

ESPOO 2006 VTT WORKING PAPERS 63

Methods and problems of
software reliability estimation

Ilkka Karanta

ISBN 978-951-38-6622-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)
Copyright © VTT 2006

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 6027

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 6027

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 6027

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Published by

Series title, number and
report code of publication

VTT Working Papers 63
VTT�WORK�63

Author(s)
Karanta, Ilkka
Title
Methods and problems of software reliability estimation
Abstract
There are many probabilistic and statistical approaches to modelling software reliability.
Software reliability estimates are used for various purposes: during development, to make the
release decision; and after the software has been taken into use, as part of system reliability
estimation, as a basis of maintenance recommendations, and further improvement, or a basis
of the recommendation to discontinue the use of the software. This report reviews proposed
software reliability models, ways to evaluate them, and the role of software reliability
estimation. Both frequentist and Bayesian approaches have been proposed. The advantage of
Bayesian models is that various important but nonmeasurable factors, such as software
complexity, architecture, quality of verification and validation activities, and test coverage are
easily incorporated in the model.
Despite their shortcomings � excessive data requirements for even modest reliability claims,
difficulty of taking relevant nonmeasurable factors into account etc. � software reliability
models offer a way to quantify uncertainty that helps in assessing the reliability of a software-
based system, and may well provide further evidence in making reliability claims.

ISBN
978-951-38-6622-8 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Working Papers
1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

13107

Date Language Pages
December 2006 English 57 p.

Name of project Commissioned by
SAFIR/PPRISMA06 VYR

Keywords Publisher
Software reliability, Bayesian software, modelling,
reliability models, Poisson models, Bayesian models,
errors, faults, failures, software life-cycle

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 5

Preface
This report has been prepared as a part of the PPRISMA project. PPRISMA (Principles
and Practices of Risk-Informed Safety MAnagement) was carried out in SAFIR, the The
Finnish Research Programme on Nuclear Power Plant Safety, which lasted from 2003 to
2006. The research programme was founded by Valtion Ydinjätehuoltorahasto.

The manuscript was commented by Jan-Erik Holmberg and Urho Pulkkinen, which is
gratefully acknowledged. Jan pointed out that usually operational data does not come
from a single source but from several installations that possibly operate in different
circumstances; he also noted that most modern embedded software consists of at least
two components � the platform and the application � which have different reliability
characteristics.

 6

Contents

Preface ...5

List of symbols, concepts and abbreviations ...8

1. Introduction..11

2. Some modelling considerations ...15
2.1 Errors, faults, failures and reliability..15
2.2 Reliability characteristics of software ..17
2.3 Reliability and the software lifecycle ...19
2.4 Sources of software reliability evidence...20

3. Software reliability growth models..21
3.1 General considerations ...21

3.1.1 Reliability model classification..21
3.1.2 Frequentist versus Bayesian models for likelihood22
3.1.3 Standard assumptions...22

3.2 Nonhomogenous Poisson models...23
3.2.1 Goel and Okumoto�s model ...24
3.2.2 Musa-Okumoto model ...25
3.2.3 Schneidewind�s model ...25
3.2.4 Musa�s basic execution time model ...26
3.2.5 S-shaped model ..28
3.2.6 Inflection S-shaped growth curve model ...29
3.2.7 K-stage Erlangian (Gamma) growth curve model29
3.2.8 Duane model ..30
3.2.9 Pham-Nordmann-Zhang model..30

3.3 Other frequentist models ..31
3.3.1 Jelinski-Moranda de-eutrophication model..31
3.3.2 Geometric model..32
3.3.3 Hyperexponential model ..32
3.3.4 Weibull model..34
3.3.5 Barghout-Littlewood-Abdel-Galy model...35

3.4 Bayesian models...35
3.4.1 Bayesian versions of frequentist reliability models36
3.4.2 Littlewood-Verrall model...36
3.4.3 Other Bayesian models ..37

3.5 Special-purpose models..38

 7

4. Software reliability models ..40
4.1 Homogenous Poisson model ..40
4.2 Other frequentist models ..41
4.3 Bayesian reliability models ..41

5. Application to the operational data problem..42
5.1 Requirements on the data ...42
5.2 Evaluation and comparison criteria for software reliability models43

5.2.1 U-plot ...44
5.2.2 Y-plot ...45
5.2.3 Bayes factor..45
5.2.4 Prequential predictive ordinate ..46
5.2.5 Prequential likelihood and prequential likelihood ratio46
5.2.6 Akaike information criterion..47

5.3 Some comparisons..47
5.4 Selection of model..48

6. Summary and conclusions ...50

References ...52

 8

List of symbols, concepts and abbreviations
cumulative distribution function

)(xF
For a random variable x , the probability
[]xXP ≤

cumulative failure function
)(tµ

the average cumulative failures associated with
each point of time: [])()(tMEt =µ . 0)0(=µ .

cumulative number of failures
)(tM

the total number of failures experienced up to
time t

failure the inability of a system or component to
perform its required functions within specified
performance requirements

failure intensity function
)(tλ

the derivative (rate of change) of the cumulative
failure function

failure rate function

t
tTttTtP

∆
>∆+≤≤)|(

the probability that a failure per unit time occurs
in the interval []ttt ∆+. , given that a failure has
not occurred before t

fault an incorrect step, process or data definition in
a software artefact

finite failure model a model for which the expected number of
failures,)(tµ , remains finite as ∞→t . This
means that at

t
=

∞→
)(lim µ for some 0>a .

hazard rate
)(tz t

tTttTtP
t ∆

>∆+≤≤
→∆

)|(lim
0

, the limit of failure

rate function at 0.

I the number of time intervals in the observation
range

infinite failure model a model for which the expected number of
failures,)(tµ , grows without bound as ∞→t .

 9

Kolmogorov distance For two vectors ()Mxx ,...,1 and ()Myy ,...,1 ,
()iii

yx −max

m ,),(21 ttm , im the number of failures in the time interval []21 , tt
or the ith time interval

mean failure function same as cumulative failure function

MTTF mean time to failure

)(tn ,),(21 ttn , in the number of faults detected so far, in time
interval []21 , tt (the same fault can give rise to
many failures, and faults can be detected even if
they haven�t yet caused a failure), or in the ith
time interval.

N see total number of faults

N the total number of faults in the software
initially

NHPP nonhomogenous Poisson process

)(tν The number of undetected faults at time t

observation range the period of time from which the reliability data
stems.

reliability growth model a model that predicts, given a history of failures
and corrective actions, the probability that the
software under consideration will work
failurelessly for the given time period under the
given operational conditions. Typically applied
to make the decision to release the software
(when a satisfactory level of reliability has been
reached).

reliability model a model that predicts the mean time to failure
[Hamlet 1992]. Typically applied after
debugging, when the program has been tested,

 10

and no failures have been observed.

T the time to failure

iτ The time between the i-1th and ith software
failure

total number of faults
N

the total number of faults in the software
(usually meaningful only if we assume that new
faults aren�t introduced to the software by
maintenance)

 11

1. Introduction
Dependability is defined [Laprie 1992] as the trustworthiness of a computer system such
that reliance can justifiably be placed on the service it delivers. Dependability has
several aspects [Sommerville 2001]:

• availability, or readiness for usage. Informally, the probability that the system
will be up and running and able to deliver useful services at any given time.

• reliability, or continuity of service. Informally, the probability, over a given
period of time, that the system will correctly deliver services as expected by the
user.

• safety, or avoidance of catastrophic consequences on the environment.
Informally, the likelihood (usually judgmental) that the system will cause
damage to people or its environment.

• security, or prevention of unauthorized access and/or handling of information.
Informally, the likelihood (usually judgmental) that the system can resist
accidental or deliberate intrusion.

This report concentrates on reliability, leaving availability, safety and security issues
aside.

When estimating the reliability of software, two main paths can be taken. One is to
analyze the code by means of static analyzers (see e.g. [Khoshgoftaar and Munson
1990]), model checkers, theorem provers, compilers etc. Another is to analyze the
software from an external point of view; here, the main sources of input are

• testing; software testing, including unit, integration and system testing, provides
much data about the program�s reliability if test coverage is good, tests are
systematically conducted, and at least part of the testing is done under realistic
operating conditions

• expert opinion; this preferably comes from experts that haven�t participated in
the development of the software (to avoid myopy), but are experienced in
software development (including architecture and code analysis issues), have
access to the software�s source code and documentation, may carry out static
analysis, and have a good understanding of the requirements and operating
conditions of the software

 12

• operational data (failure reports etc.); if high-quality operational data is available
from a sufficiently long time period, it provides a solid ground for stochastic
analysis of reliability.

Reliability estimates of software can be used in a number of ways, among them:

• to estimate the reliability of a total system of which the software is a part

• to allocate resources during development and maintenance

• to estimate maintenance costs.

We consider the problem of arriving at a reliability estimate for a piece of software.
The assumed end use of the reliability estimates is risk and reliability analysis of
software-based systems, e.g. nuclear power plants. We assume that informed expert
opinion exists about a software�s reliability, and try to update this reliability estimate
with information contained in operational data records.

Probability estimates can be arrived at in three, mutually non-exclusive ways:

• Subjective degrees of belief tell how much trust we (or experts, or whoever made
the estimate) put on that the event actually occurs. This is often the best way of
arriving at probability estimates when data is scarce or nonexistent, or when the
situation involves very complex elements.

• Propensities tell how probable the event is based on some formal model(s). The
model is usually mathematical or physical. For example, after making a model
for a die, we may arrive at the conclusion that the probability of the die arriving
on each of its faces is equal. This is often the best way to arrive at probability
estimates when data is scarce but detailed modelling is feasible.

• Frequencies tell how many times (relatively speaking) the event actually
occurred in a dataset. This is often the best way to arrive at probability estimates
when data is abundant.

In Bayesian statistics, there are two kinds of probabilities of an event. Prior probability
expresses the probability estimate before a new event (measurement, arrival of data or
such) takes place. Posterior probability expresses the probability estimate after the
event.

