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Abstract 
This study focuses on the analysis of server log data and the detection and potential 
prediction of anomalies related to the monitored servers. The issue is relevant in many 
mission-critical systems consisting of multiple servers. There it is favourable to be able 
detect and even foresee problems to be able to react promptly and apply required 
corrections to the system. 

In this study, we have done off-line analyses based on pre-recorded data. In reality, if 
the objective is to come up with solutions for detecting anomalies in real-time, 
additional requirements and constraints would be imposed on the algorithms to be used. 
For example, in on-line situation, higher requirements on the performance of the 
algorithm and on the amount of historical data available for the algorithm would exist. 
However, we do not address those issues in this preliminary study. 

In addition to the analysis of real data, we have interviewed experts that are working 
on the server-related issues on a daily basis. Based on those discussions, we have tried 
to formulate practical cases, for which some algorithms and tools could provide 
practical utility. 
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1. Introduction 

This study focuses on the analysis of server log data and the detection and potential 
prediction of anomalies related to the monitored servers. The issue is relevant in many 
mission-critical systems consisting of multiple servers. There it is favourable to be able 
detect and even foresee problems to be able to react promptly and apply required 
corrections to the system. 

We have had at our disposal log data recorded from real operating servers. The data 
contains various attributes related to the utilization of CPU cores, memory, disks and 
filesystem as well as processes. Concrete examples of the attributes analysed include 
CPU utilization, amount of free memory and number of processes. 

The attributes or indicator values are stored with certain time intervals, e.g., 1 minute 
intervals. This might limit in some cases the ability to detect rapid phenomena or 
anomalies, since they might get hidden due to the averaging of the indicator values over 
the time interval.  

The anomalies occurring in the system could be due to several different reasons 
including: 

• software failures (programming bugs) 

• hardware  (e.g., some piece of hardware simply breaks down) 

• offered load (an exceptionally high load is offered to the system) 

• human errors (e.g., configuration errors). 

Some indicator values can measure directly a property that we are interested in. For 
example, disks have certain capacity and the measurement of the amount of free space 
on the disk gives directly information about whether disk capacity should be added (or 
some files removed) in order to prevent system faults. In other cases, it might be that we 
may not be able to measure directly the phenomenon of interest or it would be difficult 
to measure or to know if a measurement has the correct value (e.g. configuration 
settings) and we are attempting to detect anomalies indirectly. 
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In this study, we have done off-line analyses based on pre-recorded data. In reality, if 
the objective is to come up with solutions for detecting anomalies in real-time, 
additional requirements and constraints would be imposed on the algorithms to be used. 
For example, in on-line situation, higher requirements on the performance of the 
algorithm and on the amount of historical data available for the algorithm would exist. 
However, we do not address those issues in this preliminary study. 

In addition to the analysis of real data, we have interviewed experts that are working 
on the server-related issues on a daily basis. Based on those discussions, we have tried 
to formulate practical cases, for which some algorithms and tools could provide 
practical utility. 

We focus specifically on server log data. However, closely related application 
domains include e.g. telecom monitoring (various types of networks, interfaces and 
network elements) and computer security (intrusion detection and prevention systems). 
Observations, methods and conclusions made in this preliminary study for the server log 
data could be applicable for some problems in those domains as well. 
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2. Background and state-of-the-art  

In this chapter we explore some of the approaches reported so far on server log data 
monitoring and analysis. Rather than being comprehensive we try to provide a snapshot 
of methodology used with different types of servers and server data analysis. In the first 
subsection we concentrate on research topics in server monitoring, diagnostics and 
anomaly detection. In the second subsection we review existing open source and 
commercial software tools for monitoring servers and detecting anomalies in their 
behavior.  

2.1 Methodologies used in published studies 

In [2] a very simple use of linear regression analysis was found sufficient for forecasting 
database disk space requirements. Regression in [2] just means that there were some 
short term random variations observed in disk space usage but in the longer perspective 
the observed growth in the disk space demand was rather linear-looking and, hence, 
easily predictable.  

In [3] the authors emphasize the need to combine monitoring of the service level with 
the normal monitoring of the resource usage or the resource utilization. They motivate 
and develop a new method to set bivariate threshold for a bivariate time series. Their 
method seeks the best thresholds that bifurcate two time series such that the mutual 
information between them is maximal. 

