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Preface 

This report has been prepared under the research project Model-based 
safety evaluation of automation systems (MODSAFE) which is part of 
the Finnish Research Programme on Nuclear Power Plant Safety 
2007�2010 (SAFIR2010). The aims of the project are to develop 
methods for model-based safety evaluation, apply the methods in real-
istic case studies, evaluate the suitability of formal model checking 
methods for NPP automation analysis, and to develop recommenda-
tions for the practical application of the methods. 

The report describes the state of the art of formal methods and models 
applied in safety evaluation of industrial and nuclear safety systems. 
The methods are evaluated with respect to their applicability in the 
analysis of NPP safety automation systems. 

Espoo, March 2008, 

Authors 
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1 Introduction

1.1 Scope of the Report

This report is part of yearly reporting in the MODSAFE (Model-based safety
evaluation of automation systems) project which belongs to the Finnish Na-
tional Research Programme on NPP Safety 2007–2010. The report describes
the state of the art of formal methods and models applied in safety evaluation
of industrial and nuclear safety systems. The methods are evaluated with
respect to their applicability in the analysis of NPP safety automation sys-
tems. Special attention is drawn to a technique called model checking [40],
which is a set of methods for analysing whether a model of a system fulfils
its specification by examining all of its possible behaviours. The compati-
bility of the methods with the practices and models used in different phases
of NPP safety automation design is also an important issue.

The basic objective of licensing safety critical systems is to assess if they
are adequately safe and if not, what are the reasons for that and what can
be done to achieve the required level of safety. Licencing process includes
collecting evidence supporting the safety claims of the system under con-
sideration, and based on this evidence assessing the achieved safety of the
system. That is why safety cases and the role of model checking in the NPP
automation safety case creation are discussed in the report. The report aims
at giving an introduction to the research area with a large number of ref-
erences to be used in more detailed investigation of the topics introduced
here.

1.2 NPP Automation Systems

Instrumentation and Control (I&C) systems play a crucial role in the opera-
tion of a nuclear power plant. The most important tasks of I&C systems are
to control and supervise processes inside the power plant and the interfaces
with the operators. The control and supervising tasks are performed with
human interactions or automatically according to predetermined rules.

The main objectives of I&C systems in nuclear power plants are to ensure
safety, availability and performance of the plant. The following definitions
are based mostly on [65]. Nuclear safety means the achievement of proper
operating conditions, prevention of accidents or mitigation of accident con-
sequences, resulting in protection of workers in the plant, the public and the
environment from undue radiation hazards. Availability is the fraction of
time for which a system is capable of fulfilling its intended purpose. Reli-
ability represents essentially the same information, but in a different form:
reliability is the probability that a system or a component will meet its min-
imum performance requirements when called upon to do so. Performance
means the accomplishment of a task in accordance with a set standard of
completeness and accuracy.
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The requirements for I&C systems are derived from the main objectives
(listed above) and they are presented as functional and technical require-
ments. As [116] describes, functional requirements are implemented by the
I&C systems. The protection functions prevent systems and process com-
ponents from damages, the interlocking functions prevent unwanted opera-
tional conditions of process, the closed loop controls keep process parameters
within predefined limits, and the automatic start and shutdown processes
and the measurement functions acquire process values and present them in
the control room. Technical requirements influence mostly on the selection,
design and implementation of equipment.

I&C systems need lots of information from the process itself and also
from control commands. This information is provided by different kinds
of measurements or measuring systems. The HMI (Human-Machine Inter-
action) is realised through different types of indicators, push buttons and
computer workstations in control rooms.

1.3 Special Characteristics of the Nuclear Field

There are many characteristics making the nuclear field different from other
safety critical industries. [112] lists several of them. The most important one
is the fact that it is not enough to have a safe nuclear installation, but it also
has to be proved to the licensing authorities that the installation really is
safe and meets all the necessary requirements. One special characteristic in
the nuclear field is the concept of defence in depth. Defence in depth means
several levels of protection, ensuring that if a failure were to occur, it would
be detected and the release of radioactive material to the environment would
be prevented. The concept has been described in several nuclear related
documents (e.g., [64]) and it is applied to all safety activities: organisational,
behavioural and design related. Defence in depth helps to preserve the three
basic safety functions (controlling the power, cooling the fuel and confining
the radioactive material), and ensures that radioactive materials do not
reach people or the environment. Defence in depth helps to achieve higher
reliability with unreliable components. In a more concrete level, it relies on
redundancy, separation and diversity, which aim to ensure that no single
failure will pose a threat to safety.

Guide YVL 5.5 “Instrumentation systems and components at nuclear fa-
cilities” [102] says that “With the testing and analyses it shall also be ensured
that there are no unintentional functions in the system or its equipment that
could be detrimental for safety.” The principle of defence in depth should
be used to provide sufficient proofs that I&C will follow YVL 5.5, meaning
that the system provides all intended and no unintended functions. How-
ever, the hardware and software platforms used for I&C are complex, and
proving the absence of unintended functions is almost impossible because it
is always possible to argue that design errors in the hardware and software
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platforms may cause simultaneous failures of several critical functions [112].
In this context an unintentional function is one that is unnecessary for the
actual functioning of a system or piece of equipment. Functions not required
for accomplishing a task, but whose safety significance has been analysed
and considered in system design, are not unintentional [102].

The I&C systems of the first generation NPPs were based on analogue
technology. Now the trend is to start using digital I&C systems with pro-
grammable logic controllers. The increasing shortage of suitable spare parts
for analogue systems is also accelerating the transfer towards digitalised
systems.

One important characteristic differentiating nuclear power plants from
conventional industry is their very long life-cycles. Nuclear power plants
were typically designed to operate forty years and nowadays it is common
to apply for a lifetime extension of twenty years or so. This usually in-
cludes renewals and upgrades of some systems. As information technology
and computers are developing rapidly, the lifetime of a typical computer
or software is usually less than five years, sometimes even less than three
years. Comparing the huge difference between the lifetimes of the plant and
a typical computer brings up the fact that the computer systems in NPPs
have to be upgraded a several times during the lifetime of a plant.

1.4 Structure of the Report

Section 2 introduces some safety assessment approaches and explains the
essentials of safety cases. The scope of making safety evaluations is also
discussed along with sketching the different system levels which can be the
target of evaluation. Section 3 describes formal methods for digital automa-
tion systems analysis. Some previous approaches and experiences from both
research and regulatory perspectives are introduced as well. Section 5 sums
up the report with conclusions and discussions.

12



2 Safety Assessment Approaches

2.1 Scope and Requirements for Analysis

Safety analysis is difficult, labour- and knowledge-intensive work that can
benefit from computerised support tools in several ways, such as reducing
the time and effort involved in the analysis and keeping track of the sys-
tem’s analysed parts and their relationships. Following [56], the evidence
demonstrating the acceptability of any safety related system can be divided
into a) evidence addressing the quality of the development process and b)
evidence addressing the quality of the product.

The quality of the system development process, testing, and analysis
of products are typical parts of system safety assessment. [94] suggests
that the safety assessment rests on a tripod made up of testing, analysis,
and a certification of the personnel and the production process. In every
case, the use of several methods in safety assessment is a significant and
positive aspect, and will naturally lead to a more realistic safety estimate
than putting one’s faith on a single method [56].

One type of analysis is testing, which can show the presence of bugs.
However, testing is not practical for showing that software is free from de-
sign errors. In the design phase of system or software development, sim-
ulation can be used to show presence of desired behaviour, but simulation
does not cover all situations and possible behaviours. Instead, a technique
called model checking can provide convincing evidence that the system de-
sign under inspection has or has not certain behaviour (model checking is
introduced in Section 3.1.1).

Figure 1 below presents an example of possible “levels” at which a system
can be analysed, and at which a safety assessment of I&C systems can
be performed. On the first level, the system specifications, starting from
functional descriptions and diagrams acting as requirements, are developed
into more detailed specifications and designs. This results in production of
function block diagrams – a more rigorous way of specifying the behaviour.
The increasingly growing complexity in design may be achieved by starting
with the main functions of the system and adding more specific details,
redundant channels, voting units etc. little by little. One target of early
phase safety analysis is the validation of function block diagram descriptions
before the development gets to the implementation level.

The second level of the system is the application software, in the form
in which it is developed (e.g., source code). This may be validated for-
mally against the function block diagrams or informally against the original
requirements. This validation exercise determines whether the developer
has correctly transformed the requirements into the software design, im-
plementing all of the required functionality without introducing unintended
behaviours. This is a very challenging task, and so far no suitable meth-
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inline
int
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int
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), "b" (
 parm
) );


return
sys
;


Figure 1. Example of system levels.

ods for making a complete safety analysis for software have been identified.
There exist tools that perform automatic symbolic execution of source code
in order to detect runtime errors. However, those are only assessing the
code quality. They can be used to make searches for dangerous, incorrect
or complex constructions but the assessment is not complete.

The third level is the application code, in the form in which it will exe-
cute on the platform (e.g., binary or bytecode). Validating this against the
second level (application software) establishes the correctness of the com-
piler or code generator. In some circumstances it may be more convenient to
validate the application code directly against the function block diagrams,
for example due to tool availability; this combines two sources of bugs (the
developer and the compiler).

