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List of symbols, concepts and abbreviations 
cumulative distribution function 

)(xF  
For a random variable x , the probability 
[ ]xXP ≤  

cumulative failure function  
)(tµ  

the average cumulative failures associated with 
each point of time: [ ])()( tMEt =µ . 0)0( =µ . 

cumulative number of failures  
)(tM  

the total number of failures experienced up to 
time t 

failure the inability of a system or component to 
perform its required functions within specified 
performance requirements 

failure intensity function 
)(tλ  

the derivative (rate of change) of the cumulative 
failure function 

failure rate function 
 

t
tTttTtP

∆
>∆+≤≤ )|(

 

the probability that a failure per unit time occurs 
in the interval [ ]ttt ∆+. , given that a failure has 
not occurred before t 

fault an incorrect step, process or data definition in  
a software artefact 

finite failure model a model for which the expected number of 
failures, )(tµ , remains finite as ∞→t . This 
means that at

t
=

∞→
)(lim µ  for some 0>a . 

hazard rate 
)(tz  t

tTttTtP
t ∆

>∆+≤≤
→∆

)|(lim
0

, the limit of failure 

rate function at 0. 

I the number of time intervals in the observation 
range 

infinite failure model a model for which the expected number of 
failures, )(tµ , grows without bound as ∞→t . 
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Kolmogorov distance For two vectors ( )Mxx ,...,1  and ( )Myy ,...,1 , 
( )iii

yx −max  

m , ),( 21 ttm , im  the number of failures in the time interval [ ]21 , tt  
or the ith time interval 

mean failure function same as cumulative failure function 

MTTF mean time to failure 

)(tn , ),( 21 ttn , in  the number of faults detected so far, in time 
interval [ ]21 , tt  (the same fault can give rise to 
many failures, and faults can be detected even if 
they haven�t yet caused a failure), or in the ith 
time interval. 

N see total number of faults 

N  the total number of faults in the software 
initially 

NHPP nonhomogenous Poisson process 

)(tν  The number of undetected faults at time t 

observation range the period of time from which the reliability data 
stems.  

reliability growth model a model that predicts, given a history of failures 
and corrective actions, the probability that the 
software under consideration will work 
failurelessly for the given time period under the 
given operational conditions. Typically applied 
to make the decision to release the software 
(when a satisfactory level of reliability has been 
reached). 

reliability model a model that predicts the mean time to failure 
[Hamlet 1992]. Typically applied after 
debugging, when the program has been tested, 
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and no failures have been observed. 

T  the time to failure 

iτ  The time between the i-1th and ith software 
failure 

total number of faults 
N 

the total number of faults in the software 
(usually meaningful only if we assume that new 
faults aren�t introduced to the software by 
maintenance) 
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1. Introduction 
Dependability is defined [Laprie 1992] as the trustworthiness of a computer system such 
that reliance can justifiably be placed on the service it delivers. Dependability has 
several aspects [Sommerville 2001]: 

• availability, or readiness for usage. Informally, the probability that the system 
will be up and running and able to deliver useful services at any given time. 

• reliability, or continuity of service. Informally, the probability, over a given 
period of time, that the system will correctly deliver services as expected by the 
user. 

• safety, or avoidance of catastrophic consequences on the environment. 
Informally, the likelihood (usually judgmental) that the system will cause 
damage to people or its environment. 

• security, or prevention of unauthorized access and/or handling of information. 
Informally, the likelihood (usually judgmental) that the system can resist 
accidental or deliberate intrusion. 

This report concentrates on reliability, leaving availability, safety and security issues 
aside. 

When estimating the reliability of software, two main paths can be taken. One is to 
analyze the code by means of static analyzers (see e.g. [Khoshgoftaar and Munson 
1990]), model checkers, theorem provers, compilers etc. Another is to analyze the 
software from an external point of view; here, the main sources of input are 

• testing; software testing, including unit, integration and system testing, provides 
much data about the program�s reliability if test coverage is good, tests are 
systematically conducted, and at least part of the testing is done under realistic 
operating conditions 

• expert opinion; this preferably comes from experts that haven�t participated in 
the development of the software (to avoid myopy), but are experienced in 
software development (including architecture and code analysis issues), have 
access to the software�s source code and documentation, may carry out static 
analysis, and have a good understanding of the requirements and operating 
conditions of the software 
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• operational data (failure reports etc.); if high-quality operational data is available 
from a sufficiently long time period, it provides a solid ground for stochastic 
analysis of reliability. 

Reliability estimates of software can be used in a number of ways, among them: 

• to estimate the reliability of a total system of which the software is a part 

• to allocate resources during development and maintenance 

• to estimate maintenance costs. 

We consider the problem of  arriving at a reliability estimate for a piece of software. 
The assumed end use of the reliability estimates is risk and reliability analysis of 
software-based systems, e.g. nuclear power plants. We assume that informed expert 
opinion exists about a software�s reliability, and try to update this reliability estimate 
with information contained in operational data records. 

Probability estimates can be arrived at in three, mutually non-exclusive ways: 

• Subjective degrees of belief tell how much trust we (or experts, or whoever made 
the estimate) put on that the event actually occurs. This is often the best way of 
arriving at probability estimates when data is scarce or nonexistent, or when the 
situation involves very complex elements. 

• Propensities tell how probable the event is based on some formal model(s). The 
model is usually mathematical or physical. For example, after making a model 
for a die, we may arrive at the conclusion that the probability of the die arriving 
on each of its faces is equal. This is often the best way to arrive at probability 
estimates when data is scarce but detailed modelling is feasible. 

• Frequencies tell how many times (relatively speaking) the event actually 
occurred in a dataset. This is often the best way to arrive at probability estimates 
when data is abundant. 

In Bayesian statistics, there are two kinds of probabilities of an event. Prior probability 
expresses the probability estimate before a new event (measurement, arrival of data or 
such) takes place. Posterior probability expresses the probability estimate after the 
event. 
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Subjective probabilities (expert opinions) are often used as prior probabilities, which are 
updated by likelihood derived from operational data to yield the posterior probabilities. 
This is the case in the two-stage process described by Helminen (2005) (see also 
[Helminen and Pulkkinen 2003]), which consists of  

1. a judgmental reliability estimate by experts. This is used as a prior probability in 
the Bayesian setting.  

2. utilizing prior probability, operational data and test results in finding the 
posterior reliability estimates. 

Figure 1 illustrates the process in IDEF0 notation. 

 
 

Figure 1.The process of Bayesian reliability assessment described in [Helminen 2005].   

To state the problem in Bayesian terms, 

)(
),,(),,|(

)|,,(
datap

mttpmttdatap
datamttp febfeb

feb =  (1) 

Here the event feb mtt ,,  means the prediction that the software will fail fm  times in 
the time period starting from time bt  and lasting until time et ; if the different failure 
modes would be counted separately, a separate index term would be inserted to the 
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event. Note that the reliability of the system is a special case of this formulation: it is the 
probability that 0=fm . 

The event data means that the operational data is what it is; if the data would be in time 
series form, it might indicate that software failed dm  times in the time period starting at 
time bdt ,  and lasting until time edt , ; there might of course be data for several time 
periods. The data might alternatively consist of failure events with timing information. 

The prior probability ),,( feb mttp is, as stated above, arrived at through expert 
judgment. The prior probability for the data, )(datap , can be thought of as a scaling 
factor, for discounting exceptional circumstances. 

This report mainly focuses on finding an estimate for the likelihood function 
),,|( feb mttdatap . In what follows, the information about feb mtt ,,  is usually 

embedded in models: we try to find the likelihood of the data given that we have some 
model with which to predict the number of failures. Then, the problem essentially boils 
down to finding a suitable model class, and estimating the parameters of the model by 
maximizing the likelihood function wrt. the parameters. 
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2. Some modelling considerations 

2.1 Errors, faults, failures and reliability 

First, we consider what we would actually want to model, and what we mean by 
software failure. Below, we follow the IEEE terminology [IEEE 90] unless stated 
otherwise. 