Knobbe et al. [4] experimented with applying data mining techniques to a data 
collected by network monitoring agents. One of their experiments concerned real-world 
data of a spare part tracking and tracing application for aircraft. The task was to 
understand the causes that affect the behavior of performance metrics. Monitoring 
agents collected values on 250 parameters at regular intervals. Collected parameters 
were, for instance, CPU load, free memory, database reads, and nfs activity. The 
agents performed a read every 15 minutes during 2 months, resulting in a table of 3500 
time slices of 250 parameters resulting in a data matrix with 875 000 entries. The 
techniques used were decision tree algorithm, top n algorithm, rule induction algorithm, 
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and inductive logic programming. Authors were able to pinpoint several unexpected and 
real problems such as performance bottlenecks with all the chosen approaches. 

The paper [5] proposes dynamic syslog mining in order to detect failure symptoms 
and to discover sequential alarm patterns (root causes) among computer devices. Their 
key ideas of dynamic syslog mining are 1) to represent syslog behavior using a mixture 
of Hidden Markov Models, 2) to adaptively learn the model using an on-line 
discounting learning algorithm in combination with dynamic selection of the optimal 
number of mixture components, and 3) to give anomaly scores using universal test 
statistics with a dynamically optimized threshold. The definition of anomaly scores in 
[5] is interesting. It is actually known as universal test statistic and developed already by 
Ziv in [1]. This scoring is the combination of Shannon information and event compression 
efficiency. In this scoring, if the Shannon informations of two events are equal, then the 
event with smaller compression rate (higher regularity) would result in a larger anomaly 
score. 

In [6] a distributed information management system called Astrolabe is introduced. 
Astrolabe collects large-scale system state; permitting rapid updates and providing on-
the-fly attribute aggregation. This latter capability permits an application to locate a 
resource, and also offers a scalable way to track system state as it evolves over time. 
The combination of features makes it possible to solve a wide variety of management 
and self-configuration problems. The paper [6] describes the design of the system with a 
focus upon its scalability. After describing the Astrolabe service, [6] present examples 
of the use of Astrolabe for locating resources, publish-subscribe, and distributed 
synchronization in large systems. Astrolabe is implemented using a peer-to-peer 
protocol, and uses a restricted form of mobile code based on the SQL query language 
for aggregation. This protocol gives rise to a novel consistency model. Astrolabe 
addresses several security considerations using a built-in PKI. The scalability of the 
system is evaluated using both simulation and experiments; these suggest that Astrolabe 
could scale to thousands of nodes, with information propagation delays in the tens of 
seconds. 
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2.1.1 Conclusions 

Reference Connection(s) to  
the present study Problem(s) Methodology 

[2] Database disk space 
requirements Forecasting Linear regression 

[3] 
Server system 
monitoring and 
reporting 

Threshold setting for 
bivariate time series Mutual information 

[4] Data collected by 
monitoring agents Performance bottlenecks Decision trees 

[5] Analysis of server or 
system log data 

Failure symptom detection, 
alarm pattern discovery 

Hidden Markov Models, 
Learning, anomaly scores 

[6] Server system 
monitoring 

Scalability,  
self-configuration Peer-to-peer 

 

2.2 Existing software 

The following texts are taken from the brochures of these products. The idea is just to 
give a reader a glance of what softwares exist. From the commercial products it is 
usually not easy to obtain further information.  

2.2.1 Nagios (http://www.nagios.org/) 

Nagios® is an open source system and network monitoring application. It watches the 
hosts and services that have been specified to it and alerts on problems and when the 
problems have been resolved. Nagios can monitor network services (SMTP, POP3, 
HTTP, NNTP, PING, etc.), and host resources (processor load, disk usage, etc.). It 
supports monitoring of Windows, Linux/Unix, routers, switches, firewalls, printers, 
services, and applications. Its plugin design allows users to develop their own service 
checks. Nagios supports defining network host hierarchy using "parent" hosts, allowing 
detection of and distinction between hosts that are down and those that are unreachable. 
Users can define event handlers to be run during service or host events for proactive 
problem resolution. There is an optional web interface for viewing current network 
status, notification and problem history, log file, etc. Nagios can automatically restart 
failed applications, services and hosts with event handlers. Nagios scales to monitor 
over 100,000 nodes and has failover protection capabilities.  

http://www.nagios.org/
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2.2.2 GroundWork Monitor (http://www.groundworkopensource.com/) 

GroundWork Monitor is an open source IT monitoring solution. It supports many 
methods of collecting monitoring data – agentless, agent, snmp traps, system/event logs, 
and active/passive checks. Its monitoring profiles encapsulate monitoring best practices 
for different types of devices and applications. GroundWork has auto-discovery and 
configuration functionality that utilizes the monitoring profiles to enable rapid set-up 
and configuration. The reporting capabilities include service level reports, availability, 
performance, and log analysis. Included reports can also be extended or custom reports 
created. Role-based and custom dashboard creation is supported. GroundWork can be 
linked to external systems, such as trouble-ticketing and enterprise run-books, allowing 
immediate action to be taken in response to events. GoundWork’s alerts and notifications 
have escalation rules, de-duplication, and dependency mappings, warning of breached 
thresholds and pinpointing of trouble spots. The alerts are automatically preprocessed to 
reduce false positives. 

