured
Synchronizing Merge, meaning that it assumes that each split in the model has a
corresponding join of the same type. It should also be noted that in the most complex
cases, the specifications are not detailed enough to guarantee full support for the pattern.

In addition to recognizing the gaps between modeling and execution, the patterns were
examined in order to analyze the expressive power of the languages. This was based on
Workflow Patterns Initiative (2007). For detailed listings of the pattern support, the
reader is advised to study this web site. It can be concluded that BPEL supports
relatively well the different control flow patterns, although some shortcomings can be
identified. The relevance of BPEL�s evaluation is hindered by the fact that it has no real
competitors as an execution language standard in the industry. Clearly, BPEL�s pattern
support is the union of XLANG�s and WSFL�s supports, because the constructs of both
languages are included (van der Aalst et al. 2005). BPEL4WS 1.1 is challenged by the
proprietary workflow languages and the extended versions of BPEL, some of which
have also been evaluated in (Workflow Patterns Initiative 2007). The differences are
relatively small, however. For example, standard BPEL and IBM WebSphere
Integration Developer support the same control flow patterns. Oracle BPEL introduces a
new construct for multiple parallel instances of the same activity, which enables it
support some multiple instance patterns that the standard does not support. On the other
hand, e.g., a pattern called Interleaved Parallel Routing (parallel tasks with partial
ordering requirements) cannot be implemented in Oracle BPEL although it is supported
through <scope> in standard BPEL.

The control flow supports of the focal modeling languages, BPMN and UML AD, are
almost equal. Also in this case, the Synchronizing Merge patterns are the ones to point
out differences in expressive power. BPMN supports the structured version, as
described above, but UML AD does not.

3.2 Data patterns

Data patterns capture the ways of utilizing and representing data in workflows. Together
with control flow patterns, they constitute a basis for pattern-based evaluation of
workflow (and business process) standards and tools. Data patterns can be divided into
four categories (Russel et al. 2005, p. 3):

− Data visibility: how data elements can be viewed by different workflow
components � 8 patterns described in (Workflow Patterns Initiative 2007)

27

− Data interaction: how data is communicated between the active elements in the
workflow � 6 internal and 11 external interaction patterns described in (Workflow
Patterns Initiative 2007)

− Data transfer: how data elements are transferred between workflow components and
what kind of mechanisms exist for passing data elements across the interfaces of
workflow components � 7 patterns described in (Workflow Patterns Initiative 2007)

− Data-based routing: how data elements can influence other aspects in the
workflow, particularly the control flow perspective � 7 patterns described in
(Workflow Patterns Initiative 2007).

The Workflow Patterns Initiative (2007) often defines many variations of the same data
pattern. For example, there are both Push-oriented and Pull-oriented versions of all data
transfer patterns. In general, both execution and modeling languages lack support for
some versions of the patterns. The relevance of some of the patterns can thus be
questioned to some extent.

BPEL provides support for all of the common data patterns. Problems are posed by,
e.g., complex data transfer patterns. The proprietary alternatives do not provide better
support, however. Also both modeling languages support all basic patterns, but
shortcomings can be recognized in many advanced variations. BPMN provides a
slightly better support than UML AD. This is mainly because in BPMN, Pools can be
used to represent external environments in data transfer patterns � UML AD does not
have such constructs. In case of data patterns, it cannot be so clearly stated that either
modeling or execution languages would result in better expressive power. Some
differences can be pointed out, however. For instance, modeling languages can both
express preconditions for activities, but they cannot indicate data transfer by reference,
like BPEL.

28

4. Existing research on BPMN-BPEL
transformations

BPMN has had a close relationship with BPEL from the beginning and preliminary
mappings to BPEL are provided already in the BPMN specification. Based on this, lots
of research has been conducted considering the subject (White 2005; Recker &
Mendling 2006; Ouyang et al. 2006; Emig et al. 2006) and several BPMN tools generate
BPEL based on the diagrams. The basic mappings between BPMN and BPEL elements
are also covered in the BPMN specification (Object Management Group 2006). We
started our study on the subject by investigating the existing research. We found out that
certain process patterns were constantly considered problematic in publications. These
shortcomings in the transformations stem from the fundamental differences between
graph-oriented and block-oriented languages. Strategies for overcoming these gaps
exist, with their own limitations. Due to the vast amount of existing research and
implementations, we did not try to develop a new algorithm for BPMN-BPEL
transformation but to evaluate the limitations of the existing tools and to outline
strategies for overcoming those. In this section we briefly introduce two of the most
prominent transformation approaches found. The first one, (Ouyang et al. 2006), is a
technical report by a group of well-known workflow scientists. Some of the advanced
constructs of BPMN, such as exception handling mechanism, are not included in the
algorithm, though. The second one, (Gao 2006), is an industry paper by the vendor of a
prominent BPMN tool, eClarus.

4.1 Links and event handlers

Event handler is a BPEL construct which is familiar from many conventional
programming languages. For each handler, an event, a scope and a corresponding
activity to handle the event is defined. Any valid BPMN model can be translated to
BPEL using event handlers. This means that for each BPMN task, event or gateway, a
set of event handlers is defined. This way, any kind of parallel behavior can be managed
despite the block-oriented nature of BPEL. The diagram still has to be free of, e.g.,
deadlocks and livelocks in order to produce a functional process. This approach,
however, results in BPEL code which is not readable and hence difficult to modify by
developers afterwards. However, two classes of BPMN models can be translated to
BPEL models by using constrained control flow constructs of BPEL: structured and
synchronizing process models. The models in the first category can be translated into the
five structured control flow constructs of BPEL (sequence, flow, switch, pick and while).
The models of the second type can be translated to BPEL using a control link structure.
The BPEL code generated this way is much more readable than the one based on event
handlers. In short, the translation method aims at maximizing the readability of the code
by resorting to BPEL event handlers only if no other options exist. (Ouyang et al. 2006)

29

The authors of (Ouyang et al. 2006) point out that defining reverse transformations for
BPMN diagrams involving the entire BPMN diagram would be a challenging task.
Their method does not therefore enable round-tripping, even though BPEL-to-BPMN
transformations can be considered much more straightforward than the opposite
operation. In the software development process, BPEL code can be generated from
business process models using the method described earlier. However, it is possible that
the BPEL code is modified later on. At this point, methods for automatic BPMN
modification would be feasible to keep the models consistent. Therefore, the challenge
of reversibility is mentioned as a future research subject in the article. (Ouyang et al.
2006, p. 18)

The translation algorithm of Ouyang et al. (2006) has also been successfully
implemented. The result is a piece of software named simply as BPMN2BPEL3. It is a
command line tool, which takes an XML serialization of a BPMN model as an input and
produces a BPEL document using the approach described in the article. The resulting
BPEL descriptions have also been validated using Oracle BPEL Process Manager
(Ouyang et al. 2006, p. 35).

4.2 Links and diagram restructuring

Gao (2006) states that the developers of eClarus have solved the problem of round-trip
engineering between BPMN and BPEL. The details of this translation algorithm are not
public but the principles of the method are described. It is also admitted in the paper that
not all BPMN diagrams can be mapped to BPEL in an isomorphic way. According to
Gao, however, it is possible to rewrite the diagram so that it is BPEL isomorphic, i.e., it
can be precisely expressed using BPEL. This rewriting is said to be a difficult process of
semantic analysis and the details of executing it automatically are not discussed. The
transformation of BPEL isomorphic diagrams is based on the basic mappings and so-
called static token flow analysis. In this approach, a flow token is assigned for each
sequence flow and downstream tokens are inherited by upstream flows. Tokens are
divided into sub-tokens and merged back according to the flow. By analyzing the
signatures of the tokens, transformable patterns in the diagram can be recognized. For
example, if a flow object has two incoming sequence flows, and the token of the first
flow is a sub-token of the second flow�s token, a loop structure can be recognized. This
method can also be used to find non-isomorphic graph structures which necessitate
rewriting the diagram.

3 http://www.bpm.fit.qut.edu.au/projects/babel/tools.

30

5. Tool-based experiments on transformations

It can be said that tools have a significant role in business process modeling and
execution. BPEL is a complex language and writing the code manually is a time
consuming and error prone task. Because of the specialized nature of BPEL, it can be
assumed that even the majority of software developers are unfamiliar with its details.
This learning curve can be made gentler by appropriate use of tools. In general, business
process modeling and execution tools can be divided into four categories:

− Business process execution platforms: tools that guide the design of BPEL
processes and execute the process in a BPEL engine, which is technically an
application server with BPEL execution capability.

− Business process modeling tools: tools that can be used to model processes in a
standard or proprietary notation. No support for generating BPEL from the
diagrams is provided and the modeling is not restricted by the capabilities of the
execution language.

− Business process modeling tools with transformation support: tools which are
able to export diagrams to BPEL code or import BPEL files to generate BPMN
models. If support for both functionalities exists, the tool is close to supporting
BPMN-BPEL round-trip engineering. These tools generate BPEL code but it has
to be deployed and executed using a separate product.

− Business Process Management Systems/Suites (BPMS): these tools support the
whole process lifecycle from modeling to execution, with possible simulation
capability. They generate BPEL code from BPMN models. The executable
process can be deployed to an execution engine which is integrated with the
modeling environment. The execution engine may provide the capability to monitor
a process execution using the corresponding diagram as a basis for visualization.