A fault (the term bug can be used interchangeably) in a software artefact is an incorrect 
step, process, or data definition. Under suitable circumstances, a fault may cause a 
failure, or �the inability of a system or component to perform its required functions 
within specified performance requirements�; that is, a deviation from the stated or 
implied requirements. Between failures, the fault is dormant.  

Failures have different consequences, some being harmless and others perhaps fatal. 
Failures can be classified into severity classes, e.g. catastrophic, major, minor. The 
definitions of severity classes vary from system to system. An example classification is 
given in Table 1 [Donnelly et al. 1996]. 

Table 1. Severity classification based on service degradation. 

Severity classification Definition Example 

Catastrophic Entire system failed, no 
functionality left 

The robot doesn�t function 
at all 

Severe A high-priority customer 
feature is not working 

The robot must be operated 
manually 

Significant Customers must change 
how they use the system 

The robot�s settings cannot 
be changed remotely; if 
they are to be changed, 
they must be configured 
from the control panel 

Minor Problem is not noticeable 
by customers 

Some maintenance 
functions are not currently 
performed 



 

 16  

An error is a �discrepancy between a computed, observed, or measured value or 
condition and the true, specified, or theoretically correct value or condition. Examples 
include exceptional conditions raised by the activation of existing software faults, and 
incorrect computer status due to an unexpected external interference. The term is 
especially useful in fault-tolerant computing to describe an intermediate stage in 
between faults and failures.� [Lyu 1996b] 

Besides software faults, failures may also be caused by improper input either by a 
human actor or some component of the system (e.g. a measurement device), and by 
failing hardware or other equipment. 

How often faults manifest themselves as failures depends on how the software is used. 
The operational profile of a system is �the set of operations that the software can 
execute along with the probability with which they will occur� [Lyu 1996b]. 

Reliability is �The ability of a system or component to perform its required functions 
under stated conditions for a specified period of time�. Stated in slightly different terms 
[Sommerville 2001], it is the probability that the system or components performs its 
required functions under stated conditions for the specified period of time: 

),,( eb ttfailp ¬  (2)

This probability is, however, the object of interest mainly when the probability of 
failure-free survival of mission is of concern; in such situations, there is a natural 
mission time. Examples are airplane flights, space flights etc. Other measures are more 
appropriate in other situations, and include 

• The mean time to next failure (MTTF). This is often used to determine if the 
software is reliable enough that it can be released. 

• The expected number of failures in the time interval of interest. This is also 
called rate of occurrence of failures (ROCOF). It is the appropriate measure for 
a system which actively controls some potentially dangerous process 
[Littlewood and Strigini 1993]. 

• Probability of failure on demand. This is suitable for a safety system, which is 
only called on to act when another system gets into a potentially unsafe 
condition. An example is an emergency shutdown system of a nuclear reactor 
[Littlewood and Strigini 1993]. 
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• Availability. This could be used in circumstances when the losses incurred as a 
result of system failure depend on the length of time that the system is 
unavailable. Examples: airline reservation systems, telephone switches 
[Littlewood and Strigini 1993]. 

2.2 Reliability characteristics of software 

From the reliability point of view, software differs from hardware in many ways. For 
example, software doesn�t age in the way a hardware component does. Thus, 
duplicating a system doesn�t lead to increase in reliability unless the duplicate is 
designed and programmed separately. 

Some salient features of software failures are the following (see also [Keene 1994] and 
[Herrmann 1999]): 

• Each software is, at least to an extent, unique. Even minor differences in the 
program code might mean large differences in the behaviour of the software. 
Therefore experience with the reliability of other software is of very limited use 
at best. 

• Software faults are caused by hidden design flaws rather than wear-and-tear or 
physical failure. Therefore software faults are static: they exist from the day the 
software was written (or revised) until the day they get fixed. They also tend to 
be unique for each software regarding places of occurrence, mode and severity. 

• Software reliability does not depend on time as such. Rather, it depends on the 
amount and quality of corrections, and on how what kind of input combinations 
(possibly together with some kind of state such as amount of available memory) 
the software is subjected to. 

• software faults causing a failure are rare. This is so because usually bugs have 
been caught in the testing phase. A research study [Pham and Zhang, 1999] 
states a typical commercial software application of 350000 lines of code can 
contain over 2000 programming errors, that is, an average of six software faults 
for every 1000 lines of code written. However, as these figures show, 
commercial software may still contain many errors due to their complexity. 

• External environment conditions don�t affect software reliability. Internal factors 
of the software-hardware system, such as amount of memory, clock speed etc. 
may affect the reliability of software. 
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• the number of faults in a program tends to decrease with age. Faults are usually 
corrected after they have been detected and identified. The most frequently 
occurring faults (in terms of failure frequency) are naturally detected first, and 
therefore disappear earliest. Also the significance of the fault affects repair time: 
a more significant fault is prioritized and corrected promptly, whereas an 
inconsequential bug may be left to stay in the system for the whole of its 
lifecycle. A change in operating conditions may activate a previously dormant 
fault. New faults can usually be introduced only through updates of the software; 
updating the software might happen e.g. to correct detected faults, to 
accommodate the use of new equipment, etc. Usually the amount of new code is 
kept to a minimum, the bulk of efforts going to improving existing code. Thus, 
one would expect at least the expected number of failures to decrease with time 

• software faults manifest themselves only under particular conditions. For 
example, when the fault is in the consequent of an if clause, the error can be 
manifested only when the conditions stated by the clause are true. It seems 
reasonable to assume that these operational conditions wouldn�t occur 
completely randomly but would be correlated; that is, if an operational condition 
giving rise to an error had occurred in the recent past, it would be likely that the 
condition would occur in the near future. Naturally, it is sometimes hard to 
pinpoint the exact conditions when the software fails 

• a single software fault can give rise to several system errors or failures. This 
may happen until the bug has been identified and corrected. Between the failures 
the fault induces, it will probably give no sign of its existence 

• there is a time lag from the failure to the correction of the underlying fault. This 
lag is stochastic in nature, and depends on the nature of the fault, the 
maintainability characteristics of the program, the abilities of program 
developer(s) tasked with the repair, etc. 

• in practice it has been observed [Hamlet 1992] that the mean time to failure 
(measured in number of runs) of a software system in large systems is inversely 
proportional to program size; this would indicate that the number of faults per 
line is roughly constant.  

• When the software is deployed (the operational phase), it is usually installed in 
many places (e.g. devices). Although usually the software itself is identical for 
each of these, operational conditions (operational profile) differ from place to 
place. Therefore failure data, if collected, comes from different sources. This 
also leads to many phenomena that are of interest from the modelling point of 
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view: for example, when a bug is found and corrected, the reliability of all 
installations should improve approximately at the same time due to maintenance 
release. 

• Two identical programs behave exactly in the same way. Therefore reliability 
cannot be increased by redundancy (many clones of the same program doing the 
same thing) but by diversity (different programs doing the same thing). 

2.3 Reliability and the software lifecycle 

The methods and needs of software reliability assessment and prediction vary by the 
phase of software development lifecycle [Asad et al. 2004; Hamlet 1992]: 

• at the requirements and design phases, when no implementation is available, 
early prediction models can be used. Reliability must be analyzed based the 
architecture and stated requirements. 

• at the implementation and testing phases, software reliability assessment is 
needed to make the stopping decision concerning testing and debugging: when 
the mean time to failure is long enough, the software can be released. Models 
most applicable here are reliability growth models. 

• When the software is released, it is ordinary to assume that all observed faults 
have been debugged and corrected. Thus, after release, a reliability model is 
used to predict the mean time to failure that can be expected. The resulting 
reliability estimate may be used in system reliability estimation, as a basis of 
maintenance recommendations, and further improvement, or a basis of the 
recommendation to discontinue the use of the software. 

