
 VTT WORKING PAPERS 114
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology�and�market�foresight�•�Strategic�research�•�Product�and�service�development�•�IPR�and�licensing�
•�Assessments,�testing,�inspection,�certification�•�Technology�and�innovation�management�•�Technology�partnership

•�•�•��VTT�W
O

R
KIN

G
�PA

PER
S�114�����M

O
d

El-d
R

IVEN
�d

EVElO
PM

EN
T.�PR

O
c

ESSES�A
N

d
�PR

A
c

TIc
ES

ISBN 978-951-38-7175-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Päivi Parviainen, Juha Takalo, Susanna Teppola & Maarit Tihinen

Model-Driven Development
Processes and practices

VTT Working Papers

100 Bernd Ebersberger & Olavi Lehtoranta. Effects of Public R&D Funding. 2008. 27 p.
+ app. 1 p.

101 Stephen Fox, Patrick Ehlen, Matthew Purver, Elizabeth Bratt, Matthew Frampton,
Ichiro Kobayashi, Bevan Jones, Rob Monroe & Stanley Peters. Applying computational
semantics to the real-time communication of skill knowledge. 2008. 85 p.

102 Stephen Fox. Ontological uncertainty and semantic uncertainty in global network
organizations. 2008. 122 p.

103 Kati Tillander, Helena Järnström, Tuula Hakkarainen, Juha Laitinen, Mauri Mäkelä,
& Panu Oksa. Palokohteiden savu-, noki- ja kemikaalijäämät ja niiden vaikutukset
työturvallisuuteen. Polttokokeet ja altistumisen arviointi. 2008. 67 s.

104 Eija Kupi, Sanna-Kaisa Ilomäki, Virpi Sillanpää, Heli Talja & Antti Lönnqvist.
Aineettoman pääoman riskienhallinta. Riskit ja riskienhallinnan käytännöt yrityksissä.
2008. 44 s.

105 Teemu Mutanen, Joni Niemi, Sami Nousiainen, Lauri Seitsonen & Teppo Veijonen.
Cultural Event Recommendations. A Case Study. 2008. 17 p.

106 Hannele Holttinen. Tuulivoiman tuotantotilastot. Vuosiraportti 2007. 2008. 44 s. +
liitt. 8 s.

107 Kari Keinänen, Jarkko Leino & Jani Suomalainen. Developing Keyboard Service for
NoTA. 2008. 17 p. + app. 2 p.

108 Hannele Antikainen, Asta Bäck & Pirjo Näkki. Sosiaalisen median hyödyntäminen
paikallisissa mediapalveluissa. 2008. 64 s.

109 Raine Hautala, Pekka Leviäkangas, Jukka Räsänen, Risto Öörni, Sanna Sonninen,
Pasi Vahanne, Martti Hekkanen, Mikael Ohlström, Bengt Tammelin, Seppo Saku
& Ari Venäläinen. Benefits of meteorological services in South Eastern Europe. An
assessment of potential benefits in Albania, Bosnia-Herzegovina, FYR Macedonia,
Moldova and Montenegro. 2008. 63 p. + app. 35 p.

110 Jaana Leikas. Ikääntyvät, teknologia ja etiikka. Näkökulmia ihmisen ja teknologian
vuorovaikutustutkimukseen ja -suunnitteluun. 2008. 155 s.

111 Tomi J. Lindroos. Sectoral Approaches in the Case of the Iron and Steel Industry.
2008. 58 p. + app. 11 p.

112 Johan Mangs. A new apparatus for flame spread experiments. 2009. 50 p. + app.
27 p.

113 Stephen Fox & Brent Stucker. digiproneurship. New types of physical products
and sustainable employment from digital product entrepreneurship. 2009. 29 p.
+ app. 7 p.

114 Päivi Parviainen, Juha Takalo, Susanna Teppola & Maarit Tihinen. Model-Driven
Development. Processes and practices. 2009. 102 p. + app. 4 p.

ISBN 978-951-38-7175-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2009

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 7001

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 70014

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 7001

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Series title, number and
report code of publication

VTT Working Papers 114
VTT-WORK-114

Author(s)
Päivi Parviainen, Juha Takalo, Susanna Teppola & Maarit Tihinen
Title

Model-Driven Development
Processes and practices
Abstract
The purpose of this publication is to describe the state-of-the-art and results of
two surveys about the model-driven development (MDD), particularly from the
processes viewpoint. The study and surveys were carried out in the “Model-driven
development of highly configurable embedded Software-intensive Systems
(MoSiS)” ITEA project.

This publication will study the current state of MDD related processes and
practices, as presented by literature. The literature study is based on the
information found from publicly available documents, consisting of books,
conference proceedings and websites and it gives an introduction to MDD and
related processes. The results of two surveys about MDD processes and
technologies are also presented.

ISBN
978-951-38-7175-8 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Working Papers
1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

7326

Date Language Pages
February 2009 English 102 p. + app. 4 p.

Name of project Commissioned by
Model-driven development of highly configurable
embedded Software-intensive Systems (MoSiS)

Keywords Publisher
Model-Driven Development, MDD, Model-Driven
Architecture, MDA, process, MoSiS, survey,
results, challenges, literature study

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Preface

Software products have become more complex with an increased number of product
features and they have to adapt to market needs that vary with the geography, culture
and environment in which they are used. At the same time, software development has
faced the demand for shortened development times and higher expectations of product
quality. Model-driven development (MDD) is an approach that aspires to tackle the
challenge by taking software development into a higher level of abstraction, by using
models as primary development artefacts.

MoSiS is an ITEA2 project (no 06035) that aims at improving the cost-efficiency and
ability of companies to develop high quality products that are more flexible and
adaptable. The MoSiS project plan summaries the project vision as follows:

“The MoSiS vision is that modelling technology, with its capacity for abstraction and
for code generation, is a key enabling technology for the successful design, development
and management of embedded software systems. Model-driven development (MDD) is

gaining acceptance in a number of domains, with proven benefits regarding costs
reduction and quality improvement for software development.”

As part of the MoSiS project, this study documents the literature study of MDD related
processes and practises, as well as results from two MoSiS surveys on real life
experiences of using MDD in companies. The structure of the document is as follows:

Chapter one gives an introduction to model-driven development and model-driven
architecture. This chapter also introduces the process viewpoint that is the main focus of
this study.

Chapter two presents the MDD related processes, methods and practices as found
from literature. It also summarises the elements of the surveyed MDD process models.

Chapter three introduced Model-Driven Development Maturity Model that was used
as a framework for the first MoSiS survey.

Chapter four gives an overview of the MDD related tools and their characteristics.

 4

Chapter five documents some experiences about MDD related technologies, as found
in literature.

Chapter six describes some challenges presented in literature about the current state of
the MDD technologies and their deployment.

Chapter seven explains the goals, set-up, and limitations of the 1st MoSiS survey.
Chapter eight reports the results of the 1st MoSiS survey, focusing on the MDD

related processes, methods and tools.
Chapter nine explains the goals and set-up of the 2nd MoSiS survey.
Chapter ten reports on the results of the 2nd MoSiS survey, focusing on the influence

of the MDD on product development activities and the challenges companies have faced
with the MDD.

Finally, chapter eleven summarises findings from the literature study and MoSiS
surveys.

 5

Contents

Preface ... 4

List of acronyms.. 9

1. Introduction ... 10
1.1 Process viewpoint ... 12

2. MDD processes, methods and practices .. 14
2.1 Example MDD processes and methods.. 14

2.1.1 MODA-TEL... 14
2.1.2 MASTER .. 15
2.1.3 MIDAS.. 16
2.1.4 C3 ... 17
2.1.5 MDDP... 18
2.1.6 Model Based Software Development Process for Production Applications................ 18
2.1.7 General framework for model-driven development based on Model-Driven

Architecture .. 20
2.1.8 MDD Process Framework .. 20
2.1.9 Agile Model Driven Development ... 21
2.1.10 Process, product, conceptual and system models ... 21
2.1.11 SDL-MDD... 23
2.1.12 MDA effects on the RUP .. 25
2.1.13 Telelogic Harmony-SE ... 28
2.1.14 RUP SE.. 29
2.1.15 Vitech Model-Based System Engineering (MBSE) methodology 30
2.1.16 State Analysis (SA) .. 31

2.2 Elements in the MDD processes... 32

3. Model-Driven Development Maturity Model .. 36

4. MDD tools ... 38

5. Experiences on MDD technologies ... 41

 6

 7

6. Challenges and success factors for MDD adoption .. 45

7. 1st ITEA MoSiS survey: MDD state of the art and practise....................................... 50
7.1 Goal of the survey... 50
7.2 Set-up of the survey.. 51
7.3 Limitations of the survey ... 52

8. Results of the 1st MoSiS survey .. 53
8.1 Group A: Background of the respondent... 53

8.1.1 The profile of the respondents (age and role in organisation) 53
8.1.2 Respondents and domains... 54
8.1.3 Size of the organisation.. 55
8.1.4 Products and services .. 56

8.2 Group B: Personal experience of the MDD... 57
8.2.1 Familiarity with the MDD .. 57
8.2.2 Usefulness of the MDD .. 58

8.3 Group C: Modelling processes and practices of the MDD .. 59
8.3.1 Extent of software process definitions .. 59
8.3.2 Usage of the MDD.. 60
8.3.3 Reasons for not applying the MDD... 60
8.3.4 MDD related challenges ... 61
8.3.5 MDD related benefits.. 61
8.3.6 MDD improvement targets ... 62

8.4 Group E: MDD tools and methods in organisations .. 62
8.4.1 Software modelling languages ... 62
8.4.2 Usage of code generation .. 64
8.4.3 The purpose of using UML ... 64
8.4.4 UML tools ... 65
8.4.5 Usage of other languages .. 65
8.4.6 DSM tools... 66

9. 2nd ITEA MoSiS survey: MDD usage and challenges in companies 67
9.1 Goal of the survey... 67
9.2 Set-up of the survey.. 67

10. Results of the 2nd MoSiS survey ... 69
10.1 Group A: Background of the respondent... 69

10.1.1 The respondents’ software development experience ... 69
10.1.2 The respondent’s role in the organisation .. 70
10.1.3 Domain of respondents’ organisation ... 71
10.1.4 The size of the organisation ... 72
10.1.5 Products and services .. 73

10.2 Group B: Utilisation of the model-driven development (MDD) in the company 73
10.2.1 Level of MDD process definitions ... 73
10.2.2 Level of applying MDD technologies .. 75
10.2.3 Time how long MDD has been applied... 76

 8

10.2.4 MDD and how systematically it is applied .. 77
10.2.5 The initiation of the MDD in the organisation.. 78

10.3 Group C: MDD and the product development activities .. 79
10.3.1 Influence on the context definition .. 79
10.3.2 The influence on requirements elicitation and analysis .. 81
10.3.3 The influence on analysis... 82
10.3.4 The influence on design ... 83
10.3.5 The influence on implementation.. 84
10.3.6 The influence on integration and testing... 85
10.3.7 The influence on the release .. 86
10.3.8 Summary of the Influences... 87

10.4 Group D: The maturity of modelling technology and related methods 88
10.4.1 Modelling technology and functionality... 88
10.4.2 Modelling methods and valued activities .. 89

10.5 Group E: The benefits of the MDD technologies... 90
10.5.1 The MDD technologies and their benefits .. 90
10.5.2 Comments on the MDD technologies and their benefits .. 91

10.6 Group F: The Challenges of MDD technologies.. 91
10.6.1 Challenges of the MDD technologies ... 91
10.6.2 The rating of challenges related to the MDD technologies ... 93

10.7 Groups G–R: The importance of the MDD technology challenges and solutions for these
challenges... 94
10.7.1 The challenges and solutions of the MDD technologies... 94

10.8 Groups S: Other comments on the MDD .. 96
10.8.1 Free comments on the MDD .. 96

11. Summary... 97

Acknowledgements... 98

References ... 99

Appendices

Appendix A: Summary of the questions of the 1st MoSiS survey
Appendix B: Summary of the questions of the 2nd MoSiS survey

1. Introduction

 9

List of acronyms

AMDD Agile Model Driven Development
CIM Computation Independent Model
CMMI Capability Maturity Model Integration
DSL Domain Specific Language
DSML Domain-Specific Modelling Language
FRD Functional Required Documentation
MBSE Model-Based Systems Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDDP Model-Driven Development Process
MDE Model-Driven Engineering
MDSD Model-Driven Systems Development
MVC Model View Control
OMG Object Management Group
OOA Object-Oriented Analysis
OOP Object-Oriented Process
PIM Platform Independent Model
PSD Platform-Specific Design
PSM Platform Specific Model
RUP Rational Unified Process
RUP SE Rational Unified Process for Systems Engineering
SPEM Software Process Engineer Metamodel
UML Unified Modelling Language
UUID Universally Unique Identifier
WIS Web Information System

1. Introduction

 10

1. Introduction

Model-Driven Development (MDD) is an approach that uses models as a specification
of software and transformations of those models to get the source code. Models are
created before the source code is written or generated. MDD aims at speeding up the
software development and making it more cost efficient, by using the models to
visualise the code and, if used to raise the abstraction, the problem domain. MDD also
separates implementation technology from the business logic of a program [MacDonald
et al., 2005].

The idea behind MDD is that, it is possible to create models of a system that can then
be transformed into a real thing [Mellor et al., 2003]. Systems are modelled at several
levels of abstraction and from multiple perspectives and the created models are the
primary artefacts of software development. These models can then be transformed into
running systems by using generators or by executing the models at run-time. [France &
Rumpe, 2007.] Sometimes, the term model-driven engineering (MDE) is used instead of
MDD [France & Rumpe, 2007]. In this publication, we will use the term MDD.

Model-Driven Architecture (MDA) from the Object Management Group (OMG) is
the most commonly know example of MDD. It has been referred to as a software systems
modelling [Duby, 2003]. OMG itself is an industry-driven consortium for developing
standards that enable the implementation of MDD. In MDA, the specification of system
functionality is separated from the specification of its implementation on a specific
technology platform. In MDA, Unified Modelling Language (UML) is used to visualise
the code [Ambler, 2007]. When the processing and logic of software is separated from
the implementation technology, developers are able to concentrate more on solving the
problem than the implementation technology details [MacDonald et al., 2005].

MDA presents the modelling of systems at three viewpoints [France & Rumpe, 2007].
The computation independence viewpoint concerns the environment in which the
system will operate, as well as the required features of the system and results in
computation independent models (CIM). The platform independent viewpoint is
interested in the features that are unlikely to change when the system is used on
different platforms. This viewpoint produces platform independent models (PIM). PIMs

1. Introduction

 11

specify what the system does [Duby, 2003]. PIMs are integrated with the platform
specific details in the platform specific viewpoint and result in the platform specific
model (PSM). PSMs specify how the system is implemented [Duby, 2003].

Duby [2003] lists several advances of using MDA in embedded software
development. She highlights that MDA enables quick reaction to changes in functional
and technological platform requirements, as well as enabling a large scale reuse of
platform independent models. The ease of documentation, lowered quality assurance
costs, and improved system quality are also mentioned as advantages by Duby [2003].

France and Rumpe [2007] list some other non-UML modelling approaches, for
instance, Alloy and B, which are formal specification languages. They also mention that
high-level, math-based programming languages such as Mathlab, Simulink or Stateflow
are used for the modelling and analysing of control system software. In general, France
and Rumpe [2007] divide models in two broad classes: development and runtime
models. With the development models, software is modelled at a level of abstraction
that is above the code level. In turn, runtime models are abstractions of runtime
phenomena and they depict some aspect of a running system. France and Rumpe [2007]
claim that research has traditionally concentrated more on development models, but
interest towards the runtime models has increased lately.

The model based approach has been studied from the systems engineering point of
view by Estefan [2007]. In the report, he presents a survey of model-based systems
engineering (MBSE) methodologies used in industry. Estefan [2007] characterises
MBSE methodology as “a collection of related processes, methods, and tools used to
support the discipline of systems engineering in a “model-based” or “model-driven”
context. His report summaries follow MBSE methodologies: Telelogic Harmony-SE,
INCOSE Object-Oriented Systems Engineering Method (OOSEM), IBM Rational
Unifire Process for Systems Engineering (RUP SE) for Model-Driven Systems
Development (MDSD), Vitec Model-Based System Engineering (MBSE) Methodology,
and State Analysis (SA). He presents an overview consisting of the objectives and main
elements for each methodology, as well as the status of available tool support. Most of
these methods are briefly described in 2.1 based on Estefan [2007].

In the case of MDD, many advantages and disadvantages are recognised, for instance,
in [Mellor et al., 2003], [Foustok, 2007], and [Duby, 2003]. Mellor et al. [2003] state
that models can be used to increase productivity. As an example, they mention that “it’s
cheaper to build a graphical model in UML, say, than to write in Java”. However, they
mention that there are also arguments that claim that models offer more obstacles than
help. According to Mellor et al. [2003], MDD offers potential for the automatic
transformation of models into running systems. They continue that the challenge in
companies adopting MDD is how they can find developers that “think at the level of
abstraction, above the current programming languages and technology”.

1. Introduction

 12

Mellor et al. [2003] point out that MDD is not yet widely used in companies, but it
offers great potential. They list that due to the following advantages of MDD, the using
of models becomes an advantage instead of an expense:

− “MDD enables re-use at the domain level.”
− “MDD increases quality since models are successively improved.”
− “MDD reduces costs by using automated processes.”
− “MDD increase software solutions’ longevity.”

1.1 Process viewpoint

In this publication, we focus on the process support for MDD. Process support is
required for effective MDD, as it guides the development of the model and helps to
manage the model relations. Chitforoush et al. [2007] reviewed several model-driven
methodologies. According to their study, MDA does not provide a comprehensive and
concrete process that would govern software development activities. Because MDA
does not provide guidance to phases, activities or roles, each project that uses MDA has
to define its own process or select it from existing MDA based methodologies.

Mansell et al. [2006] accent that only a few organisations have succeeded in
maximising the benefits of MDD, but the ones that have succeeded, have established a
clear system development process that covered both the activities and tools required to
enable the adoption of MDD in the organisation. Vogel and Mantell [2005] state that
MDD processes have to work with the existing methodology of the company. They also
mention that MDD process differs from traditional software development process,
because MDD uses several types of models to enhance the communication between
project stakeholders, as well as to produce artefacts semi-automatically. According to
Vogel and Mantell [2005], it is important to minimise the disturbance to existing
processes when MDD is introduced in a company. Rios et al. [2006] mention that it is
not easy to introduce the MDD methods and tools in a project and introducing those into
a whole organisation will be even more challenging. The challenge is caused by the fact,
that when an organisation adopts MDD, it results in changes in the organisation’s
culture and processes.

According to Schätz et al. [2004], a good model-based software development process
fulfils the following properties:

− Adequate Models: During the development process, different aspects of the
system under development are addressed (for the domain of embedded systems,
e.g., overall functionality, time and resource limitation, partitioning and deployment,
scheduling) during various phases. Specific models are available for the different
phases (e.g., requirements analysis, design, implementation, integration) of the
development process. Since software systems, and particularly embedded software

1. Introduction

 13

systems, are moving from monolithic single-functionality programs to distributed,
interactive multi-functionality networks, a central aspect of these models is the
treatment of interaction and communication, as well as time-related aspects.
Furthermore, models must support the specific aspects required for the application
domain (for the domain of embedded real-time systems, e.g., notions like
messages/signals, tasks, schedules, controllers, bus). By supporting domain- and
application specific modelling elements, model information on the system under
development becomes available, leading to stronger analysis and generation
techniques (e.g., in the domain of embedded systems, checking the worst case
time bounds of a task, or generating a bus schedule from the communication
description of a component model).