The first category of tools is introduced in (Kanniainen & Haajanen 2007). In this
project, the focus is on automated business processes, which means that business
process models need to have a clear relationship with executable processes. Therefore,
the second category of tools is omitted here. From the selected tools, one (eClarus) falls
into the third category and the other (Intalio BPMS) to the fourth category. The
properties of the categories are summarized in Table 4. The table indicates whether the
typical tools in these categories include certain functionalities. If a column is marked as
possibly, this means that tools in the category may have this kind of support, but this is
not necessary.

31

Table 4. Modeling and execution tool categories.

Functionality Execution
platforms

Modeling
tools

Modeling/
transformation

tools

Business Process
Management

Systems/Suites
(BPMS)

Modeling language support no yes yes yes

Process execution support yes no no yes

Modeling-to-execution
transformation no no yes yes

Execution-to- modeling
transformation no no possibly possibly

Process simulation no no no possibly

Process execution monitoring possibly no no yes

5.1 Principles for tool selection

The selection of investigated tools was to a large extent based on lists maintained by the
Object Management Group. Also industry articles (e.g., Gao 2006) and free search on
the web were exploited. The used tools were selected based on available documentation
and, in certain cases, preliminary use experience. In the selection, the following
properties of the tools were emphasized:

− Language support: the support for BPMN and BPEL was required. For BPEL,
both BPEL4WS 1.1 and WS-BPEL 2.0 supports were considered suitable.

− Claimed transformation support: the products were evaluated based on the
transformation support stated in the documentation. All selected tools support
some level of code generation based on process diagrams.

− Availability: the research was restricted by the fact that the products needed to be
available for research purposes at low costs. All included products were available
freely, as a trial version or under academic license.

5.2 Selected tools

Based on the previously described criteria, several suitable tools could be found. We did
not include a wide range of products in our test cases, because this could have affected
the quality of the tests due to the limited time scope. Additionally, as the previous
sections show, the transformation functionality of the tools is largely dependent on the
expressive power of the languages, and the results can thus be generalized more than

32

with proprietary BPM tools. Finally, the field is under constant change and new
products and improved versions of the old ones are being released at a rapid pace.
Hence, the results of extensive comparisons would not have been feasible for very long.

We did not choose the tools randomly, however. The first tool, Intalio BPMS, was
selected because it was freely available and because it provided the whole BPMS
functionality. We feel that freely available products have currently an important role,
because the technologies and the domain in general are at a relatively young stage.
Organizations may need to assess whether such technology would provide considerable
value, before making significant investments in tools. This kind of analysis is also
suggested by Gartner in their analysis on Intalio (Hill & Drakos 2006). Accordingly,
Intalio is the first credible BPMS product, although commercial products include a
wider set of features that are accessible also to business users.

 The second tool, eClarus Business Process Modeler for SOA Architects, was selected
because it was one of the few tools that supported both BPEL export and import. The
industrial paper covering the principles of its transformation method (Gao 2006) also
increased our interest on this product. It is a commercial tool but the vendor provided us
with a limited license for our research purposes.

5.2.1 Intalio BPMS Community Edition

Intalio BPMS Community Edition4 enables experimenting with a full-blown BPMS
without costs and therefore, it was chosen for this study. The functionalities are divided
into two separate products: Intalio Designer for modeling business processes and Intalio
Business Process Management Server for executing and managing them. The
Community Edition of Intalio can only be used with a MySQL relational database and
Apache Geronimo application server. The Enterprise Edition5 does not have these
restrictions. For the purpose of this research, i.e., mainly for examining the BPMN
transformations, the Community Edition is considered completely adequate.

In this research, version 4.4 of both Intalio Designer and Intalio Business Process
Management Server were used. In the early stage of the empirical study, version 5 of
the Designer also reached alpha stage. Due to its immature stage, it could not be
included in the research. According to the documentation on the web site, the tested
version of the Designer requires Windows XP or Windows 2000. The Server will also
work on Linux or Mac OS X. The toolset was only tested in Windows XP environment.

4 http://bpms.intalio.com.
5 http://www.intalio.com.

33

The basic modeling view of Designer is presented in Figure 5 and the listing of
deployed processes in Server in Figure 6.

Figure 5. Intalio BPMS Designer.

34

Figure 6. Intalio BPMS Server.

As BPMS products in general, Intalio BPMS Community edition is intended to cover all
basic aspects of business process management including process modeling, deployment,
execution and monitoring. The whole suite relies on BPMN as a visual notation and
BPEL as an execution language. Intalio supports the WS-BPEL 2.0 specification which
is claimed to be more portable than the earlier version. The WS-BPEL 2.0 descriptions
which are generated based on BPMN can be deployed into the Server with one click in
the Designer. The server also supports BPEL4WS 1.1 but for those files, a separate
deployment package must be created. Other model formats were not supported by the
used version. In the Designer, most of the BPMN 1.0 specification�s elements are
implemented. The few missing elements include Data object elements, Cancel elements
and Complex Gateways. Additionally, Intalio BPMS 4.4 does not support abstract
messaging between pools or merging between exception and normal flow.

Intalio is clearly focused on executable business processes based on Web Service
technologies. It is not intended to be a tool for pure business analysts: basic
understanding of the underlying technologies is definitely needed. Intalio Designer
includes most of the BPMN elements relevant to executable business process models. In
the Intalio Designer, external activities and message flows are mapped to specific

35

interface operations and message definitions using WSDL. The input and output
message structures of the process are indicated with XML Schema elements. WSDL
and XSD files are imported into the project space same way than any other files.
Different elements of the documents can be browsed using the tree-like view of the file
system. The service calls are modeled by introducing an additional Pool which contains
the operations from the WSDL. The conditions are expressed using XPath. This is
clearly an operation requiring technical expertise.

The private process then interacts with this external participant with message flows.
Also the interface that is used to initiate the private process is expressed as a Pool which
sends the message to the Start event. When the diagram elements are in place, the
process data is mapped to Web Service inputs and outputs. For instance, it is defined
how the eventual response message is constructed from different data sources.

Intalio Designer provides a graphical user interface for mapping variables with each other.
The mapping tool provides a graphical interface for data combining and manipulating
data. It eventually generates XML transformations and XPath expressions but these
technologies do not have to be known by the process designer. Despite that, the mapping
process is relatively complex and understanding of the Web Service technologies is
needed. In addition to fully automated process constructs, the designer includes also tools
for designing the user interfaces for human activities using, e.g., XForms.

After the process has been modeled and concrete services, messages and data have been
defined, a corresponding BPEL description can be automatically generated in Intalio
Designer. Also missing WSDL files are generated, including a description for the
interface through which the process can be initiated. This executable process can be
automatically deployed in Intalio BPM Server. In the server, the deployed processes can
be started using a web-based form for giving the parameters for the initiative request
document. The deployed processes are started and stopped through the web-based user
interface of the server. The state and history of all deployed processes are also
presented.

Intalio does not support any kind of round-trip engineering between BPMN and BPEL.
After the BPEL file is generated, it can be modified only in XML format. A BPEL file
cannot be imported into Intalio Designer and if the BPEL file is manually modified, the
effects on the BPMN model are not indicated in any way. Intalio BPM Server presents
the original BPMN model together with the executable process. In case of exceptions
and faults, the related process activities are marked on the BPMN model. Otherwise the
presented diagram is static.

36

5.2.2 eClarus Business Process Modeler for SOA Architects

At the time of this study, only a few tools supported both generating BPEL from BPMN
and the other way around. One of these is eClarus Business Process Modeler for SOA
Architects6 which is the most advanced of the BPM products of eClarus. According to
the web site, eClarus requires Windows XP or Linux. The tests were carried out in
Windows environment. The tool includes only modeling and export/import capability,
i.e., no execution engine is included, for instance. eClarus Business Process Modeler for
SOA Architects is a commercial product built on Eclipse platform. The Eclipse
foundation enables integrating eClarus easily with other Eclipse-based tools. This is
important because of the restricted functionality provided by eClarus. According to the
web site, the generated BPEL is compatible with the most significant commercial BPEL
engines. Comparing to an integrated solution, eClarus does not include a BPEL engine,
which makes the deployment of the generated BPEL descriptions more complicated.
Due to the compatibility problems of BPEL4WS 1.1, one cannot be completely sure that
the processes will be directly executable with any BPEL engine.

The modeling language used in eClarus is BPMN and it supports all the elements in the
1.0 specification. UML 2 Activity Diagrams created with IBM Rational Software
Architect can also be imported but they are translated to BPMN. For this purpose, a
proprietary format is used. Importantly, eClarus only supports the BPEL4WS 1.1
specification. This means that it is not possible to import into eClarus BPEL files
generated with Intalio, for instance. As the name indicates, this eClarus product is also
designed for modeling executable business processes. Compared to Intalio, however,
some aspects of eClarus can be considered to improve the collaboration between
business analysts, architects and designers. For instance, a change management tool is
included to ease the comparison between as-is and to-be process models.

The basic modeling steps related to eClarus are to a large extent similar to the ones in
Intalio but also differences occur. First, the BPMN elements and the connecting flows
are created using an intuitive drag-and-drop user interface. Next, the technical details
are added so that the executable code could be generated. This means defining the Web
Service operations that carry out the activities, their message flows and conditions for
the branches and merges in the control flow. The conditions for the flows are stated by
XPath expressions which access the variable data in the messages. Also BPEL
<partnerLink>-properties have to be filled in to indicate partners of the message. In
contrast to Intalio, the WSDL operations or the initiating interface invocations are not
presented by separate Pools. Instead, the services and their message flows are included
in the properties of the activities which are accessible through separate menu. In other

6 http://www.eclarus.com/products_soa.html.