Thus, when the software is in operational use, the model to be used depends on 
maintenance policies and occurrence of failures: 

• If no failures are detected in the software, or if the software is not maintained, a 
reliability model is most appropriate 

• If failures are detected and the software is updated, a reliability growth model is 
in order. 
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2.4 Sources of software reliability evidence 

As mentioned in the introduction, reliability can be defined as the probability, over a 
given period of time, that the system will correctly deliver services as expected by the 
user. Thus, the best measure of a program�s reliability is its operational record: when and 
how it failed; this includes also information about the failure�s severity, downtimes etc. 

Another source of data is the program�s test records. These, however, are not as good 
sources of indicating operational reliability. This is so because in most development 
projects, new features are introduced to the software almost throughout testing. 
Therefore the records might imply something about the reliability of a mature feature 
and something else about the reliability of a less well-developed feature. 

Expert judgment about the program, often acquired in software inspections, may give 
valuable insight. Sometimes, in the lack of reliable operating records, it is the only 
usable source. Expert opinions, too, have their shortcomings. One is that humans are 
notoriously bad forecasters [Kahneman et al. 1982], making many kinds of errors in the 
process. 

Also results of static analyses of the program may give valuable information about the 
program�s reliability. For example, software metrics can be used [Hudepohl et al. 1996]. 
This topic isn�t, however, pursued further in this report. 

Knowledge of how the software was constructed, such as whether a strict development 
process was followed or how verification and validation were conducted, may give 
valuable evidence on the software�s reliability. However, it is difficult to well express 
this evidence in quantitative terms. 

System architecture is also a potent source of information for reliability considerations. 
Almost ubiquitously in modern software systems, at least two components can be 
distinguished: the platform (operating system and other infrastructure, such as a virtual 
machine), and the application program itself. This issue is not pursued further in this 
report, but the reader is referred to [Go�eva-Popstojanova et al. 2001; Go�eva-
Popstojanova et al. 2005; Wang et al. 2006]. 

The operational profile, if known, can be a valuable input to the reliability estimation 
process [Haapanen et al. 1997]. If it is known, models such as [Bai 2005] can be used. 
However, determining an operational profile for a program is usually tedious, and often 
difficult to do beforehand. For further details on operational profile, see [Musa et al. 1996]. 

Testing and maintenance policies also affect reliability modelling. However, their 
impact mainly stems from their possible incompleteness or inadequacy, and would have 
to be modelled separately. 
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3. Software reliability growth models 
This chapter reviews some existing software reliability growth models. These models 
describe how observation of failures, and correcting the underlying faults � such as occurs 
in software development when the software is being tested and debugged � affect the 
reliability of software. These models are applicable also to assessing the reliability of 
software in operational use, when the latest reliability estimate given by the model is used. 

3.1 General considerations 

Before we consider actual models, it is in order to introduce some central concepts. Let 
)(tM  be the (random) number of failures experienced by time t (that is, from the start 

of using the system up to time t), and let its expectation be 

[ ] )()( ttME
def

µ= . (3)

When modelling software failures, it is natural to assume that )(tµ is a concave (though 
nondecreasing) function of time; this assumption is not mandatory, and is broken by e.g. 
the S-shaped model (see section 3.2.5). We can express the failure intensity function as  

dt
tdt )()( µ

λ =  (4)

3.1.1 Reliability model classification 

The categorization in this chapter is based on the one presented by [Farr 1996], which in 
turn owes much to the one presented in [Musa and Okumoto 1983]. However, the 
present chapter considers also advances made since 1996, and has an emphasis on 
finding a (Bayesian) likelihood function. 

Musa and Okumoto classified models in terms of five attributes: 

1. Time domain. The possible values here are ordinary (calendar) time and 
execution time (that is, the amount of time that the software has been running). 

2. Category. The total number of failures that can be experienced in infinite time, 
which can be either finite or infinite (the possible values). 
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3. Type. The distribution of the number of failures experienced by time t, such as 
Poisson, binomial etc. 

4. Class. Functional form of the failure intensity expressed in terms of time. The 
most common distribution here is the exponential distribution, but also Weibull, 
Pareto and gamma distributions are common. This applies only to models in 
finite failure category. 

5. Family. Functional form of the failure intensity function expressed in terms of 
the expected number of failures experienced. This applies only to models in 
infinite failure category. 

Especially they classified models along the two dimensions of type and class (in the 
finite failure case), or type and family (in the infinite failure case).  

3.1.2 Frequentist versus Bayesian models for likelihood 

Finding the likelihood function of data given a model can be accomplished in two main 
ways. One is to use a likelihood function provided by an existing (frequentist) model; 
thus, a frequentist model is converted to a Bayesian one. An advantage of this approach is 
that the area is well-researched and a multitude of models, together with information on 
their applicability and accuracy, is available. Problems with this approach are that it might 
be difficult to construct a likelihood function, and that it might not be straightforward to 
utilize the experts� judgments in the construction. The other is to use a Bayesian model 
from the beginning. This approach has the advantage that the likelihood function is 
automatically a part of the model, and thus obtaining it is a non-issue. 

3.1.3 Standard assumptions 

There are some assumptions that are usually made, and they apply to all the models in 
this section unless otherwise stated. 

1. The operational profile of the software remains constant. The software where the 
data comes from is operated in a similar manner as that in which reliability 
predictions are to be made. 

2. Every fault has an equal chance of being encountered within a severity class as 
any other fault in that class. 
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3. The failures, when the faults are detected, are independent. This means that 
failures from fault A don�t affect failure times from fault B. 

4. After a failure, the fault causing it is corrected immediately and no new faults 
result from the correction. 

Of these, especially the last one has received considerable criticism, and models taking 
into account delays in error correction and possibility of new errors have been 
formulated (e.g. [de Bustamante and de Bustamante 2003]). 

An important assumption, often made implicitly, is that the software doesn�t change 
during testing and usage, except that faults are fixed. 

Furthermore, most models consider the software system as a whole, and individual 
properties of its constituent modules or components are not considered. 

3.2 Nonhomogenous Poisson models 

In these models, the number of failures experienced so far follows the nonhomogenous 
Poisson process (NHPP). The NHPP model class is a close relative of the homogenous 
Poisson model (see section 4.1); the difference is that here the expected number of 
failures is allowed to vary with time.  

It has been shown [Pham et al. 1999] that a general class of NHPP models can be 
obtained by solving the differential equation 

[ ])(()()( ttatb
dt

td µµ
−=  (5)

With suitably chosen )(ta  and )(tb . For all the models below that can be seen as  
resulting from equation (5), we list )(ta , )(tb  and )(tµ . 

Say we are interested in the number of failures in the time interval starting at time T and 
lasting for time t. The nonhomogenous Poisson probability (NHPP) density function is 
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Or, expressed for the cumulative number of faults, 
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A central issue in utilizing a nonhomogenous Poisson model is how to estimate the 
expected number of failures. A natural way to do this is to postulate a functional form 
for )(tµ , possibly with some parameters, and then estimate the parameters from data. 

3.2.1 Goel and Okumoto�s model 

This model [Goel and Okumoto 1979] captures many software reliability issues 
presented in section 2.2, without being overly complicated. It is similar to the Jelinski 
and Moranda de-eutrophication model (section 3.3) except that failure rate decreases 
continuously in time. 

The following assumptions are made: 

• )(tM , the cumulative number of failures, follows a Poisson process. Its mean 
value function )(tµ  has the following property:  

[ ])()()( tEttt νµµ ∝−∆+ , (8)

That is, the expected number of failures in a (shortish) time interval after time t is 
proportional to the expected number of undetected faults at time t. 