− Abstract Models: Models should only contain those aspects required to support the
development phase they are applied for (e.g., modelling the interaction between
components by messages, rather then method calls to the bus driver or the operating
system). By abstraction, models reduce the complexity of the description as much
as possible, as well as the possibility to produce faulty descriptions (e.g., ensuring
type correctness between communication ports rather than using byte block
messages at the level of bus communication). Furthermore, abstract models also
support descriptions of the system under development in early analysis and design
phases, making analysis and generation support available even at early stages of
the development process (e.g., the completion of a state-based description of a
component to introduce standard behaviour for undefined situations).

− Integration by Analysis: The relation between various models during the development
is supported. This includes the analysis of different models used during the same
phase (e.g., checking the consistency of a scenario and a complete behavioural
description of a component) as well as different phases (e.g., checking a bus
communication schedule against the abstract communication behaviour of the
corresponding abstract component). This leads to a higher level of product quality,
by especially supporting analysis of the system at earlier stages; additionally, it
also increases process efficiency by supporting the earlier detection of defects.

Integration by Generation: The transition between different models in the development
process is supported by generating models out of each other. This includes forward
generation (i.e., from models of an earlier phase to a latter phase; e.g., the generation of
test cases from a behavioural description) as well as backward generation (i.e., from a
latter model to an earlier one; e.g., the generation of an abstract scenario-based
description from an execution trace of the implementation level). This leads to increased
process efficiency by a higher degree of automation, as well as increased product
quality by eliminating the defects introduced by manual development steps.

2. MDD processes, methods and practices

 14

2. MDD processes, methods and practices

There are several other processes for model based development published in the
internet, conferences, journals and books. They (as far as was found) are also described
in this chapter briefly. We also describe the elements of MDD that are normally found
in the methods.

2.1 Example MDD processes and methods

2.1.1 MODA-TEL

MODA-TEL [MODA-TEL Web page, 2009] is a joint effort of European organisations
that have business interests in component architectures. MODA-TEL aims at developing
methodologies and tools to support the MDA among the telecommunications industry.
Gavras et al. [2003] have documented the MODA-TEL Model-Driven Methodology
that they adopted in the MODA-TEL project. Methodology provides definitions for
concepts used in the methodology, as well as identifying phases and activities.
Methodology depicts three groups of MDA users: experts on how to “build know-how
repositories”, experts on how to “assemble, combine, customise and deploy know-how”
and experts on how to “apply know-how”.

Gavras et al. [2003] depict that it is important to separate preparation from execution.
The MODA-TEL methodology (see Figure 1) identifies five phases in which three of
them (“Preliminary preparation”, “Detailed preparation”, and “Infrastructure set-up”)
are related to preparation and one (“Project execution”) is related to the execution of the
project. One phase is related to the management (“Project management”) of model
based development. The following is the list of activities in each phase of the
methodology:

− Activities in the “Preliminary preparation” phase are: “Platform identification”,
Modelling language identification”, “Transformation identification”, and “Traceability
strategy”.

2. MDD processes, methods and practices

 15

− Activities in the “Detailed preparation” phase are: “Specification of modelling
languages” and “Specification of transformations”.

− Activities in the “Infrastructure set-up” phase are: “Tools selection” and “Meta-
data management”.

− Activities in the “Project execution” phase are: “Requirements analysis”,
“Modelling”, “Verification and validation”, “Transformations”, “Coding and
testing”, “Integration deployment”, and “Operation maintenance”.

− Activities in the “Project management” phase are: “Software Development
Process (SDP) Selection”, “Project organisation”, and “Quality management”.

Figure 1. Phases of the MODA-TEL methodology as in [Gavras et al., 2003].

2.1.2 MASTER

Larrucea et al. [2004] present an MDD process and System Family Engineering
concepts that can be used to adapt the MDD process according to user and functional
requirements. They use notation from the Software Process Engineer Metamodel
(SPEM) to describe the process. The methodology was developed during the MASTER
project that was the European IST project (MASTER project IST-2001-34600).

2. MDD processes, methods and practices

 16

The following are the main phases of the MDD process with their objectives as
presented in [Larrucea et al., 2004].

− Capture user requirements: The objective is to identify, agree and document the
functional and non-functional user requirements.

− PIM context definition: The objective is to define the scope for the software
system that will be developed.

− PIM requirements specification: The objective is to create complete models of
customer requirements, as well as to create unique requirement descriptions for all
the subsequent models to use.

− PIM analysis: The objective is to model the system’s internal view, in which the
technological considerations are excluded and the separation between the
functional and non-functional requirements is maintained.

− Design: The objective is to model the behaviour and structure of a solution, which
fulfils both the functional and non-functional requirements.

− Coding and integration: The objective is to develop and verify the code that
implements the design and fulfils the requirements.

− Testing: The objective is to show that requirements are satisfied by the developed
system.

− Deployment: The objective is to ensure that the developed system is successfully
taken into use among the final users.

2.1.3 MIDAS

MIDAS is an MDA based model driver methodology that is targeted for the
development of Web information systems (WIS) [Cáceres et al., 2003]. Methodology
utilises UML and proposes different platform independent (PIM) and platform specific
(PSM) models. MIDAS defines mappings from PIM to PIM, from PIM to PSM, and
from PSM to PSM.

The definition of the service architecture model is part of the MIDAS methodology, a
framework for the development of information systems based on the MDA principles,
in which the architecture guides the whole development process. The MIDAS model
architecture, as shown in Figure 2, can be seen from 3 orthogonal dimensions:

2. MDD processes, methods and practices

 17

Figure 2. MIDAS Model Architecture.

− Vertical Axis (Y): reflects the three abstraction levels of the original MDA
proposal.

− Horizontal Axis (X): Models are separated in the different concerns involved in
the information system development.

− Traversal Axis (Z): Models in this axis are referred to aspects, which have an
influence on other models of the cross-cutting axis.

The architecture is considered to be the driving aspect of the development process, as it
allows the specification of which models, elements inside models or relations within
models should be created during the entire software development process. With an
architectural view of the system at a PIM level, it’s ensured that there are no technology
or implementation constraints in the model. In addition, it facilitates the establishment
of different PSM-level models, according to the specific target platform and derived
from one unique PIM model. [López-Sanz et al., 2008]

2.1.4 C3

Hildenbrand and Korthaus [2004] present the C3 approach for business application
engineering that is composed of “Collaboration”, “Concurrent Software Engineering”,
and “Component Orientation” elements. They have identified “Domain manager”,
“Project manager”, “Application architect”, “Component developers”, and “Application
deployer” as important roles in using the methodology during the development of
business software.

2. MDD processes, methods and practices

 18

According to Hildenbrand and Korthaus [2004], C3 methodology consists of
“standardisation” and “software development” phases. Standardisation refers to the
actions of accessing and downloading the domain software assets from domain data
repository to project data repository. Newly developed component models and domain-
specific model elements can also be uploaded for future reuse. The software
development phase consists of “Model design”, “Code generation”, and “Application
deployment” steps. During the model design step, the architecture for the business
application is selected and worked on by the developers. In the code generation phase,
after the business application modelling is performed, the aim is to generate as much
executable platform specific code as possible from the models. After the code is
generated and possibly completed by the developers, the components will be deployed
on a given application server based on the modelled architectural framework.
[Hildenbrand & Korthaus, 2004.]

2.1.5 MDDP

The model-driven (software) development process – MDDP – can either be planned
incrementally or as a waterfall project. Both processes are described on MDDP web
pages [CRaG Systems, 2008] in great detail, including templates and detailed
guidelines. The process is not reprinted here, as requested by the authors.

The model-driven (software) development process – MDDP – is a business process,
requirements, use case, risk and model-driven. It provides traceability through all the
stages from the business processes through system requirements, analysis and design
models into test scripts and code. It conforms to the Object Management Group’s
Unified Modelling Language v 2.0, the Software Process Engineering Metamodel and
the Model-Driven Architecture approach. It can be used to satisfy every level of the
Capability Maturity Model Integration (CMMI) [CMMI Web page, 2009]. It also
incorporates the broad principles of many current development trends, including
component-based development, agile development, test-driven development, aspect
oriented design and even extreme programming.

The model-driven (software) development process – MDDP – can be used ‘as-is’,
configured or customised and the improvement of the process is part of the process.

2.1.6 Model Based Software Development Process for Production
Applications

Chandrashekar et al. [2006] present a model based software development process for
production applications, and experiences of using it in an automotive domain.

Model based software development starts with requirements being modelled to form
the design. This design is basically graphical models such as Simulink® / Stateflow®

2. MDD processes, methods and practices

 19

models incorporating process and control logic. This step involves analysing the
requirements to decide the input and output interfaces and eventually implementing the
algorithm. Most importantly, some constraints are imposed on the modelling by way of
style guidelines. This is done to make the models more consistent in style and structured
and also to make the model suitable for autocode. Along with the model, the design also
consists of a data dictionary, containing the list of calibrations and the module’s
interfaces. The data dictionary provides the range and resolution of the calibrations and
the interfaces, which are used during the implementation.

In the next step, the models created above are validated against the requirements. This
validation can be done on the host by way of simulation. The host validation can be
performed in an interactive way using tools such as Altia® or GUIDE. A more vigorous
way of model validation is by using a rapid prototyping environment. For example,
running and testing the models in the vehicle using an emulator like dSpace’s Autobox.

The validated model is then used to generate the C – code, using autocoding tools
such as dSpace’s Targetlink®, Mathworks’s E-Coder. The first step is to make the
model compatible for autocoding. This can be partially taken care of during the
modelling with proper style guidelines. Further, the design model is modified to satisfy
the target controller constraints and operating system requirements. Software information
is then entered into this model to form the autocode model. Finally, an autocode is
generated from this model. It must be noted that autocoding is not completely automatic
coding. Rather, it is a graphical way of coding as it involves the manual effort of
software partitioning and entering appropriate software information to obtain the
optimised code.

Even though autocode is automatically generated, testing is still required because
their software properties are entered manually. During the autocode testing, the
autocode is tested against the model. In the model-based approach, errors in the
autocode due to a wrong interpretation of the logic tend to be zero as the autocode is
obtained directly from the requirement model. However, errors do exist in the autocode
and are mainly due to manual activities such as range-resolution analysis and software
partitioning. Errors in the autocode will be typically overflows, underflows and resolution
deficiencies. Autocode testing strategies are developed to detect the above errors. In
short, the testing is performed to ensure that the autocode behaves as the design expects
it to do.

The process described in this paper is based on the authors’ experiences using the
combination of MATLAB/Simulink/Stateflow from The Mathworks Inc and
TargetLink® from dSpace. However, the same result could be applied to the code,
which is generated with E-coder from The Mathworks Inc instead.

Several production programs have followed this process over the past few years. The
same process has been used for both fixed-point and floating-point autocoding. Based

2. MDD processes, methods and practices

 20

on the experience described in this paper, the Model Based Software Development
process scores higher than the conventional hand-code process, with respect to
development time and software quality. The engineering effort in fixed-point autocoding
is around 50% less compared to conventional hand coding.

2.1.7 General framework for model-driven development based on
Model-Driven Architecture

Chitforoush et al. [2007] surveyed several model-driven methodologies and based on
the survey, they proposed their own MDA based framework for the MDD. According to
Chitforoush et al. [2007], their framework can be used in assessing, comparing, and
adapting existing methodologies, as well as engineering new methods that meet the
requirements of the MDD. The proposed framework consists of four main phases. These
phases are “Project Initiation”, “Software Development Process Analysis and Selection
Phase”, “MDA Support Phase”, and “Software Development Process Execution Phase”.
Moreover, a number of monitoring and management activities are needed in parallel
with the four main phases. Each main phase consists of a number of stages, which in
turn, consists of activities.

2.1.8 MDD Process Framework

Vogel and Mantell [2005] present the Process Framework for implementing the MDD
and they document an example case, in which the framework is adopted by SME. The
case company used a traditional waterfall software development process and during the
study they adapted the existing process to use MDD tools, techniques and roles. In their
case example, Vogel and Mantell [2005] list the following phases in the MDD process
implementation:

− A requirements phase in which the requirements related to the system to be
developed were being identified, captured and validated.

− An analysis phase, in which functionally-independent and platform-independent
specifications were produced for the system.

− A design phase, in which the technical specification of the system was produced.

− A development phase, in which the code of the system was generated, checked
and manually completed.

− A quality assurance phase, in which the defects of the software were identified
and fixed.

2. MDD processes, methods and practices

 21

2.1.9 Agile Model Driven Development

Agile Model Driven Development (AMDD) is an agile version of MDD. Basically, in
traditional MDD, extensive modelling is performed before writing or generating a
source code. In the AMDD, extensive models are not made such as in the traditional
MDD. Instead, during the MDD, agile models, which are “just barely good enough”, are
produced. [Ambler, 2007.]

Lahman [2006] examines an alternative to the OOP-based processes that is based
upon model-based development; specifically object-oriented analysis (OOA) models.
The primary goal is to demonstrate that model-based development can actually be more
agile with respect to the primary goals of agile software development than the OOP-
based processes that are most commonly associated with agile development.

2.1.10 Process, product, conceptual and system models

Schätz et al. [2002] and Schätz and Spies [2002] describe process, product, conceptual,
and system models and their relations: The first two models are used to describe the
development process from the engineer’s and thus the domain model point of view.
Together, process and product models form the domain model:

− Process model: The process model consists of a description of activities of a
development process and their relations. In the domain of embedded reactive
systems, e.g., the process model typically contains modelling activities (“define
system interface”, “refine behaviour”) as well as activities (“generate scenarios or
test cases”, “check the refinement relation”, “compute the upper bound for worst
case execution time”). The activities are related by their dependency between
them for defining a possible course of activities throughout the development
process. By relating them to a product model, process patterns can be formalised
as activities and thus integrated into the process model.

− Product model: The product model consists of the description of those aspects of a
system under development, explicitly dealt with during the development process
and handled by the development tool. For embedded systems, a product model
typically contains domain concepts such as “component”, “state” or “message”, as
well as relations between these concepts such as “is a port a component”, etc. In
addition to these more conceptual elements, used for the description of the
product, more semantically oriented concepts like “execution trace” are defined to
support, for example, the simulation of specification during the development
process. Finally, it contains process oriented product concepts such as “scenario”
or “test case”, supporting the definition of process activities.

2. MDD processes, methods and practices

 22

The product model describes the aspects, concepts and their relations required to
construct a product during the development process. While the ‘abstract syntax’ is
sufficient to describe the conceptual relations of abstract views or the functionality of
modelling activities during the process, a semantical relation is required to define or
verify the more complex semantical dependencies of views, as well as the properties of
activities (such as refining activities or activities not changing the behaviour as, e.g.,
refactoring). Since the semantical and the conceptual part of the product model are used
differently in the model-based approach, the product model is broken up into two sub-
models:

− Conceptual model: The conceptual model consists of the modelling concepts and
their relations used by the engineer during the development process. The
conceptual model is independent of its concrete syntactic representation used
during the development process. Typical domain elements for embedded systems
are concepts such as “component”, “port”, “channel”, “state”, “transition”, etc.
Typical relations are “is a port of”, “is behaviour of”, etc.

− System model: The system, or semantical, model consists of semantical concepts
needed to describe the system under development. A typical element is “execution
sequence”. Typical relations are “behavioural refinement” or “temporal refinement”.

To illustrate how process, conceptual and system models interact, Schätz et al. [2002]
use the example of the “elimination of dead states” refactoring step that reduces the
code size. In this example, a control state, including all of its adjacent transitions, is
removed from an automaton provided that this state is marked as unreachable.

− Process: On the level of the process model, an activity “Show the unreachability
of a state” must be introduced. This step may either be a single atomic operation
(and can be carried out, e.g., by some form of model checking algorithm) or a
more complex operation requiring user interaction. These operations correspond
to the operational relations of the system model. Furthermore, the activity
“Remove dead state” removes all transitions leading to a state marked unreachable
as well as the state.

− Conceptual: On the level of the conceptual model, the concept of “unreachability”
of a state, e.g. as a state annotation, is introduced. If no user interaction is required
for the proof of unreachability, this extension is sufficient. Otherwise, the
conceptual elements of proof steps must be added, as well as additional concepts
such as state/assignment of variables, or preconditions of a transition.

− System: On the level of the system model, the semantics have a direct effect: in
case of an atomic operation, there is an operational notion of the semantical
predicate “unreachability”, e.g., in the form of a model-checking algorithm. This

2. MDD processes, methods and practices

 23

operation adds the conceptual annotation “unreachable” to a state unreachable,
according to the semantics of the system model. In case of an operation requiring
user interaction, the system model is used via atomic operations corresponding to
the operational relations of the system model (e.g. combining parts of a proof,
applying modus ponens). Besides this application of the system model “at run-
time of the CASE tool”, the system model is also applied “at build-time” to prove
the correctness of the refactoring step.

Since an activity, as the atom of a process, describes how a product is changed, an
activity can be understood as a small process pattern. Additionally, each activity is
described in an operational manner. Furthermore, by the use of the system model,
properties such as “soundness considering behavioural equivalence” or “executability of
the specification” can be established for activities and phases. This combination of user
guidance by consistency conditions, of executable activities, and of the possibility for
both arbitrary and provably sound process activities and states of a product, is directed
at improving the efficiency of the CASE based development process.

2.1.11 SDL-MDD

Kuhn et al. [2006] present SDL-MDD, a model-driven development process that is
based on the ITU-T design language SDL (see Figure 3). They also present a
semantically integrated tool suite, consisting of several commercial tools, including a
graphical SDL editor, an SDL model debugger, and an SDL-to-C compiler, especially
supporting model-driven code generation and model-driven simulation. Both the production
and simulation code are entirely generated from SDL models and automatically
instrumented to interface with different operating systems and communication
technologies. The use of SDL-MDD and of the tool suite is also illustrated by an
extensive case study from the ubiquitous computing domain, in the article.

SDL-MDD decomposes the development of a software system into a number of
stages. Since it is an iterative process, the development of a software system may go
through some stages repeatedly, while certain stages may be skipped over during the
early cycles.

2. MDD processes, methods and practices

 24

Figure 3. SDL-MDD process model [Kuhn et al., 2006].

The following stages are distinguished in the SDL-MDD process:

− In the requirements stage (REQ), the requirements are elicited and described in an
informal way.

− In the formalise requirements stage (FRQ), the requirements document is partially
formalised, yielding a computation-independent model (CIM). Similar to the
MDA, the CIM is a system specification from the viewpoint of the domain expert.
Since the SDL-MDD is directed towards the ubiquitous computing domain, we
specify message scenarios with MSC on different levels of granularity. This
specification can be traced throughout all the models of subsequent development
stages, and be validated against scenarios that are generated by the SDL model
debugger.

− In the platform-independent design (PID) stage, the platform-independent model
(PIM) is specified, using SDL as the design language. It contains both the platform
independent structure of the software system, and the platform-independent

2. MDD processes, methods and practices

 25

behaviour. The result of this stage is a functionally complete, closed SDL design
model, which can be analysed using existing tools for the debugging and
validation of the functional system behaviour.

− In the platform-specific design (PSD) stage, the platform-specific model (PSM) is
specified, again using SDL as the design language. The fact that the PSM
incorporates the PIM, and that the same design language is used as for the PIM,
makes transformations between the PIM and corresponding parts of the PSM
obsolete. However, design decisions leading to platform-specific PSM
components are to be made. The resulting SDL design model can be analysed
using existing tools for the debugging and validation of the functional system
behaviour. In addition, the design model forms the basis for model-driven
performance simulations.

− In the changed requirements (CRQ) stage, the initial requirements may be
modified, based on feedback from the performance assessment.

It should be noted that the SDL-MDD process does not contain an explicit
implementation stage. The reason is that implementations including the code for
interfacing with system environments are generated entirely from SDL models.

2.1.12 MDA effects on the RUP

Nikulsins and Nikiforova [2008] present the changes caused by using MDA to RUP
(rational unified process):

− At the Inception phase, requirements for the system are being elicited, resulting in
a CIM. A CIM model covers the Business Modelling and Requirements
disciplines. At the same time, during the Inception phase, metamodel planning for
the PIM development and initial implementation are carried out.