The fourth level is the running system, formed by the application code
and its runtime environment, such as a language interpreter or operating
system. Arguments for the correctness of the runtime environment are typ-
ically based on process arguments (that the interpreter has been developed
by a trustworthy development team) or proven-in-use statements (observing
successful deployments of the same software elsewhere). The fourth level
can be validated to a certain extent by testing it against a model derived
from an earlier level (see 3.1.3).
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2.2 Reliability analysis

Reliability can be defined as:
The ability of an item to perform a required function, under given environ-
mental and operational conditions and for a stated period of time [68].

Reliability has been the subject of scientific study since 1930’s. Struc-
tural reliability analysis concentrates on structural elements such as beams
and bridges using the methods of mechanics and strength of materials, and
will not be considered further here. In the actuarial approach [10] to reli-
ability analysis, all information about the object system is included in the
probability distribution function F (t) of the time to failure T (the time in-
terval from the present to the next failure of the system); the aim of the
analysis is to obtain a good estimate of this function. When the system
under consideration consists of several components, the analysis is called
system reliability analysis.

Any complex technological system consists of three main types of com-
ponents:

• Hardware: this has long been the main subject of study in reliability
theory.

• Software: this has several distinguishing characteristics that render
reliability methods developed for hardware components meaningless.
For example, the reliability of a software component does not deteri-
orate with age, but rather stays the same once the software has been
updated; the uniqueness of each piece of software makes the reliability
data of earlier versions mostly meaningless in considering the relia-
bility of a piece of software; software errors manifest themselves only
under particular conditions.

• Human: in particular, considering the effects of limited rationality and
perception; considering the effects of stress and fatigue; etc.

In addition to the above three types, environmental conditions and re-
liability of structures (weather, earthquakes, buildings, dams, etc.) have to
be taken into account. This report will not consider either human reliability
analysis or the environmental conditions.

The reliability of complex systems is often analysed with the help of a
fault tree or an event tree. A fault tree is a presentation of the various faults
in the system and how they (may) lead to system failure when combined.
An event tree is a presentation of sequences of events that lead to a failure.
A branching in the tree corresponds to points where events can take more
than one course.
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Some active research areas in the field are common cause failures (where
one event, e.g. a fire, can cause several faults, e.g. burning of electric ca-
bles and leakage of pipes); restricting the number of events in event trees
to avoid combinatorial explosion; human reliability; reliability of digital sys-
tems; elicitation and incorporation of expert opinions to the analyses; and
the use of reliability analyses in decision making.

In the following, a commonly used method for risk-based decision making
– failure modes and effects analysis (section 2.3) – is briefly described. There
are other methods such as:

• Pareto analysis: this is a prioritisation technique that identifies the
most significant items among many.

• Checklist analysis: here, the risks related to a system or operation are
evaluated in the light of a preconstructed checklist.

• Change analysis: it looks systematically for possible risk impacts and
appropriate risk management strategies in situations where a change is
occurring. This includes situations in which system configurations are
altered, operating practices or policies are changed, new or different
activities will be performed, etc.

• What-if analysis: it is a brainstorming approach that uses broad,
loosely structured questioning to postulate potential upsets that may
result in accidents or system performance problems, and ensure that
appropriate safeguards against those problems are in place.

• HAZOP: a systematic qualitative process in which a multi-discipline
team performs a systematic study of a process using guide words to
discover how deviations from the design intent can occur in equipment,
actions, or materials, and whether the consequences of these deviations
can result in a hazard. It focuses on identifying single failures that can
result in accidents of interest. It is most commonly used to identify
safety hazards and operability problems of continuous processes.

2.3 Failure analysis

Failure modes and effects analysis (FMEA) is a qualitative analysis that is
often carried out before probabilistic risk analysis. Failure mode refers to
the way a failure might occur, e.g. the failure of a valve to prevent flow
or a leak of the valve. Failure effect is the consequence of failure from the
system’s (or customer’s) point of view, e.g., lack of flow in a pipe.

FMEA is often carried out early in the development life cycle to find
ways of mitigating failures and thereby enhancing reliability through design;
in this case, coarse probability estimates for the failure causes and effects
are usually derived. However, for the purposes of this report, FMEA is
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considered as part of reliability and risk analysis, and in that context it is a
purely qualitative technique. FMEA consists of the following tasks:

• Potential failure modes are identified. It is not possible to anticipate
every mode that a component etc. might fail, but as many modes as
possible are identified.

• Their effects on the operation of the system are determined.

• Actions to mitigate the failures are identified.

FMEA’s may be carried out from many perspectives, the following being
the most common:

• System: the focus is on global system functions.

• Design: the focus is on components and subsystems.

• Process: the focus is on manufacturing and assembly.

• Service: the focus is on service and maintenance.

• Software: the focus is on the software subsystem functions.

FMEA can be used for different purposes depending on the phase of the
development life cycle:

• Development and evaluation of requirements from reliability point of
view.

• Identification of design characteristics that contribute to failures, thus
aiding design.

• Help to develop useful tests to assess reliability.

• Ensure that potential failures will not injure or seriously impact peo-
ple.

FMEA consists of the following steps:

• Describe the system (product, process or other) and its function. This
covers also the uses of the system, both intentional and unintentional.

• Create a block diagram of the system. This shows the components or
subprocesses of the system as nodes connected by lines that indicate
how the nodes are related logically to each other.
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• Create a table that lists components of subprocesses, and the failure
modes and effects associated with each. A numerical ranking is as-
signed to each failure effect. Also the potential causes of each failure
mode should be listed. Also the mechanisms that identify the failure
or prevent it from causing system failure should be listed. The ta-
ble should also contain a header that identifies the system considered,
persons responsible etc.

• The table should be updated on a regular basis during FMEA, bearing
in mind that a failure mode in one component may induce a failure in
another.

• Compute risk priority numbers that are the product of failure severity,
failure probability and failure detection likelihood (the probability that
the failure will be detected, given that one has occurred). This and
the following step are not carried out when using FMEA as part of
probabilistic risk analysis.

• Determine potential actions for failures that have a high risk priority
number.

An IEC standard exists for the conduct of FMEA [67].
A traditional FMEA uses potential equipment failures as the basis of

analysis. Therefore, human errors and especially those that do not pro-
duce equipment failure are often overlooked in FMEA. In FMEA, equipment
failures are analysed one by one, and therefore important combinations of
equipment failures might be overlooked. Environmental conditions, external
impacts and other such factors are analysed in FMEA only to the extent
that they produce equipment failures; external influences that do not pro-
duce equipment failures (but may still produce system failure) are often
overlooked. A single FMEA typically accounts for an equipment failure in
one mode of operation (e.g. use, maintenance), and therefore more than one
FMEA may be necessary to obtain a full picture of hazards.

2.4 Safety Cases

Safety cases are a way of presenting a clear, defensible argument that a sys-
tem is adequately safe. A safety case document contains all of the necessary
information for justifying the safety of a system together with an argu-
ment that explains how the available evidence supports the safety claim.
The structure can take a number of forms. Historically, safety cases were
structured so as to show compliance with the relevant safety standards.
Vulnerability-based arguments are based on demonstrations that vulnera-
bilities within a system do not constitute a problem—this is essentially a
“bottom-up” approach. Goal-based approaches (see Section 2.4.1) are the

18



converse “top-down” approach, in which a general claim is supported by lay-
ers of increasingly detailed argument. These approaches are not mutually
exclusive, and a combination of these approaches can be used to support a
safety justification, especially where the system consists of both off-the-shelf
and application-specific elements.

Although safety case documents are mandated in many sectors (e.g.,
railways, off-shore), in the nuclear sector there is no single defining piece
of legislation. The requirement for a safety case arises from several Licence
Conditions. Importantly, a safety case must demonstrate, by one or other
means, the achievement of ALARP1. Other Licence Conditions, e.g. the
establishment of Operating Rules, in the satisfaction of their requirements
draw upon the contents of the safety case. In the UK Health and Safety
Commission’s submission to the Government’s ‘Nuclear Review’2 a Safety
Case is defined as “a suite of documents providing a written demonstration
that risks have been reduced as low as reasonably practicable”. It is intended
to be a living dossier which underpins every safety-related decision made by
the licensee.

The core of a nuclear system safety case is

• a deterministic analysis of the hazards and faults which could arise
and cause injury, disability or loss of life from the plant either on or
off the site, and

• a demonstration of the sufficiency and adequacy of the provisions for
ensuring that the combined frequencies of such events will be accept-
ably low.

Risk-reducing provisions include safety systems, so the safety case will
include arguments of compliance with appropriate standards and probabilis-
tic analyses of reliability. Other techniques that may provide inputs to the
safety case include fault and event tree analysis, failure mode and effects
analysis (FMEA) and hazard and operability studies (HAZOP).

The safety case traditionally contains diverse arguments (or “legs”) that
support its claims based on different evidence. Just as there is defence in
depth in employing diversity at the system architecture level, there is an
analogous approach within the safety case itself. Independent assessment is
also an important part of the safety case process. The objective of indepen-
dent assessment is to ensure that more than one person or team sees the
evidence, to overcome possible conflicts of interest and blinkered views that
may arise from a single assessment. The existence of an independent asses-
sor can also motivate the assessed organisation. The relationship between

1The ALARP principle mandates a demonstration that risks are As Low As Reasonably

Practicable, and is usually assessed by comparing the cost of further risk reductions with
the postulated “cost” of a fatality or injury.