GroundWork discovers network topology and configurations for network devices and 
servers. It notifies when a new network device is discovered or an existing device fails 
to be discovered when expected. GroundWork polls device interface ports on the 
network for network activity, and graphs network traffic using either included or custom 
templates. It notifies if network traffic thresholds are violated, and provides network 
protocol traffic usage tracking and analysis. It identifies the OS and identity of nodes 
and users, collects Netflow/sFlow data from routers or switches, displays utilization and 
status of network, and provides drill-down to local traffic details for individual network 
segments. 

http://www.groundworkopensource.com/
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Figure 1. Snapshot from the GroundWork Monitors user interface. Source http://www.ground 
workopensource.com/images/products/screenshots/dashboard1.jpg. 

2.2.3 BMC Performance Manager  

BMC Performance Manager consists of the BMC Infrastructure Management, BMC 
Application Management, and BMC Database Management product families. These 
solutions work together to provide automated problem resolution and performance 
optimization. Hardware, operating system, middleware, application, and database 
management solutions monitor performance, resource utilization, response time, and 
key operating conditions. BMC Performance Manager supports virtualization 
technologies with capabilities to monitor and visualize the relationships between the 
physical server environment and the virtual machine instances from an availability and 
performance and capacity perspective. It has extensible recovery routines that can take 
automatic actions to avoid problems or restore service. Alarm notification policies 
enable priority escalation, group and rotation associations, and holiday and vacation 
scheduling. A common presentation interface enables viewing the status and business 
impact of both IT components and business services. Extensible platform with Software 
Development Kits (SDKs) enable users to develop custom collectors or monitoring 
solutions based on their infrastructure and application requirements. BMC claims that 
the provided detailed views of end-user transactions allow for proactively identifying, 
prioritizing, and correcting performance problems even before they impair availability. 

http://www.ground
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Figure 2. Snapshot from the BMC Performance Manager user interface. Source BMC Performance 
Management Datasheet. 

2.2.4 HP GlancePlus 

HP GlancePlus provides system performance monitoring and diagnostic capabilities. It 
enables examining system activities, identifying and resolving performance bottlenecks, 
and tuning the system for more efficient operation. HP Performance Agent software 
collects and maintains history data of the system’s performance and sends alarms of 
performance problems. It allows the user to pinpoint trends in system activities, balance 
workloads and plan for future system growth. HP GlancePlus Pak combines the real-
time diagnostic and monitoring capabilities of HP GlancePlus with the historical data 
collection and analysis of HP Performance Agent software. The system uses rules-based 
diagnostics. The system performance rules can be tailored to identify problems and 
bottlenecks. Alarms can be based on any combination of performance metrics, and 
commands or scripts can be executed for automated actions. GlancePlus displays real-
time system performance and alarms, summaries of real-time overview data, and 
diagnostic details at system-level, application-level and process-level. 
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Figure 3. Snapshot from the HP Glance Plus user interface. Source HP GlancePlus software 
Datasheet. 

2.2.5 Netuitive Service Analyzer 

Netuitive Service Analyzer is an adaptive performance management tool that provides 
automated real-time analysis. Netuitive Service Analyzer self-learns its operating 
environment and correlates performance dependencies between system elements. It 
identifies the relationships between components in business services across both 
physical and virtual domains, silos and platforms. The system does not use manual 
rules, scripts or dependency mapping. It uses statistical analysis techniques to identify 
multiple, simultaneous anomalies and forecast conditions. Adaptive Behavior Profiles™ 
define every component’s range of normal behavior by time of day, day of week, or 
season of the year. These profiles are used in creating alarms. 
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Figure 4. Netuitive Service Analyzer architecture scheme. Source Netuitive Service Analyzer 
Brochure. 