37

words, in most cases message flow is not visible and it is not mapped to BPEL. It can be
said that this simplifies the models: they include only the actual activities of the process
and the service calls are hidden behind the scene. Information on the service
implementing an activity is still closely connected to it, not dependent on a separate
message flow. However, introducing the concept of a message flow inside a BPMN
Pool may confuse some users. Web Service artifacts are imported into the eClarus file
system similarly to Intalio, although with eClarus they are not project-specific. The
basic modeling view of eClarus is shown in Figure 7.

Figure 7. eClarus Business Process Modeler.

The most important functionality of eClarus is the BPMN-BPEL round-tripping,
meaning that BPEL files generated based on BPMN models can be edited and then
imported back to the tool to generate a diagram reflecting the changes. However, the
basic functionality includes only importing of BPEL processes and generating the
diagram based on that. This is indeed an effective way to keep the models consistent
with the executable processes and to communicate with different people during the
process lifecycle. However, there is no automatic way to ensure the correctness of the
process behavior after modifying the BPEL model: this must be assessed by human
experts. As the complexity of the models increases, this task becomes more difficult. It

38

can be said that with most real operational business processes, assessing whether the
BPEL is functional is impossible without automated tool support. Therefore, both tools
lack adequate support for process mining in which problems such as deadlocks or
creation of multiple instances would be recognized. This kind of verification, in turn,
requires a formal definition of the BPMN semantics.

Significant academic work has been quite recently conducted on this area (Dijkman et
al. 2007), but it is likely to take some time before these results are fully exploited in the
development of industry-strength tools.

5.2.3 Progress of the testing

We carried out six test cases in both tools. These test cases represented different kinds
of business process models. The first test case was a very basic one and its purpose was
to indicate the minimum amount of effort that these automatic transformations require.
The next four test cases covered patterns that were found problematic in the existing
research. The final test case represented a collaboration process. It was carried out in
order to find out the limitations of BPEL in this area.

Because the test cases covered patterns (such as arbitrary cycles and multi-merges) that
were considered difficult from the transformation point of view, the transformations did
not always succeed. This was one of the goals of the testing � to determine the
limitations of the state-of-the-art tools. In these cases, we sometimes tried to restructure
the diagrams so that the same behavior could be captured without including patterns that
were not supported by a tool. In many cases this was a success but there was often a
trade-off included in, e.g., understandability of the diagram or in readability of BPEL
code. Nevertheless, it can be said that even though not all diagrams could be
transformed with existing tools, a workaround could often be formulated.

In the basic case and in cases involving parallel behavior or correlation (collaboration),
so-called dummy Web Services were used to ensure that the execution actually
corresponded to the modeled process. In other cases they were not considered necessary
� the correctness of the BPEL process could be inspected by only reading the code. As
was pointed out, this kind of analysis would not have been enough for more complex
processes, but because the scope of the test cases was very limited, the inspection could
be carried out. The results of the test cases were analyzed based on the following
criteria:

− Transformation success: whether or not code could be generated based on the
diagram. This also means that the generated code must correspond to the diagram.

39

− Required manual operations: what kind of modifications and elaborations were
needed after creating the diagram to enable code generation. This includes all
mappings to implementation details. Additionally, if the diagram needed to be
modified to be able to carry out the transformation, i.e., the diagram could not be
transformed as such, this is mentioned. Also at this point, the results are reported
separately for each tool.

− Occurred problems: if the transformation was not successful, the reason for this is
reported. This section is much related to the previous one because the problems
were often solved through manual work.

− Required knowledge: what kind of knowledge other than familiarity with the tools
was required to carry out the transformation? This part is also closely related to
the manual work because these operations are based on specific knowledge about
the technology or the limitations on the transformation support.

− Quality: after a successful transformation, the generated code was inspected in
more detail, evaluating, e.g., readability of the code.

5.2.4 Test case descriptions

The first test case is the �Travel Booking process� (Figure 8). This is a simple process
involving none of the patterns that are regarded especially problematic from the
transformation point of view. However, in Intalio it was necessary to use a separate
looping sub-process instead of a gateway. At the beginning of the process, the credit
card information is checked. If this raises an error, the process is terminated and a
separate error message is sent. The travel booking consists of reserving a flight, a hotel
room and a car. Flight and hotel reservations always succeed but the car rental may
require retries. When all the reservations have succeeded, a confirmation message is
compiled and that message is sent as an output of the process. The process covers
several basic elements and control flow aspects of BPMN. These include at least loops,
parallel joins and exception flow. Therefore, the first test case covers the basic
transformation capability of the tools with a relatively simple process. This test case was
used to assess the basic quality of the generated code and to evaluate how much manual
work and technological knowledge these transformations require at minimum.
Therefore, all the activities were implemented as service invocations using so-called
dummy services which correspond to the required interface but do not provide any real
functionality.

40

Figure 8. Travel booking process modeled with Intalio.

The second test case is the �Loan Approval process� (Figure 9) introduced in BPEL4WS
1.1 specification (Andrews et al. 2003). This process also does not involve complex task
structures but it is still mentioned as a problematic case for BPMN-to-BPEL transformation
by Gao (2006). Here, the exception handling of the original BPEL process was omitted
to be able to point out problem areas in the transformations. Considering that BPMN
should be able to present a visual notation for BPEL, being able to represent a process
described in the BPEL specification can be considered important. The process is
initiated with a message indicating the amount of loan requested and personal
information for the applicant. If the requested amount is high enough, a separate
approval service is invoked. If not, a risk assessment service is chosen to determine
whether the applicant poses a low enough risk level. In this case, the application can be
approved automatically. However, if a high risk level is indicated by the assessment
service, the separate approval service must be invoked despite the low amount of the
application. At this point, the control flow crosses paths with the high amount branch,
resulting in invoking the same service. The flow tokens of the branches are mixed,
indicating that the diagram is not BPEL-isomorphic and thus direct mapping cannot be
carried out (Gao 2006, p. 5). This process was implemented using only internal data
manipulation because the focus was on control flow, not on messaging between services.

Figure 9. Loan approval process modeled with eClarus.

Next three test case processes include workflow patterns that have been found
problematic from the transformation point of view. Test case number three (Figure 10)

41

introduces Arbitrary cycles, i.e., loops with more than one entry or exit points. The
model is based on (White 2004b). The fourth test case (Figure 11) introduces the
Discriminator pattern as described in the BPMN specification (Object Management
Group 2006, p. 119) � the diagram includes a parallel split which has a corresponding
exclusive merge. The process does not correspond to the Discriminator solution
proposed by Workflow Patterns Initiative (2007), because they state that complex
gateway should be used to be able to let only one token through the latter gateway.
Nevertheless, the example process here can be considered problematic because the
splitting and joining gateway do not match. In this process, two databases are queried in
parallel. However, when either one of them responds, the result is sent to the client or
the process is ended: the execution is not intended to stop and wait for the other activity
(i.e., the other database query) to be completed as well. In this case, the actual service
calls were carried out to ensure that the parallel activities do not introduce any new
problems. The fifth test case (Figure 12) resembles the previous one. It includes the
Multi-merge pattern in which parallel control flow branches reconverge without
synchronization so that the activity following the implicit merge is executed once for
each incoming branch. In the example process, application management consists of two
parallel activities: application processing and auditing. These activities can be executed
in parallel. They both require closing the case after their execution. The same close case
activity should be executed separately for both processing and auditing. This is the point
where the Multi-merge pattern appears. In this test case, only internal data manipulation
was used due to the similarity with the fourth test case process.

Figure 10. Arbitrary cycles modeled with eClarus.

42

Figure 11. Parallel database search process modeled with Intalio.

Figure 12. Application management process modeled with Intalio.

The final test case (Figure 13), �Purchase process� is a collaboration process.
Essentially, the diagram involves two participants with their own processes, i.e., two
Pools with separate sequence flows. It is not an abstract process because it includes the
specific service calls involved in the process. However, this process only includes the
points of interaction between the participants, not their internal business logic. These
kinds of process descriptions can be related to, e.g., Partner Interface Processes (PIP) of
RosettaNet. However, based on the presented diagram, an implementation with full
details, such as WSDL descriptions are derived. In the process, the buyer first sends an
order to the seller. Having accepted the order, the seller sends the goods which are
received by the buyer. After that, the seller sends an invoice to the seller. This is
followed by payment whose sending ends the process from the buyer�s point of view
and acceptance from the seller�s point of view.

43

Figure 13. Purchase process modeled with eClarus.

44

6. Test case results
In general, it could be said that tool vendors have not been able to overcome all the
fundamental limitations that apply to the transformations between graph-oriented and
block-oriented languages. However, it should be pointed out that most of the test cases
represent the most difficult situations � much can be done without any problems, but a
fair amount of technical knowledge is required in any case.

6.1 Transformations

Both tools used in the transformations between BPMN and BPEL succeeded in the
transformation of the first test case diagram. However, although the tools are based on
the same notations, they impose different restrictions on the BPMN models and require
different modeling techniques for the transformation to succeed. For instance, Intalio
does not allow the use of loops which are based on Gateways. Instead, the separate
Looping subprocess element must be used. It should be pointed out that subprocesses
did not pose problems in this context even though no BPEL extensions were used. The
looping subprocess mapped to BPEL <while> and the <scope> element was used to
define the variables specific to that subprocess.