2The review of the future of nuclear power in the UK’s electricity supply industry.
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independent assessments and legs can, however, be complex. Probabilistic
Safety Analysis (PSA) is now an accepted means of demonstrating safety.
The PSA is based on the overall plant design and operation and covers all
initiating events that are in the design bases. It is performed using best-
estimate methods and data to demonstrate the acceptability of the plant
risk. The PSA provides a comprehensive logical analysis of the plant and
the roles played by the design for safety, the engineered safety systems and
the operating procedures. The PSA also demonstrates that a balanced de-
sign has been achieved: no particular class of accidents of the plant makes
a disproportionate contribution to the overall risk. The PSA provides in-
formation on the reliability, maintenance and testing requirements for the
safety and safety-related systems. There are various techniques used for
safety analysis with fault trees, event trees and FMEA being the dominant
methods, and HAZOP being used in fuel reprocessing applications.

In Finland, the concept of Safety Case is not yet widely used. Instead, the
Finnish nuclear sector uses the term Final Safety Analysis Report (FSAR)
which defines the principles of functioning and testing of safety related sys-
tems and equipment. FSAR presents design principles, tasks, and param-
eters that have an effect on safety. In addition, it summarises the tests of
systems and equipment and it should be updated regularly after mainte-
nance and update activities (just like Safety Cases).

2.4.1 Goal-based safety cases

Goal-based approaches are flexible, in that they focus directly on the safety
requirements for the system, for example, requirements on functional be-
haviour, accuracy or fail-safe behaviour. This research has been adopted by
several industries and goal-based cases are routinely developed in some sec-
tors (e.g., civil aviation [33] and UK defence industries [109]), although they
are still a departure from current licensing practices in the nuclear industry.

The flexibility of the goal-based approaches and the focus on safety prop-
erties makes them applicable when a standards compliance case cannot be
made. This is often the case for off-the-shelf components, where typically,
development follows industrial good practice and does not necessarily con-
form to a recognised safety lifecycle (e.g., IEC 61508). Alternative evidence
can be presented to justify the safety properties depending on the charac-
teristics of the device being justified and the process followed. Evidence can
also be related to a range of different safety standards by identifying how
the standards’ requirements support the various claims.

One of the difficulties with safety cases is in ensuring their validity: does
the safety case accurately show that the safety requirements are met? This
difficulty is not linked to the specific approach taken to argue safety—it
is applicable regardless of the approach being prescriptive or goal-based.
For example, if a prescriptive approach is followed, where a given failure
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integrity is argued based on compliance with a safety process (as in the case
of IEC 61508), we must consider how one can ensure that

• following the prescribed process guarantees that the integrity target
has been achieved, and

• the deployed process is an adequate interpretation of the prescribed
process.

A similar difficulty arises when a goal-based approach is applied. In
a goal-based approach, top-level claims are decomposed into more specific
claims and further decomposed until evidence can be supplied to support
the claims. However, there is currently no systematic way of evaluating the
validity and completeness of this decomposition. Similarly, no guidance is
currently available on how to achieve an adequate decomposition of top-level
claims. How can one ensure that the claim decomposition is appropriate and
that we have confidence that the evidence presented supports the claims?
Obviously, the validity of the safety case strongly depends on the sub-claims
being adequate and sufficient to form an argument in support of a higher-
level claim - that is, that the decomposition is valid.

2.4.2 Notation

The original goal-based argumentation structures were developed by Toul-
min [106]. Toulmin’s scheme addresses all types of reasoning whether sci-
entific, legal, aesthetic, colloquial or management. The general shape of
arguments consists of grounds, claims, warrants and backing:

• Claims, as the name suggests, are assertions put forward for general
acceptance.

• The justification for the claim is based on some grounds, the “specific
facts about a precise situation that clarify and make good the claim”.

• The basis of the reasoning from the grounds (the facts) to the claim
is articulated. He coins the term warrant for this. These are “state-
ments indicating the general ways of arguing being applied in a par-
ticular case and implicitly relied on and whose trustworthiness is well
established”.

• The basis for the warrant might be questioned and here Toulmin in-
troduces the notion of backing for the warrant. Backing might be the
validation for the scientific and engineering laws used.

We need to consider that the implication from grounds to claims may
not be deterministic: it may be possible or probable that the claim follows
from the grounds. These are captured by the modality of the argument.

21



Figure 2. Toulmin’s approach to argumentation.

2.4.2.1 Claims-Argument-Evidence (CAE) The work of Toulmin is
the basis of the Adelard goal-based justification approach ASCAD [4], [17],
where the claims-argument-evidence (CAE) structure is closely related to
Toulmin’s argument components:

• Claims: these are the same as Toulmin’s claims.

• Evidence: is the same as Toulmin’s grounds.

• Argument: is a combination of Toulmin’s warrant and backing.

This relationship is illustrated in Figure 2.
Modalities are not captured by the arrows in the ASCAD notation (the

dashed arrows in Figure 3). However, there is an informal convention to
specify a set of assumptions or preconditions. This is similar to modality:
the claim is only valid if the preconditions hold. The ASCAD notation en-
courages a series of arguments to be joined together in sequence by allowing
claims to take a set of sub-claims as their grounds. We can thus demonstrate
the top level claim by showing that

• The lowest level grounds can be shown to hold.

• All of the arguments in the structure are valid.

2.4.2.2 Goal-Structuring Notation (GSN) GSN [74] is a graphical
approach to presenting safety cases, with a more involved graphical syntax
than ASCAD. Node types are Goal, Solution, Strategy, Assumption, Justi-
fication, Context, Model, Notes and Option; GSN also includes facilities for
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Figure 3. Relationship between Toulmin’s scheme and ASCAD CAE ap-
proach.

templates and notation indicating how a template should be expanded to
form a suitable safety case.

A relationship can be demonstrated between GSN and the original Toul-
min concepts, where a GSN “goal” is equivalent to a claim, which is “solved”
by strategies, “sub-goals” and “solutions” (which can be related to Toulmin’s
warrants and grounds).

2.4.3 Safety case formalisms

2.4.3.1 Govier support patterns Weaver et al. [114] argue that safety
cases can be made more convincing by restructuring them so that each argu-
ment used fits one of the three support pattern types proposed by Govier [54]
(Figure 4):

• A single support pattern has one premise supporting one conclusion.

• A linked support pattern has multiple premises which interdependently
support the conclusion - the conclusion can only be held to be true if
all of the premises hold.

• A convergent support pattern also has multiple premises, but each
supports the conclusion separately.
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Figure 4. Govier’s support pattern types in ASCAD Fog notation.

A claim that an “adequate supply of oxygen” is available might be sup-
ported by the sub-claims “main oxygen subsystem adequate”; “monitor
detects main oxygen supply failure”; and “backup oxygen subsystem ad-
equate”. This is neither a linked support pattern (only the main or the
backup supply is required, not both) nor a convergent support pattern (the
monitor on its own cannot provide an oxygen supply). Weaver et al. “refac-
tor” this structure into a two level tree: the adequate supply of oxygen is
provided either by the main subsystem or by the backup subsystem (con-
vergent support); the backup subsystem operates when the monitor detects
failure in the main subsystem and the backup subsystem itself is adequate
(linked support pattern).

This type of normal form for argumentation has its origins in mathemat-
ical approaches to logic and proof. Reformulating a complex argument in a
normal form is a convenient way of clarifying its structure. In mathematical
logic, this conversion can be performed automatically, while in the context
of safety cases, arguments are rarely specified precisely enough for this to
be possible. Manual conversion to a normal form therefore has the effect of
forcing the safety case author to be more precise.

2.4.3.2 The Cemsis approach In the Cemsis [95] project, a formal
approach to safety justification was developed which aimed at addressing
some of these issues. The approach provides a “hierarchical structure for
constructing arguments” [43]. Safety claims and evidence are presented in
structured layers, where each layer has a corresponding model. There is no
argument as such: evidence is related to the claim through some form of
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model and a set of agreed assumptions, i.e. the argument is self-evident
given the evidence, the model and the sub-claims. Claims are made at the
following levels:

0. Top level (the plant).

1. Plant / safety system interface.

2. Safety systems architecture.

3. Safety system design.

4. Operational environment.

Initial claims are made at Level 0, and can be expanded into sub-claims
at lower levels. A claim at a given level can be satisfied by evidence at that
level or by sub-claims at subsequent levels.

The same structure can be used for generic components, where Level 1 is
a claim about the component interfaces, and subsequent claims are related
to different levels of detail of the component. Claims about components can
be used within larger system justifications.

2.4.3.3 The Fog approach The Fog project is partly concerned with
ensuring that only valid arguments are used in the construction of the claim
tree. The ASCAD notation represents the warrant and backing through
the use of informal arguments in the narrative. To allow us to increase
the formality of the claim structure, we draw the key parts of the warrant
and backing out into side-claims (Figure 5). These may have their own
decompositions, giving support and evidence for the argument itself.

