
	 	 VTT WORKING PAPERS 115
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT W
O

R
KIN

G
 PA

PER
S 115 M

O
D

EL-B
A

SED
 A

N
A

LYSIS O
F A

 STEPW
ISE SH

U
TD

O
W

N
 LO

G
IC

. M
O

D
SA

FE 2008 W
O

R
K R

EPO
T

 ISBN 978-951-38-7176-5 (URL: http://www.vtt.fi/publications/index.jsp)
 ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Kim Björkman1, Juho Frits2, Janne Valkonen1, Keijo Heljanko2
& Ilkka Niemelä2

Model-Based Analysis of a Stepwise
Shutdown Logic

MODSAFE 2008 Work Report

1VTT Technical Research Centre of Finland
2Helsinki University of Tehcnology TKK
 Department of Information and Computer Science

ISBN 978-951-38-7176-5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2009

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 7001

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 7001

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 7001

Technical editing Maini Manninen

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Series title, number and
report code of publication

VTT Working Papers 115
VTT–WORK–115

Author(s)
Kim Björkman, Juho Frits, Janne Valkonen, Keijo Heljanko & Ilkka Niemelä
Title

Model-Based Analysis of a Stepwise Shutdown Logic
MODSAFE 2008 Work Report
Abstract
Modern digitalized Instrumentation & Control (I&C) systems set new challenges for
safety evaluation. Model checking is a promising formal method that can be used for
verifying the correctness of system designs. A number of efficient model checking
systems are available offering analysis tools that are able to determine automatically
whether a given state machine model satisfies the desired safety properties. Model
checking can also handle delays and other time-related operations, which are crucial
in safety I&C systems and are challenging to design and verify.

Two types of model checking approaches are studied to verify safety logic designs
involving timing aspects. The first approach uses timed automata as the modelling
framework and the other employs finite state machines typically used in verifying
hardware. The approaches are compared using two similar designs of a safety logic
demonstrating how small changes in the design can lead to unexpected errors that
are hard to detect without using model checking techniques. A straightforward
approach to modelling such designs using timed automata and finite state machines
is developed and the performance of the model checking tools when verifying the
safety requirements of the designs is studied.

A safety case is a way of presenting a clear, defensible argument that a system is
adequately safe to operate in its intended environment. Two safety case notations are
compared and an exploratory safety case structure developed to test the
methodology in practice and see how it suits for documenting the results of model
checking.
ISBN
978-951-38-7176-5 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Working Papers
1459-7683 (URL: http://www.vtt.fi/publications/index.jsp) 23743

Date Language Pages
March 2009 English 36 p. + app. 3 p.

Name of project Commissioned by
MODSAFE – Model-based safety evaluation of
automation systems

Keywords Publisher
safety evaluation, model checking, automation
system, I&C, safety case, failure, NuSMV, UPPAAL

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

5

Preface

This report has been prepared under the research project Model-Based Safety
Evaluation of Automation Systems (MODSAFE) which is part of the Finnish Research
Programme on Nuclear Power Plant Safety 2007–2010 (SAFIR2010). The aims of the
project are to develop methods for model-based safety evaluation, apply the methods in
realistic case studies, evaluate the suitability of formal model checking methods for
Nuclear Power Plant (NPP) automation analysis, and develop recommendations for the
practical application of the methods. This report introduces one of the systems
investigated in the 2008 project year, summarizes the results of model checking and
describes the safety case methodology.

We wish to express our gratitude to the representatives of the organizations who
provided us with the case studies and all those who have given their valuable input in
the meetings and discussions during the project.

Espoo, February 2009

Authors

6

Contents
Preface ... 5

Abbreviations .. 7

1. Introduction ... 8

2. Description of the Stepwise Shutdown Logic .. 10

3. Model Checking .. 13
3.1 Symbolic Model Checking... 13
3.2 Timed Automata Model Checking ... 14

4. Modelling of the Stepwise Shutdown Logic... 15
4.1 UPPAAL Model of the System .. 15

4.1.1 Timer 1 ... 15
4.1.2 Timer 2 ... 17
4.1.3 Input Automaton... 18
4.1.4 Flow Input Automaton .. 18

4.2 NuSMV Model of the System.. 19
4.3 Verified Properties .. 21
4.4 Comparison of Results.. 22
4.5 Failure Models .. 23

5. Safety Cases... 26
5.1 Safety Case Development and Model Checking... 26
5.2 Comparing Safety Case Notations.. 27
5.3 Making an Example Safety Case of the Stepwise Shutdown Logic .. 28

6. Conclusions... 32

Acknowledgements... 34

References ... 35

Appendices

Appendix A: System Declarations of the UPPAAL Model
Appendix B: Local Declarations of the Input Automaton of the UPPAAL Model

1. Introduction

7

Abbreviations

ASCE Assurance and Safety Case Environment

BDD Binary Decision Diagram

CAE Claims Argument Evidence

CTL Computation Tree Logic

GSN Goal Structuring Notation

IAEA International Atomic Energy Agency

I&C Instrumentation & Control

LTL Linear Temporal Logic

MODSAFE Model-Based Safety Evaluation of Automation Systems

NPP Nuclear Power Plant

PC Personal Computer

SAFIR2010 Finnish Research Programme on Nuclear Power Plant Safety
2007–2010

SAT Propositional Satisfiability

SMV Symbolic Model Verifier

TCTL Timed Computation Tree Logic

1. Introduction

8

1. Introduction

Modern digitalized Instrumentation & Control (I&C) systems are employed in critical
applications creating new challenges for safety evaluation. However, such validation
work still relies heavily on subjective evaluation which covers only a limited part of the
possible behaviours of the system and therefore more rigorous formal methods are
required. Such formal methods have been studied (see, e.g., Valkonen et al. [19] for an
overview) but they are not yet widely used. Model checking [11] is a promising formal
method that can be used for verifying the correctness of system designs. It has not
previously been applied in the safety evaluation of nuclear power plant (NPP)
automation systems (at least in Finland) but internationally it has been used in verifying
the correct behaviour of, e.g., hardware and microprocessor designs, data communications
protocols, and operating system device drivers.