The methods for specifying these execution details are very much tool-dependent. This
is understandable because unlike the notation, the methods for relating the diagram to
e.g., variables are not standardized. The tools have different perspectives on processes,
and their relationship to BPEL and Web Service elements. For example, eClarus
requires that the user specifies the BPEL <partnerLink> elements related to each Web
Service activity in order to determine which service interactions are parts of the same
message exchange. In Intalio, this is deduced from the message flows between the Pool
that represent the executable process and the Pools that represent the external Web
Services. It should be pointed out that even though the tools would succeed in
generating BPEL, additional procedures are required to be able to execute the process.
These are also tool-dependent. For example in Intalio, the variables have to be
initialized. Without this, the execution of the BPEL process will crash, at least in the
Intalio�s own execution engine and Geronimo application server.

The BPMN-to-BPEL transformation of the �Loan approval� process was successful
with eClarus but it failed with Intalio. The error message indicated that there were
conflicting flows from the upper fork to the lower merge. The third test case failed with
both of the tools. With Intalio, it is not even possible to draw arbitrary cycles because
the looping sub-process element must be used. With eClarus, the diagram could be
drawn but BPEL could not be generated: the looping to a branch on activity C was not

45

supported by the BPMN-to-BPEL mapping. The fourth test case was also a failure with
both tools. Notably, eClarus recognized the pattern and explicitly stated that it is not
supported by the mapping. More importantly, however, Intalio generated incorrect BPEL
code based on the diagram. In the used version of the Intalio Designer, the type of the
merging gateway was not taken into account in the transformation: the generated BPEL was
executed as if there had been a synchronizing parallel gateway instead of an exclusive one.

Also the transformation of the fifth test case model failed with both tools. With eClarus,
no BPEL code could be generated. The error message stated that the uncontrolled flows
at the activity following the merge were not supported by the mapping. With Intalio, the
results resembled the previous test case: BPEL was generated but the execution
behavior was incorrect because a synchronizing merge was assumed. Therefore, the
Close case activity was executed only once instead of twice. However, this model could
be restructured so that the transformation could be carried out. This was done by
replicating the Close case activity so that it appears after both Audit application and
Process application activities. This means that both activities are mapped to the same
Web Service. The solution results in multiple instances of the Close case activity, but it
would not have been possible to avoid that due to the nature of the Multi-merge pattern.

Due to the focus of SOAMeS, the final test case requires special attention. Both tools
were able to generate BPEL based on the diagrams. However, at least in the case of
eClarus, the BPEL code does not correspond to the diagrams as such. The tool only
allows generating BPEL for one Pool at the time. In the BPEL code, the other pool and
the message flows are completely ignored and the Web Service information is attached
to each Activity separately, as described earlier. This means that the collaboration
process cannot be maintained in one place and that the interactions cannot be visualized.
The other process must be modeled separately. Moreover, eClarus only generates BPEL
based on the processes, not WSDL files which would be necessary to enable invocations
among processes. The approach of Intalio is more feasible. It treats the Pools as separate
executable processes and automatically generates BPEL and WSDL files for both of
them. This way the initiated Buyer process invokes the Seller process which is then
automatically started in the BPMS engine.

The BPMS presents the status of both processes, pointing out the activity in the
collaboration diagram that is currently in progress for each process instance. This means
that the collaboration process could be realized by deploying two interaction processes
for both participants. Internally, the participants could map the process activities to
more detailed processes indicating the business logic that they do not want to share with
their business partners. For more complex collaboration processes, the messages need to
be routed to correct process instances by explicitly defining BPEL correlation sets. This
functionality is provided by both of the tested tools. Notably, defining correlation sets is
a complex task requiring a substantial amount of BPEL knowledge.

46

The use of abstract BPEL would be feasible in collaborative processes such as the last
test case process. The tested tools did not provide any support for generating abstract
BPEL based on BPMN, however. If abstract BPEL was used, one difference to the
approach used in the last test case would be that it could be more accurately defined,
which parts of the participants� internal process behavior would be hidden. Following
the example in BPEL4WS 1.1 specification (Andrews et al. 2003, p. 9), one could
define in the abstract process that the seller�s process includes a decision point realized
in BPEL <switch>. However, the conditions for the decision making could be hidden,
i.e., opaque. This way, the alternatives for the behavior could still be observed, as
opposed to the situation in which all but the outcome would be hidden.

6.2 Code quality

In the first test case, the quality of the resulting BPEL code is high for both tools. The
strict conformance to BPEL specification was not evaluated but it can be said that no
questionable elements which would affect the execution could be found. The BPMN-to-
BPEL mappings correspond to a large extent to the basic mappings presented in the
literature. This means that the structured BPMN elements map to BPEL <sequence>,
<flow> and <while>, for instance.

The condition related to the handling of credit card error is expressed with BPEL
<switch> or <if> element, depending on the BPEL version used. The Web Service calls
related to the BPMN activities is indicated with BPEL <invoke> and <reply> elements
and data manipulation with <assign> and <copy>, for instance. In general, the resulting
BPEL code is concise: no unnecessary constructs could be recognized. As claimed, with
eClarus it is possible to import the BPEL files so that the possible modifications made
to the code are indicated in the diagram and the execution-specific information can be
derived from the BPEL file. However, because BPEL does not store diagram
information, the BPMN elements are laid out in a quite disordered manner. The
resulting diagram is based directly on executable elements. This means that on one
hand, additional information such as text annotations is lost. On the other hand, extra
elements are added to reflect the actual BPEL process. These include, e.g., empty
activities which are not necessary in BPMN diagrams. Additionally, the software is not
aware of whether or not the BPEL process is based on a diagram previously created
with eClarus. To achieve better maintainability of the processes, the use of change
tracking feature must be applied or eClarus must be integrated with a more sophisticated
version management system.

In the case of Intalio, the incorrectness of the generated BPEL in test cases four and five
can be seen as a serious quality issue. The tool should not be able to generate BPEL

47

because unstructured split/join-patterns are not supported by the mapping. In the final
collaboration process, the only quality issue is that the processes of different
participants are presented completely separately from each other. This is of course
based on the nature of BPEL in general but if the processes are generated with the same
tool at the same time, for example a comment field indicating this relationship would
have been beneficial.

As with any programming language, the generated BPEL code needs to be thoroughly
tested before executing it in a production environment. It can be said that one cannot yet
completely rely on the code that these tools generate. However, it should be borne in
mind that many test cases highlight the weaknesses in the transformations. Therefore, an
experienced process modeler might be suspicious about the transformation from the
beginning and test the executable process with additional caution.

The test case results are summarized separately for Intalio in Table 5 and for eClarus in
Table 6. The test cases were kept relatively simple in order to clearly point out the
shortcomings in the transformations. Because of this, however, it cannot be clearly said
whether one tool is superior to the other. As was stated earlier, the purpose of this study
was not to provide recommendations for purchasing products, but to demonstrate the
what kind of limitations could apply in currently available tools, and to outline what
kind of value these tools and technologies provide today. Based on the results, it can be
concluded that the differences between the tools were not significant. This is considered
to be based on the fact that they were based on standards, BPMN and BPEL, not
proprietary solutions. The differences on the test results are likely to stem from different
internal transformation algorithms of the tools. Additionally, the tools pose different
restrictions on the models that can be transformed to BPEL. For example, eClarus
requires that Gateways are used for merging instead of uncontrolled flow. Finally, the
tools use different versions of BPEL. BPEL4WS1.1 does not pose as strong restrictions
on control links than WS-BPEL 2.0, which can be predicted to result in more successful
transformations. The conducted tests do not bring this up, however.

48

Table 5. Test case results for Intalio.

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Name Basic Mixed
tokens

Arbitrary
cycles

BPMN
Discriminat
or

Multi-merge Collaboration

Success yes no no no no yes

Manual
operations

data mapping,
forking
conditions,
variable
initialization

see case 1 n/a n/a n/a see case 1;
correlation,
defining which
is the
executable
process

Problems execution crash
without variable
initialization,
enforced
subprocess

conflicting
flows

loops must
be encap-
sulated in
subpro-
cesses

invalid
BPEL
generated

see case 3 two BPEL
processes
from different
perspectives

Knowledge existing services,
tool principles,
BPEL basics,
XPath basics

see case 1 n/a knowledge
of invalid
BPEL
mapping

see case 4 knowledge of
BPEL�s
relationship to
collaboration,
understanding
correlation,
knowing the
business
partner and its
relevant IT
assets

Code
quality

OK n/a n/a n/a n/a no indication
that the
processes
relate to one
another

49

Table 6. Test case results for eClarus.

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Name Basic Mixed
tokens

Arbitrary
cycles

BPMN
Discrimi-
nator

Multi-merge Collaboration

Success yes yes no no no yes

Manual
operations

data
mapping,
forking
conditions,
partnerLink
specification

see case 1 n/a n/a n/a see case 1;
correlation,
defining which
is the
executable
process

Problems none none lack of
uncontrolled
flow support

invalid
BPEL
generated

unsupported
pattern
recognized

two BPEL
processes from
different
perspectives

Knowledge existing
services, tool
principles,
BPEL basics

see case 1 n/a knowledge
of pattern
terminology

see case 4 knowledge of
BPEL�s
relationship to
collaboration,
understanding
correlation,
knowing the
business
partner and its
relevant IT
assets

Code
quality

OK OK n/a n/a n/a no indication
that the
processes
relate to one
another

50

7. Conclusions

In this research, we have studied and evaluated the state-of-the-art in business process
modeling and execution technologies. The research included a literature study on
relevant languages as well as tool-based testing whose purpose was to find out to what
extent the transformations between business process modeling and execution languages
can be automated. To reveal the limitations of the tools, the test cases included process
patterns that were considered challenging in the existing research. In addition to data
indicating success or failure, the results cover additional requirements that the use of
these tools pose. This means that we have outlined the phases in the modeling process
and the different competences required. However, thorough formulation and evaluation
of such conclusions would have required case studies in real enterprise environments.
These were out of the scope of the research at this point.