Side-claims tell us how to combine the grounds together, and under what
circumstances the argument is valid. In this way, for example, the various
support patterns of Govier are representable. In each case, the side claims
(to the right of the argument node) explain the relationship between the sub-
claims or grounds (Q, Q1, Q2, Q3) and the conclusion claim P . For example,
the single support pattern is used when a single sub-claim Q supports a single
conclusion claim P . A side-claim is required to explain why Q ⇒ P holds.

2.5 Regulatory Perspective

From the nuclear regulator’s viewpoint, the problem with the current safety
assessment methods is that they often do not address the behaviour of the
system but try and infer this from indirect evidence such as compliance with
standards or good development processes. Safety assessment methods which
are feasible, repeatable and can be performed within reasonable amount of
resources and time and directly address the behaviour of the system have
clear advantages.
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Figure 5. Relationship between Toulmin’s scheme and the Fog normal form.

From STUK’s (The Finnish Radiation and Nuclear Safety Authority)
viewpoint, model checking can be seen as a method for finding indicators of
items and entities to draw more careful attention to. It can also be used for
providing direct, objective evidence for the assessment process based on the
models of the system / software behaviour. Especially the phases of safety
assessment that concern formalised design documentation and requirements
specification are seen as potential applications for model checking.

The biggest obstacles of model checking to be part of safety assessment
are related to building valid models. Creating the model and selecting the
properties and system behaviour to be checked are crucial tasks and it de-
pends on the skills and experience of the person making the model and
checking it. Nevertheless, model checking can be seen as complementary
technology to support testing and other more traditional assessment meth-
ods.

In the UK there are formal requirements for “Independent confidence-
building” and this should provide an independent and thorough assessment
of a safety system’s fitness for purpose [99]. Model checking may be a
technique that can be effectively used to satisfy this requirement (see [99]
Safety Assessment Principles for Nuclear Facilities, HSE 2006).

Following [91], considerable progress has been made over the past 15
years or so in increasing the state space capacity of model checkers, to the
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point where specifications containing hundreds of state variables can often
be verified automatically in a few hours. However, realistic designs often
contain thousands or millions of state variables, far exceeding the reach of
current model checking algorithms. Another class of verification tools called
theorem provers can be used to overcome the capacity limitations of model
checking. A theorem prover does not search the state space of a specification
directly, but instead searches through the space of correctness proofs that
a specification satisfies for a given correctness property. In general, model
checking and theorem proving are complementary technologies and should
be integrated to successfully tackle realistic system designs.
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3 Formal Methods for Digital Automation Sys-
tems Analysis

3.1 Computer Aided Verification Methods

The traditional way of ensuring the reliability of distributed systems has re-
lied on the two main techniques of manual testing using human- or machine-
generated test cases and simulation. However, when the systems contain
parallel and distributed components, the effectiveness of these techniques
does not scale at the rate of the system size growth. The use of computer
aided verification has been suggested as an aid to supplement these methods.

3.1.1 Model Checking

Model checking [40] is a set of methods for analysing whether a model of
a system fulfils its specification by examining all of its possible behaviours.
Model checking was introduced in the early 1980s simultaneously by two dif-
ferent groups [97, 41]. Good introductory books to the topic are [40, 12, 96].
In model checking, at least in principle, the analysis can be made fully auto-
matic with computer aided tools. The specification is expressed in a suitable
specification language, temporal logics being a prime example, describing the
allowed behaviours of a system. Given a model and a specification as input,
a model checking algorithm decides whether the system violates its speci-
fication or not. If none of the behaviours of the system violate the given
specification, the (model of the) system is correct. Otherwise the model
checker will automatically give a counterexample execution of the system
demonstrating why the property is violated.

In symbolic model checking the main idea is to represent the behaviour
of the system in a symbolic form rather than explicitly. There are several
variations to symbolic methods. The most well-known is the use of data
structure called ordered binary decision diagrams (OBDDs), which are a
canonical representation of Boolean functions [30, 32, 31, 87]. The bounded
model checking method [14] was introduced to further improve the scalability
of symbolic model checking by replacing OBDDs with methods based on
propositional satisfiability (SAT) checking. The main idea in bounded model
checking is to look for counterexamples that are shorter than some fixed
length n for a given property. If a counterexample can be found which is at
most of length n, the property does not hold for the system. It seems that the
bounded model checking procedures can currently challenge OBDD based
methods on digital hardware designs both in terms of memory and time
required to find counterexamples [15, 24, 42]. A weakness of bounded model
checking is that if no counterexample can be found using a bound, using
the basic method the result is in general inconclusive. However, the basic
method can be extended to a complete model checking method for safety
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properties by employing temporal induction [100, 49]. The Laboratory for
Theoretical Computer Science at Helsinki University of Technology and staff
at Adelard have contributed to the development of the NuSMV symbolic
model checker [38, 76, 77, 59, 60, 39, 69, 16].

The area of model checking of real source code has recently become a
prominent field of research. A large part of the interest has been triggered by
the success of the SLAM project [7] at Microsoft. SLAM is a model checker
for sequential C programs aimed at the verification of the use of locking
primitives of Windows device drivers. As a matter of fact, the SLAM system
has been transferred from Microsoft research into the Windows group and
has been integrated in a beta version of the Windows driver development
kit [6], and is thus in production use. The success of the SLAM project
has raised interest in using model checking methods also for analysing C
source code. Similar approaches could be used to e.g., analyse the embedded
software of smart sensors and other small devices with embedded software
written in C. The academic tools in this area are, however, less mature than
model checkers for hardware systems such as NuSMV.

For concurrent programs such as data communications protocols the
analysis techniques have so far mostly concentrated on modelling the con-
current program in the input language of a traditional explicit state model
checker. These tools use simpler models of concurrency and include tools
such as Spin [61] or Murϕ [48]. The Laboratory for Theoretical Computer
Science at Helsinki University of Technology has significantly contributed to
the research on model checkers by creating tools such as PROD [111] and
Maria [85].

For systems with real-time constraints model checking approaches based
on analysing models with real time valued clocks such as timed automata
is natural, and can be sometimes much more efficient than modelling the
clocks with counters updated at discrete time intervals. One of the most
prominent model checking tools in this area is Uppaal [11].

3.1.2 Deductive Verification

Deductive verification is a set of methods for determining whether a program
fulfils its specification by analysing its formal semantics. The specification
defines a relationship between the state of the computer when the program
begins (the precondition) and the state of the computer when the program
terminates (the postcondition). The way that each program statement in
turn transforms the state is analysed either manually (e.g., as described
by Kaldewaij [73]) or using a theorem provers or proof assistants (e.g., the
Caduceus and Krakatoa tools [51]), in order to determine whether the spec-
ification is met.

Deductive verification has been successfully applied in safety applica-
tions [86, 27] but it remains a relatively expensive technique. Both manual

29



proof and conventional theorem provers require a degree of understanding
of the underlying semantic model and proof approaches as well as the NPP
domain at hand. Although this requirement for skilled application of the
method makes deductive verification unsuitable for MODSAFE at least from
NPP I&C systems developer perspective. However, some techniques used
in the field may still be quite relevant. For example, the approach could be
used in verification efforts done by third parties with sufficient knowledge of
both deductive verification methods as well as NPP domain expertise.

3.1.3 Model-based Testing

Testing is one of the most time consuming parts in the development of
complex systems. Reports from the telecommunications industry tell us
that the number of man hours devoted to testing is in many cases more
than half of the effort spent in a typical development project. However, in
many cases the testing is very ad-hoc and not based on a solid theoretical
foundation. Thus there is a lot of room for improvement to be gained from
a model-based approach to testing.

A promising way to use formal methods in connection with testing was
proposed in [107, 45, 28]. The main idea is to test a black-box implemen-
tation with test cases and test verdicts automatically generated from an
assumed to be correct “golden design” abstract system model, which is in
this context called the specification. How this could be further applied in
automation setting is an open research question.

The first commercial model-based testing tools are available for UML
models [62] and for Simulink/Stateflow models [103]. However, the academic
tools available for model-based testing are currently less well developed than
academic model checking tools.

3.2 Formal methods for Digital Automation systems

In this section we review existing work on applying formal methods to the
analysis of digital automation systems. However, as the subject area is
very wide, we have restricted our focus on the key areas of interest in the
view of the MODSAFE project. Therefore we discuss only studies concern-
ing automation systems based on programmable logic controllers (hereafter
PLCs). Consequently we have mostly excluded systems which are based e.g.,
on softPLCs (PLCs based on standard PCs) and distributed control systems
(DCSs). This restriction seems reasonable, since the conclusions made on
PLCs can be extended to cover also softPLCs. On the other hand, covering
also the subject of DCS would have required a survey of much larger scale.
However, the PLC domain can be seen as a logical stepping stone towards
analysing of DCS based automation systems. On the method side we are
focusing mainly on applying model checking methods to PLC applications.
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The analysis of PLC based systems with formal methods can be done
on different levels. In the most comprehensive approach the validity of the
PLC program is verified against the specification of the entire system which
consists of the combined specification of the controller and its environment.
Another option is to restrict only on verifying the correctness of the con-
troller. In this case the specification of the system as a whole is divided
into the specifications of the environment and the controller part, and the
program of the controller is analysed with respect to the specification of the
controller.