− Elaboration is the main phase impacted by an MDA project. It is important to look
at the Elaboration activities and briefly describe the MDA modifications. The
Architect role is the main role in the Elaboration phase that requires additional
consideration. As a specialisation of “Architect”, the MDA Architect role is
appropriate for many MDA projects. Essentially, this role defines specific MDA
activities and artefacts, creates the transformations, and so on. The primary MDA
artefacts of this role are mapping documents, transformations, and UML profiles.

− PIM also covers some parts of the Construction – the models should be enriched
with mapping functions and appropriately marked. Models are iteratively tested
for conformance. At the Construction phase, model transformation into different
PSM or codes takes place.

2. MDD processes, methods and practices

 26

− PSM covers the Transition phase and Deployment discipline as well – transition
to some production environment can be performed with the help of a separate
PSM as well.

− The Configuration and Change Management discipline is also affected by the
MDA – these disciplines cover metamodel and metadata repository maintenance.

Typically, the MDA automates activities within the RUP. Rather than changing RUP
activities, the MDA enhances them with additional tasks aimed at supporting
automation with a number of the primary RUP activities. The primary changes to the
RUP involve a more subtle change of perspective in the development process. MDA
encourages architects and developers to work at higher levels of abstraction than
typically expected in non-MDA projects. This is most apparent during construction,
where the code automation aspects of MDA significantly change the emphasis of the
implementation tasks. They work less with actual implementation models and source
codes themselves, and more with designs for the appropriate business-focused workflow
of the solution. A smaller subset of developers will implement the model-to-code
transformations themselves.

Figure 4. Software development lifecycle and MDA mappings [Nikulsins & Nikiforova, 2008].

According to Figure 4, appropriate activities in the phase crossings are marked with
digits. Their description is provided in more detail in Table 1.

2. MDD processes, methods and practices

 27

Table 1. MDA specific activities in the phase crossings.

1. Define the possible domain specific metamodel
Traceability convention from requirements to code
Choose the modelling tool
Technology selection
Requirements specification development (ontology)
Information structuring
Initial PIM development

2. Transformations strategy selection
Business process modelling role evaluation
Risk assessment

3. Refine the PIM context
Define verification strategies
PIM design

4. Finalise metamodels
Create model-capturing support (model instances, which are not easy to illustrate in
diagrams)
Annotate the PIM with platform specific information
Verify the models

5. PSM identification
Define the verification strategies
Define the user-interface options (with model aware aspects)
PSM metamodel design

6. Verify the models
Mark the PIM and PSM
Create additional transformations and code generation scripts for target platforms
Create test scripts
PIM to PSM automatic or semi-automatic transformation

7. Verify the established meta-models
Code files generation from PSM

8. Automatic deployment (deployment profiles or PSMs can be used)
9. Fine-tuning and repeated use of the automated testing process

Executable code verification to models

2. MDD processes, methods and practices

 28

2.1.13 Telelogic Harmony-SE

This description is based on [Estefan, 2007], where a more detailed description and
references are also given.

The Harmony process was designed to be tool- and vendor-neutral, although elements
of the process are supported by the Telelogic Rhapsody model-driven development
environment (formerly, I-Logix Rhapsody) and by the Telelogic Tau offering. Note that
the Harmony process somewhat mirrors the classical “V” lifecycle development model
of system design. The process assumes that model and requirements artefacts are
maintained in a centralised model/requirements repository. The task flow and work
products (artefacts) in the Harmony-SE process include the following three top-level
process elements:

- Requirements analysis
- System functional analysis
- Architectural design.

Figure 5 illustrates these process elements in more detail, along with the flow of some
of the primary work products.

Figure 5. Harmony process elements.

2. MDD processes, methods and practices

 29

2.1.14 RUP SE

This description is based on [Estefan, 2007], where a more detailed description plus
references are also given.

The Rational Unified Process for Systems Engineering (RUP SE) is a derivative of
the Rational Unified Process® (RUP®). The RUP SE was created to specifically
address the needs of systems engineering projects. The objective for its creation was to
apply the discipline and best practices of the RUP for software development to the
challenges of system specification, analysis, design, and development.

Since the RUP SE is derived from the RUP, it retains the RUP’s cornerstone
principles, which have been refined and extended to enhance their utility for systems
engineering efforts. The RUP SE brings the RUP style of concurrent design and
iterative development to systems engineering (as illustrated in Figure 6). In addition, it
provides the highly configurable discipline (workflow) templates required to identify
the hardware, software, and worker role components, which comprise a systems
engineering project.

Figure 6. RUP SE lifecycle.

2. MDD processes, methods and practices

 30

2.1.15 Vitech Model-Based System Engineering (MBSE) methodology

This description is based on [Estefan, 2007], where a more detailed description plus
references are also given.

Although the Vitech MBSE methodology is considered to be “tool-independent,”
there is a strong tie of the tutorial materials to the CORE tool set. The Vitech MBSE
methodology is based on four primary concurrent SE activities, which are linked and
maintained through a common System Design Repository (see Figure 7). Each of these
primary SE activities is linked within the context of associated “domains”, where the SE
activities are considered elements of a particular kind of domain, known as the Process
Domain.

Four core tenets help drive the Vitech MBSE methodology:

1. Model via modelling “language” the problem and the solution space; include
semantically-meaningful graphics to stay explicit and consistent. This helps
facilitate model traceability, consistent graphics, automatic documentation
and artefacts, dynamic validation and simulation, and promotes more precise
communication.

2. Utilise a MBSE system design repository.

3. Engineer the system horizontally first before vertically, i.e., do it in
complete, converging layers.

4. Use tools to do the “perspiration stuff” and your brain to do the
“inspirational stuff”.

To support tenet #3 above, the Vitech MBSE utilises an incremental SE process known
as the “Onion Model,” which allows complete interim solutions at increasing levels of
detail during the system specification process.

2. MDD processes, methods and practices

 31

Figure 7. Vitech MBSE primary SE activities.

2.1.16 State Analysis (SA)

This description is based on [Estefan, 2007], where a more detailed description plus
references are also given.

State Analysis (SA) is a JPL-developed MBSE methodology that leverages a model-
and state-based control architecture (see Figure 8), where the state is defined to be “a
representation of the momentary condition of an evolving system,” and models describe
how the state evolves.

SA provides a process for capturing system and software requirements in the form of
explicit models, thereby helping reduce the gap between the requirements on software
specified by systems engineers and the implementation of these requirements by
software engineers. Traditionally, software engineers must perform the translation of
requirements into system behaviour, hoping to accurately capture the system engineer’s
understanding of the system behaviour, which is not always explicitly specified. In SA,
model-based requirements are mapped directly to software.

In SA, it is important to distinguish between the “state” of a system and the
“knowledge” of that state. The real state may be arbitrarily complex, but ones
knowledge of it is generally captured in simpler abstractions that one finds useful and
sufficient to characterise the system state. These abstractions are called state variables.
The known state of the system is the value of its state variables at the time of interest.

2. MDD processes, methods and practices

 32

Together, the state and models supply what is required to operate a system, predict a
future state, control towards a desired state, and assess performance.

Figure 8. Model- and State-Based Control Architecture (“Control Diamond”).

2.2 Elements in the MDD processes

In this section, we will summarise the elements of the surveyed MDD process models.
The process models use various names for the activities, but at a high level the same
activities are commonly done as in non-model-driven development. Thus, the elements
are presented using a commonly known structure of product development activities. The
focus is on development work, the supporting activities such as project management are
mostly out of the scope of this section, since there is not much difference in them due to
the MDD, except for planning and managing the MDD activities. This section is based
on the models presented earlier in this publication, as well as the examples from
[Afonso et al., 2006].

In general, the process models don’t specify in detail what should be done during the
development work and when. This makes their application in practice difficult. The
reason for this could be that the main source of the models was conference and journal
articles with limited space to describe the process models or methods in detail.

Context definition: The objective is to define the scope for the software system that
will be developed.

2. MDD processes, methods and practices

 33

− In the MDDP, this is often called developing the context for the PIM, platform
independent model.

Requirements elicitation and analysis: The objective is to identify, capture, agree and
validate the functional and non-functional requirements related to the system to be
developed.

− The Model-driven view is that complete models of customer requirements, as well
as unique requirement descriptions for all the subsequent models to use, are created.

− Example: The requirements gathering phase begins by capturing the business/
project concepts and entities. UML class diagrams were created to specify more
details of the concepts and entities. The next step was to focus on the development
of the use-cases model using the UML 2.0 modelling tool (RSA). The use-cases
model was created following a top-button approach: from finding use-cases and
its interaction with the system actors to identifying the use-cases’ main/alternate
flows and detailing its behaviour using activity diagrams. Each textual requirement
has been associated to correspondent to use-cases, establishing traceability
relationships. The Computation Independent Model (CIM) is produced as a result
of this phase. From the CIM, one can extract (and deliver to a customer) a
readable documentation generated completely from the model (e.g. glossary, use-
cases, etc.).

Early analysis: The objective is to model the system’s internal view, in which the
technological considerations are excluded and the separation between the functional and
non-functional requirements is maintained.

− The model-driven view means that the functionally-independent and platform-
independent specifications for the system are produced. This step involves
analysing the requirements to decide the input and output interfaces and
eventually implementation of the algorithms.

− Example: In the analysis phase, the PIM model has been created using UML 2.0
models in the RSA. Having the use-cases model as the main input, the use-cases
of the participant classes have been identified and their behaviour have been
analysed creating the analysis use-cases realisations. Class diagrams were created
to model the system boundaries, controls and entities and sequence diagrams were
created to capture the behaviour and the responsibilities of those classes. Use-
cases have been transformed in analysis use-case realisations, generating the
traceability relationships between the requirements and the PIM model. The PIM
is the main input model for Enablers functional required documentation (FRD)
and system user interfaces, artefacts that are usually delivered to the customers.

2. MDD processes, methods and practices

 34

Design: The objective is to produce the technical specification of the system, i.e., to
model the behaviour and structure of a solution that fulfils both the functional and non-
functional requirements.

− In model-driven development, the design is graphical models such as Simulink® /
Stateflow® models, incorporating process and control logic. Created models are
validated against the requirements. This validation can be done on the host by way
of a simulation. The host validation can be performed in an interactive way using
tools. A more vigorous way of model validation is by using a rapid prototyping
environment. For example, running and testing the models in a vehicle, using an
emulator such as dSpace’s Autobox.

− Example: The PSM model considers several platform specific details that reflect
the choice of deployment technology: operating systems, databases, programming
languages, platform runtimes, high level protocols, etc. To map the PIM model to
a J2EE model, the JAVA and EJB UML profiles (built-in in the RSA) were used.
Additionally, profiles have been developed for the RSA: for instance, the Model
View Controller UML profile was created to be able to use the open-source
library Model View Control (MVC) scope. Some RSA pattern mechanisms were
used; most of the mapping was made by applying to the models elements, the
stereotypes and tagged values provided by the available UML profiles and then
transforming our models in J2EE architecture related models.

Implementation (or transformations): The objective is to develop and verify the code
that implements the design and fulfils the requirements.

− The model-driven view is that the code of the system is generated, checked and
manually completed. The validated model from the design is used to generate the
C – code using autocoding tools such as dSpace’s Targetlink®, Mathworks’s E-
Coder. The first step is to make the model compatible for autocoding. This can be
partially taken care of during modelling with proper style guidelines. Further, the
design model is modified to satisfy the target controller constraints and operating
system requirements. Software information is then entered into this model to form
the autocode model. Finally, the autocode is generated from this model.

− Example: The MDD is all about Models and transformations, Model to Model but
also Model to Text, to perform those tasks with quality and power we used two
different transformation tools:

o ATL is more sophisticated and complex; it is one model to model
transformation tool. To generate a code, one needs to define the input
metamodel (like in the MOFscript) and also to define the output metamodel
(like in JAVA) following the MDA principles of executable models. To use

2. MDD processes, methods and practices

 35

ATL, the models have been exported to the EMF and declarative
transformation rules have been developed to map the models. This is a
potentially powerful tool; however, some difficulties have been experienced
when using it with RSA models.

o MOFscript is a model to text transformation tool that provides an easier way
to parse the model structure outputting the desired code. To work with this
tool, the models have been exported to the EMF format, and using the
MOFscript specific language, the desired text outputs have been produced.
However, as with the ATL, some difficulties have been experienced, such as
accessing meta information. The research object system contains features
that are not represented in the PSM, however a good code structure can be
generated and later augmented by the developers. It is expected that the
creation of an hibernate profile will improve the expressiveness and,
therefore, potentially increase the quantity of the generated code.

Integration and testing: the objective is to show that requirements are satisfied by the
developed system.

− In a model-driven development, even though code is generated, testing is still
required because the software properties are entered manually. During the
autocode testing, the autocode is tested against the model. In the model-based
approach, errors in the autocode, due to the wrong interpretation of logic, tend to
be zero as the autocode is obtained directly from the requirement model.
However, errors do exist in the autocode and are mainly due to manual activities
like range-resolution analysis and software partitioning. Errors in the autocode
will be typically overflows, underflows and resolution deficiencies. Autocode
testing strategies are developed to detect the above errors. In short, the testing is
performed to ensure that the autocode behaves as the design expects it to do.

Release: The objective is to ensure that the developed system is successfully taken into
use among the final users.

− No specific things for model-driven view in this phase.

3. Model-Driven Development Maturity Model

 36

3. Model-Driven Development Maturity Model

The Model-Driven Development Maturity Model was developed within the
MODELWARE project. Rios et al. [2006] state that the role of the MDD Maturity
Model is to assist in estimating the level of MDD technology implementation in an
organisation. The MDD Maturity Model consists of five maturity levels that provide the
characterisation of the degree of adoption and implementation of the MDD in an
organisation. Each level has goals relating to the MDD practises and MDD elements.

According to Rios et al. [2006], the MDD Maturity Model defines three categories of
MDD practices:

− Engineering practices cover the development activities in model-driven SW
engineering.

− Project management practices cover such activities that relate to management
decisions required to set up and manage an MDD project.

− Support practices cover the support activities related to engineering and project
management practices.

According to Rios et al. [2006], the MDD Maturity Model identifies the following
elements, which are the basic artefacts used in MDD technology:

− Models are abstractions of something in the real world and they capture the essential
characteristics. A model can be a “Domain metamodel”, “Architecture-centric
metamodel”, “Domain model”, “Business model”, “Technical model”, or “Code”.

− Model transformations are mechanisms for converting a model into another model.

− Modelling tools are tools that are used in activities related to modelling.

− Documentation is the set of text documents, in which the development process
and generated assets are described.

Rios et al. [2006] depicts, that the MDD Maturity Model is a staged model and consists
of five maturity levels. Each level of maturity characterises the MDD elements that are

3. Model-Driven Development Maturity Model

 37

expected to be seen. Table 2 lists the maturity levels and their descriptions as in
[Modelware, 2006]:

Table 2. Levels of the MDD Maturity Model [adopted from Modelware, 2006].

Level of Maturity Description

Level 1 – Ad-Hoc Modelling Engineering is not model-driven.
Level 2 – Basic MDD: Implementation level
models Basic usage of models in an organisation.

Level 3 – Initial MDD: Abstraction away from
the implementation level

The organisation starts developing systems
more according to model model-driven
approach.

Level 4 – Integrated MDD: Integrated chain of
models

Models at different abstraction levels are built
and they are fully integrated within a
comprehensive modelling framework.

Level 5 – Ultimate MDD: Software factories
The role of coding will disappear and the
transformations between models are
automated.

4. MDD tools

 38

4. MDD tools

The MDD uses models to represent software artefacts in various aspects and produces
both platform independent and platform specific models. Tools play an important role in
supporting the practical MDD and at its best they will reduce development costs and
man-made errors. Currently, there is no universal tool that could satisfy all the needs in
the MDD and, in practice, the MDD tool environment is a collection of separate tools.
The available tools are plentiful, and we will not list them here. Instead, we will focus
on the role of the tools in the MDD and the requirements for them. We also present
some experiences from using the tools. One example categorisation of the MDA tools
can be found from Wikipedia (http://en.wikipedia.org/wiki/Model-driven_architecture)
that mentions that an MDA tool can be one or more of the following types:

− Creation tool that is used to elicit initial models and/or edit derived models.

− Analysis tool that is used to check models for completeness, inconsistencies, or
error and warning conditions, as well as to calculate metrics for the model.

− Transformation tool that is used to transform models into other models or into
code and documentation.

− Composition tool that is used to compose (i.e. to merge, according to a given
composition semantics) several source models.

− Test tool that is used to test models.

− Simulation tool that is used to simulate the execution of a system represented by
a given model.

− Metadata management tool that is used to handle the general relations between
different models, metadata on each model and the mutual relations between these
models.

− Reverse engineering tool that is used to transform particular legacy or information
artefact portfolios into full-fledged models.

http://en.wikipedia.org/wiki/Model-driven_architecture

4. MDD tools

 39

Link et al. [2008] claim that a continuous tool supported transformation process from
model to source code is not yet possible. Vogel and Mantell [2005] mention that during
their MDD implementation, immature tools caused the “debugging” of tools itself and
there were also some challenges with the interoperability of tools and the standards they
used.

According to France and Rumpe [2007], there is a need for tools which support the
tracking of relationships between various model elements. A lack of tracking support
makes the MDD more complex. There is also a need for a repository that is able to store
the models produced by various development tools. France and Rumpe [2007] point out
that developing such a repository will face difficult technical problems. They also
mention that the current code generator tools do not provide enough support for the
integration of foreign code.

France and Rumpe [2007] highlight the importance of quality of domain specific
language (DSL) tools and state it to be the primary concern for them. Because DSL tool
developers need a profound knowledge of the domain, France and Rumpe [2007] see
that DSL tool developers should closely interact with application developers. They
propose that the quality assurance programs of these two parties should be more integrated.

Kleppe et al. [2003] list the requirements for the MDD tools. These tools should:

− Allow developers to choose between different development platforms and within
one platform, allow them to choose different implementation strategies, architectures
and coding standards.

− Allow the integration of domain specific information into the models.

− Be able to support new modelling languages and target language transformations.

− Integrate with the version control and requirement management tools, as well as,
with testing suites etc.

MacDonald et al. [2005] completes the previous list by adding the following
requirements:

− The tool should fully support the target language.
− The tool should offer rich platform independent libraries.
− The tool should support an intermediate language for text diagrams.
− The tool should make the integration of the model with legacy systems easier.

In general, MDA based development needs tool support for success. According to
Aagedal and Solheim [2004], the vision of the MDA is to provide a set of integrated
tools to support the development of models and executable code. They highlight, that
tools should support the synchronisation of codes and models, different model views
and levels of abstraction, as well as the transformation of models and generation of
codes. Aagedal and Solheim [2004] mention a model editor, model repository, model

4. MDD tools

 40

transformers, model analysis tools and model simulator as tools that are required to
support the activities of the roles that they identified as important for the MDE.

Schätz et al. [2003] compare the results of applying eight different tools for the
development of embedded software to a common problem: the specification of a
software module controlling comfort electronic functionality. The applied tools are:

− ARTiSAN RealTime Studio by Artisan Software
− ASCET-SD by ETAS GmbH & Co.KG
− AutoFOCUS by Technische Universität München
− MATLAB/StateFlow by The MathWorks Inc.
− Rose RealTime by Rational (now owned by IBM)
− Rhapsody in MicroC by I-Logix Inc. (now owned by IBM)
− Telelogic Tau by Telelogic Inc. (now owned by IBM)
− Trice Tool by Protos Software GmbH.

With each tool, a model of a controller software module was developed, based on a
given textual requirement specification. The requirement specification of the controller
was taken from a revised version of a controller specification provided by F. Houdek,
Daimler Chrysler AG. These state-of-the art CASE tools for embedded systems offer
support for:

− the use of graphical representations for the system under development

− the possibility to describe the system (or software) with a certain degree of abstraction
from the actual implementation platform

− the possibility to generate an executable system out of the model

− describing the system using different hierarchic views

− using message- or signal-based communication in the operational model

− including timing aspects in the description of the system

− checking the model for inconsistencies, mainly on a syntactic level (e.g.,
undefined identifiers, type mismatches)

− simulating the system at the level of the description

− deploying the generated code to a host and a target system.