2.2.6 OpenService InfoCenter (NerveCenter) 

OpenService offers integrated security information management and network fault 
correlation applications that link events from multiple sources to find the threat signal 
using real-time root cause analysis. Their system consists of three modules of 
OpenService InfoCenter™: LogCenter™, ThreatCenter™, and NerveCenter™ that are 
unified with a common collection engine and user interface. LogCenter stores log and 
event data from all its inputs for long-term reporting. ThreatCenter sifts incoming data 
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looking for matches to its pre-defined risk models, identifying system-wide security 
issues that might not reach the threshold of any single network or security device. 
NerveCenter supplies a framework that enables customizing its functionality to match the 
way the services are configured. ThreatCenter is based on out-of-the-box finite state 
algorithms. NerveCenter has some out-of-the-box correlation capabilities that operate 
without customer input regarding services and their component elements, but achieving 
true service awareness requires that NerveCenter be informed about which elements 
support each service. NerveCenter looks at all network layers, correlating problems with 
a model that maps services to service elements. OpenService claims that any network, 
application, or service issue that can be signaled or periodically tested, can be 
incorporated into NerveCenter for intelligent correlation. 

 

Figure 5. OpenService InfoCenter architecture scheme. Source NerveCenter Service Management 
Concepts greenpaper. 

2.2.7 Conclusions 

Based on the brochure texts above it is not possible to rank these software tools. Nagios 
and GroundWork Monitor are open source, others are commercial products. User 
interfaces and monitoring architectures may look different but they probably contain 
roughly the same functionalities. It is clear that the amount of data that these tools can 
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produce easily grows rapidly. Hence, it is important to fine tune any such software in 
order to not to produce huge amounts of useless data. The software developers cannot 
do such a fine tuning beforehand, on the contrary, software developers attempt to make 
everything possible. It is the task of the end user to decide what information is really 
needed. 
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3. Observations from data – explorative approach  

In this section we report some observations, with plots illustrating the phenomena, made 
during the data exploration. The analyzed data has the following characteristics: 

• The data is from several servers. Some of the servers are application servers 
and the others are database servers. 

• Data is available from 3 non-consecutive months (small changes in the 
system have been made between the months and thus the results from 
different months are not directly comparable). 

• Time-series data contains originally almost 1000 attributes. However, only a 
subset of attributes was chosen for the analysis. 

• The data is stored in constant time intervals, usually 1 minute, but even, e.g., 
5 minute intervals. 

• The data we used is not labelled, i.e., we did not have at our disposal ground 
truth, data that would tell us which instances of data contain troublesome data. 

• The variables used in the analysis included, e.g., indicators referring to 
number of process, CPU load level, amount of memory and swap space, and 
percentages of CPU time spent on user processes and system processes. 

3.1 Differences in indicator types 

There are clear differences in the measured indicators from several points of view. For 
example, some indicators behave nicely and, as one might intuitively expect them to 
behave, such as number of processes in Figure 6a. On the other hand, other indicators 
are not so stable, but exhibit rather irregular behaviour such as Figure 6b. Furthermore, 
some can have most of the time a constant value and only occasionally some other high 
value such as Figure 6c. A relevant question related to this is how much information is 
contained in a spike of the irregular indicator, or is the spike just noise emanating from 
various non-severe reasons? 
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a) Number of processes. 

 

b) CPU utilization (between 0% and 100%). 

 

c) Number of pages swapped.  

Figure 6. Differences in indicator types. 
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Another difference in the indicator types is the range of values. For those indicators that 
measure something in percentages from a maximum, it is clear that the value will stay 
(unless there is some measurement or calculation error) between 0 and 100. Also, for 
indicators such as amount of free memory the value range is easy to state (between 0 
and the amount of installed memory available for use). However, for other indicators 
such as the number of processes the range of values is not so straightforward to state: 
we have observed that the number of processes varies periodically around 400 but in the 
measurement data it has sometimes gone up to about 1000 without any indication of a 
problem. 

One more aspect is the ability of an indicator to represent a harmful situation. As 
stated before, the number of processes has been observed to go upto 1000 in our data – 
and that has not actually been a harmful situation. However, if the number of processes 
goes down close to 0, there is for sure something wrong. Thus, changes in the indicator 
values in one direction might not be something to get worried about, whereas changes in 
the other direction might clearly indicate a problem. The high number of processes as 
such does not imply lack of resources in the same way as a high level of memory 
consumption. Note also that the measurement agent itself is a process in the same server 
system. This affects to such indicators as the number of processes or CPU load and 
utilization. In some cases it is not possible to observe a value 0 in the data. However, it 
is possible that the system has crashed and restarted between two consecutive polling 
instants, especially if the period between has been 5 minutes.  