Another classification of approaches on applying formal methods to PLC
applications can be made based on the initial objective of the process. That
is, the goal might be to analyse an existing application or to design a com-
pletely new one. In the first approach an existing PLC program is first
transformed into some formal modelling language and then, based on the
model, the validation of properties is carried out with a model checker. This
approach is often referred to as modelling or formalising existing PLC pro-
grams [80]. The related studies are often—but not always—restricted to only
validating the controller against its specification. In the second approach a
system is designed from the beginning by using a formal modelling method.
After the model (which in this case often consists of both, the model of the
controller and the environment) is finished, it can be used, alongside of val-
idating properties, to derive a PLC program automatically. This approach
is usually referred to as model based design or program synthesis [53].

In this report we review studies on both approaches, the modelling of
existing PLC programs and the model based design. We start by listing
some earlier surveys made on the subject. From these we found especially
the papers [80, 63] as a good starting point for our own review. After the
list of existing surveys we proceed to present references to the most relevant
studies in the view of MODSAFE project. However, before going into the
actual survey we describe in the following section some classification criteria
for models of PLC programs which were originally presented in [80]. We use
this terminology to describe the references that we list in this paper, but
not all the referred studies are classified according to all these criteria.

3.2.1 Classification Criteria for PLC Models

Here we describe the three orthogonal criteria for classifying PLC models
originally presented by Mader in [80]. The discussion is intentionally kept
brief and an interested reader is advised to turn to [80] for more in-depth
coverage on the issue.
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Modelling of the cyclic operation mode

The most fundamental characteristic of PLCs is their cyclic operation mode.
Therefore the first logical choice in classifying PLC models can be made on
the basis of how the scan cycle of the PLC is modelled. There are three
possible choices:

• Explicit modelling of the scan cycle.

• Implicit modelling of the scan cycle.

• Abstracting from the scan cycle.

In the explicit modelling of the scan cycle the exact duration of the
cycle in actual time units is modelled. Instead, in the implicit modelling
the existence of the cycle itself is modelled, but the actual duration of it is
not measured in time units, and moreover, it is considered to be constant.
The third option is to abstract from the scan cycle entirely so that the time
model of the PLC is considered to be continuous instead of discrete.

Modelling of timers

The use of timers is a fundamental characteristic of PLC programs. However,
not all of the PLC applications need timers and in many cases the use of
them can be avoided, either by modelling techniques or by altering the
system design. Therefore, it is justifiable that there are studies concerned
with modelling of timers as well as those which abstract them out.

The language fragment considered

By the language fragment criteria a choice is made on which parts of the
PLC programming language are considered in the modelling process. The
first obvious question is that which of the five languages defined in the
IEC 61131-3 standard is considered. The options are:

• Instruction List (IL).

• Structured Text (ST).

• Ladder Diagrams (LDs).

• Function Block Diagrams (FBDs).

• Sequential Function Charts (SFCs).

Moreover, usually only a restricted part of the features of the chosen tar-
get language is considered. This is because the IEC 61131-3 standard lacks
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definition of formal semantics on the languages of the standard. There-
fore, from the viewpoint of academic research, it simply is not reasonable to
consider all possible semantic interpretations of all parts of the languages.

Finally, the language fragment considered can also be restricted on the
possible data types, i.e., which of the data types of booleans, integers and
real numbers are allowed.

3.3 Survey of Studies on Model Checking PLCs

In this section the survey of studies on applying model checking to PLCs
is presented. The section is organised as follows. In Subsection 3.3.1 a list
of already existing surveys is given, after which approaches to modelling of
PLC programs are listed in Subsection 3.3.2, and finally in Subsection 3.3.3
the studies on model based design are reviewed.

3.3.1 Previous surveys

• The paper [80] by Angelika Mader presents a classification of different
PLC models. It first classifies an orthogonal set of criteria on which
PLC models can be classified on. The paper also introduces an ex-
tensive list of publications which are classified against the presented
criteria. The dissertation [63] by Ralf Huuck presents quite a similar
survey which also includes more recent studies and an extended list of
the classification criteria.

• The paper [84] also by Mader discusses the application of formal meth-
ods to PLC applications in general. It presents a schema on the struc-
ture of a general PLC application and based on this framework anal-
yses the possibilities for applying different formal methods on PLCs.

• The paper [120] by Frey introduces four criteria on which studies con-
sidering formalisation of existing PLC programs can be categorised.
It also presents references to studies falling in each of these categories.
The study is by no means as thorough as the survey presented in
the papers [80, 63] but contains some additional references and shows
another way of classifying the existing research.

• The paper [53] by Frey presents a general framework on the differ-
ent phases of verification and validation and discusses what formal
methods can be used in these different phases. Therefore, it not only
focusses on transforming existing PLC programs to models, but it also
discusses other formal methods in addition to model checking.
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3.3.2 Modelling PLC applications

In the following a list of studies considering the modelling of PLC applica-
tions is given. The references are organised according to the PLC program-
ming language.

Research on modelling SFC programs

• The Doctoral Thesis of Ralf Huuck [63] shows how SFC programs
can be given formal semantics, including a translation of the untimed
semantics of PLCs to the Cadence SMV model checker input language.
In the paper [9] this research is extended by giving formal semantics
also for timed SFCs and in the paper [8] it is shown how timed SFCs
can be translated into timed automata. The latter study illustrates
in both, timed and untimed cases, the complete verification procedure
from model transformation to identifying errors with model checking
tools UPPAAL and Cadence SMV.

The research papers described here seem to take the closest approach
to that originally sketched in the MODSAFE research proposal.

Research on modelling IL programs

• The widely referred paper [82] by Mader and Wupper shows how a frag-
ment of IL programs can be translated into timed automaton. Based
on this study a tool is presented in the paper [115] by Willems which
translates IL programs automatically into timed automaton format ac-
cepted by UPPAAL model checking tool. This tool chain allows model
checking of real time properties with explicit modelling of the scan cy-
cle. The Willems’s tool also allows IL programs to contain bounded
integer variables. Moreover, UPPAAL tool can be used to model the
environment of the PLC as well. In an unpublished paper [83] Mader
presents two examples on modelling IL programs and performing their
verification with the UPPAAL tool.

• In the paper [58] it is shown how IL programs can be transformed into
Petri nets. The method allows usage of data structures up to length
of 8-bits and it takes into account all standard instructions excluding
commands from libraries. However, the real-time aspects cannot be
modelled.

• In the paper [66] it is shown how IL programs can be transformed
into Timed Net Condition/Event systems. The scan cycle is modelled
explicitly and timers are taken into account at some level. However,
the possible data structures are restricted to boolean values and only
load, store, and, and or instructions are considered.
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• The paper [34] deals with the same fragment of IL programs as the
paper [66] described above. In addition, the loop operations are consid-
ered. However, [34] is concerned with translating IL programs directly
to the input language of the SMV model checker tool. As SMV can-
not directly handle real-time issues, these aspects of the IL program
cannot be analysed.

• The paper [78] uses BDD and BMC based symbolic model checkers to
model check two small PLC based automation systems written in IL.

Research on modelling LD programs

• In paper [90] LD programs are modelled with SMV tool without tak-
ing timing aspects into account. Based on this study there exists a
research paper [108] presenting two comprehensive case studies on ex-
isting chemical processing systems. In these case studies the model of
the environment is also presented. The verification process revealed
numerous faults and the results could be used to improve the designs.

• In the paper [98] a large fragment of LD programs are modelled with
the SMV model checker. The scan cycle is modelled implicitly and it
is shown how a particular type of timers can be modelled in non-real
time manner so that certain liveness and safety properties can still be
verified.

Research on modelling ST programs

• The paper [71] by Jimnez-Fraustro and Rutten considers of modelling a
fragment of the ST language with the synchronous language SIGNAL.
The fragment includes at least assignments, conditionals and bounded
loops. Scan cycles are modelled implicitly and real-time behaviour
is not considered. The follow up study [72] considers also the FBD
language. Unfortunately, there does not seem to exist any related
studies on actual model checking based on the SIGNAL model.

3.3.3 Methods for synthesising PLC programs from models

In the following a list of studies considering the synthesis of PLC programs
from models is given.

• In the paper [47] Henning Dierks presents a new modelling formalism
named PLC-automata especially designed for modelling PLC appli-
cations. PLC-automata allows explicit modelling of the scan cycle
but it is possible to model only particular type of timers in which an
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input signal is ignored for a certain time. Dierks shows also how PLC-
automata models can be transformed automatically into language of
Structured Text.

In the paper [46] it is shown how PLC-automata models can be trans-
formed into timed automata models which makes it possible to perform
model checking with a real-time model checker such as KRONOS or
UPPAAL. Moreover, in the paper [104] a tool MOBY/PLC is pre-
sented which can be used to model PLC-automata, validation, and
code generation.

• As a continuation for the research based on PLC-automata formalism
Olderog presents in paper [92] an approach for designing valid PLC
applications. His method is based on formulating design specifications
with PLC-automata and specifying requirements in Constraint Dia-
grams. Olderog also presents a case study from industry for which he
applies his approach. In the paper [93] Dierks and Olderog present a
tool Moby/RT which is based on the design approach of [92].

• The Doctoral Thesis of Georg Frey [52] tries to formalise PLC control
algorithms and their verification through the use of a Petri net based
formalism.