7.1 Business process modeling and execution languages

Despite the large variety of languages in the Business Process Management domain, the
most prominent alternatives in the categories of both process modeling and execution
can be recognized. BPMN has been designed with only business processes in mind. It
can be used to model executable processes but it is also easy to understand by people
who are familiar with, e.g., Web Services. Additionally, processes can be modeled at a
higher level of abstraction to communicate with business experts. BPMN has a close
relationship with executable languages, namely BPEL. This translation has also been
widely implemented in tools, although some restrictions exist. UML 2.0 Activity
Diagram is also suitable for business process modeling but BPMN can be considered
more relevant, especially when it comes to tools with translation support.

One clear weakness of BPMN is the lack of widely supported model interchange
format. Currently, editing the same models in different tools will be very difficult if not
impossible. BPDM or XPDL may provide an answer to this problem, but they are not
widely supported by tools. This field should be further investigated in the future.

In the category of executable business process languages, BPEL does not have serious
direct competitors. Unfortunately, BPEL has its shortcomings related to complexity,
abstract processes, portability and human activities. It can be said that rather than using
BPEL extensions, these problems can be overcome by generating BPEL code automatically
whenever possible and restricting its use to private orchestrations. This means using
other languages in, e.g., process modeling (BPMN or UML AD), interchange (XPDL or
BPDM, if tools support these) and choreography design (e.g., WS-CDL).

51

7.2 BPMN and BPEL tools � provided value and limitations

Based on the results, it can be said that the transformation between BPMN and BPEL is
well supported by the available tools. Because BPEL lacks standardized visual notation,
BPMN modelers with BPEL export support are, hence, a good substitute for pure BPEL
modelers. This is already a step forward because BPMN will most likely gain popularity
in the near future.

Some features of the tools indicate that the only purpose of BPMN is to visualize
executable BPEL processes. However, visualizing BPEL is only one of the objectives of
BPMN and Web Service based execution only one objective of Business Process
Management. In addition to the basis for execution, process models can also be used to
facilitate communication in the earlier stages of the development. It would be beneficial
if the models on different levels were not completely separate from each other. The
tools should thus distinguish more clearly on different levels of validity related to
Business Process Diagrams. Indeed, it should be made sure that the processes can
actually be executed before generating BPEL but it should also be possible to first use
the intuitive modeling elements of BPMN more freely and make the necessary
restructurings at the point when the BPEL is generated.

While using BPMN with necessary additional execution information to model BPEL
processes is justified, the experiments also showed that modeling executable processes
is not a task of a business analyst but technical competence is required. The experiments
clearly indicate that even if the modeling is carried out with appropriate tools and
technologies, the path from the business process diagrams to process execution consists
of a wide range of different kinds of tasks which require different kind of knowledge, so
Business Process Management clearly requires that people with different
responsibilities are included in the project. There is a need for IT-people with specific
knowledge business process modeling and execution � which is a domain of business
informatics.

In order to truly benefit from business process modeling, the tools must be accessible by
both business and IT users. Based on the tests, it is concluded that the tools do not fully
meet this requirement. In the tested toolset, the following shortcomings were recognized:

− No alternative views for the model: there are no mechanisms for applying
different modeling restrictions on different levels (e.g., business-oriented vs.
technical level) and moving between these levels in a systematic way. For
example the business users might not be interested the detailed Web Service
information of the activities. On the other hand, for them it would be beneficial to
clearly indicate the responsible business partner for each activity.

52

− No feasible support for model interchange: the tools do not support languages
which could be used to export the diagrams with necessary execution details so
that they could be used in different tools. One reason for this is that the standards
for model interchange are currently at an immature stage. Possible languages for
this purpose include XPDL 2.0 or BPDM, but they were not studied here due to
the lack of adequate tool support.

− Limited support for checking the correctness of the model: the tools check that the
BPMN model is valid in the sense that a BPEL file can be generated, but there is
no way to automatically ensure that the process terminates correctly, meaning that
the process is free of deadlocks and livelocks, for example. With complex real life
business processes, ensuring the correctness of the model is a very difficult task,
even for a process modeling expert. Therefore, tool support for this kind of
analysis would be very important.

− Limited collaboration functionality: besides the change tracking of eClarus, no
support for distributed collaboration is provided. Due to the nature of the domain,
these kinds of features would be beneficial. Additionally, no support for modeling
collaborative processes with business partners is provided. For instance, there are
no mechanisms for sharing business models so that only limited visibility on
details is granted. The technologies do not provide enough support for this,
though, and therefore no tools with such functionality were found in the
preliminary study on available products.

− Different modeling approaches in different tools that use the same notation:
BPMN specifies the elements and the behavior they indicate but not how these
elements should be used to model the process execution. The appearance of equal
diagrams is substantially different.

− Limited feasibility of the round-trip engineering feature: the other tool introduces
round-trip engineering but it can be said that the independent import and export
features are not adequate for keeping the model and the executable process consistent
in iterative development. This is because importing can introduce unnecessary
changes to the model. The appropriate mechanism would be to merge the changes
in the BPEL file into the model, not to rely on imported BPEL code alone.

− Limited support for managing existing service assets: WSDL and XML Schema
files can be imported and used in the model but there are no mechanisms for
finding appropriate assets. A versatile service repository must not necessarily be a
part of a BPMN modeler or even a BPMS. It should still be pointed out that in
order to really leverage from business process models, everybody who takes part
in to the modeling should have at least a preparatory view on what existing
services and data structures will be used. This means that at least the existing
assets should reside on a repository accessible by all contributors. The proper use
of metadata would also be advisable.

53

− Limited support for diagram restructuring to enable execution: besides the limited
internal restructuring provided by eClarus, the transformations often fail if the
diagram cannot be directly mapped to BPEL. A limited amount of information is
provided on the reason of the failure and no suggestions for overcoming the
problem are given.

Based on the above, it can be said that reviewed tools and technologies have not yet
fully matured. They are not yet completely able to fulfill the promises made by tool
vendors or standardization organizations in the industry. This finding cannot be fully
generalized due to the limited scope of the tool study, but because many shortcomings
were based on the weaknesses in standards (such as gaps in expressive power and
ambiguities in specifications, the research was not tool-specific. Technologies and tools
develop rapidly, however: for example, during this study, new versions of the tools have
been released and the standardization process of WS-BPEL has been completed. Given
the current state of the tools, the executable business process models will for the most
part be developed by IT specialists. However, the modeling tools enable business and IT
people to collaborate on the same models which are based on the same notation. This
prevents the realized processes from drifting too far from the business requirements they
are meant to fulfill. Additionally, the productivity of the IT organization will rise,
because the developers are not required to manually write the executable code on a
detailed level.

Due to the close relationship between business processes and Service-Oriented
Architecture, process modeling is an important step in the adoption of SOA in an
enterprise. The objective of the modeling should be to design processes that could be
eventually executed in the service-oriented environment. This means that appropriate
technologies and tools should be used as much as possible, even if automatic code
generation would not at first be the main objective of the modeling. As the adoption of
SOA in the enterprise proceeds, the models can be gradually elaborated to enable
execution.

Adopting a Business Process Management approach in an enterprise is not a task that
could be carried out at once, even if a solid base for SOA already existed. Gradual
adoption would be advised. For example, one could start by introducing the tools and
technologies to the IT organization. This could be done with the freely available tools. If
the enterprise has already developed a substantial amount of BPEL processes, testing a
round-tripping tool would be advisable to evaluate how well the existing processes
could be integrated with the modeling environment. Because the tools have not yet fully
matured, this kind of preliminary evaluation is advisable before substantial investments
are made. The next stage would be to determine how to organize the business process
modeling in the enterprise and assign roles to different people involved. At this stage,

54

also the business people should be introduced with the used modeling tools. The
required knowledge depends on how the roles are assigned, but it could be said that also
the business users should be familiar with at least the basics of the modeling language.

7.3 Guidelines for tool selection

Because this report only covered two tools supporting BPMN and BPEL, we do not
provide you with recommendations about which tool to purchase. Based on the reported
test cases, one should have a better view on what to expect from the available tools
today. One reason for not covering a wide range of products in our tests was that
organizations have very different needs considering these kinds of products. Business
process modeling and execution will not take place in isolation: automated business
processes will be to a large extent based on existing IT assets. The modeling and
execution tools also need to interoperate with systems that are already in use in the
enterprise. This does not necessarily mean that the tool selection would be based on
standards evaluations such as the ones discussed in this report. Using a proprietary
solution might be a natural choice, especially if the company has considerable
experience on certain vendor�s products.

When a company has reached the state of selecting individual (possibly proprietary)
products, it is beneficial to study the product evaluations conducted by the Workflow
Patterns Initiative � they can be freely accessed on the website7. The evaluations
provide an extensive amount of information about the patterns that the products�
execution environments support. Due to the academic nature of the initiative, the
evaluations are considered extremely reliable.