3.2 Correlations between indicators 

Several cases have been observed in the data in which there is clear correlation between 
values of two indicators. An example is shown in Figure 7a visualizing the CPU 
utilization (which measures how heavily the CPU is involved in processing currently) 
and CPU load (which measures the number of processes in the kernel run queue). These 
are clearly related (for understandable reasons): the higher the current CPU utilization 
is, the more processes end up in the kernel queue. However, the number of processes in 
the kernel queue depends also on other factors, e.g., how many processes were started 
(offered load).  

Another kind of correlation can be seen in Figure 7b, where the same indicator (idle 
time percentage) is shown for two processor cores. The plot shows that, on the average, 
when one core is idle, the other is as well – and the same applies when one core is 
heavily loaded. This is due to the load balancing mechanisms, which are built in the 
operating system itself. However, from the point of view of anomaly detection, removal 
of redundant (correlated) indicators could be an issue. Also, the detection of anomalies 
in the load balancing mechanism itself might sometimes be a useful use case.  
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a) Correlation between CPU utilization percentage and number of  
processes in kernel run queue. 

 

b) Correlation between percentages of time core A and B are idle. 

Figure 7. Correlations in the data. 

3.3 Seasonality 

There are some natural periodicities that the indicators can be expected to exhibit in 
server environment. For example, the hour of the day and the day of the week should 
influence the indicator values and cause seasonality. Indeed, this can be clearly seen in 
Figure 8, where the number of processes is shown for weekdays (Figure 8a and Figure 
8c) and week-ends (Figure 8b and Figure 8d) separately. The area of variation for the 
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indicator values is heavily dependent on the hour of the day. The anomalies present in 
the plots can be divided into two groups: ones that could have been detected with 
constant thresholds (indicated with 1 in Figure 8) and the others, indicated by 2 in 
Figure 8, that could not have been detected with constant thresholds. The latter would 
have benefitted from time-dependent thresholds. However, some indicators do not have 
similar seasonal behaviour such as the ones shown in Figure 8e–h. 
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Figure 8. Seasonality in indicators. 

3.4 Anomaly or a consequence of one? 

Anomaly detection in this study is based on indicator values. If the value of an indicator 
deviates a lot from the average (or normal) value (by being too low or too high), it could 
indicate an anomaly. However, consider the following example. In Figure 9, a time-
series of the number of processes is shown. There are some spikes both downwards and 
upwards in the time-series. The biggest spike (upwards, indicated by 2 in the picture) is 
easily – and erroneously – considered to be an anomaly. Actually, it is only a consequence 
of one event a while before it (small spike downwards, indicated by 1). The small spike 
downwards could actually have reached the zero level (i.e. number of processes could 



3. Observations from data – explorative approach 

24 

have been zero for some time). However, due to the indicator averaging time step of 1 
minute, the averaged indicator value does not go down to zero. 

 

Figure 9. Anomaly and its consequence. 

3.5 Localization of the problem 

By monitoring several inter-connected servers, it is possible to gain insight into the root 
cause of the anomaly. In Figure 10, an indicator time-series (number of processes) is 
shown for two servers in the same network. By comparing the two time-series we 
observe that some of the features are similar in both of them whereas others are present 
only in one of them. Examples of the former case are the apparent seasonality (daily) 
and drop in the indicator values before the date 12.5. (indicated by 2). An example of 
the latter case is the rising trend within the seasonality (indicated by 1) present only in 
server A time-series; i.e., the indicator value in server B returns always to the baseline 
level of about 200 after each daily cycle but in server A the baseline level tends to be 
higher for the subsequent day. 
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a) Number of processes in server A. 

 

b) Number of processes in server B. 

Figure 10. Comparison of servers. 

3.6 Changes in the state of the system 

Sometimes there can be clear changes in the system state that will prevail for a longer 
time. Such changes are illustrated in Figure 11. First, Figure 11a shows total amount of 
swap and free swap space as a function of time – a clear drop in both of them can be 
observed at one instant of time (marked B in the other plots). The graph of CPU 
utilization (Figure 11c) shows clear change in the lower indicator level at instants of 
time A and B. Number of processes drops abruptly at the time instant B (shown in 
Figure 11b). These changes are further illustrated with the number of processes and the 
amount of free memory in Figure 11d). Two clusters are marked into the picture: all 
observations before the time instant B fall into the second cluster. However, after B, the 
system can be in either state 1 or state 2. The roughly linear relationship between the 
number of processes and amount of free memory in, e.g., cluster 2 is understandable and 
indicates the border of the feasible region in which the system can stay. 
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a) Total swap space and amount of free swap as a function of time. 