• A quite interesting research project from the view of MODSAFE project
is reported in the papers [81, 29] by Mader, Brinksma et al. In [81] a
systematic design and validation of a PLC control program for a batch
plant by using formal methods is reported. This plant was selected
as a case study for the EC project on Verification of Hybrid Systems
(VHS). In the follow up paper [29] it is reported how the Spin model
checker was used for both the verification of a process control program
and the derivation of optimal control schedules.

• The paper [117] discusses the use of formal methods in designing PLC
controllers to be employed in Korean nuclear power plants. The ap-
proach is based on first modelling the required control using a com-
bined timed automata and tabular notation like model (NuSCR), and
then mapping the design through automated tools to a PLC imple-
mentation based on the IEC 61131-3 Function Block Diagram FBD
notation. In the actual implementation the FBD design is further
hand optimised by domain experts to minimise time needed for the
PLC cycle. The authors claim that they can employ model checking
on the initial timed automaton model as well as verify the soundness
of the hand optimisations used. However, actually performing this
model checking is not reported in the paper.

• The paper [119] gives details of the NuSCR specification approach
discussed above together with further references.
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• The paper [37] gives the tool support used by the Korean NuSCR spec-
ification formalism. It also includes an SMV backend that supports
the model checking of NuSCR specifications. The paper contains a
small case study utilising model checking.

• The paper [118] describes the synthesis approach for NuSCR described
above in slightly more detail.

• The paper [70] describes the methods used to test PLC programs in
FBD format for Korean nuclear power plants.

• The paper [101] shows how the SMV model checker can be used to
model check a Korean safety critical system for a nuclear power plant.

3.4 Overall Status of the Research on Model Checking PLCs

On the study field of modelling PLC programs most research papers seem
to be available on the language of Instruction Lists. On Ladder Diagram
programs there is also quite a lot of research but in this area there seems to
be many gaps to be filled, especially on covering timers and real time issues.
Instead, in the case of the SFC programs the situation is the opposite: there
hasn’t been that many research projects, but the coverage of existing ones
is quite extensive.

Considering the last two languages of the IEC 61131-3 standard, i.e., on
Structured Text and Function Block Diagrams, there seems to exist only
very few studies. We presume that the reason for this in the case of the ST
language might be that the relevant problems on the modelling issues are
present also in the IL language which, in its brevity, better suits academic
research. Instead, in the case of the FBD language, the similar but more
evolved SFC language provides features not existing in FBD, and therefore,
might be more appealing for research.

For the synthesising approach there has also clearly been a lot of research
activity. The usefulness of this approach has especially been shown in the
Korean research project described above. As this particular research project
is very close to the scope of the MODSAFE project, it is further described
in Section 3.5.1.

3.5 Previous Approaches to Software and Automation Anal-
ysis (in NPPs)

3.5.1 Computer Aided Analysis of Korean and Canadian NPP
Automation Systems

As already mentioned in Section 3.3.3, the Korean approach to NPP au-
tomation systems analysis is based on using a finite state machine model of
the PLC control given formally in a tabular notation called NuSCR [117].

37



The idea is that first this finite state machine model is proved correct us-
ing, e.g., model checking methods [101]. After the model is known to be
correct, it can be mapped into an implementation using an automatic trans-
lation [118]. It is not known to us whether any control systems designed
in this manner are in production use at Korean NPPs. The drawback of
this approach is that it requires the design approach of the control systems
to be modified to accommodate for computer aided analysis unlike in the
MODSAFE project where no such design process changes are needed.

A similar approach to the one employed in Korea has been used to design
real reactor shutdown systems of Canadian NPPs of Ontario Hydro using
a tabular notation software design documents and proving the design docu-
ments correct using a theorem prover. A very nice overview of the approach
taken in Canada can be found from [113].

3.5.2 French approaches

The French approach to reliability determination is basically deterministic
and supplemented by PSAs. PSAs are not requested before licensing: they
are used only to gain a global overview of the plant safety and to determine
possible weaknesses. Besides, the PSAs do not cover software.

3.5.2.1 SCADE The SCADE tool [13, 105], based on the synchronous
high-level LUSTRE language [36], is an industrial tool developed by Es-
terel. It has been used in nuclear software development by Merlin-Gerin
and Schneider-Electric for software development. Two facilities provided by
SCADE are of interest:

• Validation facilities: Design verification supporting formal analysis
and simulation.

• Automatic Code Generation: SCADE produces some code (C) au-
tomatically. Originally problems in the tool were found by checking
against the code; these problems have been corrected and Merlin-Gerin
now argue that their feedback of two years experience with non-nuclear
systems has stabilised the tool.

3.5.2.2 Caveat Caveat [1] is a C static analysis tool aimed at control
systems code—code which may be long but is typically not very complex.
It is a combination of an interactive theorem prover and code analysis tool,
covering:

• Code navigation (code structure, call graphs and data-flow graphs).

• Support for formal proof of properties in first-order logic.
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• Calculation of the subroutine outputs as a function of their inputs,
and the calculation of weakest preconditions.

• Test case generation.

• Dead code detection.

• Software execution metrics (worst-case execution time, stack depth).

3.5.3 BE-SECBS Project

A FP5 project called “Benchmark Exercise of Safety Evaluation of Computer
Based Systems BE-SECBS” aimed at making a comparative evaluation of
existing methodologies in safety critical computer based systems assessment
among regulators and technical support organisations in some EU Member
States. The project had three assessor teams: Institute for Radiological
Protection and Nuclear Safety (IRSN, France), Institute for Safety Tech-
nology (ISTec, Germany), and a Finnish consortium Technical Research
Centre of Finland / Radiation and Nuclear Safety Authority (VTT/STUK)
which assessed a reference study case provided by Framatome. The project
was coordinated by Joint Research Centre—Institute for Energy (JRC-IE).
The following three sections describe the methods used in the BE-SECBS
project [75].

3.5.3.1 IRSN’s Methods IRSN’s method of safety critical software
evaluation consists of five major steps:

1. Development process and associated documentation analysis. The first
step of the evaluation consists in understanding the development pro-
cess and assessing its conformance to the principles and requirements
of national regulation (French basic safety rules RFS IV.1.a, IV.2.b and
V.2.d) and international standards (IAEA safety guides, IEC 61226,
IEC 61513, IEC 60880). The crucial part of this examination focuses
on the evaluation of the consistency, completeness and correctness of
the software specifications against user requirements and system de-
sign requirements.

2. Source code analysis. IRSN uses QAC and McCabe tools to assess
the code quality. They can be used to make searches for dangerous,
incorrect or complex constructs. Polyspace Verifier tool automatically
performs symbolic execution of a source code in order to detect run-
time errors such as array out of bounds violations using static analysis
techniques.

3. Determination of critical software components. Failure Modes and
Effects Analysis (FMEA) adopted to software systems is used at this
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assessment step. An index of relative importance is established for
each function by taking into account the number and severity of the
consequences of the failures and categorising them. Once the potential
failures that could lead to dangerous malfunctions are identified, it is
checked that there are no errors in the software that could lead to these
failures. This is done by verifying that there is at least one validation
test performed that would have covered this postulated failure mode.

4. Dynamic analysis. In order to perform dynamic analysis, IRSN has
developed a set of tools, called Claire simulation tool [35], which can
simulate operation by execution of a binary program without recourse
to equipment used on site. The goal is to perform non-intrusive test
and observation of the actual binary codes of a multi processor system.
Next, a consistency study is used to verify the output values from the
channels (e.g. controlling a reactor trip) when the input values are
selected by the analyst from the nominal operating range of the system.
This study verifies the most significant aspects of the behaviour of the
binary program that is actually operational on site. Eventually, a
robustness study aims at judging the behaviour of the programs of the
representative set subjected to series of tests. These tests are defined
in advance. They represent abnormal situations for the system or its
environment. The series of tests are focused on the critical or sensitive
components detected during the previous steps.

5. Development of test cases and choice of testing strategy. For the test-
ing analysis purposes, IRSN has developed the tool Gatel. Test cases
(input/output sequences) are generated, covering a specification work-
ing together with its environment. These test cases exhaustively cover
a given test objective, derived by the assessor from the safety require-
ments of the system. Gatel produces “abstract tests”, corresponding
to a functional view of the software, so they must be “concretised” to
the binary code level in order to be run by Claire. This translation
is made by Claire and requires additional knowledge about the binary
code under test.

3.5.3.2 ISTec’s Methods Institute for Safety Technology (ISTec) par-
ticipated in BE-SECBS project as well. The safety assessment performed at
ISTec was based on IEC 60880 and German national rule KTA 3503 (“Type
Testing of Electrical Modules for the Reactor Protection System”). To ver-
ify the automatically generated code within a reasonable amount of time,
a methodology was developed by ISTec within the framework of a research
program from 1994 to 1997. This methodology is based on a tool supported
static analysis of the generated code which is independent from the gener-
ation rules of the code generator. The tool is called RETRANS (REverse

40



TRAnsformation of Normed Source code). The methodology is restricted
to the configuration part of software systems, where the configuration part
consists of normed source code. RETRANS transforms the normed source
code into analysis items. These analysis items should have a correspondent
item in the original specification data set and vice-versa (consistency and
completeness). In the case of an error-free run RETRANS

• demonstrates the functional equivalence of the specification data set
with the source code,

• demonstrates the existence of consistent data in the specification data
set,

• demonstrates the existence of consistent data in the generated normed
source code,

• carries out a plausibility check: analyses items’ comparison between
redundancies and highlights differences.

