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Preface 

This report has been prepared under the research project Model-Based Safety 
Evaluation of Automation Systems (MODSAFE) which is part of the Finnish Research 
Programme on Nuclear Power Plant Safety 2007–2010 (SAFIR2010). The aims of the 
project are to develop methods for model-based safety evaluation, apply the methods in 
realistic case studies, evaluate the suitability of formal model checking methods for 
Nuclear Power Plant (NPP) automation analysis, and develop recommendations for the 
practical application of the methods. This report introduces one of the systems 
investigated in the 2008 project year, summarizes the results of model checking and 
describes the safety case methodology.  

We wish to express our gratitude to the representatives of the organizations who 
provided us with the case studies and all those who have given their valuable input in 
the meetings and discussions during the project. 

 
 
 

Espoo, February 2009 
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Abbreviations 

ASCE   Assurance and Safety Case Environment 
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1. Introduction 

Modern digitalized Instrumentation & Control (I&C) systems are employed in critical 
applications creating new challenges for safety evaluation. However, such validation 
work still relies heavily on subjective evaluation which covers only a limited part of the 
possible behaviours of the system and therefore more rigorous formal methods are 
required. Such formal methods have been studied (see, e.g., Valkonen et al. [19] for an 
overview) but they are not yet widely used. Model checking [11] is a promising formal 
method that can be used for verifying the correctness of system designs. It has not 
previously been applied in the safety evaluation of nuclear power plant (NPP) 
automation systems (at least in Finland) but internationally it has been used in verifying 
the correct behaviour of, e.g., hardware and microprocessor designs, data communications 
protocols, and operating system device drivers.  

A number of efficient model checking systems are available offering analysis tools 
that are able to determine automatically whether a given state machine model satisfies 
desired safety properties. Model checking can also handle delays and other time-related 
operations, which are crucial in safety I&C systems and are challenging to design and 
verify. 

The objective of the Model-Based Safety Evaluation of Automation Systems 
(MODSAFE) project is to evaluate and develop methods based on formal model 
checking and apply them in the safety analysis of NPP safety automation (I&C). The 
purpose is to get a group of methods and tools that can support the practical safety 
evaluation work and benefit utilities, regulator, and vendors.  

The goals of the project for the first two years included reviewing the state of the art 
in employing formal methods and models for safety evaluation of industrial and nuclear 
safety systems [19], developing a basic methodology for applying model checking to 
safety evaluation, and studying the feasibility of the approach [20]. The project focuses 
on a number of case studies which direct the development of the required methodology 
and serve as benchmarks for evaluating the feasibility and applicability of the approach.  

This report summarizes the experiences gained in the MODSAFE 2008 project of the 
SAFIR2010 research programme while working on a case study called “Reactor 
Stepwise Shutdown Logic”. The rest of the report is structured as follows. Section 2 
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presents the shutdown logic system. Section 3 provides some background information 
on model checking. Section 4 discusses modelling of the stepwise shutdown logic 
system and model checking its key safety properties. Section 5 describes two 
approaches to developing a safety case for the case and Section 6 contains the 
conclusions. 

Some of the results described in Sections 2 and 4 are presented in Björkman et al. [8].  
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2. Description of the Stepwise Shutdown Logic 

The safety-related system analysed in the research is a safety logic called the stepwise 
shutdown logic. It is used for the stepwise control of the process towards the normal 
operating state in the case of process disturbances. The system is triggered when one of 
the process variables, e.g. the measurement of reactor temperature, deviates from the 
values set for normal operation. The purpose of the system is to reduce the possibility of 
the process reaching a state where the actual shutdown function of the process is 
required. The stepwise shutdown logic is a softer way to control the process and 
provides savings in time and cost compared with the actual shutdown. Both shutdown 
systems use partly the same process variables but in the stepwise shutdown the limit 
values are reached earlier. 

The stepwise shutdown logic consists of a set of input signals and their processing 
and voting logics, and measurement threshold elements. The input signals are related to 
different process variables, such as the reactor temperature and pressure, and reactor 
water inflow. Besides providing signal values (analogue and binary), the underlying 
platform allows also the processing of information on the validity of the signals. The 
used signal validity information is the fault status, which enables the identification of 
faulty signals, and the processing of faulty signals according to predetermined rules. For 
example, if all signals of the same measurement the fault status set, the default value of 
the output of a process variable measurement is zero to avoid unnecessary shutdowns of 
the process.    