If open standards are used, one may refer to the standards� evaluations. In this case, it is
necessary to take both the modeling and the execution standard into account and focus
on the differences on their pattern support. An example of this kind of analysis can be
found on Section 3 of this report. However, due to the differences in the model
transformation methods and algorithms in different products and possible errors in the
implementations of, e.g., BPMN specification, pattern-based standard�s evaluation does
not guarantee that any tool supporting certain modeling and execution standards would
have the expressive power indicated by the standards� workflow pattern support. Tool-
specific shortcomings may exist, but workflow patterns provide a valuable framework
for identifying them, nevertheless.

7 http://www.workflowpatterns.com/.

55

The most important product aspects are highly context-specific and discussing all of
them would have been out of the scope of this research. However, based on our
experiences, a set of guidelines for selecting modeling and execution tools can be
presented. Using these, the most appropriate tool can be selected based on product
documentation or evaluation versions of the tools. People from different positions in the
enterprise should be involved in selecting the products, because business process
management will have long-term effects on many levels of the organization. One option
is to organize a steering committee to supervise the investments in BPM tools. In the
tool selection, the following questions should be taken into account:

− The role of business process modeling in the organization: in this report, we have
focused on business process modeling which aims at generating executable code
from the models. However, in many cases business process diagrams act more as
a tool for communication than the basis for execution. The advent of SOA and
related technologies does not make this approach less relevant. Modeling
languages such as BPMN are significant also in this context. If they are used
instead of proprietary notations, the meaning of the modeling elements is more
accurately specified. If one decides to define executable models in the future, the
work does not need to be started from scratch. However, the role of the models
should be taken into account in the tool selection. If a modeling notation is used
also for less formal purposes, one should prefer tools that do not take the
restrictions of the execution environment into account in the modeling phase. For
example, Intalio BPMS would not be very suitable for such purposes.

− Business process modeling tools already in use in the organization: if processes
are already being modeled in the organization using well-established tools or
technologies, it is not obvious that one should move to using BPMN, for instance.
However, if the current tools do not fully meet the modeling needs of the
organization and, e.g., adopting BPMN is considered, different approaches for
carrying out this shift can be taken:

o Examine the future directions of the currently used tools: it seems that many
important modeling tool vendors will begin to support BPMN in the
upcoming versions of their tools. For example, QPR8 has announced that the
upcoming version of their BPM software will include support for BPMN and
BPEL (QPR Software 2007).

o Use new modeling language concurrently with the old one: many tools which
previously have only used proprietary notations are now also provided with at
least limited support or extensions for BPMN. These include at least IDS-
Scheer Aris and Microsoft Visio. Although these cannot necessarily be

8 http://www.qpr.com/.

56

considered as full-blown BPMN tools, they provide a good opportunity to
experiment with the new modeling language and to determine how it would
position in the process modeling traditions of the organization.

o Abandon the old tools and technologies: if the existing process models are
not directly connected to the execution environment, it may not be necessary
to support the modeling tools they were created with. They can be recreated
with the new language if necessary. The downside of this approach is that
people have to be trained to use the new modeling language.

− Business process execution tools already in use in the organization: for example
BPEL engines may have already been adopted in the enterprise. These are
complex environments and replacing the old engine or using several engines
concurrently is not necessarily advisable. In these cases, one probably should not
invest in a BPMS. Additionally, one should make sure that the code generated by
the modeling tool is compatible with the used execution engine. The processes
must be considered more important than the tools. If the execution engine does
not execute the standard processes created elsewhere as intended, it is definitely
advisable to replace the old execution engine with a product that implements the
standard more rigorously.

− Integration needs: business process execution engines rely heavily on, e.g.,
application servers and databases. Connectors to other enterprise systems, such as
SAP are also sometimes included in commercial BPM products (e.g., Intalio�s
commercial version). These kinds of systems are often already in use in the
organization. Hence, choosing an execution engine that is compatible with the
already adopted products is advisable.

− Willingness to invest in BPM technology: adopting SA-based BPM can be a
significant investment. For example, a license to eClarus Business Process
Modeler for SOA Architects costs $1340 per unit (eClarus Software 2006) and to
really benefit from the product, user training is also needed. It could be said that
heavy investments in BPM products should be aligned with the organization�s
overall IT strategy. This means that the tools are purchased to support the
organization�s process and service orientation efforts. For more light-weight
experimentations, freely available tools are recommended.

7.4 An outlook to the future

It does not seem likely that any modeling or execution language will make BPMN or
BPEL obsolete in the near future. BPMN and its most serious competitor, UML, are
now being driven by the same standardization organization which may indicate that a
more clear distinction between the languages will be made in the future, i.e., that BPMN

57

will be used in business process modeling and UML AD in software engineering
domain. In any case, it should be borne in mind that neither BPMN nor BPEL are actual
e-business standards that the business partners should necessarily agree on. When
choosing a standard, a company should take into account the language�s suitability for
the organization�s purposes. This means that it should be evaluated whether the
language is able to satisfyingly express the kind of processes that are developed in the
organization. This also means that the language has adequate tool support and penetration
so that full-scale adoption can be carried out. In most organizations, this makes
academic languages such as Yet Another Workflow Language (YAWL) unadoptable,
although they often have better expressive power than industry standard languages.

Although the languages are not likely to disappear, it is possible that the way they are
used will change in the future. According to the MDA camp (Kleppe et al. 2003), in the
future, the typical software development process will be largely tool-driven and most
people will work on models on different levels instead of writing code. There will be an
additional group of people, mostly working for the tool vendors, that defines the
transformations between platform independent models, platform specific models and
code. This is far from being realized, but it is quite obvious that the level of abstraction
will rise � this has been a trend in computer science for a long time.

Automatic transformations promise to bridge the gap between business and IT and
increase the productivity of the IT organization. The downside of this direction is the
increased power of tool vendors. Enterprises become more dependent on the languages
the vendors support and the transformations they implement. This means that if an
organization has adopted a certain modeling language, they cannot easily change their
execution language if the tool vendor does not provide transformations for this purpose
and vice versa. In this scenario, open standards have a pivotal role. Although
transformations can still be proprietary, open standards ensure that knowledge transfer
will occur in, e.g., standardization organizations and scientific communities. Open
source and freely available software will also have an important role, at least in the early
stages of this domain. For example, an enterprise could evaluate the feasibility of a
BPMS in general using Intalio. A commercial product could then be purchased later on
if this is necessary due to the integration needs of the enterprise. Also Eclipse BPMN
Modeler9, an open source BPMN tool, is under constant development and its status
should be monitored in the future. It was not included in this survey, because it
currently provides only BPMN modeling functionality without any support for
executable languages.

9 http://www.eclipse.org/stp/bpmn/.

58

With the increased automation of business processes and the rise of e-business, also the
business users need to be on some level familiar with the technologies that realize these
processes. Fortunately, the learning curve is made gentler by tools which raise the level
of abstraction above the technical details. It can be said that these tools will develop
rapidly in the near future and careful first steps in their adoption can be already taken
today. Companies which have already launched their SOA development can already
start experimenting with the tools. As the organization has familiarized itself with the
tools and technologies, they will bring a substantial amount of rigor in business process
modeling and make the development work more efficient. Other companies could start
by building a solid foundation to enable the execution of the processes. In a few years,
the tools and technologies are likely to develop so that the full potential of business
process modeling can be utilized.

59

8. Summary
Service-Oriented Architecture (SOA) has brought IT assets closer to the business
process they are meant to serve. Therefore, visual process modeling languages and
XML-based languages that control the process execution have recently become hot
topics in IT. To keep the process models and the executable processes aligned, it would
be ideal if executable code could be automatically generated from the models. We
examined current business process modeling and execution technologies and tools and
evaluated how well they fulfill this promise.

For business process modeling, two prominent language standards exist: Business
Process Modeling Notation (BPMN) and UML Activity Diagram (UML AD). We
considered BPMN the more promising one mainly due to its extensive tool support. For
business process execution, Business Process Execution Language (BPEL) is the only
relevant option. Essentially, BPEL is a high-level programming language with strictly
restricted structure which is very much different from business process diagrams. The
expressive power of BPEL is thus not as good as that of modeling languages. Because
of this, certain restrictions recur in the transformation methods presented in the
academia. We also found out that certain modeling constructs have ambiguous definitions
in the specifications, which can lead to tool-specific problems in transformations.

In our research, we tested the currently available tools to evaluate their feasibility. We
found out that the basic BPMN diagrams could be transformed automatically to BPEL,
but this required a substantial amount of technical knowledge. In some more complex
cases, the transformation did not succeed. Sometimes workarounds to these
shortcomings could be built, but this required in-depth knowledge of the execution
environment. In addition to transformation weaknesses, the tools also lacked adequate
support for the collaboration between IT and business users and process modeling
among business partners. The purpose of the tests was to provide guidelines for
selecting Business Process Management products and identified their typical limitations,
not to recommend specific products. Things that should be taken into account include
existing modeling and execution tools and technologies, integration needs and
willingness to invest in BPM.

Although the tools and technologies have not yet fully matured, we feel that companies
that are moving towards Service-Oriented Architecture and can begin to gradually adopt
them. It is likely that many of the current problems will be overcome in a few years.
Business and IT users will be able to systematically collaborate on the same models and
the developers do not have to constantly concern the details of the execution language.
This will bring business and IT closer together and increase the productivity of the IT
organization.