• )(tµ  is also assumed to be a bounded, nondecreasing function of time with  

∞<=
∞→

Nt
t

)(lim µ  (9) 

• The number of faults ),...,,( 21 knnn  detected in each of the respective time 
intervals [ ]),(),...,,(),...,,(),,0( 112110 kkii tttttttt −−=  is independent for any 
collection of times kttt <<< K21 . 

The data required by Goel and Okumoto�s model consists of 

1. ),,,( 21 knnn K , the number of faults detected for each time interval 

2. ),,,( 21 kttt K , the completion times of the time intervals for which the 
),,,( 21 knnn K  are observed. The time intervals are assumed to be adjacent. 
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Goel and Okumoto show that under the assumptions above, the cumulative failure 
function must be of the form 

)1()( bteNt −−=µ  (10)

In terms of equation 5, the parameters are Nta =)( , btb =)( . 

3.2.2 Musa-Okumoto model 

This model [Musa and Okumoto 1984] is similar to the Goel-Okumoto model (section 
3.2.1), except that it attempts to consider that later fixes have a smaller effect on a 
program�s reliability than earlier. In particular, is intensity function decreases 
exponentially as failures occur. The model is also called Musa-Okumoto logarithmic 
Poisson model because the expected number of failures over time is a logarithmic 
function. Thus the model is an infinite failure model. 

The basic assumption of the model, beyond the assumption that the cumulative number 
of failures follows a Poisson process, is that failure intensity decreases exponentially 
with the expected number of failures experienced: 

)(
0)( tet θµλλ −=  (11)

As data, the model requires either the actual times that the software failed, of the 
elapsed times between failures. 

3.2.3 Schneidewind�s model 

Make the following assumptions [Schneidewind 1975]: 

• The data used are the number of failures per time interval where all time periods 
are of equal length. 

• The cumulative number of failures follows a NHPP with mean value )(tµ . 

• The failure intensity function is an exponentially decreasing function of time: 
tet 1

0)( ααλ −= . 

• The number of faults in  detected in each of the respective intervals are 
independent. 
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• The fault correction rate is proportional to the number of faults to be corrected 
(which is usually the number of faults detected so far). 

Schneidewind proposes models for data in three forms: 

1. Utilize all fault counts from the I time intervals in the observation range. 

2. Ignore the fault counts completely from the first through the s-1 time 
periods, i.e., only use the data from period s through I. 

3. Use the cumulative fault counts for the time intervals 1 to s-1 as the first 
data point, and the individual fault counts for periods s through I as the 
additional time points. 

Schneidewind has developed criteria for the optimal selection of the parameter s. He 
uses different kinds of mean square criteria as objective functions. The actual 
optimization happens simply by computing the parameter estimates under different s, 
and from these, the predictions and finally, the value of objective function; the value of 
s is chosen that gives the smallest value for the objective function. 

The functional form of the mean failure function )(tµ  is  

)1()( 1

1

0 tet α

α
α

µ −−= , (12)

where 0, 10 >αα . Note that the equation above also gives an estimate to the total 
number of faults: it is 10 αα . The parameters can be estimated by maximum 
likelihood; the form of the estimates varies by the kind of data available/used (see 
above). The parameters of equation 5 are 

1

0)(
α
α

=ta , 1)( α=tb . 

From the model, it is easy to compute different kinds of measures for software 
reliability, such as the expected number of faults in the ith period. 

3.2.4 Musa�s basic execution time model 

This model is perhaps the most popular of the software reliability models [Farr 1996]. 
The times between failures are expressed in terms of computational processing units 
(CPU) rather than the amount of calendar time that has elapsed (the model contains a 
feature for converting from processing time to calendar time). 
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Musa himself [Musa et al. 1987] recommends the use of this model (as contrasted to 
Musa�s logarithmic Poisson model) when the following conditions are met: 

• Early reliability is predicted before program execution is initiated and failure 
data observed 

• The program is substantially changing over time as the failure data are observed 

• If one is interested in seeing the impact of a new software engineering 
technology on the development process. 

The following assumptions are made [Farr 1996]:  

• )(tM , the cumulative number of failures, follows a Poisson process. Its mean 
value function )1()( 1

0
tet ααµ −−= , where 0, 10 >αα . This mean value function 

is such that the expected number of failures is proportional to the number 
expected number of undetected faults at that time. 

• The execution times between the failures are piecewise exponentially 
distributed, i.e. the hazard rate for a single fault is constant. 

• Data: either the actual times that the software failed, T1, T2 , �, Tk or the 
elapsed time between failures x1, x2 , �, xk  

If conversion from execution time to calendar time is needed, then also the following 
four assumptions are made: 

• The quantities of resources (number of testers, software maintenance personnel 
and computer resources) that are available are constant over a time segment for 
which the software is observed. 

• Resource expenditures for the kth resource, kχ∆ , associated with a change in 
MTTF from T1 to T2 can be approximated by mtk ∆+∆≈∆ 21 θθχ , where t∆  is 
the increment of execution time, m∆  is the increment of failures experienced, 
and 1θ  and 2θ  are parameters. 

• Fault-identification personnel (testers etc.) can be fully utilized and computer 
utilization is constant. 

• Fault-correction personnel utilization is established by the  limitation of fault 
ueue length for any fault-correction person. Fault queue is determined by 
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assuming that fault correction is a Poisson process and that servers are randomly 
assigned in time. 

For converting from execution time to calendar time, also the following data are needed: 

• The available resources for both identification and correction personnel and the 
number of computer shifts.  

• The utilization factor for each resource 

• The parameters 1θ  and 2θ needed in computing the resource expenditures (see 
above) 

• The maximum fault queue length for a fault correction personnel 

• The probability that the fault queue length doesn�t exceed the maximum. 

It can be shown that after (i.1) failures have occurred, the reliability function is 

)1(
1

111
0)|(

tiT ee
i eTtR

∆−−− −−
− =∆

ααα  (13)

and the conditional hazard rate is 

)
101

10)|( −−
− =∆ iT

i eTtz ααα  (14)

The conversion from execution time to calendar time is explained in [Musa et al. 1987]. 

Maximum likelihood estimation of the parameters is explained in [Farr 1996]. 

3.2.5 S-shaped model 

The model was proposed by Yamada, Ohba and Osaki [1983]. It is a descendant of the 
Goel and Okumoto model (see section 3.2.1), the data requirements being similar and 
the assumptions being similar with one exception. Yamada et al. reasoned that due to 
learning and skill improvements of the programmers during the debugging phase of the 
development cycle, the error detection curve is often not exponential but rather S-
shaped. Furthermore, the per-fault failure distribution is gamma distribution. Based on 
this, they proposed the mean value function 
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[ ],)1(1)( tetNt ββµ −+−=  (15)

where 0, >βN . The parameter N  can be interpreted as the total number of errors and 
β  as the failure detection rate. 

3.2.6 Inflection S-shaped growth curve model 

The assumptions behind this model [Ohba 1984] are that  

• the faults in a program are mutually independent  

• the probability of failure detection at any time is proportional to the current 
number of detectable faults in the program 

• this proportionality is constant 

• the isolated faults can be entirely removed. 

The mean value function is  

,
1
1)( t

t

e
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ψ
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−

−

+
−

=  
(16)

Where N  can be interpreted as the total number of errors and β  as the failure detection 
rate (as in the Jelinski-Moranda model); ψ  is an inflection parameter: 

0,1
>

−
= r

r
r

ψ  (17)

Where r is the inflection rate which indicates the ratio of the number of  detectable 
faults to the total number of faults in the program (some faults are not detectable until 
some other faults are removed). 

3.2.7 K-stage Erlangian (Gamma) growth curve model 

This model class was proposed by Khoshgoftaar [1988]. The mean value function of 
this model is 
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The model is a generalization of the Goel and Okumoto model (section 3.2.1, set 1=K ) 
and the S-shaped model (section 3.2.5, set 2=K ). The parameters can be given the 
same interpretation as in the S-shaped model. 