 13

Subjective probabilities (expert opinions) are often used as prior probabilities, which are
updated by likelihood derived from operational data to yield the posterior probabilities.
This is the case in the two-stage process described by Helminen (2005) (see also
[Helminen and Pulkkinen 2003]), which consists of

1. a judgmental reliability estimate by experts. This is used as a prior probability in
the Bayesian setting.

2. utilizing prior probability, operational data and test results in finding the
posterior reliability estimates.

Figure 1 illustrates the process in IDEF0 notation.

Figure 1.The process of Bayesian reliability assessment described in [Helminen 2005].

To state the problem in Bayesian terms,

)(
),,(),,|(

)|,,(
datap

mttpmttdatap
datamttp febfeb

feb = (1)

Here the event feb mtt ,, means the prediction that the software will fail fm times in
the time period starting from time bt and lasting until time et ; if the different failure
modes would be counted separately, a separate index term would be inserted to the

 14

event. Note that the reliability of the system is a special case of this formulation: it is the
probability that 0=fm .

The event data means that the operational data is what it is; if the data would be in time
series form, it might indicate that software failed dm times in the time period starting at
time bdt , and lasting until time edt , ; there might of course be data for several time
periods. The data might alternatively consist of failure events with timing information.

The prior probability),,(feb mttp is, as stated above, arrived at through expert
judgment. The prior probability for the data,)(datap , can be thought of as a scaling
factor, for discounting exceptional circumstances.

This report mainly focuses on finding an estimate for the likelihood function
),,|(feb mttdatap . In what follows, the information about feb mtt ,, is usually

embedded in models: we try to find the likelihood of the data given that we have some
model with which to predict the number of failures. Then, the problem essentially boils
down to finding a suitable model class, and estimating the parameters of the model by
maximizing the likelihood function wrt. the parameters.

 15

2. Some modelling considerations

2.1 Errors, faults, failures and reliability

First, we consider what we would actually want to model, and what we mean by
software failure. Below, we follow the IEEE terminology [IEEE 90] unless stated
otherwise.

A fault (the term bug can be used interchangeably) in a software artefact is an incorrect
step, process, or data definition. Under suitable circumstances, a fault may cause a
failure, or �the inability of a system or component to perform its required functions
within specified performance requirements�; that is, a deviation from the stated or
implied requirements. Between failures, the fault is dormant.

Failures have different consequences, some being harmless and others perhaps fatal.
Failures can be classified into severity classes, e.g. catastrophic, major, minor. The
definitions of severity classes vary from system to system. An example classification is
given in Table 1 [Donnelly et al. 1996].

Table 1. Severity classification based on service degradation.

Severity classification Definition Example

Catastrophic Entire system failed, no
functionality left

The robot doesn�t function
at all

Severe A high-priority customer
feature is not working

The robot must be operated
manually

Significant Customers must change
how they use the system

The robot�s settings cannot
be changed remotely; if
they are to be changed,
they must be configured
from the control panel

Minor Problem is not noticeable
by customers

Some maintenance
functions are not currently
performed

 16

An error is a �discrepancy between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition. Examples
include exceptional conditions raised by the activation of existing software faults, and
incorrect computer status due to an unexpected external interference. The term is
especially useful in fault-tolerant computing to describe an intermediate stage in
between faults and failures.� [Lyu 1996b]

Besides software faults, failures may also be caused by improper input either by a
human actor or some component of the system (e.g. a measurement device), and by
failing hardware or other equipment.

How often faults manifest themselves as failures depends on how the software is used.
The operational profile of a system is �the set of operations that the software can
execute along with the probability with which they will occur� [Lyu 1996b].

Reliability is �The ability of a system or component to perform its required functions
under stated conditions for a specified period of time�. Stated in slightly different terms
[Sommerville 2001], it is the probability that the system or components performs its
required functions under stated conditions for the specified period of time:

),,(eb ttfailp ¬ (2)

This probability is, however, the object of interest mainly when the probability of
failure-free survival of mission is of concern; in such situations, there is a natural
mission time. Examples are airplane flights, space flights etc. Other measures are more
appropriate in other situations, and include

• The mean time to next failure (MTTF). This is often used to determine if the
software is reliable enough that it can be released.

• The expected number of failures in the time interval of interest. This is also
called rate of occurrence of failures (ROCOF). It is the appropriate measure for
a system which actively controls some potentially dangerous process
[Littlewood and Strigini 1993].

• Probability of failure on demand. This is suitable for a safety system, which is
only called on to act when another system gets into a potentially unsafe
condition. An example is an emergency shutdown system of a nuclear reactor
[Littlewood and Strigini 1993].

 17

• Availability. This could be used in circumstances when the losses incurred as a
result of system failure depend on the length of time that the system is
unavailable. Examples: airline reservation systems, telephone switches
[Littlewood and Strigini 1993].

2.2 Reliability characteristics of software

From the reliability point of view, software differs from hardware in many ways. For
example, software doesn�t age in the way a hardware component does. Thus,
duplicating a system doesn�t lead to increase in reliability unless the duplicate is
designed and programmed separately.

Some salient features of software failures are the following (see also [Keene 1994] and
[Herrmann 1999]):

• Each software is, at least to an extent, unique. Even minor differences in the
program code might mean large differences in the behaviour of the software.
Therefore experience with the reliability of other software is of very limited use
at best.

• Software faults are caused by hidden design flaws rather than wear-and-tear or
physical failure. Therefore software faults are static: they exist from the day the
software was written (or revised) until the day they get fixed. They also tend to
be unique for each software regarding places of occurrence, mode and severity.

• Software reliability does not depend on time as such. Rather, it depends on the
amount and quality of corrections, and on how what kind of input combinations
(possibly together with some kind of state such as amount of available memory)
the software is subjected to.

• software faults causing a failure are rare. This is so because usually bugs have
been caught in the testing phase. A research study [Pham and Zhang, 1999]
states a typical commercial software application of 350000 lines of code can
contain over 2000 programming errors, that is, an average of six software faults
for every 1000 lines of code written. However, as these figures show,
commercial software may still contain many errors due to their complexity.

• External environment conditions don�t affect software reliability. Internal factors
of the software-hardware system, such as amount of memory, clock speed etc.
may affect the reliability of software.

 18

• the number of faults in a program tends to decrease with age. Faults are usually
corrected after they have been detected and identified. The most frequently
occurring faults (in terms of failure frequency) are naturally detected first, and
therefore disappear earliest. Also the significance of the fault affects repair time:
a more significant fault is prioritized and corrected promptly, whereas an
inconsequential bug may be left to stay in the system for the whole of its
lifecycle. A change in operating conditions may activate a previously dormant
fault. New faults can usually be introduced only through updates of the software;
updating the software might happen e.g. to correct detected faults, to
accommodate the use of new equipment, etc. Usually the amount of new code is
kept to a minimum, the bulk of efforts going to improving existing code. Thus,
one would expect at least the expected number of failures to decrease with time

• software faults manifest themselves only under particular conditions. For
example, when the fault is in the consequent of an if clause, the error can be
manifested only when the conditions stated by the clause are true. It seems
reasonable to assume that these operational conditions wouldn�t occur
completely randomly but would be correlated; that is, if an operational condition
giving rise to an error had occurred in the recent past, it would be likely that the
condition would occur in the near future. Naturally, it is sometimes hard to
pinpoint the exact conditions when the software fails

• a single software fault can give rise to several system errors or failures. This
may happen until the bug has been identified and corrected. Between the failures
the fault induces, it will probably give no sign of its existence

• there is a time lag from the failure to the correction of the underlying fault. This
lag is stochastic in nature, and depends on the nature of the fault, the
maintainability characteristics of the program, the abilities of program
developer(s) tasked with the repair, etc.

• in practice it has been observed [Hamlet 1992] that the mean time to failure
(measured in number of runs) of a software system in large systems is inversely
proportional to program size; this would indicate that the number of faults per
line is roughly constant.

• When the software is deployed (the operational phase), it is usually installed in
many places (e.g. devices). Although usually the software itself is identical for
each of these, operational conditions (operational profile) differ from place to
place. Therefore failure data, if collected, comes from different sources. This
also leads to many phenomena that are of interest from the modelling point of

 19

view: for example, when a bug is found and corrected, the reliability of all
installations should improve approximately at the same time due to maintenance
release.

• Two identical programs behave exactly in the same way. Therefore reliability
cannot be increased by redundancy (many clones of the same program doing the
same thing) but by diversity (different programs doing the same thing).

2.3 Reliability and the software lifecycle

The methods and needs of software reliability assessment and prediction vary by the
phase of software development lifecycle [Asad et al. 2004; Hamlet 1992]:

• at the requirements and design phases, when no implementation is available,
early prediction models can be used. Reliability must be analyzed based the
architecture and stated requirements.

• at the implementation and testing phases, software reliability assessment is
needed to make the stopping decision concerning testing and debugging: when
the mean time to failure is long enough, the software can be released. Models
most applicable here are reliability growth models.

• When the software is released, it is ordinary to assume that all observed faults
have been debugged and corrected. Thus, after release, a reliability model is
used to predict the mean time to failure that can be expected. The resulting
reliability estimate may be used in system reliability estimation, as a basis of
maintenance recommendations, and further improvement, or a basis of the
recommendation to discontinue the use of the software.

Thus, when the software is in operational use, the model to be used depends on
maintenance policies and occurrence of failures:

• If no failures are detected in the software, or if the software is not maintained, a
reliability model is most appropriate

• If failures are detected and the software is updated, a reliability growth model is
in order.

 20

2.4 Sources of software reliability evidence

As mentioned in the introduction, reliability can be defined as the probability, over a
given period of time, that the system will correctly deliver services as expected by the
user. Thus, the best measure of a program�s reliability is its operational record: when and
how it failed; this includes also information about the failure�s severity, downtimes etc.

Another source of data is the program�s test records. These, however, are not as good
sources of indicating operational reliability. This is so because in most development
projects, new features are introduced to the software almost throughout testing.
Therefore the records might imply something about the reliability of a mature feature
and something else about the reliability of a less well-developed feature.