5. Experiences on MDD technologies

 41

5. Experiences on MDD technologies

MacDonald et al. [2005] evaluated some of the claimed MDD advantages against their
experiences in using the MDD in an industrial setting. According to their findings, there
is no evidence about the improved development speed in the case where they had to
integrate workarounds with legacy systems. They also experienced that there were no
significant differences in the amount of bugs found in the generated code. The amount
of bugs compared in the generated code was about the same as what would be expected
with traditional development. According to MacDonald et al. [2005], the bugs were
more difficult to find and fix in the model. They also reported that they succeeded in the
automatic generation of code, as well as improving the communication by using the Tau
Developer tool that allows different views of the models. MacDonald et al. [2005]
found out that the time that is needed to study a new system was reduced because the
design was more easily communicated to people.

Aagedal and Solheim [2004] emphasise that when MDD related processes and tools
are introduced in a company, they quite often realise that new ways of working require
some new skills in a company. They list a group of skills that can also be considered as
roles that form a meta team in a company and that are used to define modelling
languages, domain and platform concepts, as well as to customise tools. They identified
the following roles for the meta team:

− domain and platform experts,
− language and method engineers, and
− transformation specifier.

In addition to a meta team, Aagedal and Solheim [2004] define the roles for a project
team. This team performs the application development and its work is based on the
foundations of the meta team. The following roles are defined for the project team:

− application designer
− system analyser, and
− system tester.

5. Experiences on MDD technologies

 42

Staron [2006] presents a case study of two companies willing to adopt the principles of
the MDD. One of the companies is in the process of adopting the MDD, while the other
withdrew from its initial intentions. The conditions that were identified in the case study
are as follows (prioritising according to importance):

1. Maturity of modelling technology: The technology used in the company should:

− provide advanced features for developing and executing model transformations,

− develop and execute model analysis methods (e.g. model measurements, test case
generation, and the identification of problem areas), and

− develop and introduce domain-specific modelling (e.g. using UML profiles, if the
base language is UML).

2. Maturity of modelling related methods: In addition to the modelling tools, the
methods for using models should be mature. These methods include activities such as:

− early model-based verification and validation,

− model-based quality assurance,

− model-based project planning and management (development efforts are different
when using modelling, thus project managers need to know how to structure their
projects, taking that into consideration), etc.

MDD should be the next step in using models based on the evolution of software
development processes.

3. Process compatibility: The process used in the company should be “compatible”
with MDD principles. The compatibility means that

− it should be possible to use the models effectively in the process without a
complete redefinition of the process

− there should be room in the process to actually use models as primary artefacts in
the process – i.e. quality assessment should be performed on models, estimations
should be performed on models, testing should be performed on models.

This condition is especially important for large companies, as in such companies the
software process improvement activities require a great effort.

4. Core language-engineering expertise: Since the advanced model usage scenarios
require either customising a modelling language or engineering (at least to some
extent) a new language, there should be staff available in the company with the
required expertise. The required expertise is a combination of: domain knowledge (to
the most extent), tool building/extending methods, and language engineering (to
some extent, related to the expertise in tool building/extending).

5. Experiences on MDD technologies

 43

5. Goal-driven adoption process: A set of precisely defined goals for introducing the
MDD should be in place in the company – e.g. to improve the quality of data
modelling or improve the productivity of development of a given part of software.
The scope and the methods for introducing the MDD should be defined before the
adoption, in order to decrease the risk of changing the scope of the MDD framework
and thus providing better control of the costs in the projects.

Foustok [2007] mentions that using the UML in a global environment may improve the
human communication and lower the language barriers that the different parties may
face during the project. He reported that the use of the MDD together with product-line
engineering and an asset repository indicate some significance in quality and
productivity. During a two years period, they have not found any defects that had been
caused by the common components that they produced. Foustok [2007] states that when
the amount of binary generated through a model-driven was compared to traditional
development, the productivity was increased 70%.

Vogel and Mantell [2006] introduce a set of metrics they defined as a potential for
measuring the success of MDA implementation in a company. As a primary measure,
they mention “Effort”, since all the others may be derived from it. The list of measures
they mentioned is as follows:

− Effort: Man days spent in software development.

− Cost: The function of effort multiplied the resource rate.

− Duration: A measure that can be manipulated by introducing more resources into
the scene.

− Tools maturity: The time that the user was idle, because of bugs in the tool.

− Learning curve: How fast people have learned the model-driven tools and
methods. This was measured by surveying the attendees after each course.

− Resistance to change: By surveying attitudes, it was measured how willing
people were to start using the MDD.

− Perceived value of using the MDA: By surveying attitudes, the perceived
advantages, constraints of using the MDA were also measured.

Vogel and Mantell [2006] also collected information on “Job function”, “Job tenure”,
“Professional tenure”, and “Highest completed education” to collect the demographic data.

Afonso et al. [2006] presents a case study that they conducted in a systems integration
company. Their study consisted of three complementary studies, namely “Software
Development”, “Software Maintenance”, and “MDD Education” studies. The goal of
their research was to understand the impacts and added value of infusing the MDD in
the software development process of a systems integration company. Their finding was
that the MDD infusion had a positive impact on the performance of software development.

5. Experiences on MDD technologies

 44

They reported an improvement in the communication of specifications, supporting a
focus on business knowledge, and reducing the number of defects, as well as the effort
required to develop a given feature. When compared to traditional development
methods, Afonso et al. [2006] highlight that the MDD means a transfer of effort from
development to analysis and specification. One specific finding from their research was
that the learning curve of the people that were involved with the study reduced the
potential return of investment of introducing the MDD in the development process.

Afonso et al. [2006] also mention some constraints to the successful MDD infusion in
a company. The cost of the tools may have a large impact on their adoption. It also
influences the price of the final solution to the customer. They also mention
organisational experience with modelling technique as a constraint to successful
infusion. A longer learning curve may have an impact that delays achieving the
advantages of MDD introduction in a company. Based on the findings from the studies,
Afonso et al. [2006] propose strategies for successful infusion. These strategies are:
“Provide clear guidance from the organisations leaders”, “Use an incremental approach
starting in areas where success is easier and visible for the organisation”, “Select the
appropriate tools”, and “Begin involving people with some modelling experience and in
parallel, train other organisational actors”.

Middleware [2003] conducted a case study to prove or disprove the productivity
claims related to MDA adoption. Their study consisted of two teams that developed the
same J2EE application. One team used the MDA-based tool and other team used
traditional integrated development environment. The study revealed that the team that
used the MDA-based tool produced their application 30% faster than the team with a
traditional development environment. Therefore, their claim is that the MDA improves
the productivity and they encourage companies to evaluate the MDA based tools, if they
are seeking improvements in productivity. Middleware [2003] mentions that the MDA
is best utilised with capable and experienced architects, but there is still a need for
developers that know J2EE patterns and best practises, object-oriented development and
architectural tradeoffs. One observation was that in traditional development, quite a lot
of time was spent in testing and finding bugs, but in the MDA-based development, there
was no need for such extra activities as the code was automatically generated via patterns.

Mattson et al. [2007] report their experiences from architectural work practices using
the MDD in a large industrial project. They state that the current methods and tools for
MDD do not support the formal representation of architectural rules. Therefore, manual
interpretations and reviews are needed and due to the manual routines, it is error prone
and requires lots of effort. Another observation is that because architectural rules are
introduced manually through the models, it is difficult to make late changes to them.
Mattson et al. [2007] summarise that from their experience there is a “need for the
support of formal modelling of architectural rules and automatic enforcement of these
rules on the generated models of the system.”

6. Challenges and success factors for MDD adoption

 45

6. Challenges and success factors for MDD
adoption

Uhl [2008] presents challenges related to model-driven approaches.

− Life-cycle issues: Modelling often implies the managing of partly redundant
artefacts for concrete and abstract syntax. Tool users must store and control
versions of a model diagram’s layout information, just as they do for the model’s
elements. Understanding the interrelations among the artefacts can sometimes be
tricky, and some of these relations can cause surprises – particularly for casual users.

− Model comparison and merging: All projects, not just enterprise set-ups, keep
versions of development artefacts. Versioning makes the capability to compare
models essential. Comparing texts is well understood. However, models can
include graphical views, forms, dialogs, and property sheets, as well as text. They
are much more difficult to compare, mostly because visualising the differences in
a usable way is difficult.

− Model transformations: Transforming models into code or other models once is
well understood, and all the MDD tools and frameworks support it. Tools vary in
how much support they offer for specifying transformations – for example, in
debuggers and smart editors. The difficulties with transformations arise in three
areas: Refining the results (e.g., by adding code in protected regions), referencing
results from within other models and only transforming small pieces of the model
quickly after small incremental changes.

Only a few tools and frameworks address these basic difficulties. Tool and
transformation designers can work around the challenge of preserving manual
refinements across transformation runs by attaching the refinements to the input
model. Such attachments are called marks in the OMG’s Model-Driven
Architecture. Marks preserve manual refinements and also solve several life-cycle
issues as well, but refactoring the marks’ content remains difficult. Furthermore,
editors typically only have a restricted support for marks, such as generic text

6. Challenges and success factors for MDD adoption

 46

fields, which don’t compare to any reasonable integrated development environment’s
usability standards. Referenceable output models require additional measures that
let the references use alternative keys instead of or in addition to those based on
the Universally Unique Identifier (UUID) standard. Alternatively, they can use a
repository that lets the model transformation framework produce stable UUIDs for
the model elements that it produces. SAP has implemented prototypes indicating
that such stable UUIDs solve the problem. However, the long-term ramifications
of such an approach aren’t well understood yet.

− Model-level debugging: When a tool user expresses an application’s behavioural
aspects in models and transforms those models into runtime artefacts, debugging
becomes an issue. Only tools that are very specialised, support model-level
debugging, typically only for a specific modelling language. A model transformation
can keep a traceability record of which model elements mapped to which elements
in the runtime. Debuggers can then use this information to suspend, introspect,
and continue the application execution on the basis of locations in the model.

− Models and text-based syntaxes: Text syntaxes are a valid way of viewing and
editing models. Many developers prefer them to graphical editors. For example,
parsing Object Constraint Language text or syntaxes derived using the Human
Usable Text Notation into model repositories gives some great querying,
browsing, and refactoring capabilities. Sometimes, a tool or framework manages
the underlying models by regarding them as cached, derived forms rather than
development artefacts. Eclipse’s Java Development Tools work this way. This
approach preserves all the benefits of regular text editors. For example, the tool
keeps all of the lexical information that the user entered (indentation, comments,
and so on) and saves inconsistent or unparsable texts. Users can copy and paste
arbitrary text sections and not just the valid sub-trees of the concrete syntax tree.
The Text Editing Framework (TEF) and openArchitectureWare’s Xtext follow a
similar approach. Problems occur when trying to put such a parser-based approach
on top of a UUID-based repository. The parser can’t easily identify UUID changes,
particularly if the element names have changed in the text. Parsing the text again
might create elements with the new UUIDs, thereby breaking old references.

At the other end of the spectrum, there are approaches such as Intentional
Software (www.intentsoft.com), where the tools can combine a variety of
syntaxes, including text-based ones, even in a single editor. The editor applies
modifications directly to the underlying model, and the modifications immediately
affect all the other views. Intelligent parsing technology ensures that users can still
syntactically save incorrect stretches of text and that editing the model will feel
like editing a text document. This approach lets you combine text-based syntaxes

http://www.intentsoft.com

6. Challenges and success factors for MDD adoption

 47

with repositories that use UUIDs. However, these capabilities aren’t yet widely
available. Since tool customers are reluctant to get locked into proprietary
solutions, the powerful combination of graphical and forms-based syntaxes with
text views hasn’t yet seen widespread adoption.

Hailpern and Tarr [2006] also discuss several challenges in model-driven development:

− Redundancy: There are multiple representations of software development artefacts
representing different views or levels of abstraction of the same concepts. To the
extent that these are manually created duplicate work and consistency
management are required.

− Rampant round-trip1 problems: The more models and levels of abstraction that are
associated with any given software system, the more relationships will exist
among those models. Many of these interrelationships are complex. The round-
trip problem occurs whenever an interrelated artefact changes in ways that affect
some or all of its related artefacts, as the mutual consistency cannot always be
automatically assured.

− Moving complexity rather than reducing it: As with any development technique or
technology, one must determine whether a given MDD approach reduces the
complexity visible to the developer or whether it simply moves the complexity
elsewhere in the development process. As the number of artefacts increases, the
number – and potentially the complexity- of artefact relationships increases, as
does the complexity of the tools that manipulate and visualise them. It remains to
be seen if people have an easier time managing a relatively small number of large
artefacts with fewer relationships or if they manage better with a large number of
more specialised artefacts with a correspondingly greater number of relationships.

− More expertise required: The interrelationships between multiple types of models,
and potentially, different modelling formalisms, suggests that it will be difficult
for any given stakeholder (e.g., use case developer, architect, tester), to understand
the impact of a proposed change on all of the related artefacts that could be
described in different notations. Different MDD models can aid in communication
between distributed sub-teams, but it also implies that the different sub-teams
cannot be experts in only their own development genre, but knowledge of
different model technologies and terminologies must exist at each site.

1 Round-trip engineering is a functionality of software development tools, which provides a generation
of models from source code and a generation of source code from models; this way, existing source
code can be converted into a model, be subjected to software engineering methods and then be
converted back.

6. Challenges and success factors for MDD adoption

 48

Six requirements were identified as critical for a successful MDD infusion, within the
MDD toolset provided [Afonso et al., 2006]:

− Traceability (“Whole lifecycle support”): tracking the relationships among all the
artefacts. This allows, for instance, impact analysis when a change occurs,
ensuring the traceability of the changes, guaranteeing consistency among the
artefacts and improving reactivity.

− Round trip: required to trace back from code to model, which can be useful, to
reverse engineering or to synchronise the model with code changes.

− Automatic code generation: should support automatic generation, from the model,
of readable documented platform specific code, allowing the early identification
of requirements inconsistencies, missing system components or unexpected
development needs.

− Automatic document generation: should provide automatic generation of the
documentation in standard formats, meeting the quality required for formal sign-
off processes. This contributes to easier/faster consistency among project artefacts.

− Automatic quality assurance: should support simulation and automatic generation
of multilevel testing (unit, system and integration testing) for market standard
frameworks, such as TPTP for instance.

− Interoperability among the tools: the tools should follow OMG standards (e.g.
UML 2.0, OCL, XMI) and be able to be interoperate.

6. Challenges and success factors for MDD adoption

 49

Table 3 summaries of the challenges of the MDD adoption.

Table 3. Summary of the challenges.

Challenge Description

Understanding and
managing the
interrelations among
partly redundant artefacts.

There are multiple representations of software development
artefacts representing different views or levels of abstraction of the
same concepts. To the extent that these are manually created,
duplicate work and consistency management are required.

Comparing and merging
different versions of models.

Models are much more difficult to compare, mostly because
visualising the differences in a usable way is difficult.

Difficulties with the
transformations of models
(to code or other models).
Rampant round-trip
problems.

The more models and levels of abstraction that are associated with
any given software system, the more relationships will exist among
those models. Many of these interrelationships are complex. The
round-trip problem occurs whenever an interrelated artefact
changes in ways that affect some or all of its related artefacts, as
mutual consistency cannot always be automatically assured.

Model-level debugging is
not supported by tools.

When a tool user expresses an application’s behavioural aspects in
models and transforms those models into runtime artefacts,
debugging becomes an issue.

A combination of
graphical and form-based
syntaxes with text views
is not well supported.

Text syntaxes are a valid way to view and edit models. Many
developers prefer them to graphical editors.

Moving complexity rather
than reducing it.

As with any development technique or technology, one must
determine whether a given MDD approach reduces the complexity
visible to the developer or whether it simply moves the complexity
elsewhere in the development process. It remains to be seen if
people have an easier time managing a relatively small number of
large artefacts with fewer relationships or if they manage better
with a large number of more specialised artefacts with a
correspondingly greater number of relationships.

More expertise required. The interrelationships between multiple types of models, and
potentially, different modelling formalisms, suggests that it will be
difficult for any given stakeholder (e.g., use case developer,
architect, tester), to understand the impact of a proposed change in
all of the related artefacts that could be described in different
notations.

7. 1st ITEA MoSiS survey: MDD state of the art and practise

 50

7. 1st ITEA MoSiS survey: MDD state of the art and
practise

This chapter presents the results of a survey that was conducted in the work package 3
of ITEA MoSiS project. The focus in WP3 was on disclosing and evaluating the effects
of the model-driven development (MDD) on the existing processes and product
lifecycle. Another focus of the WP3 was on providing mechanisms to support a smooth
evolution from code-centric approaches towards more model-driven approaches and on
exploring the problem from process and organisational points of view. To discover the
state-of-practise of model-driven development and processes in organisations, the
survey was conducted. The survey was carried out during February, 2008 and it was
organised by VTT Technical Research Centre of Finland.

7.1 Goal of the survey

The goal of the survey was to find out the current state of modelling practices and
processes in industry and academia. It was also an intention to find out what kind of
aims, needs and possible problem areas companies have when applying the MDD.

The research framework for the survey is the Model-Driven Development Maturity
Model that is described in Section 3. This framework was selected because the model
has been developed to complement the existing models such as Capability Maturity
Model® Integration [CMMI Web page, 2009], ISO requirements for Quality
Management system [ISO9001:2000 Web page, 2009] and European Foundation for
Quality Management [EFQM Web page, 2009] by putting the focus on specific model-
driven engineering activities. The model consists of three dimensions: technological
capability, organisational maturity and capitalisation capability. Each of which consists
of 5 maturity levels. A maturity level represents the level of adoption of the MDD in
organisations. Each maturity level has particular goals associated to it, which are used to
determine whether it is completely achieved.

Based on the Maturity Model, the questions in the survey were categorised in three
dimensions: technological capability, organisational maturity and capitalisation capability.

7. 1st ITEA MoSiS survey: MDD state of art and practise

 51

By asking questions about the technological capability, the intention was to find out a
basis for understanding and improving an organisation’s range of “MDD technical
means for engineering the system/software”. Questions concerning organisational
maturity were focused on the practices that have to be put in place in order to determine
whether an organisation has achieved a certain level of MDD-maturity. Domain
capitalisation questions address the level of technological or domain capitalisation
achieved in the organisation.

In addition, experiences and background related questions were also asked. The
following is the list of question groups in the survey:

− Group A: The background of the respondent
− Group B: Personal experiences of the MDD
− Group C: Modelling processes and practices of the MDD (organisational maturity)
− Group D: Software reuse and core assets in organisations (capitalisation capability)
− Group E: MDD tools and methods in the organisations (technological capability)
− Group F: Opinions about the future of modelling activities.

This publication summarises Group A: The background of the respondents’ questions as
well as the questions related to the MDD processes and technologies from Group B:
Personal experiences of the MDD, Group C: Modelling processes and practices of the
MDD, and Group E: MDD tools and methods in organisations. The complete list of
questions of each of the groups can be found on Appendix A.

7.2 Set-up of the survey

The survey was prepared as an electronic questionnaire that was available on the web.
The questionnaire contained 41 questions, altogether. However, groups of the questions
were always filtered out, depending on how the respondent had answered the earlier
questions. If the respondent did not have any experience of the MDD, the questionnaire
was very short, just a few questions were asked from the respondent. This publication
presents the results from 19 questions that are most relevant from the MDD process and
technology point of views.