3.2.8 Duane model 

In this model, the rate of occurrence of failures is in power law form in operating time: 

βαµ tt =)(  (19)

The model is an infinite failure model. No physical interpretation can be attached to the 
parameters α  and β . The power law form was introduced by Duane [1964], and Crow 
[1974] added the assumption that the underlying failure process is NHPP. 

As is easily seen from (19), this is an infinite failure model. 

3.2.9 Pham-Nordmann-Zhang model 

This model [Pham et al. 1999] integrates imperfect debugging with the learning 
phenomenon. Learning occurs if testing appears to improve dynamically in efficiency 
(and thus fault-detection rate improves) as testing progresses. This of course doesn�t 
necessarily happen � for example, non-operational profiles used to generate test and 
business models can prevent it. However, changes in fault-detection rate are common 
during the testing process. Pham et al. claim also that in most realistic situations, fault 
repair is associated with a fault re-introduction rate due to imperfect debugging. 

Their model is easiest to state in terms of equation 5: here, )1()( tNta α+= , 
bte

btb −+
= β1)(  and  

⎥⎦
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e
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β
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1
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Pham et al. compare their model with other NHPP models, and conclude that the 
inclusion of imperfect debugging and learning, as in their model, improves both the 
descriptive and the predictive properties of the model, and is worth the increased model 
complexity and number of parameters. 
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3.3 Other frequentist models 

The functional form of all of the failure intensity function in all these models is 
exponential. 

3.3.1 Jelinski-Moranda de-eutrophication model 

The Jelinski-Moranda model is one of the earliest in the field [Jelinski and Moranda 
1972]. It assumes that failures occur purely at random, and that all faults contribute 
equally to unreliability. Due to the latter, and the assumption that no fixes produce new 
failures, follows that the program�s failure rate improves by the same amount by each 
fix. 

The following assumptions are made: 

• The initial number of faults in the software is N. No new faults are introduced to 
the software (e.g. through bug correction or other maintenance). 

• The elapsed time between failures follows an exponential distribution with a 
parameter that is proportional to the number of remaining faults in the software. 
Let t be any time instance between the occurrence of the (i-1)st and ith failure 
occurrence. Then the mean time between failures at time t is ))1((/1 −− iNφ  

• The rate of fault detection is proportional to the current fault content of the 
software. 

• The fault detection rate remains constant over the intervals between fault 
occurrences. 

• A fault is corrected instantaneously after first detecting it, without introducing 
new faults into the software. 

To estimate the parameters φ  and θ , either of the following kinds of data is needed: 

• The elapsed time between failures mτττ ,,, 21 K  

• The actual times of failure from the start of the utilization of the system, 
mTTT ,,, 21 K  

Here naturally 1−−= iii TTτ  (with this notation, )00 =T . 
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The density function of the time between failures, given the time of latest failure, is  

[ ] [ ] iXiN
ii eiNTXf )1(

1 )1()|( −−−
− −−= φφ  (21)

The number of failures experienced is binomially distributed. 

The model makes the assumption that the rate of fault detection is proportional to the 
current fault content. This is unrealistic because not all faults are equal. The most 
frequently occurring faults are detected first. 

3.3.2 Geometric model 

The geometric model [Moranda 1979] is a variant of the Jelinski-Moranda model 
(section 3.3.1). The time between failures follows an exponential distribution. The fault 
detection rate follows a geometric progression and is constant between fault detections: 

1)( −= iDtz φ , (22)

Where 10 << φ  and ii ttt <<−1  ( it  is the time of the ith failure). 

The expected time between failures is 

1

1
−= ii D

EX
φ

 (23)

The cumulative failure function is 

)1ln(1)( += teDt ββ
β

µ  (24)

As is readily seen from equation 24, the model is an infinite failure model. 

3.3.3 Hyperexponential model 

The basic idea in this class of models is [Ohba 1984] that the different sections (or 
classes) of the software experience an exponential failure rate; however, the rates vary 
over these sections to reflect their different natures. These different rates reflect e.g. 
work done by different development groups; code that has been done long time ago vs. 
recently implemented code; code implemented in different programming languages; 
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code that has been subjected to formal specification and verification vs. code that hasn�t 
been; etc. 

[Laprie et al. 1991] developed a variation of this class of models when the number of 
subsystems is 2. They considered in this way the hardware and the software component 
of the system. 

The following assumptions are made: 

• The software system consists of  K sections or subsystems 

• Each subsystem exhibits an exponential failure rate; denote the failure rate of the 
kth subsystem by kβ  

• 10:,,1 <<=∀ kKk βK  

• The rate of fault detection in a subsystem is proportional to the current fault 
content within that subsystem 

• The fault detection rate remains constant over the intervals between fault 
occurrence 

• A fault is corrected instantaneously without introducing new faults into the 
software 

• The fault rates of the subsystems are independent of each other 

• The cumulative number of failures by time t, M(t), follows a Poisson process 
with mean value function ∑

=

−−=
K

i

tb
i

iepNt
1

)1()(µ , where ∑
=

=
K

i
ip

1
1, 

10:,,1 <<=∀ ipKi K , and the total expected number of faults, N, is finite (it 
might not be an integer). 

The following data are assumed: 

• The fault counts in each of the testing intervals, i.e., the in  

• The completion time of each period that thesoftware is under observation, i.e. 
the it �s 

Note that if K = 1, we have Goel and Okumoto�s model (see section 3.2.1). 
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The failure intensity function of the model is  

∑
=

−=
K

i

t
ii

iepNt
1

)( ββλ  (25)

This failure intensity function is strictly decreasing for t > 0. For parameter estimation, 
see [Farr 1996, section 3.3.5.4]. 

3.3.4 Weibull model 

The per-fault failure distribution is a Weibull distribution. The Weibull distribution is 
perhaps the most popular distribution used for component failure in reliability 
engineering. The distribution of the number of the failures experienced by time t follows 
a binomial distribution (models described in section 3.2 followed a Poisson 
distribution). 

The following assumptions are made: 

• There is an infinite number of faults, N, at the beginning of the period in which 
the software is being observed. 

• The time to failure of fault a, denoted as aT , is distributed as a Weibull 
distribution: the density function with parameters 0, >βα  is  

ata
a ettf βαβ −=)(  (26)

• The number of faults ),( 1+ii ttn  detected in each time interval [ 1, +ii tt ] are 
independent for any collection of times. 

• Fault counts for each of the testing intervals are available. 

• The start and completion times of the time intervals are known. 

The failure intensity function is 

ata
a etNtNft βαβλ −== )()(  (27)

And the cumulative failure function is 

)1()()(
at

a eNtNFt βµ −−==  (28)
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3.3.5 Barghout-Littlewood-Abdel-Galy model 

Barghout, Littlewood and Abdel-Galy [1997] propose a nonparametric model that is 
constructed in two stages: 

1. attempt to fit a trend in the interfailure time data. The goal is to find a function 
ig  of the number of failures experienced, such that the sequence iii gTZ =  

transformed from interfailure times iT  is approximately trend-free. The idea is 
that when iZ  are approximately identically distributed, kernel estimation 
methods can be used. For example, a possible form of ig  is igi 21 αα += . 

2. use a kernel estimator to estimate the distributions of the interfailure times. For 
any general kernel )(zK  define )()( 1

h
z

hh KzK = , where h is a scaling parameter. 
A kernel function )( jh zzK −  is centred around each observation iz . The kernel 
density estimator (the estimated probability density) is obtained by averaging 
these kernel functions: ∑

=

−=
n

j
jh zzKzf

1
)()(� . A density function for the 

interfailure time is obtained by making the reverse transform iii gZT = . 

Barghout et al. tried Gaussian, double exponential and log-normal kernels, of which the 
log-normal kernel showed the best results with the data sets used. 