Expert judgment about the program, often acquired in software inspections, may give
valuable insight. Sometimes, in the lack of reliable operating records, it is the only
usable source. Expert opinions, too, have their shortcomings. One is that humans are
notoriously bad forecasters [Kahneman et al. 1982], making many kinds of errors in the
process.

Also results of static analyses of the program may give valuable information about the
program�s reliability. For example, software metrics can be used [Hudepohl et al. 1996].
This topic isn�t, however, pursued further in this report.

Knowledge of how the software was constructed, such as whether a strict development
process was followed or how verification and validation were conducted, may give
valuable evidence on the software�s reliability. However, it is difficult to well express
this evidence in quantitative terms.

System architecture is also a potent source of information for reliability considerations.
Almost ubiquitously in modern software systems, at least two components can be
distinguished: the platform (operating system and other infrastructure, such as a virtual
machine), and the application program itself. This issue is not pursued further in this
report, but the reader is referred to [Go�eva-Popstojanova et al. 2001; Go�eva-
Popstojanova et al. 2005; Wang et al. 2006].

The operational profile, if known, can be a valuable input to the reliability estimation
process [Haapanen et al. 1997]. If it is known, models such as [Bai 2005] can be used.
However, determining an operational profile for a program is usually tedious, and often
difficult to do beforehand. For further details on operational profile, see [Musa et al. 1996].

Testing and maintenance policies also affect reliability modelling. However, their
impact mainly stems from their possible incompleteness or inadequacy, and would have
to be modelled separately.

 21

3. Software reliability growth models
This chapter reviews some existing software reliability growth models. These models
describe how observation of failures, and correcting the underlying faults � such as occurs
in software development when the software is being tested and debugged � affect the
reliability of software. These models are applicable also to assessing the reliability of
software in operational use, when the latest reliability estimate given by the model is used.

3.1 General considerations

Before we consider actual models, it is in order to introduce some central concepts. Let
)(tM be the (random) number of failures experienced by time t (that is, from the start

of using the system up to time t), and let its expectation be

[])()(ttME
def

µ= . (3)

When modelling software failures, it is natural to assume that)(tµ is a concave (though
nondecreasing) function of time; this assumption is not mandatory, and is broken by e.g.
the S-shaped model (see section 3.2.5). We can express the failure intensity function as

dt
tdt)()(µ

λ = (4)

3.1.1 Reliability model classification

The categorization in this chapter is based on the one presented by [Farr 1996], which in
turn owes much to the one presented in [Musa and Okumoto 1983]. However, the
present chapter considers also advances made since 1996, and has an emphasis on
finding a (Bayesian) likelihood function.

Musa and Okumoto classified models in terms of five attributes:

1. Time domain. The possible values here are ordinary (calendar) time and
execution time (that is, the amount of time that the software has been running).

2. Category. The total number of failures that can be experienced in infinite time,
which can be either finite or infinite (the possible values).

 22

3. Type. The distribution of the number of failures experienced by time t, such as
Poisson, binomial etc.

4. Class. Functional form of the failure intensity expressed in terms of time. The
most common distribution here is the exponential distribution, but also Weibull,
Pareto and gamma distributions are common. This applies only to models in
finite failure category.

5. Family. Functional form of the failure intensity function expressed in terms of
the expected number of failures experienced. This applies only to models in
infinite failure category.

Especially they classified models along the two dimensions of type and class (in the
finite failure case), or type and family (in the infinite failure case).

3.1.2 Frequentist versus Bayesian models for likelihood

Finding the likelihood function of data given a model can be accomplished in two main
ways. One is to use a likelihood function provided by an existing (frequentist) model;
thus, a frequentist model is converted to a Bayesian one. An advantage of this approach is
that the area is well-researched and a multitude of models, together with information on
their applicability and accuracy, is available. Problems with this approach are that it might
be difficult to construct a likelihood function, and that it might not be straightforward to
utilize the experts� judgments in the construction. The other is to use a Bayesian model
from the beginning. This approach has the advantage that the likelihood function is
automatically a part of the model, and thus obtaining it is a non-issue.

3.1.3 Standard assumptions

There are some assumptions that are usually made, and they apply to all the models in
this section unless otherwise stated.

1. The operational profile of the software remains constant. The software where the
data comes from is operated in a similar manner as that in which reliability
predictions are to be made.

2. Every fault has an equal chance of being encountered within a severity class as
any other fault in that class.

 23

3. The failures, when the faults are detected, are independent. This means that
failures from fault A don�t affect failure times from fault B.

4. After a failure, the fault causing it is corrected immediately and no new faults
result from the correction.

Of these, especially the last one has received considerable criticism, and models taking
into account delays in error correction and possibility of new errors have been
formulated (e.g. [de Bustamante and de Bustamante 2003]).

An important assumption, often made implicitly, is that the software doesn�t change
during testing and usage, except that faults are fixed.

Furthermore, most models consider the software system as a whole, and individual
properties of its constituent modules or components are not considered.

3.2 Nonhomogenous Poisson models

In these models, the number of failures experienced so far follows the nonhomogenous
Poisson process (NHPP). The NHPP model class is a close relative of the homogenous
Poisson model (see section 4.1); the difference is that here the expected number of
failures is allowed to vary with time.

It has been shown [Pham et al. 1999] that a general class of NHPP models can be
obtained by solving the differential equation

[])(()()(ttatb
dt

td µµ
−= (5)

With suitably chosen)(ta and)(tb . For all the models below that can be seen as
resulting from equation (5), we list)(ta ,)(tb and)(tµ .

Say we are interested in the number of failures in the time interval starting at time T and
lasting for time t. The nonhomogenous Poisson probability (NHPP) density function is

[]
K,1,0for

!
)()(

)),(())()((=
−

== −− x
x

tt
exttnP

x
bett

ebd
be

µµµµ
(6)

Or, expressed for the cumulative number of faults,

 24

[]
K,1,0for

!
)(

))(()(=== − x
x
t

extMP
x

t µµ
(7)

A central issue in utilizing a nonhomogenous Poisson model is how to estimate the
expected number of failures. A natural way to do this is to postulate a functional form
for)(tµ , possibly with some parameters, and then estimate the parameters from data.

3.2.1 Goel and Okumoto�s model

This model [Goel and Okumoto 1979] captures many software reliability issues
presented in section 2.2, without being overly complicated. It is similar to the Jelinski
and Moranda de-eutrophication model (section 3.3) except that failure rate decreases
continuously in time.

The following assumptions are made:

•)(tM , the cumulative number of failures, follows a Poisson process. Its mean
value function)(tµ has the following property:

[])()()(tEttt νµµ ∝−∆+ , (8)

That is, the expected number of failures in a (shortish) time interval after time t is
proportional to the expected number of undetected faults at time t.

•)(tµ is also assumed to be a bounded, nondecreasing function of time with

∞<=
∞→

Nt
t

)(lim µ (9)

• The number of faults),...,,(21 knnn detected in each of the respective time
intervals []),(),...,,(),...,,(),,0(112110 kkii tttttttt −−= is independent for any
collection of times kttt <<< K21 .

The data required by Goel and Okumoto�s model consists of

1.),,,(21 knnn K , the number of faults detected for each time interval

2.),,,(21 kttt K , the completion times of the time intervals for which the
),,,(21 knnn K are observed. The time intervals are assumed to be adjacent.

 25

Goel and Okumoto show that under the assumptions above, the cumulative failure
function must be of the form

)1()(bteNt −−=µ (10)

In terms of equation 5, the parameters are Nta =)(, btb =)(.

3.2.2 Musa-Okumoto model

This model [Musa and Okumoto 1984] is similar to the Goel-Okumoto model (section
3.2.1), except that it attempts to consider that later fixes have a smaller effect on a
program�s reliability than earlier. In particular, is intensity function decreases
exponentially as failures occur. The model is also called Musa-Okumoto logarithmic
Poisson model because the expected number of failures over time is a logarithmic
function. Thus the model is an infinite failure model.

The basic assumption of the model, beyond the assumption that the cumulative number
of failures follows a Poisson process, is that failure intensity decreases exponentially
with the expected number of failures experienced:

)(
0)(tet θµλλ −= (11)

As data, the model requires either the actual times that the software failed, of the
elapsed times between failures.

3.2.3 Schneidewind�s model

Make the following assumptions [Schneidewind 1975]:

• The data used are the number of failures per time interval where all time periods
are of equal length.

• The cumulative number of failures follows a NHPP with mean value)(tµ .

• The failure intensity function is an exponentially decreasing function of time:
tet 1

0)(ααλ −= .

• The number of faults in detected in each of the respective intervals are
independent.

 26

• The fault correction rate is proportional to the number of faults to be corrected
(which is usually the number of faults detected so far).

Schneidewind proposes models for data in three forms:

1. Utilize all fault counts from the I time intervals in the observation range.

2. Ignore the fault counts completely from the first through the s-1 time
periods, i.e., only use the data from period s through I.

3. Use the cumulative fault counts for the time intervals 1 to s-1 as the first
data point, and the individual fault counts for periods s through I as the
additional time points.

Schneidewind has developed criteria for the optimal selection of the parameter s. He
uses different kinds of mean square criteria as objective functions. The actual
optimization happens simply by computing the parameter estimates under different s,
and from these, the predictions and finally, the value of objective function; the value of
s is chosen that gives the smallest value for the objective function.

The functional form of the mean failure function)(tµ is

)1()(1

1

0 tet α

α
α

µ −−= , (12)

where 0, 10 >αα . Note that the equation above also gives an estimate to the total
number of faults: it is 10 αα . The parameters can be estimated by maximum
likelihood; the form of the estimates varies by the kind of data available/used (see
above). The parameters of equation 5 are

1

0)(
α
α

=ta , 1)(α=tb .

From the model, it is easy to compute different kinds of measures for software
reliability, such as the expected number of faults in the ith period.