The survey was available to respondents during 25th of February – 5th of March. The
link to the survey was emailed to the MoSiS partners, which were from Spain, Sweden,
Norway and Finland. The link was also emailed to country co-ordinators of MoSiS, who
were asked to distribute the link forward to suitable mailing lists within their country.
The link was also available to people who had been in close contact with VTT; they had
participated in seminars at VTT or they were customers of VTT. All the respondents of
the survey were recorded as anonymous.

7. 1st ITEA MoSiS survey: MDD state of art and practise

 52

7.3 Limitations of the survey

This survey offered qualitative results for studying the state-of-practise of the MDD in
organisations. Respondents were not named beforehand and the link to the research was
distributed freely in different organisations.

The limitation of the survey is that the respondents might be unbalance in a way
which people having a lot of experience of the MDD answered the survey more actively
than people who were not familiar with the MDD. In that sense, the questionnaire did
not give a realistic picture of how much or how extensively organisations are really
using the MDD in their product development. The number of the respondents was also
relatively small, thus the results of this survey are not scientifically significant but they
still indicate where the world is with the MDD today.

8. Results of the 1st MoSiS survey

 53

8. Results of the 1st MoSiS survey

This chapter documents the results from the MoSiS survey. Altogether, the number of
respondents totalled 69, the respondents gave their responses only to those questions
that they found relevant in their position and organisation. Therefore, the number of
responses varies between the questions.

8.1 Group A: Background of the respondent

Questions in this group collected the basic information of the respondents and their
organisations.

8.1.1 The profile of the respondents (age and role in organisation)

Participants of the survey were from both industry and academia; however, most of the
respondents were researchers (see Figure 9). Architects/designers and project managers
were also represented well There were also other roles mentioned in the results of the
survey. These were Ph.D. students and teachers. The age of most of the respondents was
between 30–39 years.

8. Results of the 1st MoSiS survey

 54

Respondents role in organisation

11

3
8

0
2 3

11

1
5

1 0

8

38

2 4

0

5

10

15

20

25

30

35

40

45

Ar
ch

ite
ct

 /
D

es
ig

ne
r

In
te

gr
at

io
n

ar
ch

ite
ct

D
ev

el
op

er
 /

En
gi

ne
er

Q
ua

lit
y

as
su

ra
nc

e
/ P

ro
ce

ss
en

gi
ne

er

P
ro

du
ct

 m
an

ag
er

P
ro

gr
am

 m
an

ag
er

P
ro

je
ct

 m
an

ag
er

R
eq

ui
re

m
en

ts
 m

an
ag

er
 /

R
eq

ui
re

m
en

t e
ng

in
ee

r

Te
am

 m
an

ag
er

Te
st

er

C
on

fig
ur

at
io

n
m

an
ag

er

C
hi

ef
 a

rc
hi

te
ct

 /
Pr

od
uc

t f
am

ily
ar

ch
ite

ct R
es

ea
rc

he
r

C
on

su
lt

O
th

er

N
um

be
r o

f r
es

po
nd

en
ts

Figure 9. The roles of the respondents in their organisations.

8.1.2 Respondents and domains

Most of the respondents (see Figure 10) represented research organisation domain (29).
Software products (10), embedded software (7) and information systems domains (7)
were also represented quite well. 4 persons were from the telecommunication domain
and one person represented both industrial automation and the other domain (research
on embedded software and hardware).

8. Results of the 1st MoSiS survey

 55

Domain of respondents' organisation

7 7
10

4
0 1

29

1
0

5

10

15

20

25

30

35

E
m

be
dd

ed
so

ftw
ar

e

In
fo

rm
at

io
n

sy
st

em
s

So
ftw

ar
e

pr
od

uc
ts

Te
le

co
m

m
un

ic
at

io
n

W
ire

le
ss

te
le

co
m

m
un

ic
at

io
n

In
du

st
ria

l
au

to
m

at
io

n

R
es

ea
rc

h
or

ga
ni

sa
tio

n

O
th

er

N
um

be
r o

f r
es

po
nd

en
ts

Figure 10. The domain of the organisations.

8.1.3 Size of the organisation

The number of personnel in the organisations varies a lot between the respondents (see
Figure 11). There were small, middle sized and large companies involved in the survey.
Most respondents (14) were from companies having 50–249 employees.

8. Results of the 1st MoSiS survey

 56

Size of organisation

9 10

14
11

4

10

0

5

10

15

20

25

Less than 10 10 - 49 50 - 249 250 - 999 1000 - 1999 More than 1000
employees

N
um

be
r o

f r
es

po
nd

en
ts

Figure 11. The number of personnel in the organisations.

8.1.4 Products and services

Typically, the products (see Figure 12) of the organisation that respondents were from
were SW products (26), or something other than SW, HW products, or consulting
services, (15). 13 respondents mentioned that their products were consultation services,
7 persons represented organisations which produced HW-SW products.

Main products or services of the company

26

0

7

13
15

0

5

10

15

20

25

30

35

SW products HW products HW-SW products Consulting
services

Something else

N
um

be
r o

f r
es

po
nd

en
ts

Figure 12. Main products or services of the company.

8. Results of the 1st MoSiS survey

 57

8.2 Group B: Personal experience of the MDD

Questions in this group clarified the persons experience level related to the MDD.
In the beginning of the survey, two questions were asked about the respondent’s

familiarity with the MDD. This question classified the respondents, so that if the
respondent were not familiar with the MDD at all, then most of the following questions
were filtered out. If the respondent had knowledge of the MDD, more specific questions
were then asked within the questionnaire.

8.2.1 Familiarity with the MDD

As illustrated in Figure 13, most of the respondents used the MDD in their work (31),
16 respondents were familiar with the MDD artefacts, 10 respondents used the UML
models in their work, 4 persons considered their knowledge of the MDD as the same
level that they know the UML. Only 1 person was not familiar with software modelling
at all.

Familiarity of MDD

1
4

10

16

31

0

5

10

15

20

25

30

35

I'm not familiar with
software modelling

I know UML I make UML
models in my work

I am familiar with
MDD artefacts
 (e.g. platform
independent

models,
transformation
specifications,
metamodels)

I create / use MDD
artefacts in my work

N
um

be
r o

f r
es

po
nd

en
ts

Figure 13. Familiarity of the MDD.

8. Results of the 1st MoSiS survey

 58

8.2.2 Usefulness of the MDD

Respondents were asked to specify how useful they considered the MDD to be. In the
scale from 0 to 100, the higher number represented the higher level of usefulness.
Responses varied between 30 and 100 and the average for all the responses was 81 (see
Figure 14). According to the responses, the potential of the MDD is recognised and is
considered to be useful.

Figure 14. The usefulness of the MDD.

8. Results of the 1st MoSiS survey

 59

8.3 Group C: Modelling processes and practices of the MDD

This group of questions in the survey was to study the MDD related processes and
practices in organisations. The questions will clarify how software processes were
defined in organisations and also, if the MDD was not applied, it was asked what the
main reasons were for that. The respondent’s opinion about the challenges, benefits and
experiences of MDD related issues were also requested.

8.3.1 Extent of software process definitions

Respondents were asked about the extent of software development process definitions
in their organisations. Most of the respondents (see Figure 15) consider that the software
development processes are defined largely in their organisation, meaning that most of
the phases of development have been defined. There were eight respondents who
answered that there were no process definitions or guidelines to support software
development in their organisations. According to seven respondents, the processes are
defined as well as some metrics are collected to evaluate the performance and quality in
their organisation.

Level of process definitions

8

11 12

7 7

0

5

10

15

20

25

No process
definitions/quidelines

exist to support
development activities

Partially, some
common

quidelines/templates
are available

Largely, quidelines for
most phases of

development have
been defined

Fully, all phases of
development are
supported with
quidelines and

process definitions

Fully, in addition to the
previous option the

metrics are collected
in order to evaluate

the performance and
quality

N
um

be
r o

f r
es

po
nd

en
ts

Figure 15. The extent of software development process definitions in a company.

8. Results of the 1st MoSiS survey

 60

8.3.2 Usage of the MDD

Respondents were asked how systematically the MDD related activities are applied in
software projects (see Figure 16). According to the responses, the application of the
MDD related activities depends largely on the interests and experiences of the project’s
personnel. 11 responses selected the option that all the projects apply some MDD
activities, but they are not necessarily the same in every project. Three respondents
answered that their organisations are not using the MDD. According to two respondents,
their organisation applies the same and well defined MDD activities and provides
metrics to support the evaluation of the performance and predictability of the MDD
outcomes.

Level of MDD activities

3

20

11

8

2

0

5

10

15

20

25

MDD related activities
are not used in our

company

The application of
MDD related activities
depends completely
on the interests and
experiences of the
project's personnel

All the projects apply
some (but not

necessarily the same)
MDD activities

All the projects apply
the same, well

defined and trained
MDD activities

All the project apply
the same, well

defined MDD activities
and provide metrics to
support the evaluation

of the performance
and predictability of

MDD outcomes

N
um

be
r o

f r
es

po
nd

en
ts

Figure 16. The usage of MDD in companies.

8.3.3 Reasons for not applying the MDD

Nine of the respondents (see Figure 17) consider that the reason for not applying the
MDD in their organisation is that only a few persons are interested in applying MDD
related practices. In five responses, respondents see that the MDD has not been
considered as a part of the development process in their organisation and there are no
proper tools and techniques that support the MDD. Four respondents identified the lack
of training in MDD tools and techniques as a reason not to apply the MDD in their

8. Results of the 1st MoSiS survey

 61

organisation. Other reasons not to apply the MDD are listed here: “Not familiar enough
with the MDD”, “The applicability of the MDD for modelling is highly heterogeneous,
dynamic, distributed and middleware oriented systems are not fully clear yet. Particular
support for modelling distribution related problems is unclear”, “Critical real-time
performance & footprint goals”, and “Still evaluating”.

Reasons not to apply MDD

0

9

5

2

5
4

2

5

0

5

10

15

I'm not
personally

interested in
applying

MDD

In our
organisation,

only few
persons are
interested in

applying
MDD related

practices

In our
organisation,
MDD has not

been
considered
as a part of

development
process

Suitable tools
and

techniques
for MDD are
not available

Available
MDD

development
tools and

techniques
are not

workable
enough

Adequate
training has

not been
available on
MDD tools

and
techniques

MDD related
activities are

not
supported

with
guidelines

and practices

Other reason,
what?

N
um

be
r o

f r
es

po
nd

en
ts

Figure 17. Reasons why the MDD is not applied in organisation.

8.3.4 MDD related challenges

The answers to this question were given in free form. Most responses mentioned that
there are a lack of modelling experts in organisations, as well as it being difficult to
select the correct languages and tools and make them collaborate. There were also
difficulties in synchronising models and metamodels.

8.3.5 MDD related benefits

The answers to this question were given in free form. Most often, it was emphasised
that the MDD improves productivity by improving SW reuse and by decreasing errors
in the code. It was also mentioned that the MDD made it easier to read designs and
improve communication. The MDD approach moves the development focus on the
problem domain away from the actual coding work.

8. Results of the 1st MoSiS survey

 62

8.3.6 MDD improvement targets

Most of the respondents (see Figure 18) agreed that the tools and techniques related to
the MDD need to be improved. 22 respondents consider that there is a need to develop
MDD related processes, practices and guidelines. Training was mentioned by 21
respondents and standardisation by 15 respondents. As other development target
following issues were mentioned: Requirement language, Integration of multiple
models- Not one model provides an adequate view of the entire problem, Common
Action Language as part of UML standard (not Profile), Incremental approaches are in
most cases the way to proceed, Case studies and empirical results, and Support for
architectural work practices.

Improvement targets for MDD related issues

34

21 22

15

6

0

5

10

15

20

25

30

35

Tools and
techniques

Training Processes,
practices,
quidelines

Standardisation Other, what?

N
um

be
r o

f r
es

po
nd

en
ts

Figure 18. Improvement targets for MDD related issues.

8.4 Group E: MDD tools and methods in organisations

Questions in this group studied the MDD related tools and methods used in organisations.

8.4.1 Software modelling languages

According to the survey (see Figure 19), the Unified Modelling Language (UML) seems
to be the most popular modelling language. In addition to UML, other general purpose
languages besides the UML, such as XML, MOF and architecture description languages

8. Results of the 1st MoSiS survey

 63

are also used. The boundary between a general purpose (modelling) language and a
domain-specific (modelling) language seems to be quite vague based on the survey.

Software modelling languages

42

24

14

0
5

10
15
20
25
30
35
40
45
50

UML DSMLs Some other general-purpose
modelling language besides

UML

N
um

be
r o

f r
es

po
nd

en
ts

Figure 19. Software modelling languages and their usage.

Furthermore, in Figure 20, we can see the usage of code generation with the UML,
DSML or other languages. According to the respondent, code generation is often used
regardless of the language that is in use.

Used language vs. code generation

132133

8

1

2
1

0

1

0

5

10

15

20

25

30

35

40

45

50

UML DSMLs Other

N
um

be
r o

f r
es

po
ns

es

No answer

No

Yes

Figure 20. Usage of code generation vs. modelling languages.

8. Results of the 1st MoSiS survey

 64

8.4.2 Usage of code generation

44 respondents (see Figure 21) answered that they use code generation from software
models and ten respondents answered that they do not generate code from models.

Usage of code generation

44

10

0
5

10
15
20
25
30
35
40
45
50

Yes No

N
um

be
r o

f r
es

po
nd

en
ts

Figure 21. Usage of code generation.

8.4.3 The purpose of using UML

In addition to documentation and code generation from implementation models, UML is
used for many purposes e.g. designs, analysis, reverse engineering, and transformations
(see Figure 22).

Purpose of using UML

27 27

15

0

5

10

15

20

25

30

35

Documentation Code generation from
implementation models

Other, what?

N
um

be
r o

f r
es

po
nd

en
ts

Figure 22. Purpose of using UML.

8. Results of the 1st MoSiS survey

 65

8.4.4 UML tools

According to the survey, Ratinal Rose is the most highly used UML tool (see Figure 23)
and was mentioned by 17 respondents. Second was Microsoft Visio with ten responses
and the third most common UML tool was Rhapsody with nine responses. In the other
category, several tools were mentioned: MagicDraw, PoseidonUML, MetaEdit+, Papyrus,
Omundo / Eclipse, Bouml, IBM Rational Software Modeler, Topcased, Eclipse UML2,
Rational Software Architect, Eclipse UML2 Tools, GMF, RSA/RSM, ADONIS,
Objecteering, Telelogic Tau, Netbeans, Enterprise Architect, and Sparx’s Enterprise
Architect.

UML tools

5
3

5

10 9

4

8

26

17

0

5

10

15

20

25

30

35

ArgoUML Borland
Together

Microsoft
Power
Point

Microsoft
Visio

Rational
Rose

Rhapsody StarUML Topcased Other,
what?

N
um

be
r o

f r
es

po
nd

en
ts

Figure 23. UML tools used in organisations.

8.4.5 Usage of other languages

Respondents were asked to mention what other general purpose language addition than
UML they are using. As a result, we received a list of the following tools: BPMN, use
case, BPDM, Feature Diagrams, Entity-Relationship Diagrams, XML, FOCUS (a
formal specification language for verification purposes) Ordinary programming
languages such as Java, C#, C, Ecore based languages, V3Studio, MOF (EMF Ecore) ->
DSLs, Aspect J, OCL, XMI, ER, Petri Nets, ADL, and own UML-like languages.

8. Results of the 1st MoSiS survey

 66

8.4.6 DSM tools

From a given set of answering options, respondents mostly selected the “Other” option
and the list of the other tools are as follows: Kermeta, Eclipse and GMF based editors,
Visio, GMF, ADONIS, ADOxx, Generic editors, EMF, and OCL.

From a named list of tools, the most commonly used tool were the Microsoft DSL
tools with ten responses (see Figure 24). Second were the MetaEdit+ and Generic
Eclipse Modelling System with five responses each.

DSM tools

5
3

5

10

17

0

5

10

15

20

25

Generic Eclipse
Modelling System

Generic Modelling
Environment

MetaEdit+ Microsoft DSL
tools

Other, what?

N
um

be
r o

f r
es

po
nd

en
ts

Figure 24. Usage of DSM tools.

9. 2nd ITEA MoSiS survey: MDD usage and challenges in companies

 67

9. 2nd ITEA MoSiS survey: MDD usage and
challenges in companies

This chapter presents the results of the 2nd survey that was conducted in work package
3 of the ITEA MoSiS project. The survey was conducted to discover the usage of the
MDD and related challenges in companies. The survey was carried out during October,
2008 and it was organised by VTT Technical Research Centre of Finland.

9.1 Goal of the survey

The goal of the 2nd survey was to find out:

− How largely the MDD was used in companies?
− How has the MDD technologies affected product development process activities?
− What kind of challenges have companies faced with the MDD technologies?

9.2 Set-up of the survey

The survey was prepared as an electronic questionnaire that was available on the web.
The questionnaire contained 14 questions, altogether. The survey was available to
respondents during over the period 21st of October – 31st of October 2008. The link to
the survey was emailed to MoSiS partners, which were from Spain, Sweden, Norway
and Finland. The link was also emailed to country co-ordinators of the MoSiS project,
who were asked to distribute the link forward to suitable mailing lists within their
country. As with the first survey, the link was also available to people that had been in
close contact with VTT; they had participated in seminars at VTT or they were
customers of VTT. All of the respondents of the survey were recorded as anonymous.

Questions were grouped as follows:

Group A: The background of the respondent

Group B: Utilisation of the model-driven development (MDD) in the company

9. 2nd ITEA MoSiS survey: MDD usage and challenges in companies

 68

Group C: Model-driven development and the product development process activities

Group D: The maturity of modelling technology and related methods

Group E: The benefits with the model-driven development technologies

Group F: Challenges with the model-driven development technologies

Groups from G to R: The importance and solutions of specific model-driven
development challenges

Group S: Free comments on the model-driven development

The complete list of questions in each of the groups can be found in Appendix B.

10. Results of the 2nd MoSiS survey

 69

10. Results of the 2nd MoSiS survey

This chapter documents the results from the MoSiS survey. Altogether, the number of
respondents totalled 30, in which 16 respondents answered the whole questionnaire and
14 stopped answering during some point of the questionnaire. Therefore, the number of
responses varies between the questions.

10.1 Group A: Background of the respondent

Questions in this group collected the basic information of the respondents and their
organisations.

10.1.1 The respondents’ software development experience

According to the responses, respondents were experienced software developers. 19
respondents out of 27 had more that 10 years experience with software development
(see Figure 25). Six of the respondents’ experience in software development was
somewhere between five to ten years. One respondent had three to five years experience
in software development. Only one respondent had less than one year of experience in
software development.

10. Results of the 2nd MoSiS survey

 70

Experience in software development

1 0 1

6

19

0

5

10

15

20

25

Less than 1 year 1-2 years 3-5 years 5-10 years More than 10 years

N
um

be
r o

f r
es

po
nd

en
ts

Figure 25. The respondents’ experience in software development.

10.1.2 The respondent’s role in the organisation

Most of the respondents were either architects/designers or developers/engineers (see
Figure 26). Both of these categories had six respondents. The second most common
group was chief architects with four respondents. Three researchers and consultants
were also among the respondents. The categories of quality assurance/process engineer,
program manager, and project manager had two respondents in each category. One
requirements manager/requirements engineer, team manager and tester also responded
to the questionnaire. In the category of others, a methods developer, VP of engineering,
and SW Specialist were mentioned as a role of the respondents’.

10. Results of the 2nd MoSiS survey

 71

Respondents role in organisation

6

0

6

2
0

2 2
1

4

1 1
0

3 3
4

0

5

10

15

A
rc

hi
te

ct
 /

D
es

ig
ne

r

In
te

gr
at

io
n

ar
ch

ite
ct

D
ev

el
op

er
 /

En
gi

ne
er

Q
ua

lit
y

as
su

ra
nc

e
/ P

ro
ce

ss
en

gi
ne

er

P
ro

du
ct

 m
an

ag
er

Pr
og

ra
m

 m
an

ag
er

Pr
oj

ec
t m

an
ag

er

R
eq

ui
re

m
en

ts
 m

an
ag

er
 /

R
eq

ui
re

m
en

t e
ng

in
ee

r

C
hi

ef
 a

rc
hi

te
ct

 /
Pr

od
uc

t
fa

m
ily

 a
rc

hi
te

ct

Te
am

 m
an

ag
er

Te
st

er

C
on

fig
ur

at
io

n
m

an
ag

er

R
es

ea
rc

he
r

C
on

su
lt

O
th

er

N
um

be
r o

f r
es

po
nd

en
ts

Figure 26. The respondents’ role in the organisation.