60

Acknowledgements

The authors would like to thank all members of the SOAMeS project groups at VTT
and University of Helsinki for providing comments on this report. Especially we would
like to thank Alexander Norta, whose insight on the topic was highly valued.

This research was funded by Tekes - Finnish Funding Agency for Technology and
Innovation, VTT and the following Finnish companies: Elisa Oyj, Kesko Oyj,
Metsäteho Oy and TietoEnator Processing & Network Oy.

61

References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D. & Thatte, S. 2003. Business Process Execution Language for Web
Services (BPEL4WS). IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

Dijkman, R.M., Dumas, M. & Ouyang, C. 2007. Formal Semantics and Automated
Analysis of BPMN Process Models. Queensland University of Technology.
http://eprints.qut.edu.au/archive/00007115/.

eClarus Software 2006, n.d.-last update. eClarus Business Process Modeler Order Form
[Homepage of eClarus Software], [Online]. Available:
http://www.eclarus.com/purchase.html [2007, 08/01].

Emig, C., Weisser, J. & Abeck, S. 2006. Development of SOA-Based Software Systems
� an Evolutionary Programming Approach. International Conference on Internet and
Web Applications and Services ICI. Vol. 6.

Gao, Y. 2006. BPMN-BPEL Transformation and Round Trip Engineering. eClarus
Software (online). http://www.eclarus.com/pdf/BPMN_BPEL_Mapping.pdf.

Hill, J. & Drakos, N. 2006. Intalio Boosts BPMS Usage With Open-Source-Like
License. Gatner Research. http://www.gartner.com/resources/145400/145460/intalio_
boosts_bpms_usage_wi_145460.pdf.

Kanniainen, J. & Haajanen, J. 2007. BPEL Engines. State-of-the-Art Survey for
SOAMeS-project. VTT Working Papers 69. VTT, Espoo. 30 p. ISBN 978-951-38-
6620-4. http://www.vtt.fi/inf/pdf/workingpapers/2007/W69.pdf.

Kavantzas, N., Olsson, G., Mischkinsky, J. & Chapman, M. 2004. Web Services
Choreography Description Language (WS-CDL) 1.0. The World Wide Web Consortium.
http://www.w3.org/TR/ws-cdl-10.

Kleppe, A.G., Bast, W. & Warmer, J.B. 2003. MDA Explained: The Model Driven
Architecture: Practice and Promise. 1st edn, Addison-Wesley Professional.

List, B. & Korherr, B. 2006. An evaluation of conceptual business process modelling
languages. Proceedings of the 2006 ACM symposium on Applied computing.
Pp. 1532�1539.

62

Melenovsky, M. & Sinur, J. 2006. Having a BPM Maturity Model is Important for
Long-Lasing BPM Success. Gartner, Business Integration Journal, Nov-Dec 2006.
http://www.bijonline.com/index.cfm?section=article&aid=797%20.

Mendling, J., Lassen, K. & Zdun, U. 2006. Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages. In: Multikonferenz
Wirtschaftsinformatik, eds. F. Lehner, H. Nösekabel & P. Kleinschmidt. GITO-Verlag,
Berlin. Pp. 297�312.

Mendling, J., Neumann, G. & Nuttgens, M. 2004. A Comparison of XML Interchange
Formats for Business Process Modelling. In: EMISA2004, Informationssysteme im E-
Business und E-Government, eds. F. Feltz, A. Oberweis & B. Otjacques. Vol. 56 of
Lecture Notes in Informatics (LNI). Lucembourg. Pp. 129�140.

Miguel, A. 2006. April 19th 2006�last update, WS-BPEL 2.0 Tutorial [Homepage of
The Eclipse Foundation], [Online]. Available:
http://www.eclipse.org/stp/b2j/docs/tutorials/wsbpel/wsbpel_tut.php [2007, 06/05].

OASIS 2007. Web Services Business Process Execution Language version 2.0. 11 April
2007, OASIS. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

Object Management Group 2006. Business Process Modeling Notation (BPMN) 1.0
Final adopted specification. February 6, 2006, Object Management Group.
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-
0%20Spec%2006-02-01.pdf.

Object Management Group 2005. UML Superstructure, version 2.0. Object
Management Group. http://www.omg.org/docs/formal/05-07-04.pdf.

OMG.org 2007. 04/19/2007�last update, Business Process Management (BPMN)
Information [Homepage of OMG.org], [Online]. Available: http://www.bpmn.org/
[2007, 05/31].

OMG.org 2004. 10/18/04�last update, Business Process Management Notation (BPMN)
Information � FAQ. [Homepage of OMG.org], [Online]. Available:
http://www.bpmn.org/Documents/FAQ.htm [2007, 05/31/07].

Ouyang, C., van der Aalst, W.M.P., Dumas, M. & ter Hofstede, A.H.M. 2006. From
Business Process Models to Process-oriented Software Systems: The BPMN to BPEL
Way, BPMCenter.org. http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-
06-27.pdf.

63

QPR Software 2007. Interim Report January 1 � March 31, 2007, QPR Software.
http://www.qpr.com/www%5CNews.nsf/0/79E33B5E7F3AA852C22572C8002B2BC2/
$file/25042007_E.txt.

Recker, J. & Mendling, J. 2006. On the Translation between BPMN and BPEL:
Conceptual Mismatch between Process Modeling Languages. In: CAiSE 2006
Workshop Proceedings � Eleventh International Workshop on Exploring Modeling
Methods in Systems Analysis and Design (EMMSAD 2006), eds. T. Latour & M. Petit.
Namur University Press, Luxemburg. P. 521.

Russell, N., ter Hofstede, A.H.M., Edmond, D. & van der Aalst, W.M.P. 2005.
Workflow data patterns. Proceedings of 24th Int. Conf. on Conceptual Modeling
(ER05). Pp. 353�368.

Smith, H. & Fingar, P. 2003. Workflow is just a Pi process. BPTrends.
http://www.bptrends.com/publicationfiles/01-04%20Workflow%20is%20just%20a%20
Pi%20Process%20Smith-Fingar.pdf.

van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N., Verbeek, H. &
Wohed, P. 2005. Life After BPEL. In: WS-FM 2005, eds. M. Bravetti, L. Kloul &
G. Zavattaro. Springer-Verlag, Berlin. Pp. 35�50.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. & Barros, A.P. 2003.
Workflow Patterns. Distributed and Parallel Databases, Vol. 14, No. 1, pp. 5�51.

White, S.A. 2004a. Introduction to BPMN. Object Management Group.
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf.

White, S.A. 2004b. Process Modeling Notations and Workflow Patterns. Object
Management Group.
http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf.

White, S. 2005. Using BPMN to Model a BPEL Process. BPTrends, Vol. 3, No. 3,
pp. 1�18.

White, S.A. 2006. BPMN Tutorial. Object Management Group.
http://www.bpmn.org/Documents/OMG%20BPMN%20Tutorial.pdf.

Workflow Patterns Initiative 2007. n.d.-last update, Workflow Patterns � Standard
Evaluations [Homepage of Workflow Patterns Initiative], [Online]. Available:
http://www.workflowpatterns.com/evaluations/standard/index.php [2007, 07/13].

A1

Appendix A: Language comparisons

Table A1. Classification of business process modeling languages.

Language Visual notation Specification Transformation
capability

UML 2.0 Activity Diagram (AD) yes open yes

Business Process Definition Metamodel (BPDM) no open yes

Business Process Modeling Notation (BPMN) yes open yes

Event Driven Process Chain (EPC) yes proprietary interchange
(academic)10

Integrated DEFinition Method 3 (IDEF3) yes open no

Petri Net yes open interchange
(academic)11

Role Activity Diagram (RAD) yes open no

Table A2. Visual business process modeling language comparison.

Language Organization Focus Portability Transformability Status Support

BPMN 1.0 OMG executable
business
processes

poor: XML
format not
specified

very good:
translations
covered to a
large extent in
research and
tools; problems
result from
executable
languages

stable;
version 1.0
mature,
version 2.0
coming

General:
very good

Transformation:
good

UML 2.0
Activity
Diagram

OMG software
modeling,
business
processes

mediocre
(XMI
format)

mediocre:
translations
covered partially
in research, not
much in tools

stable;
continuous
development

General:
very good

Transformation:
poor

10 List & Korherr (2006) categorize EPML as an academic proposal for an execution language for EPC,
but the referenced publication speaks of �interchange format�.
11 Similar to EPC, the interchange format being PNML.

A2

Table A3. Classification of business process model interchange languages.

Language Format Executable Background Status

Business Process Definition Metamodel (BPDM) XML indirectly industrial unfinished

Business Process Execution Language (BPEL) XML yes industrial stable

Business Process Modeling Language (BPML) XML yes industrial obsolete

Business Process Modeling Notation (BPMN) visual indirectly industrial stable

Business Process Specification Schema (BPSS) XML no industrial stable

Event-Driven Process Chain Markup Language
(EPML)

XML no academic stable

OWL-Services (OWL-S) XML no academic stable

The Petri Net Markup Language (PNML) XML indirectly academic stable

UML 2.0 AD visual indirectly industrial stable

Web Service Choreography Description Language
(WS-CDL)

XML no industrial stable

Web Service Choreography Interface (WSCI) XML no industrial obsolete

Web Service Choreography Language (WSCL) XML no industrial obsolete

Web Services Flow Language (WSFL) XML yes industrial superseded

XLANG XML yes industrial superseded

XML Process Definition Language (XPDL) XML no industrial stable

Table A4. Business process execution and interchange language comparison.