3.2.4 Musa�s basic execution time model

This model is perhaps the most popular of the software reliability models [Farr 1996].
The times between failures are expressed in terms of computational processing units
(CPU) rather than the amount of calendar time that has elapsed (the model contains a
feature for converting from processing time to calendar time).

 27

Musa himself [Musa et al. 1987] recommends the use of this model (as contrasted to
Musa�s logarithmic Poisson model) when the following conditions are met:

• Early reliability is predicted before program execution is initiated and failure
data observed

• The program is substantially changing over time as the failure data are observed

• If one is interested in seeing the impact of a new software engineering
technology on the development process.

The following assumptions are made [Farr 1996]:

•)(tM , the cumulative number of failures, follows a Poisson process. Its mean
value function)1()(1

0
tet ααµ −−= , where 0, 10 >αα . This mean value function

is such that the expected number of failures is proportional to the number
expected number of undetected faults at that time.

• The execution times between the failures are piecewise exponentially
distributed, i.e. the hazard rate for a single fault is constant.

• Data: either the actual times that the software failed, T1, T2 , �, Tk or the
elapsed time between failures x1, x2 , �, xk

If conversion from execution time to calendar time is needed, then also the following
four assumptions are made:

• The quantities of resources (number of testers, software maintenance personnel
and computer resources) that are available are constant over a time segment for
which the software is observed.

• Resource expenditures for the kth resource, kχ∆ , associated with a change in
MTTF from T1 to T2 can be approximated by mtk ∆+∆≈∆ 21 θθχ , where t∆ is
the increment of execution time, m∆ is the increment of failures experienced,
and 1θ and 2θ are parameters.

• Fault-identification personnel (testers etc.) can be fully utilized and computer
utilization is constant.

• Fault-correction personnel utilization is established by the limitation of fault
ueue length for any fault-correction person. Fault queue is determined by

 28

assuming that fault correction is a Poisson process and that servers are randomly
assigned in time.

For converting from execution time to calendar time, also the following data are needed:

• The available resources for both identification and correction personnel and the
number of computer shifts.

• The utilization factor for each resource

• The parameters 1θ and 2θ needed in computing the resource expenditures (see
above)

• The maximum fault queue length for a fault correction personnel

• The probability that the fault queue length doesn�t exceed the maximum.

It can be shown that after (i.1) failures have occurred, the reliability function is

)1(
1

111
0)|(

tiT ee
i eTtR

∆−−− −−
− =∆

ααα (13)

and the conditional hazard rate is

)
101

10)|(−−
− =∆ iT

i eTtz ααα (14)

The conversion from execution time to calendar time is explained in [Musa et al. 1987].

Maximum likelihood estimation of the parameters is explained in [Farr 1996].

3.2.5 S-shaped model

The model was proposed by Yamada, Ohba and Osaki [1983]. It is a descendant of the
Goel and Okumoto model (see section 3.2.1), the data requirements being similar and
the assumptions being similar with one exception. Yamada et al. reasoned that due to
learning and skill improvements of the programmers during the debugging phase of the
development cycle, the error detection curve is often not exponential but rather S-
shaped. Furthermore, the per-fault failure distribution is gamma distribution. Based on
this, they proposed the mean value function

 29

[],)1(1)(tetNt ββµ −+−= (15)

where 0, >βN . The parameter N can be interpreted as the total number of errors and
β as the failure detection rate.

3.2.6 Inflection S-shaped growth curve model

The assumptions behind this model [Ohba 1984] are that

• the faults in a program are mutually independent

• the probability of failure detection at any time is proportional to the current
number of detectable faults in the program

• this proportionality is constant

• the isolated faults can be entirely removed.

The mean value function is

,
1
1)(t

t

e
eNt

β

β

ψ
µ

−

−

+
−

=
(16)

Where N can be interpreted as the total number of errors and β as the failure detection
rate (as in the Jelinski-Moranda model); ψ is an inflection parameter:

0,1
>

−
= r

r
r

ψ (17)

Where r is the inflection rate which indicates the ratio of the number of detectable
faults to the total number of faults in the program (some faults are not detectable until
some other faults are removed).

3.2.7 K-stage Erlangian (Gamma) growth curve model

This model class was proposed by Khoshgoftaar [1988]. The mean value function of
this model is

 30

.
!
)(1)(

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

−

=

−
K

oj

j
t

j
btet βαµ

(18)

The model is a generalization of the Goel and Okumoto model (section 3.2.1, set 1=K)
and the S-shaped model (section 3.2.5, set 2=K). The parameters can be given the
same interpretation as in the S-shaped model.

3.2.8 Duane model

In this model, the rate of occurrence of failures is in power law form in operating time:

βαµ tt =)((19)

The model is an infinite failure model. No physical interpretation can be attached to the
parameters α and β . The power law form was introduced by Duane [1964], and Crow
[1974] added the assumption that the underlying failure process is NHPP.

As is easily seen from (19), this is an infinite failure model.

3.2.9 Pham-Nordmann-Zhang model

This model [Pham et al. 1999] integrates imperfect debugging with the learning
phenomenon. Learning occurs if testing appears to improve dynamically in efficiency
(and thus fault-detection rate improves) as testing progresses. This of course doesn�t
necessarily happen � for example, non-operational profiles used to generate test and
business models can prevent it. However, changes in fault-detection rate are common
during the testing process. Pham et al. claim also that in most realistic situations, fault
repair is associated with a fault re-introduction rate due to imperfect debugging.

Their model is easiest to state in terms of equation 5: here,)1()(tNta α+= ,
bte

btb −+
= β1)(and

⎥⎦
⎤

⎢⎣
⎡ +−−

+
= −

− t
b

e
e

Nt bt
bt αα

β
µ)1)(1(

1
)((20)

Pham et al. compare their model with other NHPP models, and conclude that the
inclusion of imperfect debugging and learning, as in their model, improves both the
descriptive and the predictive properties of the model, and is worth the increased model
complexity and number of parameters.

 31

3.3 Other frequentist models

The functional form of all of the failure intensity function in all these models is
exponential.

3.3.1 Jelinski-Moranda de-eutrophication model

The Jelinski-Moranda model is one of the earliest in the field [Jelinski and Moranda
1972]. It assumes that failures occur purely at random, and that all faults contribute
equally to unreliability. Due to the latter, and the assumption that no fixes produce new
failures, follows that the program�s failure rate improves by the same amount by each
fix.

The following assumptions are made:

• The initial number of faults in the software is N. No new faults are introduced to
the software (e.g. through bug correction or other maintenance).

• The elapsed time between failures follows an exponential distribution with a
parameter that is proportional to the number of remaining faults in the software.
Let t be any time instance between the occurrence of the (i-1)st and ith failure
occurrence. Then the mean time between failures at time t is))1((/1 −− iNφ

• The rate of fault detection is proportional to the current fault content of the
software.

• The fault detection rate remains constant over the intervals between fault
occurrences.

• A fault is corrected instantaneously after first detecting it, without introducing
new faults into the software.

To estimate the parameters φ and θ , either of the following kinds of data is needed:

• The elapsed time between failures mτττ ,,, 21 K

• The actual times of failure from the start of the utilization of the system,
mTTT ,,, 21 K

Here naturally 1−−= iii TTτ (with this notation,)00 =T .

 32

The density function of the time between failures, given the time of latest failure, is

[] [] iXiN
ii eiNTXf)1(

1)1()|(−−−
− −−= φφ (21)

The number of failures experienced is binomially distributed.

The model makes the assumption that the rate of fault detection is proportional to the
current fault content. This is unrealistic because not all faults are equal. The most
frequently occurring faults are detected first.

3.3.2 Geometric model

The geometric model [Moranda 1979] is a variant of the Jelinski-Moranda model
(section 3.3.1). The time between failures follows an exponential distribution. The fault
detection rate follows a geometric progression and is constant between fault detections:

1)(−= iDtz φ , (22)

Where 10 << φ and ii ttt <<−1 (it is the time of the ith failure).

The expected time between failures is

1

1
−= ii D

EX
φ

 (23)

The cumulative failure function is

)1ln(1)(+= teDt ββ
β

µ (24)

As is readily seen from equation 24, the model is an infinite failure model.

3.3.3 Hyperexponential model

The basic idea in this class of models is [Ohba 1984] that the different sections (or
classes) of the software experience an exponential failure rate; however, the rates vary
over these sections to reflect their different natures. These different rates reflect e.g.
work done by different development groups; code that has been done long time ago vs.
recently implemented code; code implemented in different programming languages;

 33

code that has been subjected to formal specification and verification vs. code that hasn�t
been; etc.

[Laprie et al. 1991] developed a variation of this class of models when the number of
subsystems is 2. They considered in this way the hardware and the software component
of the system.

The following assumptions are made:

• The software system consists of K sections or subsystems

• Each subsystem exhibits an exponential failure rate; denote the failure rate of the
kth subsystem by kβ

• 10:,,1 <<=∀ kKk βK

• The rate of fault detection in a subsystem is proportional to the current fault
content within that subsystem

• The fault detection rate remains constant over the intervals between fault
occurrence

• A fault is corrected instantaneously without introducing new faults into the
software

• The fault rates of the subsystems are independent of each other

• The cumulative number of failures by time t, M(t), follows a Poisson process
with mean value function ∑

=

−−=
K

i

tb
i

iepNt
1

)1()(µ , where ∑
=

=
K

i
ip

1
1,

10:,,1 <<=∀ ipKi K , and the total expected number of faults, N, is finite (it
might not be an integer).

The following data are assumed:

• The fault counts in each of the testing intervals, i.e., the in

• The completion time of each period that thesoftware is under observation, i.e.
the it �s

Note that if K = 1, we have Goel and Okumoto�s model (see section 3.2.1).

 34

The failure intensity function of the model is

∑
=

−=
K

i

t
ii

iepNt
1

)(ββλ (25)

This failure intensity function is strictly decreasing for t > 0. For parameter estimation,
see [Farr 1996, section 3.3.5.4].

3.3.4 Weibull model

The per-fault failure distribution is a Weibull distribution. The Weibull distribution is
perhaps the most popular distribution used for component failure in reliability
engineering. The distribution of the number of the failures experienced by time t follows
a binomial distribution (models described in section 3.2 followed a Poisson
distribution).