10.1.3 Domain of respondents’ organisation

In this question, some respondents categorised their organisation into several domains.
Most of the respondents (14) represented embedded software organisations (see Figure
27). Telecommunication (7), industrial automation (6) and software product (6) domains
were also represented well in the survey. There were three respondents in the
information systems and research domain categories. Two respondents were from the
wireless telecommunication domain. In the others category, avionics, military systems,
and aerospace/defence were mentioned with one respondent in each domain.

10. Results of the 2nd MoSiS survey

 72

Domain of respondents' organisation

14

3
5

7

2

5
3 3

0

5

10

15

Em
be

dd
ed

so
ftw

ar
e

In
fo

rm
at

io
n

sy
st

em
s

So
ftw

ar
e

pr
od

uc
ts

Te
le

co
m

m
un

ic
at

io
n

W
ire

le
ss

te
le

co
m

m
un

ic
at

io
n

In
du

st
ria

l
au

to
m

at
io

n

R
es

ea
rc

h
or

ga
ni

sa
tio

n

O
th

er

N
um

be
r o

f r
es

po
nd

en
ts

Figure 27. The domain of the respondents’ organisation.

10.1.4 The size of the organisation

There were small, middle size and large organisations involved in the survey (see Figure
28). Most respondents (10) came from organisations having 250–999 employees. Nine
respondents represented organisations with more that 1000 employees. Two respondents
came from organisations having less than 10 employees.

Size of organisation

2
1

4

10
9

0

5

10

15

Less than 10 10 - 49 50 - 249 250 - 999 More than 1000
employees

N
um

be
r o

f r
es

po
nd

en
ts

Figure 28. Size of the respondent’s organisation.

10. Results of the 2nd MoSiS survey

 73

10.1.5 Products and services

13 respondents mentioned that their company makes HW-SW products (see Figure 29).
These products varied all the way from process automation to specific military systems.
There were six respondents coming from organisations that make software products
related e.g. to security, communication and sw development. The consulting services
category was selected by four respondents and they offered services for development,
training and mentoring, as well as for process improvement. One respondent in the
others category mentioned that they are performing research.

Product or services of the company

6

0

13

4

1

0

5

10

15

SW products HW products HW-SW products Consulting
services

Something else

N
um

be
r o

f r
es

po
nd

en
ts

Figure 29. Products or services of the respondent’s company.

10.2 Group B: Utilisation of the model-driven development
(MDD) in the company

Questions in this group were to study the utilisation of the MDD in the respondents’
organisations. Questions collected information on the history related to applying the
MDD in the organisations.

10.2.1 Level of MDD process definitions

Respondents were asked to evaluate how exactly the MDD process was defined in their
organisation. According to the responses, most of the organisations (11) had partially
defined their the MDD processes or guidelines, meaning that some common MDD
guidelines or templates were available but they were not integrated with the general

10. Results of the 2nd MoSiS survey

 74

product development process (see Figure 30). Ten respondents answered that there were
no process definitions or guidelines to support the MDD activities. Three respondents
evaluated that all the phases of the development were supported with guidelines and
process definitions were integrated into the general product development process in
their organisation.

Answers from five respondents reveal that organisations, having more than 1000
employees, have no process definitions or guidelines to support MDD activities. Three
respondents representing organisations with more than 1000 employees responded that
they have some common MDD guidelines or templates available, but they are not
integrated with the general product development process. There were no respondents
from large companies which have full process support.

Three respondents from organisations with 250–999 employees responded that all the
development phases are supported with guidelines and process definitions are integrated
into the general product development process. According to four respondents from
medium size organisations, some common MDD guidelines or templates are available,
but they are not integrated with the general product development process. Two
respondents shared the view that they have no process definitions or guidelines to
support MDD activities.

When it comes to smaller organisations (less than 249 employees), three respondents
answered that their organisation has some common MDD guidelines or templates
available, but they are not integrated with the general product development process.
Two respondents stated that they have no process definitions or guidelines to support
MDD activities. According to one respondent, their organisation has guidelines for most
phases of development.

One of the respondents did not give information about the size of their organisation.
That respondent is calculated in Figure 30, but the information could not be used in
analysing the correlation between the size of the organisation and the level of MDD
process definitions.

10. Results of the 2nd MoSiS survey

 75

Level of MDD process definitions

10
11

1

3

0
0

5

10

15

No processes or
guidelines

Partially defined
processes or

guidelines

Largely, most
processes defined

Fully, all phases
supported

Fully, all phases
supported &

metrics defined

N
um

be
r o

f r
es

po
nd

en
ts

Figure 30. Level of MDD process definitions in the organisation.

10.2.2 Level of applying MDD technologies

Among the respondents, there were no organisations that would apply the MDD in all of
their projects, but according to six respondents they apply the MDD in most of their
projects. In turn, most of the respondents (8) answered that they already have piloted the
MDD in their projects (see Figure 31). Organisations represented by four respondents
had plans for applying the MDD soon. There were also three respondents that chose the
category, in which organisations were interested in applying the MDD but had not yet
planned it.

Two respondents from large companies, with more than 1000 employees, answered
that they were interested in the MDD technologies, but had not yet planned to apply
them. According to two respondents, they have plans to apply the MDD technologies
soon and according to three respondents from large companies, they have already
piloted the MDD technologies in their projects. One response claimed to apply the
MDD technologies in most of their projects.

One respondent from a medium size organisation with 250–999 employees answered
that they are interested in MDD technologies, but they are not yet planned to apply
them. According to two respondents, they have plans to apply the MDD technologies
soon. Two respondents stated that they already have piloted MDD technologies in their
projects. Three respondents are from organisations in which they apply MDD
technologies in most of their projects.

10. Results of the 2nd MoSiS survey

 76

Three respondents from smaller organisations, with less than 249 employees,
responded that they have already piloted the MDD technologies in their projects and
according to two respondents, they apply MDD technologies in most of their projects.

Level of applying MDD technologies

3

8

6

0

4

0

5

10

15

Interested but not
yet planned to apply

Plans exist for
applying soon

Already piloted Applying in most
projects

Applying in all
projects

N
um

be
r o

f r
es

po
nd

en
ts

Figure 31. Level of applying MDD technologies.

10.2.3 Time how long MDD has been applied

Most of the respondents answered that the MDD had been applied for more than 2 years
in their companies (see Figure 32). According to four respondents, they had not applied
it at all and according to three respondents they had applied it for a maximum of 0.5
years. Two respondents answered that their organisations had applied the MDD for one
to two years.

According to two respondents from large companies (more than 1000 employees),
they have not applied MDD technologies in their companies. Two respondents stated
that they had applied it for 0.5 years. One respondent answered having applied the
MDD for 1–2 years and according to two respondents, they have applied it for more
than 2 years.

Six respondents from medium size companies answered that they have applied the
MDD for more than 2 years in their companies. One respondent stated not having
applied it at all and one responded that they have applied the MDD for 1–2 years.

Four respondents from small companies have applied the MDD for more than 2 years
and one respondent 0.5 years.

10. Results of the 2nd MoSiS survey

 77

How long MDD has been applied

4
3

0
2

12

0

5

10

15

Not at all 0,5 years 0,5 - 1 year 1 - 2 years More than 2 years

N
um

be
r o

f r
es

po
nd

en
ts

Figure 32. Time how long MDD has been applied in the organisation.

10.2.4 MDD and how systematically it is applied

In most cases (11 responses), the application of MDD related activities depends
completely on the interests and experiences of the project's personnel (see 3). There
were three responses that reveal that all projects in their organisation apply some, but
not necessarily the same, MDD activities. We can see from the answers that there were
no organisations that would apply the MDD in all of their projects, and at the same time,
would provide metrics to support the evaluation of the performance and predictability of
the MDD outcomes. Anyway, according to five respondents, all the projects in their
organisations apply the same, well defined and trained MDD activities.

Answers from five respondents reveal that the application of MDD related activities
in organisations having more than 1000 employees depends completely on the interests
and experiences of the project’s personnel. One respondent answered that all their
projects apply the same, well defined and trained MDD activities. According to one
respondent, all the projects apply some, but not necessarily the same, MDD activities in
organisation.

Also five respondents from middle size organisations answered that the application of
MDD related activities depends on the interests and experiences of the project’s
personnel. According to three respondents, al the projects apply the same, well defined
and trained MDD activities.

In case of smaller organisations, one respondent said that in their organisation the
application of MDD related activities depends completely on the interests and
experiences of the project’s personnel. Two respondents answered that all the projects

10. Results of the 2nd MoSiS survey

 78

apply some, but not necessarily the same, MDD activities. According to one respondent,
all the projects apply the same, well defined and trained MDD activities.

MDD and sytematic application of it

11

3

5

0
0

5

10

15

Application of MDD
depends on project

personnel

All projects apply some
MDD activities

All projects apply same
and trained MDD

activities

All projects apply same
and trained MDD
activities + provide

metrics

N
um

be
r o

f r
es

po
de

nt
s

Figure 33. How systematically is the MDD applied in organisation.

10.2.5 The initiation of the MDD in the organisation

The initiation of the MDD in the organisation has typically (9 respondents) began when
some individuals started to use the technologies in their work, based on their own
initiative (see Figure 34). Organisations, in which three respondents were coming from,
had a systematically planned and monitored pilot with several MDD technologies at the
same time. According to two respondents, their organisations began using the MDD by
systematically piloting certain MDD technology in a project. Two respondents
answered that their organisations had precisely defined goals, e.g. to improve the quality
of data modelling or improve the productivity of development of a given part of
software.

According to five respondents from large organisations, the use of the MDD began
because some individuals started to use the technologies in their work, based on their
own initiative. In one case, they had a systematically planned and monitored pilot with
several MDD technologies at the same time.

Two respondents from medium size organisations answered that some individuals
began to use the technologies in their work, based on their own initiative. According to
two respondents, they had systematically planned and monitored a pilot of a certain

10. Results of the 2nd MoSiS survey

 79

MDD technology in a project. Two respondents also answered that they had systematically
planned and monitored a pilot with several MDD technologies at the same time.

In two cases in smaller organisations, some individuals began to use the technologies
in their work, based on their own initiative. According to two respondents, they had
precisely defined goals for introducing the MDD.

Initiation of MDD

9

2
3

2 2

0

5

10

15

Individuals started
to use the

technologies

Systematically
planned pilot of

certain MDD
technology

Systematically
planned pilot of

several MDD
technologies at the

same time

Precisely defined
goals for

introducing MDD

Other

N
um

be
r o

f r
es

po
nd

en
ts

Figure 34. The initiation of the MDD in the organisation.

10.3 Group C: MDD and the product development activities

Questions in this group clarified the influence of MDD to the following product
development process activities: context definition, requirements elicitation and analysis,
analysis, design, implementation, integration and testing, release. Respondents
evaluated each activity and selected the level of influence from a scale ranging from 1
to 5, where 1 had no influence, 3 had moderate influence and 5 had a strong influence.
For each activity, the average influence and median of all the answers is reported.

10.3.1 Influence on the context definition

In the questionnaire, the context definition was described as follows: “Context
definition – the objective is to define the scope for the software system that will be
developed.”

According to the respondents, MDD has generally had a mild or moderated influence
on context definition activity (see Figure 35). Responses were varied from no and minor

10. Results of the 2nd MoSiS survey

 80

influence (8 respondents) to high influence (2 respondents), when the average of all the
responses was about 2.5 and the median of all the responses was about 2.3 (see Figure 36).

Figure 35. Influence on context definition.

Influence on context definition

8

3

6

2 2,5

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 36. Influence on context definition: the variation of individual answers.

Respondents were asked to more specifically describe the influence of the MDD on the
context definition activity. Some of the respondents highlighted that they have used
MDD for rapid prototyping and according to their observations, it has made prototyping
faster. MDD has affected the timing and resourcing of feature development, but not the
features themselves. It has enabled the scope to be set at an earlier stage and also in a
better way. According to some responses, the context is defined at the system
specification level and the MDD is not used at the system level. It was also noticed that
a use case analysis is often used when defining new systems. The MDD has made
communication easier, allowed comparison and evaluation, as well as discussions on
firm bases.

10. Results of the 2nd MoSiS survey

 81

10.3.2 The influence on requirements elicitation and analysis

In the questionnaire, requirements elicitation and analysis were described as follows:
“Requirements elicitation and analysis – the objective is to identify, capture, agree and
validate the functional and non-functional requirements related to the system to be
developed.”

According to the respondents, MDD has generally had a mild or moderated influence
on the requirements elicitation and analysis activity (see Figure 37). Responses varied
from no and minor influence (5 respondents) to high influence (2 respondents), when
the average of all the responses was about 2.7 and the median of all the responses was
about 2.8 (see Figure 38).

Figure 37. The influence on requirements elicitation and analysis.

Influence of requirements elicitation and analysis

5
4

5

2 2,7

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 38. The influence on requirements elicitation and analysis: variation of individual answers.

Respondents were asked to more specifically describe the influence of the MDD on
requirements elicitation and analysis activity. According to responses, use case modelling
was used for requirements capturing and analysis, modelling of functional requirements,
and prototyping for the investigation of qualities, such as performance. MDD was also used
for defining and analysing interactions and deriving requirements from the interactions.

10. Results of the 2nd MoSiS survey

 82

10.3.3 The influence on analysis

In the questionnaire, analysis was described as follows: “Analysis – the objective is to
model system’s internal view in which the technological considerations are excluded
and the separation between the functional and non-functional requirements is maintained.”

According to the respondents, the MDD has generally had a mild or moderated
influence on analysis activity (see Figure 39). Responses scattered from no and minor
influence (3 respondents) to high influence (2 respondents), when the average of all the
responses was about 2.8 and the median of all the responses was about 2.9 (see Figure 40).

Figure 39. The influence on analysis.

Influence on analysis

3

6
4

2 2,8

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 40. The influence on analysis: variation of individual answers.

Respondents were asked to more specifically describe the influence of the MDD on
analysis activity. According to respondents, internal and low-level design is performed
on a model level as well as they are using modelling and code generation. Some
respondents stated that for new projects, they try to use models as the main tool for
analysis. In some cases, platform independent design is fully modelled and also tested
and executed to verify correctness.

10. Results of the 2nd MoSiS survey

 83

10.3.4 The influence on design

In the questionnaire, design was described as follows: “Design – the objective is to
produce the technical specification of the system, i.e., to model the behaviour and
structure of a solution that fulfils both the functional and non-functional requirements.”

According to the respondents, the MDD had a slightly above moderate influence on
the design activity (see Figure 41). Responses varied from no and minor influence (3
respondents) to high influence (7 respondents), when the average of all the responses
was about 3.2 and the median of all the responses was about 3.6 (see Figure 42).

Figure 41. The influence on design.

Influence on design

3 3 3

7

3,2

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 42. The influence on design: variation of individual answers.

The respondents were asked to more specifically describe the influence of the MDD on
design activity. According to the answers, modelling has been deployed in almost all
software design. Hard real-time and embedded software has been excluded, but it is
used in high availability software. Use of the MDD had also supported communication
and understanding and it has allowed other stakeholders e.g. testing to participate in
design activity. Some respondents stated that they use the MDD only at a software level
and only for some products. On the other hand, in some organisations, all behaviour is

10. Results of the 2nd MoSiS survey

 84

modelled and used in code generation. One respondent stated that the possibility to
reuse solutions had increased and with a complete code generation, it was also easier to
separate the impact of the functional requirements from the non-functional in the
solution.

10.3.5 The influence on implementation

In the questionnaire, implementation was described as follows: “Implementation – the
objective is to develop and verify the code that implements the design and fulfils the
requirements.”

According to the respondents, the MDD typically had a moderate influence on the
implementation activity (see Figure 43). Responses scattered from no and minor influence
(5 respondents) to high influence (6 respondents), when the average of all the responses
was about 3.1 and the median of all the responses was about 2.9 (see Figure 44).

Figure 43. The influence on implementation.

Influence on implementation

5
3

1

6

3,1

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 44. The influence on implementation: variation of individual answers.

10. Results of the 2nd MoSiS survey

 85

Respondents were asked to more specifically describe the influence of the MDD on the
implementation activity. The majority of the respondents stated that the MDD
influenced the implementation through generation of code from models. According to
some responses, they generate all codes from the models. Some respondents highlighted
that the code generation from design models provided a fundamental increase in
productivity. In the area where respondents use fully automatic code generation, the
iterations have increased and the possibility to analyse and modify the solution has
increased, resulting in better, more robust design and stable software. The possibility to
reuse solutions has also increased, according to a respondent. With a complete code
generation, it is also easier to separate the impact of functional requirements from the
non-functional in the solution. On the other hand, some scepticism against the code
generation was present among respondents.

10.3.6 The influence on integration and testing

In the questionnaire, integration and testing was described as follows: “Integration and
testing – the objective is to show that the requirements are satisfied by the developed
system.”

According to the respondents, the MDD had less than a moderate influence on
integration and testing activity (see Figure 45). Responses varied from no and minor
influence (5 respondents) to high influence (6 respondents), when the average of all the
responses was about 2.7 and the median of all the responses was about 2.5 (see Figure 46).

Figure 45. The influence on integration and testing.

10. Results of the 2nd MoSiS survey

 86

Influence on integration and testing

6

3
1

4
2,7

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 46. The influence on integration and testing: variation of individual answers.

Respondents were asked to more specifically describe the influence of the MDD on the
integration and testing activity. Some respondents stated that integration is done on a
model level and also tested at that level. According to the respondents, e.g. early phase
(close to the design) testing uses more modelling than system integration testing and
system level sequence diagrams are used in the system integration testing. Among the
answers, there was also a notice that the influence depends if the languages were
already applied, so that they are supporting the integration or are the models separate,
e.g. code files, so that there is an extra effort in the integration. In some cases,
generators have been applied to support the integration, such as build script, test case
generation. In the projects, where the respondents applied the fully translated approach,
the integration was much easier, since all the developers were able to generate a
complete system very early. The integration activities were hence solved during the
design time in most cases. Testing was still not that affected, but the error frequency
tending to go down, since all of the developers can run its module in its environment
very early and do not need to wait for the integration activities.

10.3.7 The influence on the release

In the questionnaire, the release was described as follows: “Release – the objective is to
ensure that the developed system is successfully taken into use among the final users.”

Among all the activities, according to the respondents, the MDD had the lowest
influence on the release activity (see Figure 47). Responses varied from no and minor
influence (8 respondents) to high influence (1 respondent), when the average of all the
responses was about 2.0 and the median of all the responses was about 1.7 (see Figure 48).

10. Results of the 2nd MoSiS survey

 87

Figure 47. The influence on the release.

Influence on release

8

4

1 1
2

0

5

10

15

No influence or
minor influence

(rating 1-2)

Mild influence
(rating 2-3)

Moderate influence
(rating 3-4)

High influence
(rating 4-5)

AVG of ratings

N
um

be
r o

f r
es

po
nd

en
ts

Figure 48. The influence on the release: variation of individual answers.

Respondents were asked to more specifically describe the influence of the MDD on the
release activity. Some of these answers stated that the MDD did not have any influence
at all or did not have much influence on the release activity as they are using the same
release process as before the MDD. It was also mentioned that the influence depends on
the project and at best, they can generate the installer/configurator at the same time
when they are generating the code. The use of one source makes sure of the consistency
between the functionality of the product and its installation procedure.

10.3.8 Summary of the Influences

The following Figure 49 shows the individual respondents answers (each line is a
respondent).