02/11 09/11 16/11 23/11 30/11
0

100

200

300

400

500

600

700

800

900

Date

P
ro

ce
ss

es
 (

#)

 
b) Number of processes. Two instants of time marked by red and dotted vertical lines.
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c) CPU utilization. Two time instants marked by red and dotted vertical lines. 
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d) Indicator values before time instant B (i.e. green and red) occur only in the cluster 

2 in the plot (i.e. cluster 1 consists only of observations after instant of time B). 

Figure 11. Changes in the system state. 
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4. Analysis methods and examples  

4.1 Anomaly detection based on SOM analysis 

In this test case we have shortly studied the accuracy of Self-Organizing Maps (SOM) 
based anomaly detection in server log data anomaly detection. The aim is to show the 
applicability of multivariate SOM based anomaly detection in monitoring and at the 
same time to compare the SOM method with simple threshold monitoring of single 
measurements. 

We selected the measurements from January 2008 as our test cases because we previously 
detected a clear problem situation in that data set in our initial data review. We used a Matlab 
toolbox called SOM toolbox 2.0 (http://www.cis.hut.fi/projects/somtoolbox/download/) and 
common Matlab visualization tools in our tests. In the selected data set there are 11 
explanatory variables that have been measured on a minute interval. The date field has 
been broken down to three components: day, hour and minute. We used the hour 
component as a temporal explanatory variable in the tests. We performed the test for 
data representing ordinary working hours (working days (Monday through Friday) and 
normal working hours (7–17)) as it was previously found that there is a clear difference 
in the behaviour of the log data outside of these times. Our test data consists of 660 
samples on January 18th. Also, we selected the rest of the samples within the study 
period as the training set containing 5719 samples. 

The data set was inspected visually for the selection of the training data set. Part of 
the variables have very rapidly fluctuating values, like variable Waiting_time (Figure 12); 
part of the variables are more steady but contain occasional peaky periods, like variables 
Number-of-user-processes (Figure 13), Number-of-other-processes (Figure 14), Free-
swap (Figure 15) and Free-memory (Figure 16). In these figures we also show alarm 
thresholds (red lines) for these univariate cases. The thresholds have been set to the 
mean value plus/minus 2.28 times the standard deviation. The value 2.28 has been 
chosen because generally it seemed to produce a suitable amount of alarms.  

An enhanced method would be to compute hourly alarm limits for the data based on 
the logged values. Another improvement would be to set the alarm thresholds based on 

 

http://www.cis.hut.fi/projects/somtoolbox/download/
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the percentiles of the distribution, i.e., at the P02 and P98 percentiles representing the 
values where 2% of the values are below P02 value and 2% above the P98 value. 
Another enhancement would be to define each variable a unique std_multiplier value. 
These enhancements have not been tested in this study. 
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Figure 12. Fluctuating value range in a measurement (variable waiting time). 
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Figure 13. Variable Userprocesses and statistically selected anomaly thresholds. 
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Figure 14. Variable Other processes and statistically selected anomaly thresholds. 
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Figure 15. Variable Free swap and statistically selected anomaly thresholds. 
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Figure 16. Variable Free memory and statistically selected anomaly thresholds. 
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After selecting the training and the test data sets we have created the anomaly detection 
model by teaching a relatively small SOM map based on the training data. For the 
modelling we have at first normalized the variables to have a 0 mean and standard 
deviation of 1 in order to make all the variables equally influential with the Euclidean 
distance metric. With some variables, that are far from a Gaussian form, additional 
scaling would be beneficial but this has not been tested here. The used anomaly 
threshold has been selected statistically based on the distribution of the training data 
anomalies (in this test we have used the mean and the third multiple of the standard 
deviation, µ + 3δ). The attached Figure 17 illustrate graphically the componentwise 
distribution of the SOM neurons. We can see that some of the values of the explanatory 
variables behave similarly over the neurons, e.g., CPU utilization and CPU load or 
System time and System time percentage. 
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Figure 17. Component level visualization of a learned SOM map. 