A number of efficient model checking systems are available offering analysis tools
that are able to determine automatically whether a given state machine model satisfies
desired safety properties. Model checking can also handle delays and other time-related
operations, which are crucial in safety I&C systems and are challenging to design and
verify.

The objective of the Model-Based Safety Evaluation of Automation Systems
(MODSAFE) project is to evaluate and develop methods based on formal model
checking and apply them in the safety analysis of NPP safety automation (I&C). The
purpose is to get a group of methods and tools that can support the practical safety
evaluation work and benefit utilities, regulator, and vendors.

The goals of the project for the first two years included reviewing the state of the art
in employing formal methods and models for safety evaluation of industrial and nuclear
safety systems [19], developing a basic methodology for applying model checking to
safety evaluation, and studying the feasibility of the approach [20]. The project focuses
on a number of case studies which direct the development of the required methodology
and serve as benchmarks for evaluating the feasibility and applicability of the approach.

This report summarizes the experiences gained in the MODSAFE 2008 project of the
SAFIR2010 research programme while working on a case study called “Reactor
Stepwise Shutdown Logic”. The rest of the report is structured as follows. Section 2

1. Introduction

9

presents the shutdown logic system. Section 3 provides some background information
on model checking. Section 4 discusses modelling of the stepwise shutdown logic
system and model checking its key safety properties. Section 5 describes two
approaches to developing a safety case for the case and Section 6 contains the
conclusions.

Some of the results described in Sections 2 and 4 are presented in Björkman et al. [8].

2. Description of the Stepwise Shutdown Logic

10

2. Description of the Stepwise Shutdown Logic

The safety-related system analysed in the research is a safety logic called the stepwise
shutdown logic. It is used for the stepwise control of the process towards the normal
operating state in the case of process disturbances. The system is triggered when one of
the process variables, e.g. the measurement of reactor temperature, deviates from the
values set for normal operation. The purpose of the system is to reduce the possibility of
the process reaching a state where the actual shutdown function of the process is
required. The stepwise shutdown logic is a softer way to control the process and
provides savings in time and cost compared with the actual shutdown. Both shutdown
systems use partly the same process variables but in the stepwise shutdown the limit
values are reached earlier.

The stepwise shutdown logic consists of a set of input signals and their processing
and voting logics, and measurement threshold elements. The input signals are related to
different process variables, such as the reactor temperature and pressure, and reactor
water inflow. Besides providing signal values (analogue and binary), the underlying
platform allows also the processing of information on the validity of the signals. The
used signal validity information is the fault status, which enables the identification of
faulty signals, and the processing of faulty signals according to predetermined rules. For
example, if all signals of the same measurement the fault status set, the default value of
the output of a process variable measurement is zero to avoid unnecessary shutdowns of
the process.

Figures 1 and 2 illustrate two alternative logic diagrams, A and B, that have been
designed for implementing the stepwise shutdown. The stepwise shutdown is performed
when the measurements of the process variables reach and remain for a certain period
over their releasing limit values. At first the process is driven towards a safer state for 3 s.
After that, there is a delay of 12 s (the time left of the 15-s time pulse block after the 3-s
control). The process is driven again towards a safer state for 3 s if the criteria for the
stepwise shutdown are still valid after the delay. This procedure is repeated until the
process is back in the safe state or completely shut down (or the actual shutdown is
triggered). During the 12-s delay, the following 3-s control can be accelerated through a
manual trip from the control room.

2. Description of the Stepwise Shutdown Logic

11

Both alternative designs try to realize the same functionality. The main difference is
how they manage the manual trip from the control room. In design A, the manual trip
signal interrupts the 12-s delay by resetting the time pulse block, thus, hastening the
following control. As for the time pulse blocks, the reset is triggered by a rising edge. In
design B, the 3-s time pulse block of the manual trip is directly connected to the output
and there are no resettable delays.

3s

15s

2. Max

1 out of 2

1 out of 2

max

> 125 °C

Input XYZ
X = redundancy
Y = Signal group
Z = Signal id

≥ 1 &

1

1

1 out of 2
05s

R

1

Output

Manual trip
from control

room
Input 141

Input 241

Reactor
temperature

Input 111

Input 112

Reactor over
pressure
Input 121

Input 221

Input 211

Input 212

High reactor
water in flow

Input 131

Input 231

Figure 1. Stepwise reactor shutdown logic, design A.

2. Description of the Stepwise Shutdown Logic

12

3s

15s

Output

2. Max

1 out of 2

1 out of 2

1 out of 2

05s

max > 125 °C

Input XYZ
X = redundancy
Y = Signal group
Z = Signal id

≥ 1 & ≥ 1

1

1

3s

1

Manual trip
from control

room
Input 141

Input 241

Reactor
temperature

Input 111

Input 112

Reactor over
pressure

Input 121

Input 221

Input 211

Input 212

High reactor
water inflow

Input 131

Input 231

Figure 2. Stepwise reactor shutdown logic, design B.

The stepwise shutdown system is a two-redundant system. Both redundancies have their
own set of input signals that are independent of each other. In addition, the execution of
the control logic of both redundancies is separated to a set of dedicated computers. The
computers participating in the execution of the control logic are illustrated in Figure 3.
The control room computers enable the manual trip functionality. The actual logic is
processed in the logic processing computers.

Figure 3. Computer architecture.

3. Model Checking

13

3. Model Checking

Model checking [11] is a computer-aided verification method developed to formally
verify the correct functioning of a system design model by examining all of its possible
behaviours. Model checking was independently discovered by two research groups in
the early 1980s [12, 17]. The models used in model checking are quite similar to those
used in simulation, as basically the model must describe the behaviour of the system
design for all sequences of inputs. However, unlike simulation, model checkers examine
the behaviour of the system design with all input sequences and compare it with the
system specification. In model checking, at least in principle, the analysis can be fully
automated with computer-aided tools. The specification is expressed in a suitable
specification language, temporal logics being a prime example, describing the allowed
behaviours of a system. Given a model and a specification as input, a model checking
algorithm decides whether the system violates its specification or not. If none of the
behaviours of the system violate the given specification, the (model of the) system is
correct. Otherwise the model checker will automatically give a counter-example
execution of the system demonstrating why the property is violated. The MODSAFE
project used two model checkers, NuSMV originally designed for hardware model
checking and UPPAAL which supports model checking of timed automata. These tools
are introduced below.