In general, ISTec applied a two-phase qualification approach consisting
of generic and plant-specific elements and made use of the fact that the
example case was type-tested according to the mentioned German national
rule KTA 3503, which is a generic qualification of hardware and software
components. Within BE-SECBS, ISTec performed the corresponding plant-
specific system qualification phase. Since 1993, type testing of software
components has been applied by ISTec according to KTA 3503 with the
objective to qualify and assess the developed software modules on the basis
of the mentioned phase model and to demonstrate compliance of the type
tested software components with their software requirements specification.
The plant-specific system qualification is performed within the respective
licensing process of the individual plant with emphasis on the system ar-
chitecture, V&V measures, functional tests, and application code analysis.
Besides functional testing, the analysis of the application code is a necessary
verification step in the whole qualification procedure. It grants the compli-
ance with requirements of generally accepted standards like IEC 60880 for
the automatically generated application software. During the plant specific
software assessment it is not necessary to evaluate the type tested software
modules again; it only needs to verify that the correct versions of the type
tested software modules are used and that they are used in an appropriate
way.

3.5.3.3 VTT/STUK’s Methods The VTT/STUK safety evaluation
method is based on the Finnish regulatory guide YVL-5.5 which describes
the principles for licensing automation systems for NPPs. The basic prin-
ciple of the methodology is the critical review of the evidence and analyses
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provided by the system vendor or the power utility applying for the license.
The VTT/STUK method aims at evaluating the quality of evidence (i.e.
evaluation of the target product and its design and implementation pro-
cess with respect to standards, authority requirements etc.). YVL-5.5 re-
quires also quantitative reliability analyses. In the VTT/STUK method, the
quantitative reliability estimates are produced by using a Bayesian network
model.

The qualitative analysis of a programmable automation system has the
following major tasks or phases: overall analysis of the evidence/material
provided; analysis of the requirements specification; FMEA of safety func-
tions; analysis of test coverage, operating experience, application code; anal-
ysis of the platform development process and application development pro-
cess. Each of the above mentioned items is evaluated and an assessment is
made on the level of quality. This analysis yields a map of safety evidence
or safety arguments.

The results of the above tasks are used in the quantitative reliability
analysis. There are no well-established and generally accepted methods for
quantitative reliability analysis of programmable systems. However, when
performing a PSA study, also these systems have to be taken into account
and probability values that programmables do not perform their task prop-
erly when demanded, have to be evaluated. The direct estimation of such
probabilities on the basis of operating experience is not possible due to lim-
ited statistical information. However, the information developed in different
phases during licensing process reflects the reliability of the system and it
should be utilised. One approach to take this information into account is
the use of Bayesian networks with the following modelling phases:

1. Development of the map of evidence,

2. Definition of the structure of the Bayesian network model (variables,
metrics, probabilistic relationships and dependencies),

3. Quantification of the model,

4. Interpretation of the results (sensitivity and importance analysis).

3.5.4 Model Checking Operator Procedures

Some very interesting work has also been done on model checking operators
procedures in the avionics context. NASA has been using model checking
to check for mode confusion errors [88, 44, 79]. The idea is to look for
potential cases where the operator might lose his/her situation awareness
(be confused about the mode the system is in) by using a formal modelling
of the user interface of the operator and the system being controlled. So
this is an interesting piece of work using formal methods to analyse human
computer interaction factors of operators.
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In the NPP area operator procedures have been formally checked by
Institute for Energy Technology (IFE) which has been using model checking
in its research for the OECD Halden Reactor Project in Halden Norway.
The research has considered designing and verifying operator procedures
which are documents telling operators what to do in various situations.
They are widely used in nuclear power industry and in process industries.
The correctness of such procedures is of great importance to assure safe
executions of the procedures.

The paper [121] describes how model checking can be used to detect po-
tential errors and to verify properties of such procedures. Types of correct-
ness specifications, types of errors that can be detected by model checking
and basic techniques for modelling operator procedures and for detecting
errors are discussed.

The paper [122] presents verification approaches based on different model
checking techniques and tools for the formalisation and verification of op-
erating procedures. Possible problems and relative merits of the different
approaches are discussed. The paper [122] also presents a case study of one
of the approaches to show the practical application of formal verification.
Application of formal verification in the traditional procedure design process
can reduce the human resources involved in reviews and simulations, and
hence reduce the cost of verification and validation.

3.5.5 Adelard’s Methods and Approaches

A safety case is a type of logical argument in which a claim about the safety
of a system is argued by decomposing it into sub-claims about simpler prop-
erties and simpler subsystems. Model checking and other formal approaches
are therefore applicable in two ways: as evidence that a subsystem has cer-
tain properties, and as evidence that a safety case forms a valid argument.

3.5.5.1 Use of Formalisation of Safety Case Arguments Adelard’s
Fog project (see Section 2.4.3.3) is concerned with developing a formal ar-
gument structure for safety cases. By restricting safety cases to a simple
logical argument in a normal form, it becomes possible to use automated
tools to prove the validity (or otherwise) of the argument represented. The
approach taken in Fog is to produce safety case “building blocks” which
have been shown in a theorem prover to be valid; these building blocks can
then be composed into a safety case. Provided the evidence at the lowest
level is established, knowing the validity of the safety case argument allows
us to deduce the top level claim.
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3.5.5.2 Use of Formalisation in Safety Case Claims

Software Reliability Modelling The expected reliability of software can
be modelled as a function of the faults detected through testing. That is, by
extrapolating future reliability from past failures. Using relatively standard
assumptions it can be shown [22] that the expected worst-case value of the
failure rate after a usage time t is bounded by:

λ̄t ≤
N

et

where N is the initial number of faults and e is the exponential constant.
Less pessimistic results can be obtained if additional assumptions are made
about the distribution of failure rates over the N faults. These predictions
turn out to be relatively insensitive to assumption violations over the longer
term. The theory offers the potential for making long term software relia-
bility growth predictions based solely on prior estimates of the number of
residual faults (e.g. using the program size and other software development
metrics).

Given a fixed amount of testing, this formula can be rearranged to de-
termine the maximum number of faults permitted for a target MTTF3:

N ≤
et

MTTF

This is, of course, a worst case bound model, and better results would
be obtained with more accurate models. For example, a worst case bound
model that assumes a log normal distribution is described in [23].

Software Process Modelling Having related the system reliability to
the number of faults, the ability of the development process to detect faults
or avoid creating them becomes of interest. A “barrier model” of the devel-
opment process may be used [26], where in each development phase faults
are created or detected. This model is parameterised by the rates of fault
creation and detection at each phase of the software lifecycle. It can then
be used to estimate the number of residual faults (i.e. those that escape the
last barrier).

In [26], an analysis of fault creation and detection estimates for a number
of projects was carried out, in order to calibrate the statistical models for
a given development process. Figure 6 shows a probability distribution
for a particular development process. The bar graph marked “Judgement”
indicates the predicted probabilities of producing a product with a given
number of faults; gamma and log-normal best-fit curves are also shown.

3Mean Time To Failure (MTTF), the time before the next system failure occurs, is the
reciprocal of reliability—which is the expected number of failures in a given time period.
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Two main conclusions can be drawn from this type of work: recommen-
dations can be made to a manufacturer for process improvements based on
typical sources of faults found through the modelling; and the expected re-
liability of a new product can be deduced based on the results of previous
applications of the same process and the level of testing undertaken.

Figure 6. Fitting of judgement on fault rates.

Software Criticality Analysis A software criticality analysis [21] iden-
tifies disjoint software components and evaluates the criticality of each com-
ponent to the safety of the overall system function. SCA is useful during
development and configuration of systems as it can demonstrate the absence
of failure propagation, and the criticality of components can be used to aid
decisions on implementing additional barriers. For pre-developed software,
the opportunity to change the code is limited, and retrospective assurance of
safety integrity will be required on the existing code base. If the software was
developed in a non-nuclear context, it is necessary to demonstrate that safety
integrity of the software is consistent with nuclear software standards. This
can be a major undertaking requiring additional documentation, reviews,
analysis and testing. The results of the SCA can be used to focus safety
assurance activities on the most critical components and hence minimise the
cost of compliance.

The main activities of the SCA are:

• Identifying the software concerned and establishing an appropriate
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level of documentation.

• Assessing the impact on the safety function of failure of the software
components by a form of Hazops.

• Ranking software components according to impact on the safety func-
tion. A possible approach is to use the Software Criticality Index tech-
nique described in [21]—this is a control flow analysis technique which
assigns criticality levels to code modules depending on the criticality
of the code that invokes them.

• Showing non-interference from non-critical functions and between soft-
ware components and validating the SCA.

Integrity Static Analysis Integrity static analysis [18] is a lightweight
static analysis technique which focuses on unsafe language constructs and
covert flows. This analysis approach was motivated by two main factors:
the presence of extensive field experience for many COTS4 systems, and
limited analysis resources available. The field experience is likely to detect
most large and obvious faults that occur during typical execution of the
program. However, specific vulnerabilities of the languages used and the
particular domain of application have a less frequent manifestation that
could remain undetected even after many hours of field experience. A full
compliance analysis involving a formal specification of a large system is
extremely expensive and time-consuming.