This model has several good properties. As a nonparametric model, no specific 
distribution has to be assumed; this makes the model adaptable, because software 
development projects vary widely and often there is no good reason for adopting a given 
probability distribution for the interfailure time. 

3.4 Bayesian models 

Bayesian models are based on Bayesian statistics, where relevant parameters have a 
prior distribution which is then updated by evidence through the likelihood function. 

Bayesian models have several desirable characteristics for software reliability 
assessment: 

• It is rather easy to incorporate evidence from many sources, e.g. experts, tests, 
operational data etc. 

• Bayesian models work also when there are no positive instances (e.g. when no 
failures have been observed). 
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The traditional way of doing statistics, which does not use the Bayesian idea of priors, is 
often called frequentist. 

3.4.1 Bayesian versions of frequentist reliability models 

In principle, most statistical models can be made Bayesian by assuming some prior 
distribution(s) to its parameters and then finding a likelihood function implied by the 
model to yield a posterior probability distribution to the variables of interest. This is a 
popular approach in the software reliability modelling literature. 

There have been many reformulations of the Jelinski-Moranda deeutrophication model 
(section 3.3.1) in Bayesian terms, e.g. [Langberg and Singpurwalla 1985], who assume 
that the parameters of the Jelinski-Moranda model are themselves random variables, or 
Csenki [1990], who assumes the number if initial faults to be s-independent and 
Poisson-distributed, and the per-fault failure rate s-independent and gamma-distributed. 

Becker and Camarinopoulos [1990] propose a Bayesian model that allows the 
possibility that, after some debugging, the program contains no errors. Their failure 
intensity function is exponential. The idea is that, corresponding to each failure and the 
respective correction, an update of the failure rate takes place. This is facilitated by 
having conjugate priors for the failure rate. The resulting model includes an estimator 
for the probability that a program still contains errors, which is an upper bound for the 
failure probability. 

3.4.2 Littlewood-Verrall model 

This model [Littlewood and Verrall 1973] is perhaps the best-known Bayesian software 
reliability model. The distribution of failure times is assumed to be exponential, with the 
failure rate distributed as a gamma distribution in the prior. 

The following assumptions are made: 

• Successive execution times between failures, iX �s, are assumed to be 
independent exponential random variables with parameters iθ , ni ,,1K= . 

• The iθ �s form a sequence of independent random variables, each with a gamma 
distribution with parameters σ  and )(iψ . )(iψ  is an increasing function of i, 
and describes the quality of the programmer and the difficulty of the task; for a 
skilled programmer, )(iψ  increases faster. 
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• The software is operated in a manner similar to the anticipated operational 
usage. 

The marginal distributions for the times between failures, ix �s, are Pareto distributions 
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Their joint density is thus the product 
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Littlewood and Verrall also derive a posterior distribution for the parameters iθ . They 
suggest a linear and a quadratic form for )(iψ : ii 10)( ββψ +=  or 2

10)( ii ββψ += . The 
failure intensity functions for these forms are, respectively, 
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23

02 βσβν −= . 

3.4.3 Other Bayesian models 

Basu and Ebrahimi [2003] propose a model with exponentially distributed interfailure 
times, driven by a piecewise constant failure rate. The failure rate changes at each 
failure (reflecting the assumption that the software is then debugged and revised). A 
Markovian martingale process prior is assumed on the failure rate. This martingale 
process is driven by hyperparameters, for which prior distributions are specified. The 
posterior and predictive quantities of interest are estimated with Markov chain Monte 
Carlo (MCMC) sampling. 
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A problem with this model is that the failure rate is martingale, i.e. no improvement is 
assumed after a failure (and correction). A more realistic assumption would be a 
tendency towards improvement at each failure. 

Cid and Achcar [1999] propose a non-homogenous Poisson process model, which is 
based on the exponentiated-Weibull form intensity function 
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This intensity function is very flexible, and with different choices for the parameters α , 
θ  and σ  will give failure intensity functions with different behaviors, among them  
nonmonotonic ones. Nonmonotonicity might arise in the course of software 
development due to faults introduced by software updates, and in the course of use due 
to changing  operating conditions. However, the nonmonotonic forms in this paper are a 
bathtub form and an unimodal form. These don�t seem to reflect any behaviour that a 
software might possess. 

Zegueira [2000] proposes a model with failure intensity functions iλ  that are constant 
between corrections, and decreasing from correction to correction. He asserts a joint 
distribution for each two consecutive failure rates, with a gamma prior distribution. The 
probability density of the next failure rate can be derived from the one for the previous 
failure rate, the joint density, and the observation of failure time, and thus can be 
applied sequentially. The prior likelihood function for the length of the first interval (the 
time to the first failure) has an exponential prior distribution, and the predictive density 
for length of the ith  interval (the time from 1−i th failure to the ith one) is calculated as 
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3.5 Special-purpose models 

Several models have been developed to handle some specific aspect or situation in the 
software lifecycle. 

Sometimes running a software is stopped even though the software has not failed. Such 
non-failure stops can occur e.g. in systems with periodic tasks, which are based on 
handling of interrupts. Non-failure-stops can be viewed as a type of censored data. [Cai 
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1997] develops censored forms of several software reliability models, such as Jelinski-
Moranda (section 3.3.1) and Littlewood-Verrall (3.4.2) models.  

In finite-failure models, it would greatly help if the number of remaining faults could be 
estimated. [Campodónico and Singpurwalla 1994] develop a Bayesian model, based on 
a non-homogenous Poisson process (the logarithmic-Poisson model); their approach can 
be used with other software reliability models, too. [Cai 1998] develops a static 
frequentist model for this purpose, and also a Bayesian version of it. 

Most of the existing software reliability growth models deal with time as a continuous 
variable (either in calendar time, clock time or in execution time). However, there are 
systems, such as bank transaction processing systems, where reliability should be 
measured in terms of transactions successfully handled. Furthermore, there are systems, 
such as rocket control software, where it is more natural to measure reliability in how 
many rockets can be successfully launched. Such systems require a discrete conception 
of time, in terms of number of runs of the software. [Cai 2000] develops a conceptual 
framework for modelling these kinds of situations, and proposes three methodologies, 
based on probabilistic, Bayesian and fuzzy notions, respectively. 

Code coverage (the proportion of code that some test actually reaches) in testing may 
affect reliability estimates significantly: testing may reach saturation where no new 
parts of code are actually tested. Then, reliability estimates relying entirely on 
testing/execution time may over-estimate the program�s reliability. [Chen et al. 2001] 
propose a scheme where test coverage information is collected, and execution time 
between test cases, which neither increases code coverage nor causes a failure, is 
reduced by a parameterized amount. They show that overestimation of reliability is 
corrected in two case studies. 
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4. Software reliability models 
These models are meant to predict software reliability when the software is in 
operational use. 

4.1 Homogenous Poisson model 

When using a Poisson process to describe the number of failures in a time period, the 
following assumptions are made: 

• The time intervals between two consecutive failures are independently and 
exponentially distributed. 

• The expected value of the number of failures in a time interval depends only on 
the length of the interval and not its start point.  

A simple Poisson distribution can be used as the likelihood function  
),,|( feb mttdatap :  

),(~),,|,,( ,, dfebdedbd tPoissonmttmttp ∆λ  (35)
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Here dm failures occur in the data in the time period that lasts for bdedd ttt ,, −=∆ . Note 
that the probability distribution doesn�t directly depend on bdt ,  or edt , ; in other words, 
the model is homogenous with respect to time. Note also that the impact of the predicted 
failure distribution (given by the model) is wholly absorbed in the parameter λ.  This is   
the model used in [Helminen, 2005]. 