3.1 Symbolic Model Checking

NuSMV [10, 16] is a state-of-the-art symbolic model checker that supports synchronous
state machine models where the real-time behaviour has to be modelled with discrete
time steps using explicit counter variables that are incremented at a common clock
frequency. NuSMV supports model checking using both Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) [11], making it quite flexible in expressing design
specifications. The model checking algorithms employed in this work are based on
symbolically representing and exploring the state space of the system by using Binary
Decision Diagrams (BDDs) [9, 15]. In addition, SAT (Propositional Satisfiability)-

3. Model Checking

14

based bounded model checking [5] is also supported by NuSMV [6] for finding bugs in
larger designs. The sophisticated model checking techniques used by NuSMV can
handle well non-determinism induced by free input variables but modelling the real-
time aspects can be more challenging due to the inherently discrete time nature of the
synchronous state machine model employed by NuSMV.

3.2 Timed Automata Model Checking

UPPAAL [18] is a model checking tool for timed systems based on modelling the
system as a network of timed automata that communicate through message channels and
shared variables. The timed automata have a finite control structure and real-valued
clocks [4] making the modelling of timers fairly straightforward. Networks of timed
automata can express the real-time behaviour of the system in continuous time and still
be automatically analysed. This is feasible because all the possible behaviours of the
system can be captured using a finite graph where different clock valuations with,
intuitively, the same behaviour are grouped into a finite number of equivalence classes
called regions [4]. The model checking algorithms use symbolic methods to compactly
represent the clock valuations associated with each state of the system in quite a
memory efficient manner. The model checking algorithms employed inside UPPAAL
[3, 14] are able to check a subset of the temporal logic TCTL (Timed Computation Tree
Logic) [3] by explicit state model checking that explicitly traverses the finite graph
induced by the behaviour of the system. The main strength of UPPAAL is in analysing
the complex timing behaviour of a system. However, it is not too well suited to systems
with a very high amount of non-determinism as induced by, e.g., reading a large number
of input variables (sensor readings) provided by the environment because each combination
of inputs is explicitly explored by the employed model checking algorithms.

4. Modelling of the Stepwise Shutdown Logic

15

4. Modelling of the Stepwise Shutdown Logic

4.1 UPPAAL Model of the System

Two UPPAAL models were created based on logic designs A and B in Figures 1 and 2.
In the following, the model of design A is described in detail. The logic design B can be
modelled in a similar way as design A.

The UPPAAL model consists of four timed automata. The logic design includes three
timer blocks, which are chosen as a basis for three of the automata. The fourth
automaton takes care of input signal sampling. Other signal logic of the system is
modelled as part of those four automata as guard constraints.

The automata synchronize with each other through five globally declared channels,
which are: broadcast chan T2_change, broadcast chan
input_change, chan reset, chan output_change, and broadcast
chan flow_change. The model also has three global Boolean variables: T2_out,
or_out, and flow_out. Those variables are used in the guard constraints for enabling or
disabling transitions in different states. The system is composed by instantiating the
timer automata as shown in Appendix A.

4.1.1 Timer 1

The template automaton modelling Timer 1 (T1) is shown in Figure 4. The T1
automaton consists of three locations. One of them is committed and the other two
represent the state of the timer block. The location named Out0 is the initial location of
the automaton. In this location, the output of the time pulse block is 0 and in location
Out1 the output is 1.

The automaton synchronizes with other automata through three channels, which are:
T2_change, input_change, and output_change. The length of the time
delay is passed as the delay parameter for the template automaton. A local clock
variable d is used in modelling the delay.

4. Modelling of the Stepwise Shutdown Logic

16

There are two transitions from the location Out0 to the committed location
Trigger. Both transitions have synchronization through a broadcast channel. The
transition with synchronization T2_change is only taken if the guard or_out == 1
evaluates to true. The synchronization T2_change is sent by the automaton modelling
Timer 2 (T2) when there is a falling edge in the output of that automaton. The guard
ensures that the other input of the AND block is also 1. The guard is needed so that the
transition is taken only when the rising edge of the input signal is detected.

The second transition synchronizes through the input_change channel when some
of the input signals change from 0 to 1. The guard constraint T2_out == 0 ensures
that the output of T2 is 0, which is needed for the AND block to give 1 as output.

Figure 4. Automaton modelling Timer 1.

Figure 5. Template automaton modelling Timer 2.

From the location Trigger, there is only one transition to the Out1 location. The
transition is taken without delay because the location Trigger is marked as
committed. When taking the transition, the automaton synchronizes with the T2
automaton through the output_change channel. The update part of the transition
resets the internal clock d.

4. Modelling of the Stepwise Shutdown Logic

17

In the Out1 location the output of the timer block is 1. The Out1 location contains
an invariant constraint d <= delay and the outgoing transition has a guard constraint
d == delay. These two constraints force the automaton to be in location Out1 for
exactly delay time units and after the time has passed the automaton must take the
transition back to the Out0 location.

4.1.2 Timer 2

The template automaton modelling Timer 2 (T2) is shown in Figure 5. The automaton
takes as a parameter the length of the time pulse. The automaton has three locations.
Locations Out0 and Out1 represent the output states 0 and 1 just as in T1. The third
location, called Resetting, forces the synchronizations to happen in the proper order.

If the automaton is in the Out0 location and it receives the output_change
synchronization, it takes a transition to the Out1 location. This transition resets the
clock d and sets the T2_out variable to value 1. There is also a transition from Out1
back to itself with synchronization output_change because the timer block
disregards the rising edge of the input when the output is 1. The automaton sends the
T2_change synchronization when the output of the block changes from 1 to 0 because
only this change can cause the input signal of the T1 to change from 0 to 1.

Figure 6. Automaton for input sampling.

The automaton receives synchronization from the reset channel when the reset signal
changes from 0 to 1. If the reset synchronization is received while in the Out1
location, the automaton fires an edge to location Resetting. From there the

4. Modelling of the Stepwise Shutdown Logic

18

automaton immediately transfers to Out1 sending the T2_change synchronization
which is received by the T1 automaton.