The created model has been tested on the test data set in order to find clearly anomalous 
samples as compared with the normality model. Figure 18 illustrates the anomaly scores 
for the test data samples in the upper subplot and the values of some promising 
explanatory variables in the lower subplot. Scores that have been considered anomalous 
have been marked by a red sphere. In the lower subplot such values, that have been 
statistically considered to be anomalous on a univariate case, has been circled. Visually 
we can observe that some of the SOM anomalies can be explained by the univariate 
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values but none of the explanatory variables can by itself explain all the anomalies. In 
principle the univariate alarm sensitivity could be enhanced by lowering the threshold 
value but this was found to cause a lot of false alarms in some of the variables. 

By comparing the univariate alarms and the SOM anomalies more carefully one may 
observe that in the test case by taking the union of the alarms of the four explanatory 
variables, four alarms will be created. Three of them co-occur in the SOM anomalies. 
SOM could identify 11 anomalies. Therefore the four variables could predict 27.3% of 
the SOM anomalies with a 25% false positive rate. When we consider all the 11 
explanatory variables we can explain 63.6% of the SOM anomalies but the false 
positive rate has been raised to 68.2%. It is therefore clear that univariate component-
wise analysis does not produce fully similar results with the multivariate SOM analysis. 
However, only a careful log data expert analysis and labelling of the different test 
situations would allow one to determine how well the SOM anomalies match with the 
interests of the experts. Also, the larger amount of alarms caused by univariate analysis 
may actually be justified, and provide valuable hints of trouble spots and anomalies. 
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Figure 18. Anomaly detection results with the test case. 
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We can produce explanations of the SOM anomalies with the help of our anomaly 
detection tool. For example, visually it was not possible to find an explanation for the 
first anomaly in the figure based on the four explanatory variables. However, with the 
help of an explanatory log (see Attachment A) we have found that the most influencial 
explanatory variables are CPU-load, User-time, User-time-percentage and CPU-
utilization. Thereby, it seems that the anomaly has been caused by an unusually high 
user activity and the related high CPU load at that time. The combined deviation of 
these four variables is summarized in the SOM anomaly score and therefore the 
anomaly is being highlighted better than in the fundamentally 1-dimensional analysis. 

Based on our tests the multivariate analysis of the explanatory variables using SOM 
clustering detects more anomalies than the univariate tests could produce together. 
However, we have not had a complete set of expert analyzed and labelled measurement 
data at our disposal. This prevents us from saying, which of the anomalies are actually 
problematic and require expert intervention. Anyhow, it seems that SOM anomaly 
detection could benefit log data monitoring as a part of the early alarm system. The 
univariate variables could also be monitored with the fixed alarm levels as well. 
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5. Example use cases 

5.1 Identification of need for updates and verification of their 
impact 

One practical use case is how to identify and to decide, when to upgrade the capacity of 
a system. This can mean, e.g., adding more memory or disk space to a server. 

Adding the capacity too early when it is not yet needed would imply additional costs 
without any benefit. Failing to add capacity on time might imply poor performance for 
the system or even difficulty in detecting errors in the system. (Errors might manifest 
themselves in other places that in the bottle-neck part of the system, making it even 
more difficult to detect the root cause). 

Another related use case is the verification of the impact of the system upgrade. If, 
e.g., more memory or disk space has been added to the system, it would be good to be 
able to provide a quantitative proof of the improvement in system performance. 

5.2 Introduction of a new application 

A relevant use case is the estimation of the impact of a new application on the load of a 
server. It would be desirable to know, if the current system can cope with the load 
caused by a new application before the application is introduced. 

The application provider might give some guidelines on the requirement for the 
system that runs the application. However, due to varying configurations, the guidelines 
might be just indicative and more accurate assessment would be required. 

One approach would be to evaluate the system performance with a subset of the 
future users of the application to be introduced, and to attempt to estimate, based on 
that, the impact of all the users (using the application) on the system performance. 
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5.3 Indication of the normal situation 

A basic use case in anomaly detection is to be able to see the normal or reference 
situation together with the current situation. The normal situation is typically time 
dependent (e.g. hour of the day, day of the week), and thus that should be taken into 
account when showing the normal situation to the end-user. 

5.4 Trend detection 

Temporal characteristics of the indicators are important not only from the point of view 
of seasonal or periodic aspect, but also from the point of view of trends. Downward 
trend in the amount of free memory gives a reason to upgrade the amount of system 
memory. Of course, it should be verified first that the downward trend is indeed due to 
constantly growing memory consumption, and not due to seasonal or periodic phenomena 
nor some individual mal-performing process, that keeps allocating more and more 
memory without releasing it. 