Lan-
guage

Organiz-
ation

Focus Portability Transformability Status Support/
position

BPEL
1.1/2.0

OASIS business
process
orchestration;
Web Services

good; some
problems
between
different
engines and
language
versions

good:
translations
covered to a
large extent in
research and
tools; problems
expressing
certain diagram
constructs

stable very good:
de-facto
standard in
business
process
execution

XPDL
2.0

WfMC business
process
interchange

very good very good stable but
fresh

poor; only a few
version 2.0
implementations
available

BPML BPMI.org
(in the
past)

business
process
execution

unknown unknown obsolete poor; in practice
replaced by
BPEL

BPDM OMG business
process
interchange

unknown;
objective:
very good

unknown unfinished no tool support;
future potential

Series title, number and
report code of publication

VTT Research Notes 2407
VTT-TIED-2407

Author(s)
Koskela, Mika & Haajanen, Jyrki

Title

Business Process Modeling and Execution
Tools and technologies report for SOAMeS project

Abstract
This report presents the results of a survey on business process modeling and execution
technologies. The first phase of the research consisted of a broad survey on the available
language options. For business process execution, Business Process Execution Language
(BPEL for short, officially WS-BPEL or BPEL4WS depending on the version) was
considered as the only relevant option. Other executable languages were either obsolete or
academic proposals not suitable for industry use. For business process modeling, Business
Process Modeling Notation (BPMN) and UML Activity Diagram (AD) were considered
suitable. Other available options did not provide enough support for transformations to
executable languages.

The expressive power of the languages was evaluated by comparing how well the languages
support different workflow patterns. It was found out that there is a significant gap between
the expressive power of modeling and execution languages, which means that all models
cannot be directly transformed to executable code. Between BPMN and UML AD, the
differences in pattern support were minimal. However, it was noted that the specifications
are partly ambiguous, which can lead to misinterpretations in the transformations.

The practical utility of the findings was demonstrated by testing two available tools that
supported BPMN and BPEL and that were considered prominent based on their documented
functionalities. The test results showed that the transformation functionalities were to a large
extent dependent on the expressive power of the languages. It was concluded that the
technologies have not yet fully matured, but first steps in their adoption can already be taken,
because by taking the known shortcomings of the technologies into account in the modeling,
automatic transformations from models to code, and even vice versa, can be realized.

ISBN
978-951-38-6958-8 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Tiedotteita – Research Notes
1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

6884

Date Language Pages
September 2007 English 63 p. + app. 2 p.

Name of project Commissioned by
Service Oriented Architecture in Multichannel
e-Services (SOAMeS)

Tekes - Finnish Funding Agency for Technology
and Innovation, VTT, Elisa Oyj, Kesko Oyj,
Metsäteho Oy, TietoEnator Processing &
Network Oy

Keywords Publisher
business process modeling, business process execution,
business process management, service-oriented
architecture

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

V
TT R

ESEA
R

C
H

 N
O

TES 2407 B
usiness Process M

odeling and Execution. Tools and technologies report for SO
A

M
eS project
ESPOO 2007 VTT RESEARCH NOTES 2407

VTT Tiedotteita – Research Notes

2385 Löfman, Jari, Keto, Vesa & Mészáros, Ferenc. FEFTRATM. Verification. 2007. 103 p. +
app. 4 p.

2386 Loikkanen, Torsti, Hyytinen, Kirsi & Koivusalo, Salla. Yhteiskuntavastuu ja kilpailu-
kyky suomalaisyrityksissä. Nykytila ja kehitysnäkymät. 2007. 118 s.

2387 Henttonen, Katja. Stylebase for Eclipse. An open source tool to support the
modeling of quality-driven software architecture. 2007. 61 p. + app. 15 p.

2388 Lanne, Marinka & Kupi, Eija. Miten hahmottaa security-alaa? Teoreettinen malli
Suomen security-liiketoiminta-alueista. 2007. 52 s. + liitt. 1 s.

2389 Leikas, Jaana & Lehtonen, Lauri. Ikääntyvien idealiike. Käyttäjälähtöisellä
innovoinnilla elämänmakuisia mobiilipalveluja. 2007. 34 s.

2390 Tuominen, Anu, Ahlqvist, Toni, Rämä, Pirkko, Rosenberg, Marja & Räsänen, Jukka.
Liikennejärjestelmän teknologiapalvelujen vaikutusarvioinnit tulevaisuudessa.
2007. 64 s. + liitt. 5 s.

2391 Mikkola, Markku & Pirttimäki, Antti. Tuotekehitys Kiinassa. Uhka, mahdollisuus
vai yhdentekevää? 2007. 31 s.

2392 Kettunen, Jari, Rakshit, Krishanu & Uoti, Mikko. Electronic India. Market trends
and industry practices in IT services, telecoms and online media. 2007. 98 p. +
app. 2 p.

2394 Herrala, Maila. The value of transport information. 2007. 87 p. + app. 5 p.

2395 Aarnisalo, Kaarina, Heiskanen, Seppo, Jaakkola, Kaarle, Landor, Eva & Raaska,
Laura. Traceability of foods and foodborne hazards. 2007. 46 p. + app. 2 p.

2396 Nylund, Nils-Olof, Erkkilä, Kimmo, Clark, Nigel & Rideout, Greg. Evaluation of
duty cycles for heavy-duty urban vehicles. Final report of IEA AMF Annex XXIX.
2007. 81 p. + app. 10 p.

2397 Helynen, Satu, Flyktman, Martti, Asikainen, Antti & Laitila, Juha. Metsätalouteen ja
metsäteollisuuteen perustuvan energialiiketoiminnan mahdollisuudet. 2007. 66 s.

2398 Jansson, Kim, Mikkola, Markku & Ryynänen, Tapani. Verkostoyhteistyöllä
Kiinaan? SeaChi-projektin loppuraportti. 2007. 46 s. + liitt. 6 s.

2399 Hänninen Hannu, Brederholm, Anssi, Saukkonen, Tapio, Gripenberg, Hans,
Toivonen, Aki, Ehrnstén, Ulla & Aaltonen, Pertti. Hot cracking and environment-
assisted cracking susceptibility of dissimilar metal welds. 2007. 182 p.

2400 Ailisto, Heikki, Matinmikko, Tapio, Häikiö, Juha, Ylisaukko-oja, Arto, Strömmer,
Esko, Hillukkala, Mika, Wallin, Arto, Siira, Erkki, Pöyry, Aki, Törmänen, Vili,
Huomo, Tua, Tuikka, Tuomo, Leskinen, Sonja & Salonen, Jarno. Physical browsing
with NFC technology. 2007. 70 p.

2401 Häkkinen, Tarja, Vares, Sirje, Huovila, Pekka, Vesikari, Erkki, Porkka, Janne,
Nilsson, Lars-Olof, Togerö, Åse, Jonsson, Carl, Suber, Katarina, Andersson, Ronny,
Larsson, Robert & Nuorkivi, Isto. ICT for whole life optimisation of residential
buildings. 2007. 207 p.

2403 Toivonen, Santtu. Web on the Move. Landscapes of Mobile Social Media. 2007.
56 p. + app. 3 p.

2404 Vares, Sirje & Lehtinen, Jarkko. Lasipakkausten keräysjärjestelmän tehostaminen ja
lasin hyötykäytön ympäristövaikutukset. 2007. 122 s.

2407 Koskela, Mika & Haajanen, Jyrki. Business Process Modeling and Execution. Tools
and technologies report for SOAMeS project. 2007. 63 p. + app. 2 p.

Mika Koskela & Jyrki Haajanen

Business Process Modeling and
Execution

Tools and technologies report
for SOAMeS project

ISBN 978-951-38-6958-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0865 (URL: http://www.vtt.fi/publications/index.jsp)

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Background
	1.2 Motivation and objectives

	2. Business process modeling and execution
	2.1 Modeling languages
	2.1.1 Available options
	2.1.2 Business Process Modeling Notation (BPMN)
	2.1.2.1 BPMN basics
	2.1.2.2 Semantics of the elements

	2.2 Execution languages
	2.2.1 Available options
	2.2.2 Business Process Execution Language (BPEL)
	2.2.2.1 Principles of BPEL
	2.2.2.2 Basic BPEL elements
	2.2.2.3 Abstract BPEL
	2.2.2.4 BPEL extensions
	2.2.2.5 Conclusion on BPEL

	3. Workflow patterns and business
process languages
	3.1 Control flow patterns
	3.2 Data patterns

	4. Existing research on BPMN-BPEL
transformations
	4.1 Links and event handlers
	4.2 Links and diagram restructuring

	5. Tool-based experiments on transformations
	5.1 Principles for tool selection
	5.2 Selected tools
	5.2.1 Intalio BPMS Community Edition
	5.2.2 eClarus Business Process Modeler for SOA Architects
	5.2.3 Progress of the testing
	5.2.4 Test case descriptions

	6. Test case results
	6.1 Transformations
	6.2 Code quality

	7. Conclusions
	7.1 Business process modeling and execution languages
	7.2 BPMN and BPEL tools Ł provided value and limitations
	7.3 Guidelines for tool selection
	7.4 An outlook to the future

	8. Summary
	Acknowledgements
	References
	Appendix A: Language comparisons

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