The model has several drawbacks:  

• it is unrealistic to suppose that the likelihood would be homogenous wrt. time, 
because the number of software faults causing the failures decreases with time, 
with the faults most commonly causing failures being corrected first (see section 
2.2).  Of course, if the software exhibits no failures, this point is moot. 
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• it is also unrealistic to assume that the failures would occur homogenously wrt. 
time in the sense that the time between failures would be independently 
exponentially distributed. On the contrary, it is presumable that the failures 
would occur in clusters, when the operational conditions that cause an error to 
activate occur. 

4.2 Other frequentist models 

Baker [1988] considers the situation where many copies of the program are run at many 
different user sites with the support of a software service organization. The organization 
provides both preventive service (fixes to known faults are provided to all user sites) 
and corrective service (for users that encounter faults). The number of users 
(installations) may vary with time. His special focus is the effect of service organization 
on software reliability. 

A fixed number of bugs is assumed. Separate models for first discovery time (the time it 
takes to come across the bug at least at one site) and total discovery time (discovery of a 
particular fault at many user sites). He proposes an exponential distribution for the first 
discovery time, and obtains a formula for )(tn , the cumulative number of faults found 
so far. 

4.3 Bayesian reliability models 

Cukic and Chakravarthy [2000] propose a Bayesian framework for reliability 
assessment. They formulate a model directly for reliability, that is, the probability that 
the software will fail in the specified time. The priors are assumed to follow a beta 
distribution. The priors reflect the application of verification and validation activities. 

The Bayesian approach has many good features. The most important of these, in this 
case, is that it allows incorporation of program executions observed in the operational 
environment, even when they are failure-free (that is, no failure observations are 
available). 
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5. Application to the operational data problem 
Our problem, as stated in section 1, is to update the failure probabilities by operational 
data records.  

A major problem with all models is that techniques like the ones described in section 3 
can only support relatively modest reliability claims [Littlewood 2005]: to state that 
mean time to failure is x hours might require a total time on test of tens or hundreds 
times x hours. Littlewood claims that these limitations of the models are inherent, and 
will not be eliminated by newer and cleverer modelling. 

In an earlier paper, Littlewood and Strigini [1993] show that when the time to next 
failure is exponentially distributed, and software has been tested without failures for 
time 0t , the reliability function is 

0

0
0 ) in time failures no|(

tt
t

ttR
+

=  (37)

That is, if we want a 50 % certainty that the program doesn�t fail in t hours, we have to 
test it for t hours. There is no solution to this problem in sight, because the problem is 
inherent in the probabilistic formulation. 

5.1 Requirements on the data 

To properly analyze a data sample for reliability purposes, the data must meet some 
prerequisites. 

There are two forms of data that are suitable for statistical analysis of reliability: 

• Event data, or failure reports. This data should contain date and time 
information, information about the kind and severity, and downtime of each 
failure. 

• Time series data, or number of failures per time interval. There should be 
information about the time periods that these cover, and the time intervals 
should preferably be of uniform length. There might be several data series, for 
example one for each kind of failure or one for each failure severity. 
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The data should cover a time period as completely as possible. For example, if the data 
consists of failure reports from March 2003 to September 2005, all the failure reports 
from this period should be included. 

The metadata associated with the data should contain information about the units used, 
what equipment the failure data covers, and explanations about the kinds of failure and 
their severity. 

5.2 Evaluation and comparison criteria for software reliability 
models 

There are several ways in which a model�s goodness can be evaluated [Iannino et al. 
1983]: 

• Predictive validity. This is the capability of the model to predict future failure 
behaviour during either the test or the operational phases from present and past 
failure behaviour in the respective phase. This can be further divided [Lyu and 
Nikora 1992] to  

o Accuracy, as measured by prequential likelihood (section 5.2.5) 

o Bias, as measured by the U-plot (section 5.2.1) 

o Trend, or systematic change of bias from small to large values of failure 
time, as measured by the Y-plot (section  5.2.2) 

o Noise, as measured by the relative change in the predicted failure rate. 

• Capability. The ability of the model to estimate with satisfactory accuracy 
quantities needed by software managers, engineers, and users in planning and 
managing software development projects or controlling change in operational 
software systems. These quantities include, e.g., present reliability, expected 
date of reaching a reliability objective, and cost required to reach that objective. 

• Quality of assumptions. If an assumption made by a model can be tested, the 
degree to which it is supported by actual data; if it is not possible to test an 
assumption, its plausibility from the viewpoint of logical consistency and 
software engineering experience. Also the clarity and explicitness of an 
assumption should be judged. 
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• Applicability means the usefulness of the model across different software 
products (size, structure, function), different development environments, 
different operational environments, and different life cycle phases. 

• Simplicity. The simplicity and inexpensiveness of collecting the data that is 
required to particularize the model. Conceptual simplicity in that the expected 
audience of the model (software engineers, project managers, reliability 
specialists, officials) can understand the nature of the model and its assumptions, 
so that they can determine its applicability to the particular problem and the 
extent to which the model may diverge from reality in the intended application. 
Simplicity of implementation so that it may become a practical management and 
engineering tool. 

• Ease of measuring parameters [Lyu and Nikora 1992]. This concerns the 
number of parameters a model requires and the difficulty in estimating them. 

• Insensitivity to noise [Lyu and Nikora 1992]. The ability of a model to make 
accurate predictions even when failure data is incomplete or contains 
uncertainties. 

The techniques for model evaluation reviewed in this section, such as the U-plot, Bayes 
factor, and prequential likelihood ratio, work only when there are (positive) instances of 
the event. In the case of software faults, this means that at least some software failures 
should have occurred and should have been observed. In the case of reliable 
programmable devices in operational use, this is often an unrealistic assumption. Thus, 
the these methods are better suited to assessing software reliability growth models that 
address mainly the development phase of the software lifecycle. 

There are other methods of model validation and comparison, such as cross-validated 
likelihood [Basu and Ebrahimi 1998], which will not be discussed in this report. 

5.2.1 U-plot 

The U-plot (see, e.g., [Brocklehurst and Littlewood 1992]) is used to determine if the 
postulated cumulative distribution function, )(� tF , is close to the true distribution )(tF  
(provided by observations). It is known that the random variable )(tFU =  has a 
uniform distribution over the interval [0,1]. Thus, if the realizations it  (e.g. failure 
times) are observed and )(�

ii tFu =  are calculated, iu  should be a realization of a 
uniform random variable. Any departure from uniformity indicates deviation of )(� tF  
from )(tF . 
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To find the departures (if any) the sample distribution function of the transformed 
observations iy  is plotted. The plot is a step function, consisting of the numbers 

Muu ,...,1  on the interval [0,1]. Then, plot an increasing step function, each step of 
height )1(

1
+M  is plotted at each iu  on the abscissa. 

The closer this plot is to the line of unit slope, the closer )(� tF  is to )(tF .  On the other 
hand, any systematic departure from unit slope indicates a misspecification of the 
probability distribution (that is, a reasonably consistent bias). 

This can be developed into an operational measure by finding the Kolmogorov distance 
(maximum absolute vertical deviation) between the perfect prediction line of slope 1 
and the actual plot [Lyu and Nikora 1992]. 

5.2.2 Y-plot 

The Y-plot measures the consistency of a model�s bias; a model might be initially too 
pessimistic and eventually too optimistic concerning the number of faults in the 
software, for example. 

This is the result of the sequence of transformations of )(�
ii tFu =  as defined in the 

previous section as follows: 

)1ln( ii ux −−=  (38)
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Where Mi ≤ .  

This can be made into an operational measure by finding the Kolmogorov distance 
( )iii

yx −max  between the variables defined above. 

5.2.3 Bayes factor 

The Bayes factor [Gelman et al. 1995] is the formal Bayesian model comparison 
criterion. Let two competing models be 1H  and 2H , respectively. The Bayes factor is 
the ratio of marginal likelihoods of the two models under comparison: 
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Here iiiiimim dHpHttpHttp θθθ )|(),|,,()|,,( 11 ∫= KK . 