The following assumptions are made:

• There is an infinite number of faults, N, at the beginning of the period in which
the software is being observed.

• The time to failure of fault a, denoted as aT , is distributed as a Weibull
distribution: the density function with parameters 0, >βα is

ata
a ettf βαβ −=)((26)

• The number of faults),(1+ii ttn detected in each time interval [1, +ii tt] are
independent for any collection of times.

• Fault counts for each of the testing intervals are available.

• The start and completion times of the time intervals are known.

The failure intensity function is

ata
a etNtNft βαβλ −==)()((27)

And the cumulative failure function is

)1()()(
at

a eNtNFt βµ −−== (28)

 35

3.3.5 Barghout-Littlewood-Abdel-Galy model

Barghout, Littlewood and Abdel-Galy [1997] propose a nonparametric model that is
constructed in two stages:

1. attempt to fit a trend in the interfailure time data. The goal is to find a function
ig of the number of failures experienced, such that the sequence iii gTZ =

transformed from interfailure times iT is approximately trend-free. The idea is
that when iZ are approximately identically distributed, kernel estimation
methods can be used. For example, a possible form of ig is igi 21 αα += .

2. use a kernel estimator to estimate the distributions of the interfailure times. For
any general kernel)(zK define)()(1

h
z

hh KzK = , where h is a scaling parameter.
A kernel function)(jh zzK − is centred around each observation iz . The kernel
density estimator (the estimated probability density) is obtained by averaging
these kernel functions: ∑

=

−=
n

j
jh zzKzf

1
)()(� . A density function for the

interfailure time is obtained by making the reverse transform iii gZT = .

Barghout et al. tried Gaussian, double exponential and log-normal kernels, of which the
log-normal kernel showed the best results with the data sets used.

This model has several good properties. As a nonparametric model, no specific
distribution has to be assumed; this makes the model adaptable, because software
development projects vary widely and often there is no good reason for adopting a given
probability distribution for the interfailure time.

3.4 Bayesian models

Bayesian models are based on Bayesian statistics, where relevant parameters have a
prior distribution which is then updated by evidence through the likelihood function.

Bayesian models have several desirable characteristics for software reliability
assessment:

• It is rather easy to incorporate evidence from many sources, e.g. experts, tests,
operational data etc.

• Bayesian models work also when there are no positive instances (e.g. when no
failures have been observed).

 36

The traditional way of doing statistics, which does not use the Bayesian idea of priors, is
often called frequentist.

3.4.1 Bayesian versions of frequentist reliability models

In principle, most statistical models can be made Bayesian by assuming some prior
distribution(s) to its parameters and then finding a likelihood function implied by the
model to yield a posterior probability distribution to the variables of interest. This is a
popular approach in the software reliability modelling literature.

There have been many reformulations of the Jelinski-Moranda deeutrophication model
(section 3.3.1) in Bayesian terms, e.g. [Langberg and Singpurwalla 1985], who assume
that the parameters of the Jelinski-Moranda model are themselves random variables, or
Csenki [1990], who assumes the number if initial faults to be s-independent and
Poisson-distributed, and the per-fault failure rate s-independent and gamma-distributed.

Becker and Camarinopoulos [1990] propose a Bayesian model that allows the
possibility that, after some debugging, the program contains no errors. Their failure
intensity function is exponential. The idea is that, corresponding to each failure and the
respective correction, an update of the failure rate takes place. This is facilitated by
having conjugate priors for the failure rate. The resulting model includes an estimator
for the probability that a program still contains errors, which is an upper bound for the
failure probability.

3.4.2 Littlewood-Verrall model

This model [Littlewood and Verrall 1973] is perhaps the best-known Bayesian software
reliability model. The distribution of failure times is assumed to be exponential, with the
failure rate distributed as a gamma distribution in the prior.

The following assumptions are made:

• Successive execution times between failures, iX �s, are assumed to be
independent exponential random variables with parameters iθ , ni ,,1K= .

• The iθ �s form a sequence of independent random variables, each with a gamma
distribution with parameters σ and)(iψ .)(iψ is an increasing function of i,
and describes the quality of the programmer and the difficulty of the task; for a
skilled programmer,)(iψ increases faster.

 37

• The software is operated in a manner similar to the anticipated operational
usage.

The marginal distributions for the times between failures, ix �s, are Pareto distributions

()
[] 1)(

)())(,|(++
= σ

σ

ψ
ψσψσ

ix
iixf

i
i

(29)

Their joint density is thus the product

()

[]∏

∏

=

+

=

+
= n

i
i

n

i

n

n

ix

i
xxxf

1

1

1
21

)(

)(
),,,(

σ

σ

ψ

ψσ
K

(30)

Littlewood and Verrall also derive a posterior distribution for the parameters iθ . They
suggest a linear and a quadratic form for)(iψ : ii 10)(ββψ += or 2

10)(ii ββψ += . The
failure intensity functions for these forms are, respectively,

)1(2
1)(

1
2
0 −−

−
=

σββ

σλ
t

tlinear (31)

and

⎟
⎠
⎞⎜

⎝
⎛ +−−++

+
= 3

1
2

1

2
23

1
2

1

2
2

2
2

1))(())(()(νν
ν

ν
λ tttt

t
tquadratic (32)

Where 3
1

1
3

1

1)18()1(βσν −= and))1(9(4 1
23

02 βσβν −= .

3.4.3 Other Bayesian models

Basu and Ebrahimi [2003] propose a model with exponentially distributed interfailure
times, driven by a piecewise constant failure rate. The failure rate changes at each
failure (reflecting the assumption that the software is then debugged and revised). A
Markovian martingale process prior is assumed on the failure rate. This martingale
process is driven by hyperparameters, for which prior distributions are specified. The
posterior and predictive quantities of interest are estimated with Markov chain Monte
Carlo (MCMC) sampling.

 38

A problem with this model is that the failure rate is martingale, i.e. no improvement is
assumed after a failure (and correction). A more realistic assumption would be a
tendency towards improvement at each failure.

Cid and Achcar [1999] propose a non-homogenous Poisson process model, which is
based on the exponentiated-Weibull form intensity function

()[] () ()
()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −−

−
=

−

− −−−

θ

αθσ

ασ

ασα

σ

σαθλ
/

/

11

/1)(
11/

t

t

e

teet
t

(33)

This intensity function is very flexible, and with different choices for the parameters α ,
θ and σ will give failure intensity functions with different behaviors, among them
nonmonotonic ones. Nonmonotonicity might arise in the course of software
development due to faults introduced by software updates, and in the course of use due
to changing operating conditions. However, the nonmonotonic forms in this paper are a
bathtub form and an unimodal form. These don�t seem to reflect any behaviour that a
software might possess.

Zegueira [2000] proposes a model with failure intensity functions iλ that are constant
between corrections, and decreasing from correction to correction. He asserts a joint
distribution for each two consecutive failure rates, with a gamma prior distribution. The
probability density of the next failure rate can be derived from the one for the previous
failure rate, the joint density, and the observation of failure time, and thus can be
applied sequentially. The prior likelihood function for the length of the first interval (the
time to the first failure) has an exponential prior distribution, and the predictive density
for length of the ith interval (the time from 1−i th failure to the ith one) is calculated as

()
() 2

1

1
1111),...,,,...,|(+

−

−
−−

++

+
=

i

i

iii

ii
iii tt

t
ttnntf α

α

β
βα

(34)

3.5 Special-purpose models

Several models have been developed to handle some specific aspect or situation in the
software lifecycle.

Sometimes running a software is stopped even though the software has not failed. Such
non-failure stops can occur e.g. in systems with periodic tasks, which are based on
handling of interrupts. Non-failure-stops can be viewed as a type of censored data. [Cai

 39

1997] develops censored forms of several software reliability models, such as Jelinski-
Moranda (section 3.3.1) and Littlewood-Verrall (3.4.2) models.

In finite-failure models, it would greatly help if the number of remaining faults could be
estimated. [Campodónico and Singpurwalla 1994] develop a Bayesian model, based on
a non-homogenous Poisson process (the logarithmic-Poisson model); their approach can
be used with other software reliability models, too. [Cai 1998] develops a static
frequentist model for this purpose, and also a Bayesian version of it.

Most of the existing software reliability growth models deal with time as a continuous
variable (either in calendar time, clock time or in execution time). However, there are
systems, such as bank transaction processing systems, where reliability should be
measured in terms of transactions successfully handled. Furthermore, there are systems,
such as rocket control software, where it is more natural to measure reliability in how
many rockets can be successfully launched. Such systems require a discrete conception
of time, in terms of number of runs of the software. [Cai 2000] develops a conceptual
framework for modelling these kinds of situations, and proposes three methodologies,
based on probabilistic, Bayesian and fuzzy notions, respectively.

Code coverage (the proportion of code that some test actually reaches) in testing may
affect reliability estimates significantly: testing may reach saturation where no new
parts of code are actually tested. Then, reliability estimates relying entirely on
testing/execution time may over-estimate the program�s reliability. [Chen et al. 2001]
propose a scheme where test coverage information is collected, and execution time
between test cases, which neither increases code coverage nor causes a failure, is
reduced by a parameterized amount. They show that overestimation of reliability is
corrected in two case studies.

 40

4. Software reliability models
These models are meant to predict software reliability when the software is in
operational use.

4.1 Homogenous Poisson model

When using a Poisson process to describe the number of failures in a time period, the
following assumptions are made:

• The time intervals between two consecutive failures are independently and
exponentially distributed.

• The expected value of the number of failures in a time interval depends only on
the length of the interval and not its start point.

A simple Poisson distribution can be used as the likelihood function
),,|(feb mttdatap :

),(~),,|,,(,, dfebdedbd tPoissonmttmttp ∆λ (35)

That is,

!
)(),,|,,(

d

n
dt

fffddd m
temtTmtTp

d
d

∆
= ∆− λλ

(36)

Here dm failures occur in the data in the time period that lasts for bdedd ttt ,, −=∆ . Note
that the probability distribution doesn�t directly depend on bdt , or edt , ; in other words,
the model is homogenous with respect to time. Note also that the impact of the predicted
failure distribution (given by the model) is wholly absorbed in the parameter λ. This is
the model used in [Helminen, 2005].