As the figure shows, there is quite some variation in the evaluated influence of the
MDD practices in phases between the respondents. That causes the medians, for most of
the phases, to be between 2 and 3, even though there are many respondents that have
evaluated e.g., the influence on design and implementation is very high. The results also
show that if a respondent has evaluated the impact as high in some phase, (s)he has

10. Results of the 2nd MoSiS survey

 88

often evaluated the impact as high in other phases as well (see e.g., evaluator 10, 11, 17).
Similarly, many of the respondents that have evaluated the impact as low at some phase,
have also evaluated the impact as low in many other phases (see e.g., evaluator 12, 15, 16).

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

5,50

Context
Definition

Req.Elicitation Analysis Design Implementation I&V Release

Evaluator 1 Evaluator 2 Evaluator 3 Evaluator 4 Evaluator 6 Evaluator 8
Evaluator 9 Evaluator 10 Evaluator 11 Evaluator 12 Evaluator 13 Evaluator 14
Evaluator 15 Evaluator 16 Evaluator 17 Evaluator 18

Figure 49. Individual respondent’s answers to the influence of the MDD to process phases.

10.4 Group D: The maturity of modelling technology and
related methods

The questions in this group were to study the maturity of the modelling technology and
related methods.

10.4.1 Modelling technology and functionality

According to the respondents (see Figure 50), most of them value the modelling
technology that provides mechanisms to develop and execute model analysis methods
as well as mechanisms to develop and introduce domain specific modelling. Both
groups of mechanisms were marked as important by nine respondents. Seven respondents
valued the advanced features for developing and executing model transformations. In
the something else category, the following functionalities was mentioned as important
modelling technology features:

10. Results of the 2nd MoSiS survey

 89

• Support for planning projects integration steps and change management activities,
with analysis of the change impact in the solution as well as the time schedule.

• Fully allow design and debugging at the UML model level and allow
specification of the modelling architectural design rules on the meta-model level
in the UML.

• Allow design and debugging at the model level, there should not be any need to
view the source code level.

Modelling technology and valued features

7
9 9

3

0

5

10

15

Provide advanced
features for developing
and executing model

transformations

Provide mechanisms to
develop and execute

model analysis methods

Provide mechanisms to
develop and introduce

domain-specific
modeling

Something else

N
um

be
r o

f r
es

po
nd

en
ts

Figure 50. The modelling technology and valued features.

10.4.2 Modelling methods and valued activities

Most of the respondents (12) valued a modelling method that includes early model-based
verification and validation (see Figure 51). The second most valued activity (9
respondents) was model-based project planning and management. The model-based
quality assurance was selected by seven respondents. The modelling of architectural
design rules at the meta-model level, configuration aid, metrics, documentation and
autobuild were mentioned in the something else category as important activities in the
modelling method.

10. Results of the 2nd MoSiS survey

 90

Modelling methods and valued activities

12

7
9

3

0

5

10

15

Early model-based
verification and validation

Model-based quality
assurance

Model-based project
planning and
management

Something else

N
um

be
r o

f r
es

po
nd

en
ts

Figure 51. The modelling methods and valued activities.

10.5 Group E: The benefits of the MDD technologies

The questions in this group were to clarify the benefits that the respondents had faced
with the MDD technologies.

10.5.1 The MDD technologies and their benefits

Most of the respondents (10) agreed that the MDD technologies reduced the time that
was required to study a new system, because the design was more easily communicated
to people (see Figure 52). Eight respondents stated that the MDD technologies improved
human communication and lowered language barriers between the different parties
during the project. Improvements in quality, e.g. a smaller amount of bugs in the
generated code than manually implemented code, were seen by seven respondents and
improvements in development speed by six respondents. Respondents stated in the
something else category that the MDD technologies improved satisfaction among
developers and made it easier to introduce new developers.

10. Results of the 2nd MoSiS survey

 91

Benefits of MDD technologies

6 7 8
10

4

0

5

10

15

Improved
development

speed

Improvements in
quality

Improved human
communication

and lower
language barriers

Reduction in time
that is needed to

study new system

Something else

N
um

be
r o

f r
es

po
nd

en
ts

Figure 52. Benefits of MDD technologies.

10.5.2 Comments on the MDD technologies and their benefits

In this question, respondents were asked to give their free comments on the benefits of
the MDD technologies. According to these comments, MDD technologies decreased
required effort by about 50 to 70 percent and made it possible to implement more
features with fewer resources. It was stated that the MDD technologies made it easier to
understand and review each other’s designs. For instance, model based interfaces were
easier to communicate and understand and one common picture of the system was
provided. Other remarks highlighted that piloting was faster because less documentation
was required, the number of errors were decreased, code was more efficient and its
quality was better and documentation was always up-to-date. Due to the tool support,
code generation and build configuration generation resources were able to focus more
on the actual design.

10.6 Group F: The Challenges of MDD technologies

The questions in this group were to clarify the challenges that respondents faced with
the MDD technologies.

10.6.1 Challenges of the MDD technologies

Most of the respondents (10) recognised the lack of modelling experts in organisations
as a challenge (see Figure 53). Another challenge that was recognised by several
respondents (6) was about comparing and merging different versions of models, for

10. Results of the 2nd MoSiS survey

 92

example, visualising the differences in a usable way. According to five respondents,
model-level debugging was not sufficiently supported. The rest of the options got
responses from two to four respondents.

In the other challenges category, respondents mentioned that architectural design
rules were enforced with manual reviews, so the architects become bottlenecks in the
process. The high learning curve in modelling was also mentioned to be challenging. It
was also noticed that some of the problems were caused by the use of immature tools
causing, for example, the explosion of models if the metamodel is changed. One
respondent stated that software designers were more experienced with the MDE tools
via the UML, but a larger challenge was to spread methods into system and electronics
engineering. The inheritance between the UML and SysML was seen as problematic,
since the UML and hence the SysML consist of so many stereotypes and notations that
it is a large threshold to overcome, before it can be used and that every one can interpret
the model in the same way. The importance of limiting the modelling freedom to get a
common model interpretation was also mentioned.

Challenges with MDD technologies

4

6

4
5

3 3
2

10

2
3

2

5

0

5

10

15

U
nd

er
st

an
di

ng
 a

nd
 m

an
ag

in
g

th
e

in
te

rr
el

at
io

ns
 o

f s
of

tw
ar

e
de

ve
lo

pm
en

t a
rti

fa
ct

s

C
om

pa
rin

g
an

d
m

er
gi

ng
 d

iff
er

en
t

ve
rs

io
ns

 o
f m

od
el

s

D
iff

ic
ul

tie
s

w
ith

 tr
an

sf
or

m
at

io
ns

 o
f

m
od

el
s

In
su

ffi
ci

en
t m

od
el

-le
ve

l d
eb

ug
gi

ng

C
om

bi
na

tio
n

of
 g

ra
ph

ic
al

 a
nd

 fo
rm

s-
ba

se
d

sy
nt

ax
es

 w
ith

 te
xt

 v
ie

w
s

M
ov

in
g

co
m

pl
ex

ity
 ra

th
er

 th
an

re
du

ci
ng

 it

M
or

e
ex

pe
rti

se
 re

qu
ire

d
to

un
de

rs
ta

nd
 th

e
im

pa
ct

 o
f a

 p
ro

po
se

d
ch

an
ge

La
ck

 o
f m

od
el

lin
g

ex
pe

rts
 in

or
ga

ni
sa

tio
ns

D
iff

ic
ul

t t
o

se
le

ct
 c

or
re

ct
 la

ng
ua

ge
s

an
d

to
ol

s
an

d
m

ak
e

th
em

co
lla

bo
ra

te

D
iff

ic
ul

t t
o

sy
nc

hr
on

is
e

m
od

el
s

an
d

m
et

am
od

el
s

Th
e

bu
gs

 a
re

 m
or

e
di

ffi
cu

lt
to

 fi
nd

an
d

fix
 in

 th
e

m
od

el
 th

an
 in

tra
di

tio
na

l c
od

in
g

O
th

er

N
um

be
r o

f r
es

po
nd

en
ts

Figure 53. Challenges with MDD technologies.

10. Results of the 2nd MoSiS survey

 93

10.6.2 The rating of challenges related to the MDD technologies

In this question, respondents were asked to choose the three most important challenges
from the list. According to the responses (9 respondents), the lack of modelling experts
in organisations was recognised as the most important one (see Figure 54). The second
most important challenge with four respondents was the understanding and managing of
interrelations among the multiple representations of software development artefacts
representing different views or levels of abstraction of the same concepts. The
remainder of the challenges were seen as almost equally important with respondents
varying from one to three respondents.

Respondents were allowed to list other challenges in this question. As a challenge, it
was mentioned that architectural rules are manually enforced. Getting the organisation
to understand that the model is the specification and high learning curve in modelling
were also seen as challenges.

Ratings of importance

4
2

3
2

1
2

1

9

2 2
1

4

0

5

10

15

U
nd

er
st

an
di

ng
 a

nd
 m

an
ag

in
g

th
e

in
te

rr
el

at
io

ns
 o

f s
of

tw
ar

e
de

ve
lo

pm
en

t a
rti

fa
ct

s

C
om

pa
rin

g
an

d
m

er
gi

ng
 d

iff
er

en
t

ve
rs

io
ns

 o
f m

od
el

s

D
iff

ic
ul

tie
s

w
ith

 tr
an

sf
or

m
at

io
ns

of
 m

od
el

s

In
su

ffi
ci

en
t m

od
el

-le
ve

l d
eb

ug
gi

ng

C
om

bi
na

tio
n

of
 g

ra
ph

ic
al

 a
nd

fo
rm

s-
ba

se
d

sy
nt

ax
es

 w
ith

 te
xt

vi
ew

s

M
ov

in
g

co
m

pl
ex

ity
 ra

th
er

 th
an

re
du

ci
ng

 it

M
or

e
ex

pe
rti

se
 re

qu
ire

d
to

un
de

rs
ta

nd
 th

e
im

pa
ct

 o
f a

pr
op

os
ed

 c
ha

ng
e

La
ck

 o
f m

od
el

lin
g

ex
pe

rts
 in

or
ga

ni
sa

tio
ns

D
iff

ic
ul

t t
o

se
le

ct
 c

or
re

ct
la

ng
ua

ge
s

an
d

to
ol

s
an

d
m

ak
e

th
em

 c
ol

la
bo

ra
te

D
iff

ic
ul

t t
o

sy
nc

hr
on

is
e

m
od

el
s

an
d

m
et

am
od

el
s

Th
e

bu
gs

 a
re

 m
or

e
di

ffi
cu

lt
to

 fi
nd

an
d

fix
 in

 th
e

m
od

el
 th

an
 in

tra
di

tio
na

l c
od

in
g

O
th

er

N
um

be
r o

f r
es

po
ns

es

Figure 54. Ratings of the MDD technology challenges.

10. Results of the 2nd MoSiS survey

 94

10.7 Groups G–R: The importance of the MDD technology
challenges and solutions for these challenges

The questions in these categories clarified the opinions of respondents related to the
importance of each MDD technology challenge. Respondents were also asked to
describe the solutions that they might have for each challenge.

10.7.1 The challenges and solutions of the MDD technologies

We gained the following answers when respondents were asked how important a
particular challenge was for them, and if they had a solution or some support for
handling the challenge:

Challenge 1: “Understanding and managing the interrelations among the multiple
representations of software development artefacts representing different views or levels
of abstraction of the same concepts”:

− This is not only an SW problem. With the SysML, the problem is also an SE
problem and is the main threshold to overcome before the MDD can be applied
and accepted fully.

Challenge 2: “Comparing and merging different versions of models, e.g., visualising
the differences in a usable way”:

− There is no tool support, extra manual work is required.

Challenge 3: “Difficulties with the transformations of models (to code or other
models): whenever an interrelated artefact changes in ways that affect some or all of its
related artefacts, as the mutual consistency cannot always be automatically assured”:

− No solutions or support mentioned by the respondents for this challenge.

Challenge 4: “Model-level debugging is not sufficiently supported”:

− In the Rhapsody modelling tool, you can execute and debug at the model level but
only in a limited way, you are still heavily dependent on co-debugging in the
target language, which in turn means that you need to understand how the tool
generates code. It would be very good if this level could be abstracted out.

Challenge 5: “A combination of graphical and forms-based syntaxes with text views”:

− No solutions or support mentioned by the respondents for this challenge.

10. Results of the 2nd MoSiS survey

 95

Challenge 6: “Moving complexity rather than reducing it (the MDD approach does not
reduce the complexity visible to the developer but simply moves the complexity
elsewhere in the development process)”:

− Divide the work between the language, generator, additional domain code and
existing libraries.

Challenge 7: “More expertise required to understand the impact of a proposed change
in all of the related artefacts that could be described in different notations”:

− No solutions or support mentioned by the respondents for this challenge.

Challenge 8: “A lack of modelling experts in organisations”:

− It is of course very important to have good “modellers”. Our solution to this is
internal courses and mentoring.

− We have very few “experts” and they are often not just experts in this particular
area, so they are often very hard to reach.

Challenge 9: “It is difficult to select correct languages and tools and make them
collaborate”:

− No solutions or support mentioned by the respondents for this challenge.

Challenge 10: “It id difficult to synchronise models and metamodels”:

− No tool support.

Challenge 11: “The bugs are more difficult to find and fix in the model than in the
traditional coding”:

− No solutions or support mentioned by the respondents for this challenge.

Challenge 12: “Other challenges”:

− Currently, there is no support for the modelling and automation of the
enforcement of architectural design rules, this is currently a quite heavy burden
for the architects, especially in large distributed projects.

− Training and mentors exist.

− Without tool support, it is almost impossible to deploy the MDE fully in our
organisation.

10. Results of the 2nd MoSiS survey

 96

10.8 Groups S: Other comments on the MDD

10.8.1 Free comments on the MDD

In this question, respondents were asked to give their free comments on the MDD. The
following answers were submitted:

− Helps in development, but there is still room for improvement e.g. in tools. Tools
from different vendors are not compatible.

− It is the future of Systems and Software Engineering, but it is a great challenge to
apply and adapt it in large organisations with a tradition of “old school”
methodology.

− The MDD, with full code generation, is way more efficient than the traditional
development. There is however still a lot to improve in both methods and tools.

− Would be nice to know more about the MDD.

− Not usable in many areas. Does not improve the SW development at all.

11. Summary

 97

11. Summary

The literature study shows that there are many MDD related process models. Some of
these models are about how to implement the MDD in an organisation, whereas some
models describe the actual MDD process that guides the model based development
activities in the organisation. The process models use various names for the activities,
but commonly at a high level, the same activities are performed as in non-model-driven
development.

Based on the MDD survey, it may be concluded that there are many challenges in the
area of model-driven development processes and practices. It was mentioned that in
most cases, the use of the MDD in organisations depends only on the interest of people
to use it. It was also mentioned that it is difficult to select suitable tools and techniques
and adapt them in different environments.

Moreover, it is challenging to get the tools and transformation languages to
collaborate. It was also mentioned that there is a lack of MDD experts in organisations
and more training would be required. Many of the respondents still evaluate the
approach and there is still much confusion about the suitability of the MDD tools and
techniques against their needs for product development.

However, despite the challenges of the MDD that the survey pointed out, most of
respondents feel that in the next five years the product development processes, methods
and tools will be developed towards model-driven development in their organisations,
and they also found the approach useful.

11. Summary

 98

Acknowledgements

The authors of the publication acknowledge every organisation and respondent that
gave their valuable time and contribution to answering the survey. In addition, the
authors would like to thank the support from ITEA and Tekes – the Finnish Funding
Agency for Technology and Innovation.

References

 99

References
[Aagedal & Solheim, 2004] Aagedal, J. Ø., Solheim, I., New Roles in Model-Driven

Development, Second European Workshop on Model Driven Architecture (MDA) with
an emphasis on Methodologies and Transformations (EWMDA-2), Canterbury,
England, 2004

[Afonso et al., 2006] Afonso, M., Vogel, R., Teixeira, J., From Code Centric to Model Software
Engineering: Practical case study of MDD infusion in a Systems Integration Company,
in Proceedings of the Fourth Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MBD/MOMPES’06), Potsdam, Germany, 2006

[Ambler, 2007] Ambler, S. W., Examining the Model Driven Architecture (MDA),
http://www.agilemodeling.com/essays/mda.htm (referenced 30.1.2009)

[Cáceres et al., 2003] Cáceres, P., Marcos, E., Vela, B., A MDA-Based Approach for Web
Information System Development, Workshop in Software Model Engineering
(WISME), San Francisco. USA, 2003

[Chandrashekar et al., 2006] Chandrashekar, M. S., Dong, S., Alwandi, N., Model Based
Software Development Process For Production Applications, in Proceedings of the
2006 International Conference on Embedded Systems & Applications, Arabnia, H.
(ed.), Las Vegas, Nevada, June 26–29, 2006, pp. 38–45

[Chitforoush et al., 2007] Chitforoush, F., Yazdandoods, M., Ramsin, R., Methodology Support
for the Model Driven Architecture, 14th Asia-Pasicific Software Engineering
Conference (APSEC 2007), Nagoya, Japan, 2007

[CMMI Web page, 2009] Http://www.sei.cmu.edu/cmmi/ (referenced 30.1.2009)

[CRaG Systems, 2008] The Web pages of Model-Driven Development Process
http://www.cragsystems.co.uk/development_process/ (referenced 30.1.2009)

 [Duby, 2003] Duby, C., Accelerating Embedded Software Development with a Model Driven
Architecture, Pahtfinder Solutions, September, 2003, http://www.omg.org/mda/
mda_files/MDA_overview.pdf (referenced 30.1.2009)

http://www.agilemodeling.com/essays/mda.htm
Http://www.sei.cmu.edu/cmmi/
http://www.cragsystems.co.uk/development_process/
http://www.omg.org/mda/mda_files/MDA_overview.pdf

References

 100

[EFQM Web page, 2009] Http://www.efqm.org (referenced 30.1.2009)

[Estefan, 2007] Estefan, J. A., Survey of Model-Based Systems Engineering (MBSE)
Methodologies, Rev A, Incose MBSE Focus Group, 2007, http://syseng.omg.org/
MBSE_Methodology_Survey_RevA.pdf (referenced 30.1.2009)

[Foustok, 2007] Foustok, M., Experiences in large-scale, component based, model-driven
software development, 1st Annual IEEE Systems Conference, Hawaii, USA, 2007

[France & Rumpe, 2007] France, R., Rumpe, B., Model-driven Development of Complex
Software: A research Roadmap, Future of Software Engineering (FOSE ‘07), IEEE
Computer Society, 2007

[Gavras et al., 2003] Gavras, A., Belaunde, M., Steinhau, R., Almeida, J. P. (eds.), MODA-TEL
Model-Driven Methodology, MODA-TEL IST-2001-37785, http://www.modatel.org/public/
deliverables/D3.add1.htm (referenced 30.1.2009)

[Hailpern & Tarr, 2006] Hailpern, B., Tarr, P., Model-driven development: the good, the bad and
the ugly, IBM Systems Journal, Vol. 45, No. 3, pp. 451–461

[Hildenbrand & Korthaus, 2004] Hildenbrand, T., Korthaus, A., A Model-Driven Approach to
Business Software Engineering, Proceedings of the 8th World Multi-Conference on
Systemic, Cybernetics and Informatics (SCI), Volume IV Information Systems,
Technologies and Applications: I, IIIS, Orlando, Florida, USA, 2004

[ISO9001:2000 Web page, 2009] http://www.iso.org/iso/catalogue_detail?csnumber=21823
(referenced 30.1.2009)

[Kleppe et al., 2003] Kleppe, A., Warmer, J., Bast, W., MDA Explained The Model Driven
Architecture: Practice and Promise, Pearson Education, 2003