The trend visualization or indication can be used as an aid to determine, when certain 
actions need to be performed for the database. 
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6. Conclusions, ideas and challenges 

In this preliminary study, we have reviewed the state-of-the-art related to server 
monitoring and carried out some analyses based on real server log data. Furthermore, 
during the study we discussed with experts of the field to identify real end-user needs. 

Some issues that were observed to be relevant and would deserve further investigation 
are e.g.: 

• Labelling of data. In many anomaly detection studies, it is assumed that data 
from normal situation is available for building the normality model. However, 
usually the recorded data contains both measurements from normal situations 
as well as from anomalous situations. Furthermore, labels attached to the 
measurement data (indicator time-series) are not often available. Thus, the 
algorithms and methods used for anomaly detection should be able to cope 
with this kind of unlabeled data without making the assumption that the 
training data representing only normal situations is available. 

• Changes in the system. Upgrades to the system are sometimes made. Updating 
frequency influences the normality model. Some changes had been made to the 
system during the measurement periods and between them. The anomaly 
detection algorithms should be able to take these changes into account. 

• Architectural issues. The collection of indicator data from the server influences 
itself the server performance and this should be taken into account in some 
cases. Also, the fact that the data from the server is collected using an agent 
running the monitoring target server implies, that no monitoring data can be 
obtained, while the target server is being booted. With, e.g., 1 or 5 minute data 
collection and averaging time step, booting manifests itself in the data in, e.g., 
close to zero (but often non-zero due to averaging) values for number of 
processes indicator.  
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• Algorithms and experts. The expert is clearly needed in the anomaly detection 
process. An instance can be detected as an anomaly by the system (algorithm) 
when it is actually only a consequence of an anomaly – this kind of behaviour 
was observed in this preliminary study from real data. The server log data does 
not necessarily have enough information to be used for making the ultimate 
decision about the severity of a detected anomaly – rather the other way 
around, the anomaly detection system should be an auxiliary tool for the 
expert. The expert would be the one saying the last word. 

• Trends and seasonalities. Natural seasonalities (daily, weekly) are clearly 
present in some indicators and the anomaly detection algorithms should utilize 
these. Furthermore, superimposed trends can give relevant information about 
changes in the system and by comparing data from several servers, insight into 
the origin of the issue can be gained. 

• Scaling and normalization. As observed in this preliminary analysis, there are 
differences between the types of input variables. Some variables contain large 
spikes, but they are often close to zero in value. The spikes influence the 
calculation of the variance and thus the normalization, if the straightforward 
approach of normalizing to zero mean, unit variance is adopted. Better approach 
could be to apply some transformation (e.g. extract logarithm) or to leave out 
the spikes from the variance calculation. 
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Appendix A: Explanations for some of the 
anomalies detected by the SOM method  

Reasons for anomaly for the test data samples (11). 

component_id component_name distance (test_value - neuron_value) 

anomaly_id=1, data_id=192 

 5 CPU-load 3.718035 (4.894010 - 1.175974) 
 7 User-time 2.415240 (3.287868 - 0.872627) 
 12 User-time-percentage 2.300688 (3.193118 - 0.892431) 
 4 Cpu-utilization 1.921735 (3.220819 - 1.299084) 
 14 Free-swap -1.222020 (-1.384683 - -0.162663) 
 13 Waiting-time -1.184677 (-1.040180 - 0.144497) 
 8 Free-memory -0.817804 (-0.715234 - 0.102570) 
 9 Number-of-user-processes 0.787942 (0.888777 - 0.100835) 
 10 Number-of-other-processes 0.638121 (0.710480 - 0.072359) 
 11 System-time-percentage 0.347103 (1.698949 - 1.351846) 
 6 System-time 0.114685 (1.475803 - 1.361118) 

anomaly_id=2, data_id=253 

 11 System-time-percentage 4.585687 (5.937533 - 1.351846) 
 8 Free-memory -2.475246 (-2.372677 - 0.102570) 
 6 System-time 2.453815 (3.814934 - 1.361118) 
 4 Cpu-utilization 1.380764 (2.679848 - 1.299084) 
 14 Free-swap -1.222020 (-1.384683 - -0.162663) 
 10 Number-of-other-processes 0.982804 (1.055163 - 0.072359) 
 13 Waiting-time -0.656987 (-0.512491 - 0.144497) 
 12 User-time-percentage -0.640461 (0.251970 - 0.892431) 
 9 Number-of-user-processes 0.360863 (0.461698 - 0.100835) 
 7 User-time 0.331135 (1.203763 - 0.872627) 
 5 CPU-load 0.150210 (1.326184 - 1.175974)
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