The model has several drawbacks:

• it is unrealistic to suppose that the likelihood would be homogenous wrt. time,
because the number of software faults causing the failures decreases with time,
with the faults most commonly causing failures being corrected first (see section
2.2). Of course, if the software exhibits no failures, this point is moot.

 41

• it is also unrealistic to assume that the failures would occur homogenously wrt.
time in the sense that the time between failures would be independently
exponentially distributed. On the contrary, it is presumable that the failures
would occur in clusters, when the operational conditions that cause an error to
activate occur.

4.2 Other frequentist models

Baker [1988] considers the situation where many copies of the program are run at many
different user sites with the support of a software service organization. The organization
provides both preventive service (fixes to known faults are provided to all user sites)
and corrective service (for users that encounter faults). The number of users
(installations) may vary with time. His special focus is the effect of service organization
on software reliability.

A fixed number of bugs is assumed. Separate models for first discovery time (the time it
takes to come across the bug at least at one site) and total discovery time (discovery of a
particular fault at many user sites). He proposes an exponential distribution for the first
discovery time, and obtains a formula for)(tn , the cumulative number of faults found
so far.

4.3 Bayesian reliability models

Cukic and Chakravarthy [2000] propose a Bayesian framework for reliability
assessment. They formulate a model directly for reliability, that is, the probability that
the software will fail in the specified time. The priors are assumed to follow a beta
distribution. The priors reflect the application of verification and validation activities.

The Bayesian approach has many good features. The most important of these, in this
case, is that it allows incorporation of program executions observed in the operational
environment, even when they are failure-free (that is, no failure observations are
available).

 42

5. Application to the operational data problem
Our problem, as stated in section 1, is to update the failure probabilities by operational
data records.

A major problem with all models is that techniques like the ones described in section 3
can only support relatively modest reliability claims [Littlewood 2005]: to state that
mean time to failure is x hours might require a total time on test of tens or hundreds
times x hours. Littlewood claims that these limitations of the models are inherent, and
will not be eliminated by newer and cleverer modelling.

In an earlier paper, Littlewood and Strigini [1993] show that when the time to next
failure is exponentially distributed, and software has been tested without failures for
time 0t , the reliability function is

0

0
0) in time failures no|(

tt
t

ttR
+

= (37)

That is, if we want a 50 % certainty that the program doesn�t fail in t hours, we have to
test it for t hours. There is no solution to this problem in sight, because the problem is
inherent in the probabilistic formulation.

5.1 Requirements on the data

To properly analyze a data sample for reliability purposes, the data must meet some
prerequisites.

There are two forms of data that are suitable for statistical analysis of reliability:

• Event data, or failure reports. This data should contain date and time
information, information about the kind and severity, and downtime of each
failure.

• Time series data, or number of failures per time interval. There should be
information about the time periods that these cover, and the time intervals
should preferably be of uniform length. There might be several data series, for
example one for each kind of failure or one for each failure severity.

 43

The data should cover a time period as completely as possible. For example, if the data
consists of failure reports from March 2003 to September 2005, all the failure reports
from this period should be included.

The metadata associated with the data should contain information about the units used,
what equipment the failure data covers, and explanations about the kinds of failure and
their severity.

5.2 Evaluation and comparison criteria for software reliability
models

There are several ways in which a model�s goodness can be evaluated [Iannino et al.
1983]:

• Predictive validity. This is the capability of the model to predict future failure
behaviour during either the test or the operational phases from present and past
failure behaviour in the respective phase. This can be further divided [Lyu and
Nikora 1992] to

o Accuracy, as measured by prequential likelihood (section 5.2.5)

o Bias, as measured by the U-plot (section 5.2.1)

o Trend, or systematic change of bias from small to large values of failure
time, as measured by the Y-plot (section 5.2.2)

o Noise, as measured by the relative change in the predicted failure rate.

• Capability. The ability of the model to estimate with satisfactory accuracy
quantities needed by software managers, engineers, and users in planning and
managing software development projects or controlling change in operational
software systems. These quantities include, e.g., present reliability, expected
date of reaching a reliability objective, and cost required to reach that objective.

• Quality of assumptions. If an assumption made by a model can be tested, the
degree to which it is supported by actual data; if it is not possible to test an
assumption, its plausibility from the viewpoint of logical consistency and
software engineering experience. Also the clarity and explicitness of an
assumption should be judged.

 44

• Applicability means the usefulness of the model across different software
products (size, structure, function), different development environments,
different operational environments, and different life cycle phases.

• Simplicity. The simplicity and inexpensiveness of collecting the data that is
required to particularize the model. Conceptual simplicity in that the expected
audience of the model (software engineers, project managers, reliability
specialists, officials) can understand the nature of the model and its assumptions,
so that they can determine its applicability to the particular problem and the
extent to which the model may diverge from reality in the intended application.
Simplicity of implementation so that it may become a practical management and
engineering tool.

• Ease of measuring parameters [Lyu and Nikora 1992]. This concerns the
number of parameters a model requires and the difficulty in estimating them.

• Insensitivity to noise [Lyu and Nikora 1992]. The ability of a model to make
accurate predictions even when failure data is incomplete or contains
uncertainties.

The techniques for model evaluation reviewed in this section, such as the U-plot, Bayes
factor, and prequential likelihood ratio, work only when there are (positive) instances of
the event. In the case of software faults, this means that at least some software failures
should have occurred and should have been observed. In the case of reliable
programmable devices in operational use, this is often an unrealistic assumption. Thus,
the these methods are better suited to assessing software reliability growth models that
address mainly the development phase of the software lifecycle.

There are other methods of model validation and comparison, such as cross-validated
likelihood [Basu and Ebrahimi 1998], which will not be discussed in this report.

5.2.1 U-plot

The U-plot (see, e.g., [Brocklehurst and Littlewood 1992]) is used to determine if the
postulated cumulative distribution function,)(� tF , is close to the true distribution)(tF
(provided by observations). It is known that the random variable)(tFU = has a
uniform distribution over the interval [0,1]. Thus, if the realizations it (e.g. failure
times) are observed and)(�

ii tFu = are calculated, iu should be a realization of a
uniform random variable. Any departure from uniformity indicates deviation of)(� tF
from)(tF .

 45

To find the departures (if any) the sample distribution function of the transformed
observations iy is plotted. The plot is a step function, consisting of the numbers

Muu ,...,1 on the interval [0,1]. Then, plot an increasing step function, each step of
height)1(

1
+M is plotted at each iu on the abscissa.

The closer this plot is to the line of unit slope, the closer)(� tF is to)(tF . On the other
hand, any systematic departure from unit slope indicates a misspecification of the
probability distribution (that is, a reasonably consistent bias).

This can be developed into an operational measure by finding the Kolmogorov distance
(maximum absolute vertical deviation) between the perfect prediction line of slope 1
and the actual plot [Lyu and Nikora 1992].

5.2.2 Y-plot

The Y-plot measures the consistency of a model�s bias; a model might be initially too
pessimistic and eventually too optimistic concerning the number of faults in the
software, for example.

This is the result of the sequence of transformations of)(�
ii tFu = as defined in the

previous section as follows:

)1ln(ii ux −−= (38)

∑

∑

=

== M

j
j

i

j
j

i

x

x
y

1

1

(39)

Where Mi ≤ .

This can be made into an operational measure by finding the Kolmogorov distance
()iii

yx −max between the variables defined above.

5.2.3 Bayes factor

The Bayes factor [Gelman et al. 1995] is the formal Bayesian model comparison
criterion. Let two competing models be 1H and 2H , respectively. The Bayes factor is
the ratio of marginal likelihoods of the two models under comparison:

 46

)|,,(
)|,,(

),(
21

11
21 Http

Http
HHBF

m

m

K

K
= (40)

Here iiiiimim dHpHttpHttp θθθ)|(),|,,()|,,(11 ∫= KK .

Computing Bayes factor can be computationally demanding. For a review of estimating
the marginal likelihoods based on draws from the posterior distributions, see [DiCiccio
et al. 1997].

5.2.4 Prequential predictive ordinate

The prequential predictive distribution (PPO)),,...,|(11 ijj Htttp − is the distribution of
failure time jT conditional on only those failure times observed before the ith failure,
and the assumed model [Basu and Ebrahimi 2003]. A higher value of PPO indicates that
the observed value of jT is more likely under the model (compared with some other
model), and is preferred.

5.2.5 Prequential likelihood and prequential likelihood ratio

Prequential likelihood measures the accuracy of a model [Lyu and Nikora 1992]. Let the
probability density function given by model A to the data be)(tf A . Furthermore, let

mtt ,...,1 be observed occurrences of failures (or whatever phenomenon we are trying to
model). The prequential likelihood of a model is

∏
=

=
M

j
jAA tfPL

1

)((41)

This product is usually quite close to zero, and a more perspicuous measure is obtained
by taking the logarithm of the prequential likelihood.

The prequential likelihood ratio [Brocklehurst and Littlewood 1992] compares two
models� abilities to predict a particular set of data. Let the probability density functions,
given by models A and B to the data, be)(tf A and)(tfB , respectively. The prequential
likelihood ratio AB

iPLR is defined as

∏
=

=
i

j jB

jAAB
i tf

tf
PLR

1)(
)(

(42)

 47

This ratio should increase with increasing number of observations if model A is superior
to model B, and decrease otherwise.

It is easy to see that prequential likelihood ratio is a simplified version of the Bayes
factor (section 5.2.2): if the observations are independent and if the probability space is
discrete, they coinside. In most cases, however, prequential likelihood ratio is easier to
compute.