4.1.3 Input Automaton

The Input automaton assigns values for input variables non-deterministically. The Input
automaton has three locations as shown in Figure 6. Normally the automaton is in the
Wait location and it can take a transition to location CheckReset anytime. During
the transition input variables are given values non-deterministically. Those variables are
T_111, T_112, T_211, T_212, P_121, P_221, M_141, and M_241. The values of the
variables are used in the update part of the edge where a function get_input is
invoked. The function calculates the output of the OR gate (variable or_out) based on
the values of the inputs which are passed as parameters to the function. The function
get_input is declared in Appendix B.

From the CheckReset location the automaton takes one of the two transitions
leading to another committed location CheckInput, depending on the value of the
reset_trig variable. If reset_trig equals to true, the manual trip push button has been
pushed and the automaton sends a reset synchronization.

The next transition leading back to the location Wait is taken depending on the value
of the rising_edge variable, which is calculated in the get_input function. If the
variable equals to true, the automaton sends an input_change synchronization
indicating that the output of the OR gate has changed from 0 to 1.

Figure 7. Automaton modelling the water inflow inputs.

4.1.4 Flow Input Automaton

Because of the switch-on delay block in the water inflow input signals, these inputs
were modelled as a separate automaton. The automaton shown in Figure 7 models the
sampling of flow inputs and the switch-on delay of 5 s.

4. Modelling of the Stepwise Shutdown Logic

19

The automaton consists of four locations. Locations Out0 and Out1 represent the
states of the output of the switch-on delay block being 0 and 1. In the edge from Out0
to CheckInput, values for the variables F131 and F231 are given. From the
CheckInput location, the automaton takes a transition depending on the values of
those variables. If both the inputs are 0, the automaton takes a transition back to the
Out0 location. Otherwise the automaton transfers to location Wait.

In location Wait the automaton waits for five time units until it takes a transition to
Out1 sending a flow_change synchronization. The edge from Wait to Out0
represents the situation when the inputs change back to 0 before the 5-s delay has
passed. From the Out1 location, the automaton transfers back to Out0 and sets the
values of the variables back to 0.

4.2 NuSMV Model of the System

Two NuSMV models of the stepwise shutdown system were built based on the logic
diagrams presented in Figures 1 and 2. The models comprised a set of modules that are
collections of declarations, constraints and specifications. Both models were divided
into several modules according to the process variable measurements. Since a module
can contain instances of other modules, a structural hierarchy was constructed. Figure 8
below illustrates the modules and their hierarchy.

Figure 8. NuSMV module hierarchy.

4. Modelling of the Stepwise Shutdown Logic

20

The “Main” module is highest in the hierarchy. It creates instances of the “Stepwise
reactor shutdown” module and the process measurement variable modules. Besides
including the module definitions, the main module contains the checked conditions. The
“Stepwise reactor shutdown” module implements the timing logic. Additionally, it
connects all the process variable measurement sub-modules through an OR gate and the
output of this module would be the input of the process control system (see Figure 9).
Each process variable measurement module contains the input signals and their
processing and voting logics for a particular process variable measurement. The basic
function blocks were modelled as individual modules to improve component reusability.
Both the Stepwise reactor shutdown and the process variable measurement modules
utilize the function block modules to realize their functionality.

Reactor
Temperature

Module

High Water
Inflow

Module

Over
Pressure
Module

Stepwise Reactor Shutdown
Module

Function
Block

Modules

OR Timing
logic

Output

Information/event flow

Module is used byManual Trip
Module

Figure 9. NuSMV module dependencies.

The design of the logic consisted of 10 input signals (five per redundancy) of which six
are binary signals and four are analogue signals. The binary signals were simply
modelled as Boolean variables. The value range of the analogue input variables was
abstracted because it was quite large, ranging 0–200. Including the whole value range
would have considerably increased the size of the state space, thus making the model
checking less practical. The value range was reduced from [0, 200] to {0, 1, …, 10},
where 0 represents the original value range of 0 to 18, 1 represents 19 to 36, and so on.
The input signals were allowed to get any value at any given time step so that the
environment could behave as freely as possible.

Because NuSMV does not support continuous time like UPPAAL, the time-
dependent components were modelled to operate in discrete fixed-length time steps.
During each time step, the inputs of the functional blocks are first sampled and then the
outputs are updated.

4. Modelling of the Stepwise Shutdown Logic

21

When using discretized time, modelling the control logic is straightforward (see, e.g.,
Figure 11 on page 25 which illustrates the NuSMV code of the “Over Pressure” module,
which also includes fault status information of the input signals) but modelling time
pulse blocks requires the use of so-called timer variables. Consider, e.g., the
functionality of the rightmost 3-s time pulse block illustrated in Figures 1 and 2. It was
modelled with a single automaton in UPPAAL (see Figure 4). In NuSMV, the time
pulse block was modelled as a separate code module consisting of an input signal, a
local timer variable and conditions allowing the triggering of the timer only with the
rising edge. The output of the module remains 1 as long as the timer is running. Figure
11 illustrates the NuSMV code when the length of the time step is 1 s and therefore the
timer variable Timer can have values from 0 to 3. The timer is triggered if the input of
the module is 1, the previous value is 0, and the value of the timer is 0. When the timer
gets a value higher than or equal to 3, the timer is reset. The value of the timer grows by
one at each time step, if it is higher than 0.

Figure 10. NuSMV model of the 3-s time pulse.

4.3 Verified Properties

Both the UPPAAL and NuSMV models were checked against four properties that
formalize a specification stating that each of the process variable measurements should
trigger the stepwise shutdown system. The properties are:

1. If at least two of the four temperature measurement signals exceed the limit, then
eventually the output of the system gets the value 1.

2. If at least one of the two over-pressure signals has the value 1, then eventually
the output gets the value 1.

3. If at least one of the two water inflow signals has been on for at least 5 s, then
eventually the output gets the value 1.