The analyses undertaken as part of integrity static analysis are shown in
Table 1.

Table 1. Activities in software criticality analysis.

Unsafe Language Constructs Covert flows

Function prototype declaration missing. Resource sharing violations
(semaphores, interrupts, etc.).

Use of “=” in conditional expressions. Violation of program stack and register
constraints (in assembler code).

No return value defined for a non-void function. Pointer or array access outside the
intended data structure.

No break between case statements. Run-time exceptions (e.g. divide by zero).
Uninitialised variables (Possibly but not necessarily covert flows).

The assessment of unsafe language constructs identifies potential vul-
nerabilities in C code by looking for deviations from published recommen-
dations for C programming in safety-related applications [89, 57] and use
of features of C identified in the ISO and ANSI standards as ill-defined or
dangerous. It also includes checks for a variety of specific issues, such as

4Commercial Off-The-Shelf (COTS) systems are provided by third parties as generic
systems, rather than being designed for the application in question.
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the use of commonly misused constructs in C (such as “=” in conditional
expressions).

Covert flow analysis examines the potential interference between differ-
ent code functions. The most obvious covert mechanism in C or assembler
code is the use of pointers (including their implicit use in array indexing).
An incorrectly calculated pointer to a variable can give a procedure access
to anywhere in the program’s address space. Similarly, incorrect pointers to
functions allow transfer of control to anywhere in the address space. The
sharing of resources on a single processor and sharing of the stack give rise to
other covert mechanisms. Static analysis was used to support an argument
of the absence of these covert channels.

We observe that the existence of these covert mechanisms represents an
error in the code, irrespective of its intended function. That is, we can argue
that “whatever it is meant to do, it should not do this”. We can thus carry
out these analyses without a formal specification of the intended function,
which is fortunate since this may not be available.

The overall procedure used in integrity static analysis is as follows:

1. Identification of preliminary findings. Preliminary findings identified
as a result of tool analysis. In some cases (especially uninitialised vari-
ables), these can be further processed by automatic filters that remove
some of the more obvious cases where there was no real problem.

2. Provisional sentencing. Manual or automatic pattern-based inspection
of the preliminary findings to assign a provisional sentence. This pre-
liminary sentencing is based on code inspection with limited domain
knowledge. Where it does not seem possible to sentence the finding
without extensive domain knowledge, an open sentence is recorded
together with any information that could help the sentencing.

3. Domain expert sentencing. All the findings with a provisional sentence
other than “no problem” are reported to the client for resolution.

4. Review of the final sentencing. The analysis team reviews the domain
experts’ sentencing, but the final decision on the solution to adopt is
taken by the domain experts.

Use of Model Checking at Adelard At Adelard, model checking with
SMV [3] has been used to complement analysis of the PLC design for a
fuelling machine turret [19]. Our approach has been to demonstrate specific
properties of the system rather than compliance with a full functional model.
We demonstrated the following properties:

• Stability – that the control logic cannot be made to oscillate between
states, and does not change state without a control input.
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• Mutual exclusion between conflicting outputs.

• Safety properties – that movement is inhibited by limit stops and no
movement is possible during maintenance.

• Specific functional properties – individual assertions that aspects of
the behaviour are as required.

Focused Proof Adelard have successfully applied a lightweight formal
methods approach called focused proof [25], in which only the most critical
parts of the software are subject to formal proof, and the remaining parts
are addressed by a number of other analyses to demonstrate either lack of
interference or sufficiently correct operation. The technique is viable because
the most critical modules turn out to be among the simplest. This code was
proved using a manual Hoare-logic style approach; the remaining code was
treated using the following methods:

• Shared variable analysis – identifying where non-critical modules can
influence critical modules, using a modified version of Sparse [55].

• Control flow analysis – using a control flow graph (also constructed
using Sparse) to identify all code potentially reachable in executing
a given function, to ensure that the coverage of the proof is correct.
Control flow analysis is also used to quickly identify any loops used
in interrupts service routines which might lead to non-deterministic
interrupt handling times.

• Code slicing and code chopping – used in two ways:

– Analysis of menu code – a menu state machine may be used to
set variables which control the critical part of the code. A code
chop of each control variable can be used to show that the value
chosen by the user corresponds to the value passed to the critical
code, removing any need for further justification.

– Domain-specific proof – identifying the code paths used in a par-
ticular application has the effect of hiding much of the complex-
ity, especially where multiple configurations are accommodated
through switch statements.

• Monotonicity analysis – if a module can be shown to implement a
monotonic function, its testing becomes significantly simpler: behaviour
between test points can be bounded by the monotonic behaviour. For
functions with a binary output (e.g., alarm functions), the number of
test points can be reduced even further. This approach is discussed in
more detail in [20].
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4 Model Checking in Safety Cases

One way of structuring a software safety case is to break down the safety
argument by attribute, as shown below (these are derived from [5]).

Attributes of the service that are provided when the component functions
correctly

• Functional properties : The primary functional behaviour of the com-
ponent.

• Timing properties: The time allowed for the software to respond to
given inputs or to periodic events, and/or the performance of the soft-
ware in terms of transactions or messages handled per unit time.

• Accuracy: The required precision of the computed results.

Attributes dealing with the overall likelihood of malfunction

• Reliability: continuity of correct service. The probability that the
software will perform to a specified requirement for a specified period
of time under specified conditions.

• Availability: fraction of time for which a system is capable of fulfilling
its intended purpose.

Attributes dealing with recovery from failure and changes

• Maintainability: ability to undergo modifications and repairs.

Behaviour with respect to certain classes of fault

• Robustness: The behaviour of the component in the event of exter-
nal events: spurious (unexpected) inputs, hardware faults and power
supply interruptions, either in the component itself or in connected
devices.

• Failure integrity: The probability that an internal failure can be de-
tected externally.

• Usability: Avoidance of error and delay when the component interfaces
with a human operator.

Consequences of behaviour, different types of loss

• Security: Prevention of loss of component confidentiality, availability
and integrity due to external attack.

• Non-interference: The absence of interference with other systems from
an operational component.
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Of these attributes, some are more appropriate than others to address
through model checking. Conventional model checking approaches can deal
with functional properties, and approaches based on timed automata may
be able to handle timing properties sufficiently provided a strong enough
model of the execution environment can be created. It may be possible to
handle accuracy using infinite-state or SMT5 - based techniques.

Maintainability, as a meta-property, may be better handled by analysis of
the safety case itself. Does the safety case demonstrate that every attribute
continues to meet its requirements over the lifetime of the system? A semi-
formal approach to structuring a safety case using an inductive argument
over system changes due to age or damage was presented in the ASDES
project [20].

Reliability and availability are not immediately amenable to model-
checking style approaches, although discovery and elimination of other bugs
will improve the worst case bounds generated by reliability modelling tech-
niques [22, 23]. Robustness and failure integrity may be handled by tech-
niques which deliberately perturb the inputs or the internal logic (failure
mode injection) and measure the resulting faults; one such technique is
FSAP/NuSMV-SA, based on the NuSMV model checker [2].

The remaining attributes (usability, security, and non-interference) are
too application-specific to be immediately considered, although certain as-
pects of each will be amenable to modelling (e.g., absence of certain inter-
fering behaviours).

5Satisfiability Modulo Theorems (SMT) is an extension of Satisfiability (SAT) solver
technology to handle propositional formulae in which some symbols are defined by asser-
tions in some other theory, typically linear inequalities.
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5 Conclusions

This report covers the state of the art in using formal methods in connection
with NPP I&C systems and other safety critical systems. We have covered
topics on safety assessment, formal methods in analysis of safety critical
systems, as well as previous approaches to software and automation analysis
in NPPs.

The main focus of the MODSAFE project has been to evaluate the
applicability of model checking methods to the analysis of safety critical NPP
I&C systems. The two case studies done in 2007 have demonstrated that the
approach is feasible for the design validation of the two systems concerned:
the arc protection system, and the emergency cooling system [110]. In both
case studies the controller was modelled using the NuSMV model checker,
and placed in an environment model modelling an abstraction of the process
being controlled. The models were then model checked, and proved to work
according to their specifications formalised in temporal logic from the design
documents used. For the systems considered, the scalability of the model
checker to analyse the system on all relevant input sequence combinations
was sufficient. On the NPP I&C systems analysis side the approach closest
to the one applied in the MODSAFE case studies is [117], where model
checking is used as a design aid for developing the control system in the first
place, instead of analysing its design after the development.

The range of software based systems used in NPP I&C systems is very
large, from PLCs and small smart devices with small embedded programs
to larger software systems like UPSs and automation systems (DCS) with
a large platform software component. We have so far focused on small
safety critical control systems where model checking seems to be fairly well
applicable, at least with the kinds of systems that have only limited process
feedback like emergency shutdown systems. Scaling up to larger systems
is an interesting challenge, and requires more research. For example, more
advanced methods for dealing with real-time aspects of systems as well as
methods for comparing a system at different levels of abstraction are called
for. It may be also the case that model checking should be applied in
conjunction with other formal safety critical systems analysis techniques to
scale up to larger systems.
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