5.2.6 Akaike information criterion

The Akaike information criterion (AIC) can be expressed in the following manner
[Khoshgoftaar and Woodcock 1991]:

()
()function likelihood themaximizing when fitted parameters ofnumber 2

estimators likelihood maximumat function likelihood log2
+
−

 (43)

5.3 Some comparisons

In this section, some representative comparisons of software reliability models are
reviewed. Other comparisons, not treated in this section, include [Schick and
Wolverton, 1978], [Selby, 1990], [Pham et al. 1999], and [Pham 2003].

It would be most interesting to carry out a meta-analysis of the results of the individual
studies. This, however, is beyond the scope and the resources of the present study.

[Brocklehurst and Littlewood 1992] was carried out on the CSR1 data set, collected
from a single-user workstation at the Centre for Software Reliability. It represents some
397 user-perceived failures such as genuine software failures, usability problems,
inadequate documentation etc.

The models they considered were Jelinski-Moranda, Goel-Okumoto, Musa-Okumoto,
Duane, Littlewood (not described in this report), Littlewood nonhomogenous Poisson
process (not described in this report), Littlewood-Verrall, and Keiller-Littlewood (no
described in this paper).

The criteria they used were the U-plot (section 5.2.1) and prequential likelihood ratio
(section 5.2.4). In this comparison, Littlewood-Verrall and Littlewood-Keiller models
fared best.

 48

[Basu and Ebrahimi 2003] was carried out on the Naval Tactical Data System (NTDS)
dataset, originally introduced in Jelinski and Moranda [1972] and since then widely
used in the literature. Basu and Ebrahimi used the interfailure data from production
phase, which consists of 26 observations.

The models they considered were Jelinski-Moranda (section 3.3.1), Goel-Okumoto
(3.2.1), Littlewood-Verrall (3.4.2), Homogenous Poisson Process (4.1), Musa-Okumoto
(3.2.2), Weibull order statistic (3.3.4), Singpurwalla and Soyer (not in this report), and
three models of their own, which they named single-alpha, exchangeable alpha and
equal variance. They used log-marginal likelihoods of the models as the goodness
criterion. Their single-alpha and exchangeable-alpha models fared best, with Jelinski-
Moranda and Goel-Okumoto models being rather close.

[Khoshgoftaar and Woodcock 1991] utilized a data set from an IBM computer system
project. The project involved more than 50000 lines of code, mostly in assembler with a
small amount of C code. They considered the following models: Goel-Okumoto (section
3.2.1), S-shaped (3.2.5), K-stage Erlangian, K = 3 or K = 4 (3.2.7), and the Duane
model (3.2.8).

The S-shaped model was consistently better than the other models throughout the
different phases of the comparison (i.e. through different phases of a software
development project), and was thus the winner of this comparison.

5.4 Selection of model

There are several ways a model can be selected.

One is to use the comparison of the different models presented in section 5.2 as a basis,
and then proceed to select the actual model by some systematic method. For example,
the methods of decision analysis [Clemen 1996] are suitable for this.

Another method is to find out how well the model matches real operational data, and
then select the method that is best by some selected criterion, e.g. the Akaike
information criterion. This was the approach of [Khoshgoftaar and Woodcock 1991].

A third approach is to find a set of models whose reliability estimates are accurate and
stable enough, and conservatively set the current failure probability as the maximum of
the individual failure probabilities given by the models [Stringfellow and Andrews
2002].

 49

A fourth approach [Lyu and Nikora 1992] is to first select a basic set of models, and
prune out those models whose prediction biases (as measured e.g. by the U-plot) do not
tend to cancel out. Then, each model is separately applied to the failure data. The
resulting models are combined by forming a linearly weighted sum of the probability
distribution functions. These weights should be nonnegative and sum up to 1; some
proper choices for the weights include equal weights (yielding ordinary mean), medium-
oriented linear combination (where the model is selected whose prediction lies between
optimistic and pessimistic values), weighting the component models by the predictive
accuracy they have shown so far, etc.

 50

6. Summary and conclusions
This report is about the problem of statistically forecasting the number of software
failures in a given time interval, given a history of previous failures (including the
information that none have occurred). An emphasis in the review has been put on the
form of the likelihood function which represents the probability that the data is what it
is, given that the model has a specific parametric form.

A multitude of models have been proposed in the literature, but each has its drawbacks,
some being shared by most models. A common problem with the reviewed models is
that none allow for non-existent failure data, i.e., a software usage history with a known
duration of time in operational use with no detected failures. Another problem shared by
the models is that they support only rather modest reliability claims. There is no
solution to this problem in sight.

Existing software reliability models don�t take application complexity or test coverage
(the proportion of all possible or plausible inputs that have been actually tested) into
account [Whittaker and Voas 2000]. Things are furthermore complicated because the
software under scrutiny never runs alone but is a part of a system consisting of
hardware, operating system, interfaces (e.g. device drivers and communication
interfaces), and possibly other programs.

Most of the reviewed models also share the feature that they have been developed to
model reliability growth. This is appropriate when the program has been developed by a
well-disciplined team and development-time fault reports, or at least fault statistics, are
available. However, from the software users� point of view, it is more realistic to
assume that only operational records are available.

Some recommendations can be made on applying software reliability models:

• Models that take into account software architecture, software complexity, test
coverage, conduct of verification and validation, and structured expert opinion
should be given priority.

• In applications requiring high dependability, software reliability models should
be used only in conjunction with other methods of ensuring sufficient quality �
otherwise the amount of testing grows prohibitively large. These methods
include, but are not limited to, formal methods, software inspections and
reviews, static analysis of code, and systematic software testing.

 51

• It would seem that Bayesian models hold more promise in them than traditional
frequentist models. An advantage of Bayesian approaches is that they allow the
incorporation of different kinds of information, including human judgment.

• One should not rely on a single model, but rather choose a set of models whose
results are combined in one way or another.

 52

References
Asad, C.A., Ullah, M.I. & Rehman, M.J.-U. An approach for software reliability model
selection. Proceedings of the 28th Annual International Computer Software and
Applications Conference (COMPSAC�04), Vol. 1, 534�539.

Bai, C.-G. Bayesian network based software reliability prediction with an operational
profile. The Journal of Systems and Software, Vol. 77, No. 3 (2005), 103�112.

Baker, C.T. Effects of field service on software reliability. IEEE Transactions on
Software Engineering, Vol. 14, No. 2 (February 1988), 254�258.

Barghout, M., Littlewood, B. & Abdel-Ghaly, A. A non-parametric approach to
software reliability prediction. Proceedings of the Eighth International Symposium on
Software Reliability Engineering, IEEE Press 1997, 366�377.

Basu, S. & Ebrahimi, N. Estimating the number of undetected errors: Bayesian model
selection. Proceedings of the Ninth International Symposium on Software Reliability
Engineering, 4�7 November 1998, IEEE Press 1998, 22�31.

Basu, S. & Ebrahimi, N. Bayesian software reliability models based on martingale
processes. Technometrics, Vol. 45, No. 2 (May 2003), 150�158.

Becker, G. & Camarinopoulos, A. A Bayesian estimation method for the failure rate of
a possibly correct program. IEEE Transactions on Software Engineering, Vol. 16, No.
11 (November 1990), 1307�1310.

Brocklehurst, S. & B. Littlewood, B. New ways to get accurate reliability measures.
IEEE Software, Vol. 9, No. 4 (July 1992), 34�42.

de Bustamante, A.S. & de Bustamante, B.S. Multinomial-exponential reliability
function: a software reliability model. Reliability Engineering and System Safety, Vol.
79 (2003), 281�288.

Cai, K.-Y. Censored software-reliability models. Transactions on Reliability, Vol. R-46,
No. 1 (March 1997), 69�75.

Cai, K.-Y. On estimating the number of defects remaining in software. Journal of
Systems Software, Vol. 40 (1998), 93�114.

 53

Cai, K.-Y. Towards a conceptual framework of software run reliability modelling.
Information Sciences, Vol. 126 (2000), 137�163.

Campodónico, S. & Singpurwalla, N.D. Bayesian analysis of the logarithmic-Poisson
execution time model based on expert opinion and failure data. IEEE Transactions on
Software Engineering, Vol. 20, No. 9 (September 1994), 677�683.

Chen, M.-H. Lyu, M.R. & Wong, W.E. Effect of code coverage on software reliability
measurement. IEEE Transactions on Reliability, Vol. R-50, No. 2 (June 2001), 165�
170.

Cid, J.E.R. & Achcar, J.A. Bayesian inference for nonhomogeneous Poisson processes
in software reliability models assuming nonmonotonic intensity functions.
Computational Statistics and Data Analysis, Vol. 32 (1999), 147�159.

Clemen, R.T. Making hard decisions � an introduction to decision analysis, 2nd edition.
Duxbury, Pacific Grove 1996.

Crow, L.H. Reliability analysis for complex, repairable systems. In: Reliability and
biometry (Proshan, F. & Serfling, R.J. eds.), SIAM, Philadelphia 1974, 379�410.

Csenki, A. Bayes predictive analysis of a fundamental software reliability model. IEEE
Transactions on Reliability, Vol. R-39, No. 2 (June 1990), 177�183.

Cukic, B. & Chakravarthy, D. Bayesian framework for reliability assurance of a
deployed safety critical system. Proceedings of the Fifth International Symposium on
High Assurance Systems Engineering (HASE 2000), IEEE Press 2000, 321�329.

DiCiccio, T.J., Kass, R.E., Raftery, A. & Wasserman, L. Computing Bayes factor by
combining simulation and asymptotic approximations. Journal of the American
Statistical Association, Vol. 92 (1997), 903�915.

 Donnelly, M., Everett, B. Musa, J. & Wilson, G. Best current practice of SRE. Chapter
6 of [Lyu 1996], 219�254.

Duane. J.T. Learning curve approach to reliability monitoring. IEEE Transactions on
Aerospace, Vol. AS-2, No. 2 (1964), 563�566.

Farr, W. Software reliability modelling survey. Chapter 3 of [Lyu 1996], 71�117.

 54

Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. Bayesian data analysis. Chapman
& Hall, London 1995.