Computing Bayes factor can be computationally demanding. For a review of estimating 
the marginal likelihoods based on draws from the posterior distributions, see [DiCiccio 
et al. 1997]. 

5.2.4 Prequential predictive ordinate 

The prequential predictive distribution (PPO) ),,...,|( 11 ijj Htttp −  is the distribution of 
failure time jT  conditional on only those failure times observed before the ith failure, 
and the assumed model [Basu and Ebrahimi 2003]. A higher value of PPO indicates that 
the observed value of jT  is more likely under the model (compared with some other 
model), and is preferred. 

5.2.5 Prequential likelihood and prequential likelihood ratio 

Prequential likelihood measures the accuracy of a model [Lyu and Nikora 1992]. Let the 
probability density function given by model A to the data be )(tf A . Furthermore, let 

mtt ,...,1  be observed occurrences of failures (or whatever phenomenon we are trying to 
model). The prequential likelihood of a model is 

∏
=

=
M

j
jAA tfPL

1

)(  (41)

This product is usually quite close to zero, and a more perspicuous measure is obtained 
by taking the logarithm of the prequential likelihood. 

The prequential likelihood ratio [Brocklehurst and Littlewood 1992] compares two 
models� abilities to predict a particular set of data. Let the probability density functions, 
given by models A and B to the data, be )(tf A  and )(tfB , respectively. The prequential 
likelihood ratio AB

iPLR  is defined as 
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This ratio should increase with increasing number of observations if model A is superior 
to model B, and decrease otherwise. 

It is easy to see that prequential likelihood ratio is a simplified version of the Bayes 
factor (section 5.2.2): if the observations are independent and if the probability space is 
discrete, they coinside. In most cases, however, prequential likelihood ratio is easier to 
compute. 

5.2.6 Akaike information criterion 

The Akaike information criterion (AIC) can be expressed in the following manner 
[Khoshgoftaar and Woodcock 1991]: 

( )
( )function likelihood  themaximizing when fitted parameters ofnumber 2

estimators likelihood maximumat function  likelihood log2
+
−

 (43)

5.3 Some comparisons 

In this section, some representative comparisons of software reliability models are 
reviewed. Other comparisons, not treated in this section, include [Schick and 
Wolverton, 1978], [Selby, 1990], [Pham et al. 1999], and [Pham 2003]. 

It would be most interesting to carry out a meta-analysis of the results of the individual 
studies. This, however, is beyond the scope and the resources of the present study. 

[Brocklehurst and Littlewood 1992] was carried out on the CSR1 data set, collected 
from a single-user workstation at the Centre for Software Reliability. It represents some 
397 user-perceived failures such as genuine software failures, usability problems, 
inadequate documentation etc. 

The models they considered were Jelinski-Moranda, Goel-Okumoto, Musa-Okumoto, 
Duane, Littlewood (not described in this report), Littlewood nonhomogenous Poisson 
process (not described in this report), Littlewood-Verrall, and Keiller-Littlewood (no 
described in this paper). 

The criteria they used were the U-plot (section 5.2.1) and prequential likelihood ratio 
(section 5.2.4). In this comparison, Littlewood-Verrall and Littlewood-Keiller models 
fared best. 
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[Basu and Ebrahimi 2003] was carried out on the Naval Tactical Data System (NTDS) 
dataset, originally introduced in Jelinski and Moranda [1972] and since then widely 
used in the literature. Basu and Ebrahimi used the interfailure data from production 
phase, which consists of 26 observations.  

The models they considered were Jelinski-Moranda (section 3.3.1), Goel-Okumoto 
(3.2.1), Littlewood-Verrall (3.4.2), Homogenous Poisson Process (4.1), Musa-Okumoto 
(3.2.2), Weibull order statistic (3.3.4), Singpurwalla and Soyer (not in this report), and 
three models of their own, which they named single-alpha, exchangeable alpha and 
equal variance. They used log-marginal likelihoods of the models as the goodness 
criterion. Their single-alpha and exchangeable-alpha models fared best, with Jelinski-
Moranda and Goel-Okumoto models being rather close. 

[Khoshgoftaar and Woodcock 1991] utilized a data set from an IBM computer system 
project. The project involved more than 50000 lines of code, mostly in assembler with a 
small amount of C code. They considered the following models: Goel-Okumoto (section 
3.2.1), S-shaped (3.2.5), K-stage Erlangian, K = 3 or K = 4 (3.2.7), and the Duane 
model (3.2.8). 

The S-shaped model was consistently better than the other models throughout the 
different phases of the comparison (i.e. through different phases of a software 
development project), and was thus the winner of this comparison. 

5.4 Selection of model 

There are several ways a model can be selected. 

One is to use the comparison of the different models presented in section 5.2 as a basis, 
and then proceed to select the actual model by some systematic method. For example, 
the methods of decision analysis [Clemen 1996] are suitable for this. 

Another method is to find out how well the model matches real operational data, and 
then select the method that is best by some selected criterion, e.g. the Akaike 
information criterion. This was the approach of [Khoshgoftaar and Woodcock 1991]. 

A third approach is to find a set of models whose reliability estimates are accurate and 
stable enough, and conservatively set the current failure probability as the maximum of 
the individual failure probabilities given by the models [Stringfellow and Andrews 
2002]. 
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A fourth approach [Lyu and Nikora 1992] is to first select a basic set of models, and 
prune out those models whose prediction biases (as measured e.g. by the U-plot) do not 
tend to cancel out. Then, each model is separately applied to the failure data. The 
resulting models are combined by forming a linearly weighted sum of the probability 
distribution functions. These weights should be nonnegative and sum up to 1; some 
proper choices for the weights include equal weights (yielding ordinary mean), medium-
oriented linear combination (where the model is selected whose prediction lies between 
optimistic and pessimistic values), weighting the component models by the predictive 
accuracy they have shown so far, etc. 



 

 50  

6. Summary and conclusions 
This report is about the problem of statistically forecasting the number of software 
failures in a given time interval, given a history of previous failures (including the 
information that none have occurred). An emphasis in the review has been put on the 
form of the likelihood function which represents the probability that the data is what it 
is, given that the model has a specific parametric form. 

A multitude of models have been proposed in the literature, but each has its drawbacks, 
some being shared by most models. A common problem with the reviewed models is 
that none allow for non-existent failure data, i.e., a software usage history with a known 
duration of time in operational use with no detected failures. Another problem shared by 
the models is that they support only rather modest reliability claims. There is no 
solution to this problem in sight. 

Existing software reliability models don�t take application complexity or test coverage 
(the proportion of all possible or plausible inputs that have been actually tested) into 
account [Whittaker and Voas 2000]. Things are furthermore complicated because the 
software under scrutiny never runs alone but is a part of a system consisting of 
hardware, operating system, interfaces (e.g. device drivers and communication 
interfaces), and possibly other programs. 

Most of the reviewed models also share the feature that they have been developed to 
model reliability growth. This is appropriate when the program has been developed by a 
well-disciplined team and development-time fault reports, or at least fault statistics, are 
available. However, from the software users� point of view, it is more realistic to 
assume that only operational records are available. 

Some recommendations can be made on applying software reliability models: 

• Models that take into account software architecture, software complexity, test 
coverage, conduct of verification and validation, and structured expert opinion 
should be given priority. 

• In applications requiring high dependability, software reliability models should 
be used only in conjunction with other methods of ensuring sufficient quality � 
otherwise the amount of testing grows prohibitively large. These methods 
include, but are not limited to, formal methods, software inspections and 
reviews, static analysis of code, and systematic software testing. 
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• It would seem that Bayesian models hold more promise in them than traditional 
frequentist models. An advantage of Bayesian approaches is that they allow the 
incorporation of different kinds of information, including human judgment. 

• One should not rely on a single model, but rather choose a set of models whose 
results are combined in one way or another. 
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