4. If at least one of the two manual trigger signals has the value 1, then eventually
the output gets the value 1.

4. Modelling of the Stepwise Shutdown Logic

22

In all properties, there is also a condition that the output of the 15-s time pulse block
must be zero. This ensures that only the inputs that should, according to their
specifications, trigger the 3-s time pulse block are considered. In UPPAAL, the
properties can be formalized with TCTL [3]. For example, the second property can be
captured by the following TCTL formula:

A□ (((In.P121 or In.P221) and T2_out == 0) imply A◊ T1.Out1) .

This formula was expressed in the UPPAAL specification language with the special
leads-to operator “-->” as follows:

((In.P121 or In.P221) and T2_out == 0) --> T1.Out1.

In NuSMV, the specifications were formalized with LTL [11] and, for instance,
property 2 was expressed in LTL as follows:

LTLSPEC G(((press.I121 | press.I221) & stepwiseshutdown.
tp2.output = 0) -> F(stepwiseshutdown.Output));

4.4 Comparison of Results

A design error in logic design A was found during verification of the system model. The
design error causes the output of the system to freeze to zero if the manual trip push
button is pushed during the 3-s time pulse. Then the 15-s block is reset and the 3-s block
will not receive a rising edge as long as at least one of the process variable measurement
trigger conditions is active since the 3-s time pulse is running. This feature of design A
causes a violation of all of the four checked properties. Design B was found to operate
correctly with respect to the four properties.

Both UPPAAL and NuSMV revealed the design error causing the output to freeze to
zero in logic design A. With NuSMV, the properties were checked with different
settings where the time step was between 10 ms and 1 s. The erroneous behaviour of
design A was discovered in all the considered settings. When using the 10-ms time step,
the size of the state space of the models of designs A and B is 3·1015 and 1018 and that
of the reachable state space 2·1012 and 4·1014, respectively.

Model checking was carried out with UPPAAL version 4.0.6 and NuSMV version
2.4.3 on a PC with 2 GB of RAM and an Intel Core 2 Duo E6320 processor running at
1.86 GHz. The model checking times of the verification runs for UPPAAL and NuSMV
(with three different time steps) are presented in Tables 1 and 2. The model checking
times of UPPAAL models were between 9 and 21 s and of NuSMV models between 1
and 31 s. In most cases, the model checking times of property 3 were the longest due to
the 5-s delay element related to the water inflow signals (see Figures 1 and 2). Except
for property 3, the model checking times of design B with UPPAAL were about twice
as long as those of design A. This is because the error in design A caused the properties

4. Modelling of the Stepwise Shutdown Logic

23

to be violated and, thus, the model checker did not have to go through the whole state
space of the model. In NuSMV, the model checking times of both designs were of the
same order.

Table 1. Model checking times for design A(s).

Design A
NuSMV

Property UPPAAL
1 s 100 ms 10 ms

Property 1 9.1 0.6 1.6 7.1
Property 2 9.1 0.6 1.6 7.2
Property 3 20.6 0.6 1.4 16.4
Property 4 9.1 0.6 1.6 6.1

Table 2. Model checking times for design B(s).

Design B
NuSMV

Property UPPAAL
1 s 100 ms 10 ms

Property 1 17.7 0.3 1.2 7.7
Property 2 18.0 0.3 1.2 7.6
Property 3 17.7 0.6 1.5 30.4
Property 4 17.6 0.3 0.8 7.0

4.5 Failure Models

In addition to verifying the correct behaviour of the stepwise shutdown logic (design B),
the fulfilment of a single failure criterion was analysed with the NuSMV model. The
International Atomic Energy Agency (IAEA) [13] defines single failure as “A failure
which results in the loss of capability of a system or component to perform its intended
safety function(s), and any consequential failure(s) which result from it”. A single
failure criterion is defined as “A criterion (or requirement) applied to a system such that
it must be capable of performing its task in the presence of any single failure”.

The fulfilment of the single failure criterion was tested with several different failure
models. In the failure models, it was assumed that a failure can only affect one input
signal of each process variable or one computer at a time. With respect to modelling, in
the case of a computer failure it was assumed that all outputs of the failed computer are
faulty. The logical components were assumed to function correctly.

4. Modelling of the Stepwise Shutdown Logic

24

The starting point of the model was that no faults were present. The original model
was evolved with more challenging fault models by considering increasingly more
complicated fault scenarios. Different faults were classified according to their effect and
diagnostic perceptivity. The following three models were considered:

1. All failures are detected, failed signals get a non-deterministic value, and input
signals or computers may fail or recover at any time step.

2. Failures may remain undetected, failed signals keep their previous values, and
input signals or computers may fail or recover at any time step.

3. Failures may remain undetected, failed signals get a non-deterministic value, and
input signals or computers may fail or recover at any time step.

To model faults, each input signal was given an additional Boolean value that
represented the fault status of the signal (see Figure 11). The NuSMV model was
checked with each of the failure models present against two properties that formalize a
specification declaring that the stepwise shutdown logic should fulfil the single failure
criteria. The properties are:

1. A single failure should not spuriously trigger the stepwise shutdown.
2. A single failure should not prevent the actual execution of the stepwise shutdown.

Design B fulfilled both of the single failure criterion properties completely with failure
models 1 and 2. With failure model 3, the design did not fulfil property 1 because a
single undetected faulty binary signal with value 1 could spuriously trigger the stepwise
shutdown system. As the design is two-redundant based on 1 out of 2 voting, this
property cannot even be expected to be fulfilled. However, in this case, the system fails
in the safe direction. With failure model 3, design B fulfils property 2, i.e. no failures
with dangerous consequences were discovered.

The introduction of the failure models increased the size of the state space. When
using the 10-ms time step, the state space of design B was 2·1036 and the model
checking times were between 1 s and 4 h. The longest model checking times were
measured for property 1 with failure model 3 (including computer failures), when the
time step was 10 ms; however, in this case the value range of the analogue signals was
further reduced to [0, 1, 2, 3] to make the model checking more practicable.

4. Modelling of the Stepwise Shutdown Logic

25

Figure 11. NuSMV model of the OverPressure module (including fault model 1).

5. Safety Cases

26

5. Safety Cases

The general definitions of a safety case [1, 7] say that it is a way of presenting a clear,
defensible argument that a system is adequately safe to operate in its intended
environment. A safety case document contains all the necessary information for
justifying the safety of a system together with an argument that explains how the
available evidence supports the safety claims.