[Kuhn et al., 2006] Kuhn, T., Gotzhein, R., Webel, C., Model-Driven Development with SDL –
Process, Tools, and Experiences, in Model Driven Engineering Languages and
Systems, in Proceedings of 9th International Conference, MoDELS 2006, Genova,
Italy, October 1–6, 2006, Springer LNCS, 2006

[Lahman, 2006] Lahman, H. S., 2006, Model-Based Translation: The Next Step in Agile
Development, Pathfinder solutions (white paper), http://www.PathfinderMDA.com
(referenced 30.1.2009)

[Larrucea et al., 2004] Larrucea, X., Díez, A. B. G., Mansell, J. X., Practical Model Driven
Development Process, European Software Institute, February 2004,
http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Larrucea.pdf
(referenced 30.1.2009)

[Link et al., 2008] Link, S., Schuster, T., Hoyer, P., Abeck, S., Focusing Graphical User
Interfaces in Model-Driven Software Development, in Proceeding of the First
International Conference on Advances in Computer-Human Interaction (ACHI 2008),
10–15 February 2008, Saint Luce, Martinoque, IEEE Computer Society Press

http://www.pathfindermda.com/
http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/submissions/Larrucea.pdf
Http://www.efqm.org
http://syseng.omg.org/MBSE_Methodology_Survey_RevA.pdf
http://www.modatel.org/public/deliverables/D3.add1.htm
http://www.iso.org/iso/catalogue_detail?csnumber=21823

References

 101

[López-Sanz et al., 2008] López-Sanz, M., Acuña, C. J., Cuesta, C. E., Marcos, E., Defining
Service-Oriented Software Architecture Models for a MDA-based Development
Process at the PIM level, Seventh Working IEEE/IFIP Conference on Software
Architecture, 2008, pp. 309–312

[MacDonald et al., 2005] MacDonald, A., Russel, D., Atchison, B., Model-driven Development
within a Legacy System: An industry experience report, in Proceedings of the
Australian Software Engineering Conference (ASWEC’05), 2005

[Mansell et al., 2006] Mansell, J., Bediaga, A., Vogel, R., Mantell, K., A Process Framework for
the Successful Adoption of Model Driven Development, in Proceedings of the Model
Driven Architecture – Foundations and Applications, Second European Conference,
ECMDA-FA 2006, Bilbao, Spain, July 10–13, 2006

[Mattson et al., 2007] Mattson, A., Lundell, B., Lings, B., Fitzgerald, B., Experiences from
representing software architecture in a large industrial project using model driven
development, in Proceedings of the 29th international Conference on Software
Engineering Workshops (ICSEW), IEEE Computer Society, Washington, DC, USA,
2007

[Mellor et al., 2003] Mellor, S. J., Clark, A. N., Futagami, T., Model-Driven Development, IEEE
Software, IEEE Computer Society, 2003

[Middleware, 2003] The Middleware Company, Model Driven Development for J2EE Utilizing a
Model Driven Architecture (MDA) Approach, Productivity Analysis, June 2003,
http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf (referenced
30.1.2009)

[MODA-TEL Web page, 2009] Http://www.modatel.org/ (referenced 30.1.2009)

[Modelware, 2006] ModelWare FP6-IP 511731, D2.3. MDD Maturity Levels Definition, revision
2.1.,10/08/06, http://www.modelware-ist.org/index.php?option=com_remository&Itemid
=79&func=fileinfo&id=108 (referenced 30.1.2009)

[Nikulsins & Nikiforova, 2008] Nikulsins, V., Nikiforova, O., Adapting Software Development
Process towards the Model Driven, in Proceedings of the Third International
Conference on Software Engineering Advances (ICSEA ’08), 26–31 Oct. 2008

[Rios et al., 2006] Rios, E., Bozheva, T., Bediaga, A., Guilloreau, N., MDD Maturity Model: A
Roadmap for Introducing Model-Driven Development, in Proceedings of the Model
Driven Architecture – Foundations and Applications, Second European Conference,
ECMDA-FA 2006, Bilbao, Spain, July 10–13, 2006, Springer-Verlag Berlin Heidelberg

[Schätz & Spies, 2002] Schätz, B., Spies, K., Model-Based Software Engineering – Linking
more and less formal product models to a structured process, in Proceedings of
ICSSEA 2002 15th International Conference on Software and Systems Engineering
and their Applications, 2002

http://www.modatel.org/
http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf
http://www.modelware-ist.org/index.php?option=com_remository&Itemid=79&func=fileinfo&id=108

References

 102

[Schätz et al., 2002] Schätz, B., Pretschner, A., Huber, F., Philipps, J., Model-based development
of Embedded systems, in Bruel, J.-M., Bellahsene, Z. (eds.), Advances in Object-
Oriented Information Systems – OOIS 2002 Workshops, Montpellier, France, Springer
LNCS, 2002

[Schätz et al., 2003] Schätz, B., Romberg, J., Strecker, M., Slotosch, O., Spies, K., 2003,
Modeling Embedded Software: State of the Art and Beyond, in Proceedings of
ICSSEA 2003 16th International Conference on Software and Systems Engineering
and their Applications, 2003

[Schätz et al., 2004] Schätz, B., Broy, M., Huber, F., Philipps, J., Prenninger, W., Pretschner, A.,
Rumpe, B., Model-Based Software and Systems Development – A White Paper.
http://www4.informatik.tu-muenchen.de/~schaetz/papers/ModelBased.pdf (referenced
30.1.2009)

[Staron, 2006] Staron, M., Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies, Miroslaw Staron, in Model Driven Engineering Languages
and Systems, in Proceedings of 9th International Conference, MoDELS 2006,
Genova, Italy, October 1–6, 2006, Springer LNCS, 2006

[Uhl, 2008] Uhl, A., Model-Driven Development in the Enterprise, IEEE Software, January/
February 2008

[Vogel & Mantell, 2005] Vogel, R., Mantell, K., MDD process for an SME: evolution, not
revolution – Phase 1, The First Workshop From code centric to model centric software
engineering: Practices, Implementation and ROI, ECMDA-FA 2005, Nuremberg,
Germany, 2005

[Vogel & Mantell, 2006] Vogel, R., Mantell, K., MDA adoption for s SME: evolution, not
revolution – Phase II, The Second Workshop From code centric to model centric
software engineering: Practices, Implications and ROI, EMCDA-FA 2006, Bilbao,
Spain, 2006 http://www.esi.es/modelware/c2m/docum/papers/PAPER7-ECMDA2006-
EnablerAdoption.pdf (referenced 30.1.2009)

http://www4.informatik.tu-muenchen.de/~schaetz/papers/ModelBased.pdf
http://www.esi.es/modelware/c2m/docum/papers/PAPER7-ECMDA2006-EnablerAdoption.pdf
http://www.esi.es/modelware/c2m/docum/papers/PAPER7-ECMDA2006-EnablerAdoption.pdf

Appendix A: Summary of the questions of the 1st MoSiS survey

 A1

Appendix A: Summary of the questions of the 1st
MoSiS survey

Group A: “Background of the respondent” consisted of the following questions:

A.1 What is your age?
A.2 What is your role in the organisation?
A.3 What is the domain of your organisation?
A.4 What is the number of employees of your organisation?
A.5 What are the main products or services of your company?

Group B: “Personal experience of MDD” consisted of the following questions:

B.1 How extensively do you use model-driven development (MDD) in your work?
B.2 In my opinion, the MDD approach is useful

Group C: “Modeling processes and practices of MDD” consisted of the following
questions:

C.1 How exactly is the software development process defined in your company?
C.2 How systematically are MDD related activities applied in your software projects?
C.3 What are the main reasons for NOT applying MDD?
C.4 In your opinion, what are the main challenges in your current application of MDD related activities?
C.5 In your opinion, what are the main benefits gained by the application of MDD related activities?
C.6 Based on your experiences, what MDD related issues should be improved or supported?

Group E: “MDD tools and methods in organisations” consisted of the following
questions:

E.1 What is the software modelling language that you typically use?
E.2 Do you use code generation from your software models?
E.3 For what purposes do you use UML?
E.4 Which UML tools are in use in your organisation?
E.5 Which general-purpose languages do you use besides UML?
E.6 What DSM tool do you typically use?

Appendix B: Summary of the questions of the 2nd MoSiS survey

 B1

Appendix B: Summary of the questions of the 2nd
MoSiS survey

Group A: “Background of the respondent” consisted of the following questions:

A.1 How long is your experience with software development?
A.2 What is your role in the organisation?
A.3 What is the domain of your organisation?
A.4 What is the number of employees of your organisation?
A.5 What are the main products or services of your company?

Group B: “Utilisation of model-driven development (MDD) in company” consisted
of the following questions:

B.1 How exactly is the Model-Driven Development (MDD) process defined in your company?
B.2 How far are you in applying the MDD technologies?
B.3 How long have you applied MDD technologies in your company?
B.4 How systematically are MDD related activities applied in your software projects?
B.5 How did you start the use of MDD?

Group C: “MDD and the product development process activities” consisted of the
following questions:

C.1 What is your opinion about how much MDD technologies have influenced “Context definition” -
process activity in companies. Please, describe how MDD has influenced on context definition -
activity in companies.

C.2 What is your opinion about how much MDD technologies have influenced “Requirements
elicitation and analysis” -process activity in companies. Please, describe how MDD has influenced
on requirements elicitation and analysis -activity in companies.

C.3 What is your opinion about how much MDD technologies have influenced “Analysis” -process
activity in companies. Please, describe how MDD has influenced on analysis -activity in companies.

C.4 What is your opinion about how much MDD technologies have influenced “Design” -process
activity in companies. Please, describe how MDD has influenced on design -activity in companies.

Appendix B: Summary of the questions of the 2nd MoSiS survey

B 2

C.5 What is your opinion about how much MDD technologies have influenced “Implementation” -
process activity in companies. Please, describe how MDD has influenced on implementation -
activity in companies.

C.6 What is your opinion about how much MDD technologies have influenced “Integration and testing”
-process activity in companies. Please, describe how MDD has influenced on integration and
testing -activity in companies.

C.7 What is your opinion about how much MDD technologies have influenced “Release” -process
activity in companies. Please, describe how MDD has influenced on release -activity in companies.

Group D: “Maturity of modelling technology and related methods” consisted of the
following questions:

D.1 In my opinion, the modelling technology used in the company should...
D.2 In addition to the modelling tools, the methods for using models should be mature. In my opinion,

these methods include activities like:…

Group E: “Benefits with the model-driven development (MDD) technologies”
consisted of the following questions:

E.1 What kind of benefits have you faced with the MDD technologies?
E.2 Please give your comments about those benefits.

Group F: “Challenges with the model-driven development (MDD) technologies”
consisted of the following questions:

F.1 What kind of challenges have you faced with the MDD technologies?
F.2 Which of the challenges you would rate as the most important? Please tick the THREE most important.

Groups G: - R: “How important is this challenge for you, and do you have a
solution / support for handling the challenge?” consisted of the following challenges:

G.1 Understanding and managing the interrelations among the multiple representations of software
development artefacts representing different views or levels of abstraction of the same concepts.

H.1 Comparing and merging different versions of models, e.g., visualising the differences in a usable
way.

I.1 Difficulties with transformations of models (to code or other models): whenever an interrelated
artefact changes in ways that affect some or all of its related artefacts as the mutual consistency
cannot always be automatically assured.

J.1 Model-level debugging is not sufficiently supported.
K.1 Combination of graphical and forms-based syntaxes with text views.
L.1 Moving complexity rather than reducing it (the MDD approach does not reduce the complexity

visible to the developer or but simply moves complexity elsewhere in the development process).
M.1 More expertise required to understand the impact of a proposed change on all of the related

artefacts that could be described in different notations.
N.1 Lack of modelling experts in organisations.
O.1 Difficult to select correct languages and tools and make them collaborate.

Appendix B: Summary of the questions of the 2nd MoSiS survey

 B3

P.1 Difficult to synchronise models and metamodels.
Q.1 The bugs are more difficult to find and fix in the model than in traditional coding.
R.1 Other challenges.

Groups S: “Other comments about MDD”

S.1 Please, give your free comments about MDD.

 VTT WORKING PAPERS 114
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology�and�market�foresight�•�Strategic�research�•�Product�and�service�development�•�IPR�and�licensing�
•�Assessments,�testing,�inspection,�certification�•�Technology�and�innovation�management�•�Technology�partnership

•�•�•��VTT�W
O

R
KIN

G
�PA

PER
S�114�����M

O
d

El-d
R

IVEN
�d

EVElO
PM

EN
T.�PR

O
c

ESSES�A
N

d
�PR

A
c

TIc
ES

ISBN 978-951-38-7175-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Päivi Parviainen, Juha Takalo, Susanna Teppola & Maarit Tihinen

Model-Driven Development
Processes and practices

VTT Working Papers

100 Bernd Ebersberger & Olavi Lehtoranta. Effects of Public R&D Funding. 2008. 27 p.
+ app. 1 p.

101 Stephen Fox, Patrick Ehlen, Matthew Purver, Elizabeth Bratt, Matthew Frampton,
Ichiro Kobayashi, Bevan Jones, Rob Monroe & Stanley Peters. Applying computational
semantics to the real-time communication of skill knowledge. 2008. 85 p.

102 Stephen Fox. Ontological uncertainty and semantic uncertainty in global network
organizations. 2008. 122 p.

103 Kati Tillander, Helena Järnström, Tuula Hakkarainen, Juha Laitinen, Mauri Mäkelä,
& Panu Oksa. Palokohteiden savu-, noki- ja kemikaalijäämät ja niiden vaikutukset
työturvallisuuteen. Polttokokeet ja altistumisen arviointi. 2008. 67 s.

104 Eija Kupi, Sanna-Kaisa Ilomäki, Virpi Sillanpää, Heli Talja & Antti Lönnqvist.
Aineettoman pääoman riskienhallinta. Riskit ja riskienhallinnan käytännöt yrityksissä.
2008. 44 s.

105 Teemu Mutanen, Joni Niemi, Sami Nousiainen, Lauri Seitsonen & Teppo Veijonen.
Cultural Event Recommendations. A Case Study. 2008. 17 p.

106 Hannele Holttinen. Tuulivoiman tuotantotilastot. Vuosiraportti 2007. 2008. 44 s. +
liitt. 8 s.

107 Kari Keinänen, Jarkko Leino & Jani Suomalainen. Developing Keyboard Service for
NoTA. 2008. 17 p. + app. 2 p.

108 Hannele Antikainen, Asta Bäck & Pirjo Näkki. Sosiaalisen median hyödyntäminen
paikallisissa mediapalveluissa. 2008. 64 s.

109 Raine Hautala, Pekka Leviäkangas, Jukka Räsänen, Risto Öörni, Sanna Sonninen,
Pasi Vahanne, Martti Hekkanen, Mikael Ohlström, Bengt Tammelin, Seppo Saku
& Ari Venäläinen. Benefits of meteorological services in South Eastern Europe. An
assessment of potential benefits in Albania, Bosnia-Herzegovina, FYR Macedonia,
Moldova and Montenegro. 2008. 63 p. + app. 35 p.

110 Jaana Leikas. Ikääntyvät, teknologia ja etiikka. Näkökulmia ihmisen ja teknologian
vuorovaikutustutkimukseen ja -suunnitteluun. 2008. 155 s.

111 Tomi J. Lindroos. Sectoral Approaches in the Case of the Iron and Steel Industry.
2008. 58 p. + app. 11 p.

112 Johan Mangs. A new apparatus for flame spread experiments. 2009. 50 p. + app.
27 p.

113 Stephen Fox & Brent Stucker. digiproneurship. New types of physical products
and sustainable employment from digital product entrepreneurship. 2009. 29 p.
+ app. 7 p.

114 Päivi Parviainen, Juha Takalo, Susanna Teppola & Maarit Tihinen. Model-Driven
Development. Processes and practices. 2009. 102 p. + app. 4 p.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	Contents
	List of acronyms
	1. Introduction
	1.1 Process viewpoint

	2. MDD processes, methods and practices
	2.1 Example MDD processes and methods
	2.1.1 MODA-TEL
	2.1.2 MASTER
	2.1.3 MIDAS
	2.1.4 C3
	2.1.5 MDDP
	2.1.6 Model Based Software Development Process for Production Applications
	2.1.7 General framework for model-driven development based onModel-Driven Architecture
	2.1.8 MDD Process Framework
	2.1.9 Agile Model Driven Development
	2.1.10 Process, product, conceptual and system models
	2.1.11 SDL-MDD
	2.1.12 MDA effects on the RUP
	2.1.13 Telelogic Harmony-SE
	2.1.14 RUP SE
	2.1.15 Vitech Model-Based System Engineering (MBSE) methodology
	2.1.16 State Analysis (SA)

	2.2 Elements in the MDD processes

	3. Model-Driven Development Maturity Model
	4. MDD tools
	5. Experiences on MDD technologies
	6. Challenges and success factors for MDD adoption
	7. 1st ITEA MoSiS survey: MDD state of art and practise
	7.1 Goal of the survey
	7.2 Set-up of the survey
	7.3 Limitations of the survey

	8. Results of the 1st MoSiS survey
	8.1 Group A: Background of the respondent
	8.1.1 The profile of the respondents (age and role in organisation)
	8.1.2 Respondents and domains
	8.1.3 Size of the organisation
	8.1.4 Products and services

	8.2 Group B: Personal experience of the MDD
	8.2.1 Familiarity with the MDD
	8.2.2 Usefulness of the MDD

	8.3 Group C: Modelling processes and practices of the MDD
	8.3.1 Extent of software process definitions
	8.3.2 Usage of the MDD
	8.3.3 Reasons for not applying the MDD
	8.3.4 MDD related challenges
	8.3.5 MDD related benefits
	8.3.6 MDD improvement targets

	8.4 Group E: MDD tools and methods in organisations
	8.4.1 Software modelling languages
	8.4.2 Usage of code generation
	8.4.3 The purpose of using UML
	8.4.4 UML tools
	8.4.5 Usage of other languages
	8.4.6 DSM tools

	9. 2nd ITEA MoSiS survey: MDD usage and challenges in companies
	9.1 Goal of the survey
	9.2 Set-up of the survey

	Results of the 2nd MoSiS survey
	10.1 Group A: Background of the respondent
	10.1.1 The respondents’ software development experience
	10.1.2 The respondent’s role in the organisation
	10.1.3 Domain of respondents’ organisation
	10.1.4 The size of the organisation
	10.1.5 Products and services

	10.2 Group B: Utilisation of the model-driven development (MDD) in the company
	10.2.1 Level of MDD process definitions
	10.2.2 Level of applying MDD technologies
	10.2.3 Time how long MDD has been applied
	10.2.4 MDD and how systematically it is applied
	10.2.5 The initiation of the MDD in the organisation

	10.3 Group C: MDD and the product development activities
	10.3.1 Influence on the context definition
	10.3.2 The influence on requirements elicitation and analysis
	10.3.3 The influence on analysis
	10.3.4 The influence on design
	10.3.5 The influence on implementation
	10.3.6 The influence on integration and testing
	10.3.7 The influence on the release
	10.3.8 Summary of the Influences

	10.4 Group D: The maturity of modelling technology and related methods
	10.4.1 Modelling technology and functionality
	10.4.2 Modelling methods and valued activities

	10.5 Group E: The benefits of the MDD technologies
	10.5.1 The MDD technologies and their benefits
	10.5.2 Comments on the MDD technologies and their benefits

	10.6 Group F: The Challenges of MDD technologies
	10.6.1 Challenges of the MDD technologies
	10.6.2 The rating of challenges related to the MDD technologies

	10.7 Groups G–R: The importance of the MDD technology challenges and solutions for these challenges
	10.7.1 The challenges and solutions of the MDD technologies

	10.8 Groups S: Other comments on the MDD
	10.8.1 Free comments on the MDD

	11. Summary
	Acknowledgements
	References
	Appendix A: Summary of the questions of the 1st MoSiS survey
	Appendix B: Summary of the questions of the 2nd MoSiS survey
	Preface