Goel, A.L. & Okumoto, K. Time-dependent error-detection rate model for software and
other performance measures. IEEE Transactions on Reliability, Vol. R-28, No. 5
(August 1979), 206�211.

Go�eva-Popstojanova, K., Hamill, M. & Perugupalli, R. Large empirical case study of
architecture-based software reliability. Proceedings of the 16th International Symposium
on Software Reliability Engineering (ISSRE 2005), IEEE Press 2005.

Go�eva-Popstojanova, K., Mathur, A.P. & Trivedi, K.S. Comparison of architecture-
based software reliability models. Proceedings of the 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), IEEE Press 2001, 22�31.

Haapanen, P., Pulkkinen, U. & Korhonen, J. Usage models in reliability assessment of
software-based systems. Finnish Center for Radiation and Nuclear Safety (STUK),
technical report STUK-YTO-TR 128, April 1997.

Hamlet, D. Are we testing for true reliability? IEEE Software, Vol. 9, No. 4 (July 1992),
21�27.

Helminen, A. Case study on reliability estimation of computer-based device for
probabilistic safety assessment. VTT Research Report BTUO-051375, 2.11.2005, 32 p.

Helminen, A. & Pulkkinen, U. Reliability assessment using Bayesian networks � case
study on quantitative reliability estimation of a software-based motor protection relay.
Finnish Center for Radiation and Nuclear Safety (STUK), technical report STUK-YTO-
TR 198, June 2003.

Herrmann, D.S. Software safety and reliability. IEEE Computer Society Press, Los
Alamitos, 1999.

Hudepohl, J.P., Aud, S.J., Khoshgoftaar, T.M., Allen, E.B. & Mayrand, J. Integrating
metrics and models for software risk assessment. Proceedings of the 7th International
Symposium on Software Reliability Engineering, 30 Oct.�2 Nov. 1996, IEEE Press
1996, 93�-98.

Iannino, A., Musa, J.D. & Okumoto, K. Criteria for software reliability model
comparisons. ACM SIGSOFT Software Engineering Notes, Vol. 8, No. 3 (July 1983),
12�16.

 55

IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 610.12-
1990. The Institute of Electrical and Electronics Engineers, New York 1990.

Jelinski, Z. & Moranda, P.B. Software reliability research. In Statistical Computer
Performance Evaluation (Freiberger, W. ed.). Academic Press, New York 1972,
465�484.

Kahneman, D., Slovic, P. & Tversky, A. (eds.). Judgment Under Uncertainty:
Heuristics and Biases. Cambridge University Press 1982.

Keene, S.J. Comparing hardware and software reliability. Reliability review, Vol. 14
No. 4, December 1994, 5�21.

Khoshgoftaar, T.M. Nonhomogenous Poisson processes for software reliability growth.
8th Symposium in Computational Statistics, August 1988 (Compstat �88), 11�12 (Cited
in [Khoshgoftaar and Woodcock 1991]).

Khoshgoftaar, T.M. & Munson, J.C. Predicting software development errors using
software complexity metrics. IEEE Journal on Selected Areas in Communications, Vol.
8, No. 2, February 1990, 253�261.

Khoshgoftaar, T.M. & Woodcock, T.G. Software reliability model selection: a case
study. Proceedings of the 1991 International Symposium on Software Reliability
Engineering, May 17�18, IEEE Press 1991, 183�191.

Langberg, N. & Singpurwalla, N.D. A Unification of Some Software Reliability
Models. SIAM Journal of Scientific and Statistical Computing, Vol. 6, No. 3 (1985),
781�790.

Laprie, J.C. (ed.). Dependability: basic concepts and terminology: in English, French,
German, Italian and Japanese. Springer, Wien 1992.

Laprie, J.C., Kanoun, K., Béounes, C. & Kaâniche, M. The KAT (knowledge-action-
transformation) approach to the modeling and evaluation of reliability and availability
growth. IEEE Transactions on Software Engineering, Vol. 17, No. 4, April 1991,
370�382.

Littlewood, B. Dependability assessment of software-based systems: state of the art.
Proceedings of the 27th International Conference on Software Engineering, 2005 (ICSE
2005), 15�21 May, IEEE Press 2005, 6�7.

 56

Littlewood, B. & Strigini, L. Validation of ultrahigh dependability for software-based
systems. Communications of the ACM, Vol. 36, No. 11 (November 1993), 69�80.

Littlewood, B. & Verrall, J. A Bayesian reliability growth model for computer software.
Journal of the Royal Statistical Society, series C, Vol. 22, No. 3, 1973, 332�346.

Lyu, M.R. (ed.). Handbook of Software Reliability Engineering. IEEE Computer
Society Press and McGraw-Hill, 1996.

Lyu, M.R. Introduction. Chapter 1 of [Lyu 1996], pages 3�25.

Lyu, M.R. & Nikora, A. Applying reliability models more effectively. IEEE Software,
Vol. 9, No. 4 (July 1992), 43�52.

Moranda, P.B. Event-altered rate models for general reliability analysis. IEEE
Transactions on Reliability, Vol. R-28, No. 5 (August 1979), 376�381.

Musa, J.D., Fuoco, G., Irving, N., Kropfl, D. & Juhlin, B. The operational profile.
Chapter 3 of [Lyu 1996], pages 167�216.

Musa, J.D., Iannino, A. & Okumoto, K. Software reliability � measurement, prediction,
application. McGraw-Hill, 1987.

Musa, J.D. & Okumoto, K. Software reliability models: concepts, classification,
comparisons, and practice. Electronic Systems Effectiveness and Life Cycle Costing,
Slowirzynski, J.K. (ed.), NATO ASI Series, F3, Springer Verlag, Heidelberg 1983,
395�424.

Musa, J.D. & Okumoto, K. A logarithmic Poisson execution time model for software
reliability measurement. Proceedings of the international Conference on Software
Engineering, IEEE Computer Society Press, Los Alamitos, California 1984, 230�238.

Ohba, M. Software reliability analysis models. IBM Journal on Research and
Development, Vol. 28, No. 5 (July 1984), 428�443.

Pham, H. Software reliability and cost models: perspectives, comparison and practice.
European Journal of Operational Research, Vol. 149, No. 3 (September 2003),
475�489.

 57

Pham, H., Nordmann, L. & Zhang, X. A general imperfect-software-debugging model
with S-shaped fault-detection rate. IEEE Transactions on Reliability, Vol. 48, No. 2
(June 1999), 169�175.

Pham, H. &. Zhang, X. A software cost model with warranty and risk costs. IEEE
Transactions on Computers, Vol. 48, No. 1 (January 1999), 71�75.

Schick, G.J. & Wolverton, R.W. An analysis of competing software reliability models.
IEEE Transactions on Software Engineering, Vol. SE-4, No. 2, March 1978, 104�120.

Schneidewind, N.F. Analysis of error processes in computer software. ACM Sigplan
Notices, Vol. 10, No. 6, June 1975, 337-346.

Selby, R.W. Empirically based analysis of failures in software systems. IEEE
Transactions on Reliability, Vol. 39, No. 4, October 1990, 444�454.

Sommerville, I. Software engineering, 6th edition. Addison-Wesley, 2001.

Stringfellow, C. & Amschler Andrews, A. An empirical method for selecting software
reliability growth models. Empirical Software Engineering, Vol. 7 (2002), 319�343.

Wang, W.-L. Pan, D. & Chen, M.-H. Architecture-based software reliability modeling.
The Journal of Systems and Software, Vol. 79 (2006), 132�146.

Whittaker, J.A. & Voas, J. Toward a more reliable theory of software reliability. IEEE
Computer, Vol. 13, No. 12 (December 2000), 36�42.

Yamada, S., Ohba, M. & Osaki, S. S-shaped software reliability growth modeling for
software error detection. IEEE Transactions on Reliability, Vol. R-32, No. 5, December
1983, 475�478.

Zegueira, R.I. A model for Bayesian software reliability analysis. Quality and
Reliability Engineering International, Vol. 16, No. 3, May/June 2000, 187�193.

 ISBN 978-951-38-6622-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	Contents
	List of symbols, concepts and abbreviations
	1. Introduction
	2. Some modelling considerations
	2.1 Errors, faults, failures and reliability
	2.2 Reliability characteristics of software
	2.3 Reliability and the software lifecycle
	2.4 Sources of software reliability evidence

	3. Software reliability growth models
	3.1 General considerations
	3.1.1 Reliability model classification
	3.1.2 Frequentist versus Bayesian models for likelihood
	3.1.3 Standard assumptions

	3.2 Nonhomogenous Poisson models
	3.2.1 Goel and OkumotoŁs model
	3.2.2 Musa-Okumoto model
	3.2.3 SchneidewindŁs model
	3.2.4 MusaŁs basic execution time model
	3.2.5 S-shaped model
	3.2.6 Inflection S-shaped growth curve model
	3.2.7 K-stage Erlangian (Gamma) growth curve model
	3.2.8 Duane model
	3.2.9 Pham-Nordmann-Zhang model

	3.3 Other frequentist models
	3.3.1 Jelinski-Moranda de-eutrophication model
	3.3.2 Geometric model
	3.3.3 Hyperexponential model
	3.3.4 Weibull model
	3.3.5 Barghout-Littlewood-Abdel-Galy model

	3.4 Bayesian models
	3.4.1 Bayesian versions of frequentist reliability models
	3.4.2 Littlewood-Verrall model
	3.4.3 Other Bayesian models

	3.5 Special-purpose models

	4. Software reliability models
	4.1 Homogenous Poisson model
	4.2 Other frequentist models
	4.3 Bayesian reliability models

	5. Application to the operational data problem
	5.1 Requirements on the data
	5.2 Evaluation and comparison criteria for software reliability
	5.2.1 U-plot
	5.2.2 Y-plot
	5.2.3 Bayes factor
	5.2.4 Prequential predictive ordinate
	5.2.5 Prequential likelihood and prequential likelihood ratio
	5.2.6 Akaike information criterion

	5.3 Some comparisons
	5.4 Selection of model

	6. Summary and conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