Earlier in the MODSAFE project (2007), formal methods and models applied in the
safety evaluation of industrial and nuclear safety systems were reviewed [19]. As part of
the review, the concept of a safety case was introduced and considered.

The primary objective of trying the safety case methodology for the stepwise
shutdown system (described in Section 2) was to get experience on how the safety case
development proceeds in practice, how difficult it is, and how the ASCE (Assurance
and Safety Case Environment) tool [2] could be used for supporting the safety case
development. The purpose was not to make a complete safety case of the system but to
try the safety case development in practice, get information on the different features of
the development process and utilize the experience later for reporting the results of
model checking.

This section makes a general comparison of two safety case methodologies, Claim
Argument Evidence (CAE) and Goal Structuring Notation (GSN), and describes the
development of an exploratory safety case of the stepwise shutdown logic.

5.1 Safety Case Development and Model Checking

The general definition of a safety case refers to making it “for providing evidence that
the system is adequately safe for a given application and environment over its lifetime”.
This means making a safety case as complete as reasonably possible and taking all the
possible viewpoints and circumstances into account. Thus, safety cases may contain
several different types of evidence, and the results of model checking can be used for
supporting certain goals. However, the role of model checking in safety case creation is
limited because only certain features of the system can be modelled and model checked.

5. Safety Cases

27

Model checking suits well certain types of verification tasks but other evidence is
needed to fully support high-level safety claims. The safety case notation could be
effectively used for documenting the results of model checking. Then, the objective is
not to consider extensively all the viewpoints for verifying the whole system but to
concentrate on those aspects where model checking could help in providing reliable
evidence.

5.2 Comparing Safety Case Notations

The MODSAFE project has considered two methodologies for safety case
development: CAE (Claims, Arguments, Evidence) and GSN (Goal Structuring
Notation). They both are introduced in concept level in the MODSAFE project report
2007 [19]. This section lists some differences and similarities of the notations.

The structure of the CAE methodology is rather simple to understand because it has
only three main entities (claim, argument, evidence) and a general entity (other) for
everything that does not fit under the three main ones. The structure is simple and
makes CAE clear and concise to follow. Each claim is followed by argumentation, sub-
claims or evidence. Because of the small number of entities, the expressive power of
CAE is not very high compared with GSN. It means that lots of narrative is needed to
explain and justify the structure and the choices made in the safety case development.

GSN has eight entities (goal, context, strategy, justification, assumption, solution,
model, notes) that make the methodology rich in expressive power. Narrative can be
added to the entities just like in CAE but the main idea of GSN is to visualize
everything essential through the entities. Basically, narrative is used only for the details.
Compared with CAE, users may find it problematic to utilize all the available entities
and to know how to use them.

In CAE, the approach is bottom–up. Higher-level claims are divided into more precise
sub-claims. There may be several levels of sub-claims that are followed by evidence
showing that the claims are true. Claims are followed by arguments justifying the next
steps and explaining the facts and reasons behind the decisions. The direction of the
arrows connecting the entities is bottom–up. The lower-level entities are connected to
the upper levels by arrows with labels “sub-claim of”, “evidence for” or “supports”.

Contrary to CAE, GSN uses a top–down approach. Goals are “solved by” lower-level
goals or other elements of the notation. Any entity may also be connected to a lower-
level entity with an arrow labelled “in context of”. That may be used, e.g., in branching
the safety case based on certain contexts such as compliance with a standard or
considering the system design.

Basically, the main elements of the two methodologies are almost equivalent. Claim
equals goal, argument equals strategy, and evidence equals solution. In both notations,

5. Safety Cases

28

the relationships of the entities are described by arrows. The selection of arrow labels is
somewhat restricted in both notations but it is not significant because the main point is
the variety of entities.

5.3 Making an Example Safety Case of the Stepwise Shutdown
Logic

In the experimental safety case carried out in the project, the goal was to get hands-on
experience on how the safety case development proceeds, how difficult it is, and what
kinds of viewpoints are required to make a safety case. The starting point was to create
a formal model of the stepwise shutdown logic and use it for verifying the behaviour of
the system with model checking. The system and its modelling process are described
earlier in this document.

The CAE notation was chosen for the experimental case based on its simple entity
structure. Because the aim was to analyse the design of the shutdown system, the top-
level claim (goal) for the safety case was chosen to be: “Shutdown system design meets
reactor safety requirements”. The top-level claim was divided into branches handling
claims originating from functional and non-functional requirements. They were further
divided into increasingly more specific sub-claims. To maintain the structure in an
understandable way and make it possible to be followed later, each claim should be
justified and explained. It is essential to argue why it was acceptable to divide the claim
into sub-claims and what were the reasons for it.

The structure of the example safety case can be seen in Figure 12 below. The blue
circles are claims, the green rectangles with round corners are arguments and the red
rectangles are evidence. The example safety case is still far from a complete safety case
because only the claims that could be shown to be true with model checking were
considered. To make the safety case complete would require complementing all the blue
leaves with (possibly several levels of) more detailed sub-claims, argumentation and
finally evidence.

5. Safety Cases

29

Figure 12. Sketch of the example safety case made with CAE notation.

An example of a claim-argument-evidence triplet can be seen in Figure 13 below. It
concerns the design of the manual bypass function of the stepwise shutdown system
described in Section 2. The claim is a sub-claim under another sub-claim called “Timing
of the output signal meets reactor requirements”. The argument shown in the Figure 13
just says that model checking is suitable evidence for this kind of claim. The evidence
consists of the results of model checking.

5. Safety Cases

30

Figure 13. Example of a claim-argument-evidence triplet.

 In the example safety case, the main focus was on the functional claims concerning the
correct behaviour of the system design. The claims where model checking was found to
be suitable evidence concerned the manual bypass of the delay function (see Figure 13),
driving the system towards a safer state for 3 s, and not freezing the output. All of them
were verified by model checking. As mentioned earlier, the parts of the safety case
where model checking was not suitable evidence were not investigated further because
they were out of the scope of the project.

5. Safety Cases

31

One way to utilize the safety case notation could be using it only for documenting the
results of model checking. The verifiable requirements can be written as claims, their
justification and additional information can be written under argument and the results of
model checking can be documented as evidence. In addition, safety case entities can be
colour coded showing the confidence levels of evidence or the success of model
checking. Such a structured and visually rich way of documenting the model checking
results could be beneficial when the system (e.g. requirements or design) is changed and
its behaviour has to be verified again. The tests that failed or passed are easy to spot
from a colour-coded tree structure. The safety case styled way of documenting could
then be used to support the safety cases aiming at complete safety demonstration.

6. Conclusions

32

6. Conclusions

Digitalized I&C systems are able to perform increasingly more complicated control
tasks. They often combine real-time aspects such as timers with non-trivial control
logic, making their design and validation very challenging. Model checking is a
promising formal method that enables complete verification of designs of such systems.
It requires a state machine model of the design and its relevant environment and seems
to suit well the verification of safety logic designs.

In the MODSAFE project, the use of two types of model checking approaches was
studied to verify safety logic designs involving timing aspects. One approach was to use
timed automata as the modelling framework and the other to employ finite state
machines typically used in verifying hardware. For the former approach, the UPPAAL
model checking system was used and for the latter NuSMV. The approaches were
compared using two similar designs of a safety logic demonstrating how small subtle
changes in the design can lead to unexpected errors that are hard to detect without using
model checking techniques. A straightforward approach to modelling such designs was
developed using timed automata and finite state machines and the performance of the
model checking tools when verifying the safety requirements of the designs was
studied.

UPPAAL supports direct modelling of timers using real-valued clock variables in
timed automata so that also the control logic is easy to capture. However, the analysis
techniques in UPPAAL are based on state space enumeration techniques which have
scaling problems when the number of input variables in the model grows. NuSMV
lends itself well to handling control logic but modelling time-dependent components is
less straightforward as such components need to be modelled operating in discrete time
steps. However, the symbolic model checking techniques used in NuSMV scale much
better as the number of input variables grows. Both approaches are able to verify
moderate size designs, indicating that current model checking techniques are already
applicable to verifying involved safety logic designs. In addition to verifying the correct
behaviour of the design, NuSMV was successfully used to analyse whether single
failure criteria based on different fault models are satisfied. The results strongly suggest

6. Conclusions

33

that model checking has the potential to become a valuable tool that can be used both in
the design and licensing of safety automation.

In addition to modelling and model checking the stepwise shutdown logic, two safety
case notations, CAE and GSN, were compared in the project. The main differences
between the notations were found to be the number of available entity types that affect
the amount of narrative needed to explain the safety case, and that CAE uses a bottom–
up approach while GSN is top–down.

The CAE notation was used to make an exploratory safety case concerning the design
of the stepwise shutdown system. Only the branches where model checking could be
used as evidence were investigated in the project. The other branches were left on a
rough level just to outline the structure of a more complete safety case. The safety case
notations could be used just for documenting the results of model checking, thus
offering a visually rich and reusable way of reporting.

References

34

Acknowledgements

The authors gratefully acknowledge Robin E. Bloomfield and Dan Sheridan from
Adelard LLP for their valuable support in developing the safety cases.

References

35

References
1. ASCAD – Adelard Safety Case Development Manual, 1998. ISBN 0 9533771 0 5.

2. ASCE tool, Assurance and safety case environment, Accessed 4.2.2009.
http://www.adelard.com/web/hnav/ASCE/index.html.

3. Alur, R., Courcoubetis, C. and Dill, D. “Model-checking for real-time systems”. In: Proceedings,
Fifth Annual IEEE Symposium on Logic in Computer Science, 1990. Pp. 414–425.

4. Alur, R. and Dill, D.L. “A theory of timed automata”. Theoretical Computer Science, 126(2):
(1994), pp.183–235.

5. Biere, A., Cimatti, A., Clarke, E.M. and Zhu, Y. “Symbolic model checking without BDDs”. In:
Proc. of the Fifth International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), (1999).

6. Biere, A., Heljanko, K., Junttila, T., Latvala, T. and Schuppan, V. “Linear Encodings of
Bounded LTL Model Checking”. Logical Methods in Computer Science 2(5:5): 2006,
pp. 1–64.

7. Bishop, P.G. and Bloomfield, R.E. “A methodology for safety case development”, In: Safety-
Critical Systems Symposium (SSS ’98), Birmingham, UK, February 1998.

8. Björkman, K., Frits, J., Valkonen, J., Lahtinen, J., Heljanko, K., Niemelä, I. and Hämäläinen, J.J.
“Verification of Safety Logic Designs by Model Checking”. Sixth American Nuclear
Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and
Human-Machine Interface Technologies, NPIC&HMIT 2009, Knoxville, Tennessee,
April 5–9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL 2009.

9. Bryant, R.E. “Graph-Based Algorithms for Boolean Function Manipulation”. IEEE Trans.
Computers 35(8): 1986, pp. 677–691.

10. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M. and
Tchaltsev, A. “NuSMV 2.4 User Manual”, CMU and ITC-irst (2005).

11. Clarke, E.M., Grumberg, O. and Peled, D.A. “Model Checking”, The MIT Press, 1999.

http://www.adelard.com/web/hnav/ASCE/index.html

References

36

12. Clarke, E.M. and Emerson, E.A. “Design and synthesis of synchronization of skeletons using
branching time temporal logic”. In: Proceedings of the IBM Workshop on Logics of
Programs, Vol. 131 of LNCS, Springer, 1981. Pp. 52–71.

13. IAEA International Atomic Energy Agency, Vienna. IAEA Safety Glossary: Terminology
Used in Nuclear Safety and Radiation Protection, 2007.

14. Larsen, K.G., Pettersson, P. and Yi, W. “UPPAAL in a nutshell”. International Journal on
Software Tools for Technology Transfer, 1(1–2): 1997, pp. 134–152.

15. McMillan, K.L. “Symbolic Model Checking”, Kluwer Academic Publ., (1993).

16. NuSMV Model Checker v.2.4.3, 2008. Available from http://nusmv.irst.itc.it/.

17. Quielle, J. and Sifakis, J. “Specification and verification of concurrent systems in CESAR”.
In: Proceedings of the 5th International Symposium on Programming, 1981. Pp. 337–350.

18. UPPAAL integrated tool environment v. 4.0.6, http://www.uppaal.com/ (2009).

19. Valkonen, J., Karanta, I., Koskimies, M., Heljanko, K., Niemelä, I., Sheridan, D. and
Bloomfield, R.E. “NPP Safety Automation Systems Analysis – State of the Art”. VTT
Working Papers 94, VTT, Espoo, 2008. 62 p.
http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf.

20. Valkonen, J., Pettersson, V., Björkman, K., Holmberg, J.-E., Koskimies, M., Heljanko, K. and
Niemelä, I. “Model-Based Analysis of an Arc Protection and an Emergency Cooling
System – MODSAFE 2007 Working Report”. VTT Working Papers 93, VTT, Espoo,
2008. 13 p. + app. 38 p. http://www.vtt.fi/inf/pdf/workingpapers/2008/W93.pdf.

http://nusmv.irst.itc.it/
http://www.uppaal.com/
http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf
http://www.vtt.fi/inf/pdf/workingpapers/2008/W93.pdf

A1

Appendix A: System Declarations of the UPPAAL
Model
// Instantiations of the timer automata.

// Delay of 3 seconds
// Parameters: const int delay
T1 = Delay(3);

// Delay of 15 seconds with additional reset input
// Parameters: const int delay
T2 = Delay_R(15);

// Input automaton taking care of input sampling
In = Input();

// Automaton modeling flow inputs and the switch-on delay of 5 seconds
flow = Flow();

// List one or more processes to be composed into a system.
system T1, T2, In, flow;

B1

Appendix B: Local Declarations of the Input
Automaton of the UPPAAL Model
clock d;
bool or_out, or_out_prev;
bool reset_signal, reset_prev, reset_trig;
bool rising_edge;
int T111, T112, T211, T212, P121, P221, M141, M241;

// Chosen signal values used in modelling:
// 0 below limit
// 1 over limit
bool Temperature(int T_111, int T_112, int T_211, int T_212) {
 int ones = 0; // number of signals over the limit
 T111 = T_111; T112 = T_112; T211 = T_211; T212 = T_212;
 if(T_111 == 1)
 ones++;
 if(T_112 == 1)
 ones++;
 if(T_211 == 1)
 ones++;
 if(T_212 == 1)
 ones++;
 if(ones >= 2) // At least two signals over the limit
 return 1;
 else
 return 0;
}

// Over pressure (P) signals
// P: 2 redundant signals, 1 out of 2 voting, default 0
bool Pressure(int P_121, int P_221) {
 P121 = P_121; P221 = P_221;
 if(P_121 == 1 || P_221 == 1)
 return 1;
 else
 return 0;
}

// Manual trip signals
bool Manual(int M_141, int M_241) {
 M141 = M_141; M241 = M_241;
 reset_prev = reset_signal;

Appendix B: Local Declarations of the Input Automaton of the UPPAAL Model

B2

 if(M_141 == 1 || M_241 == 1)
 reset_signal = 1;
 else
 reset_signal = 0;
 reset_trig = reset_signal & !reset_prev;
 return reset_signal;
}

// Calculates the output value of the OR-port based on the sampled
input values.
// Parameters:
// T_*: Temperature measurement signals
// P_*: Pressure measurement signals
// F_*: Flow measurements
// M_*: Manual trip signals
void get_input(int T_111, int T_112, int T_211, int T_212,
 int P_121, int P_221, int M_141, int M_241) {
 bool T_out, P_out, M_out;

 T_out = Temperature(T_111, T_112, T_211, T_212);
 P_out = Pressure(P_121, P_221);
 M_out = Manual(M_141, M_241);

 or_out_prev = or_out;
 or_out = T_out || P_out || M_out || flow_out;
 rising_edge = !or_out_prev && or_out;
}

	 	 VTT WORKING PAPERS 115
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT W
O

R
KIN

G
 PA

PER
S 115 M

O
D

EL-B
A

SED
 A

N
A

LYSIS O
F A

 STEPW
ISE SH

U
TD

O
W

N
 LO

G
IC

. M
O

D
SA

FE 2008 W
O

R
K R

EPO
R

T

 ISBN 978-951-38-7176-5 (URL: http://www.vtt.fi/publications/index.jsp)
 ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Kim Björkman1, Juho Frits2, Janne Valkonen1, Keijo Heljanko2
& Ilkka Niemelä2

Model-Based Analysis of a Stepwise
Shutdown Logic

MODSAFE 2008 Work Report

1VTT Technical Research Centre of Finland
2Helsinki University of Tehcnology TKK
 Department of Information and Computer Science

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	Contents
	Abbreviations
	1. Introduction
	2. Description of the Stepwise Shutdown Logic
	3. Model Checking
	3.1 Symbolic Model Checking
	3.2 Timed Automata Model Checking

	4. Modelling of the Stepwise Shutdown Logic
	4.1 UPPAAL Model of the System
	4.1.1 Timer 1
	4.1.2 Timer 2
	4.1.3 Input Automaton
	4.1.4 Flow Input Automaton

	4.2 NuSMV Model of the System
	4.3 Verified Properties
	4.4 Comparison of Results
	4.5 Failure Models

	5. Safety Cases
	5.1 Safety Case Development and Model Checking
	5.2 Comparing Safety Case Notations
	5.3 Making an Example Safety Case of the Stepwise ShutdownLogic

	6. Conclusions
	Acknowledgements
	References
	Appendix A: System Declarations of the UPPAALModel
	Appendix B: Local Declarations of the InputAutomaton of the UPPAAL Model

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b0073006900610020007000610069006e006f006f006e0020006d0065006e0065007600690073007300e40020007400f600690073007300e4002e0020004e00e4006d00e4002000610073006500740075006b00730065007400200076006100610074006900760061007400200061007300690061006b006b00610061006c007400610020007600e400680069006e007400e400e4006e0020004100630072006f00620061007400200035002e00300020002d00790068007400650065006e0073006f0070006900760061006e0020006a00e40072006a0065007300740065006c006d00e4006e002e0020004b00610069006b006b006900200066006f006e007400690074002000750070006f00740065007400610061006e0020006d0075006b00610061006e002e0020>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