Figures 1 and 2 illustrate two alternative logic diagrams, A and B, that have been 
designed for implementing the stepwise shutdown. The stepwise shutdown is performed 
when the measurements of the process variables reach and remain for a certain period 
over their releasing limit values. At first the process is driven towards a safer state for 3 s. 
After that, there is a delay of 12 s (the time left of the 15-s time pulse block after the 3-s 
control). The process is driven again towards a safer state for 3 s if the criteria for the 
stepwise shutdown are still valid after the delay. This procedure is repeated until the 
process is back in the safe state or completely shut down (or the actual shutdown is 
triggered). During the 12-s delay, the following 3-s control can be accelerated through a 
manual trip from the control room. 
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Both alternative designs try to realize the same functionality. The main difference is 
how they manage the manual trip from the control room. In design A, the manual trip 
signal interrupts the 12-s delay by resetting the time pulse block, thus, hastening the 
following control. As for the time pulse blocks, the reset is triggered by a rising edge. In 
design B, the 3-s time pulse block of the manual trip is directly connected to the output 
and there are no resettable delays. 

3s

15s

2. Max

1 out of 2

1 out of 2

max

> 125 °C

Input XYZ
X = redundancy
Y = Signal group
Z = Signal id 

≥ 1 &

1

1

1 out of 2
05s

R

1

Output

Manual trip 
from control 

room
Input 141

Input 241

Reactor 
temperature

Input 111

Input 112

Reactor over 
pressure 
Input 121

Input 221

Input 211

Input 212

High reactor 
water in flow

Input 131

Input 231

 

Figure 1. Stepwise reactor shutdown logic, design A. 
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Figure 2. Stepwise reactor shutdown logic, design B. 

The stepwise shutdown system is a two-redundant system. Both redundancies have their 
own set of input signals that are independent of each other. In addition, the execution of 
the control logic of both redundancies is separated to a set of dedicated computers. The 
computers participating in the execution of the control logic are illustrated in Figure 3. 
The control room computers enable the manual trip functionality. The actual logic is 
processed in the logic processing computers.   

 

 

Figure 3. Computer architecture. 
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3. Model Checking 

Model checking [11] is a computer-aided verification method developed to formally 
verify the correct functioning of a system design model by examining all of its possible 
behaviours. Model checking was independently discovered by two research groups in 
the early 1980s [12, 17]. The models used in model checking are quite similar to those 
used in simulation, as basically the model must describe the behaviour of the system 
design for all sequences of inputs. However, unlike simulation, model checkers examine 
the behaviour of the system design with all input sequences and compare it with the 
system specification. In model checking, at least in principle, the analysis can be fully 
automated with computer-aided tools. The specification is expressed in a suitable 
specification language, temporal logics being a prime example, describing the allowed 
behaviours of a system. Given a model and a specification as input, a model checking 
algorithm decides whether the system violates its specification or not. If none of the 
behaviours of the system violate the given specification, the (model of the) system is 
correct. Otherwise the model checker will automatically give a counter-example 
execution of the system demonstrating why the property is violated. The MODSAFE 
project used two model checkers, NuSMV originally designed for hardware model 
checking and UPPAAL which supports model checking of timed automata. These tools 
are introduced below. 

3.1 Symbolic Model Checking 

NuSMV [10, 16] is a state-of-the-art symbolic model checker that supports synchronous 
state machine models where the real-time behaviour has to be modelled with discrete 
time steps using explicit counter variables that are incremented at a common clock 
frequency. NuSMV supports model checking using both Linear Temporal Logic (LTL) 
and Computation Tree Logic (CTL) [11], making it quite flexible in expressing design 
specifications. The model checking algorithms employed in this work are based on 
symbolically representing and exploring the state space of the system by using Binary 
Decision Diagrams (BDDs) [9, 15]. In addition, SAT (Propositional Satisfiability)-
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based bounded model checking [5] is also supported by NuSMV [6] for finding bugs in 
larger designs. The sophisticated model checking techniques used by NuSMV can 
handle well non-determinism induced by free input variables but modelling the real-
time aspects can be more challenging due to the inherently discrete time nature of the 
synchronous state machine model employed by NuSMV. 

3.2 Timed Automata Model Checking 

UPPAAL [18] is a model checking tool for timed systems based on modelling the 
system as a network of timed automata that communicate through message channels and 
shared variables. The timed automata have a finite control structure and real-valued 
clocks [4] making the modelling of timers fairly straightforward. Networks of timed 
automata can express the real-time behaviour of the system in continuous time and still 
be automatically analysed. This is feasible because all the possible behaviours of the 
system can be captured using a finite graph where different clock valuations with, 
intuitively, the same behaviour are grouped into a finite number of equivalence classes 
called regions [4]. The model checking algorithms use symbolic methods to compactly 
represent the clock valuations associated with each state of the system in quite a 
memory efficient manner. The model checking algorithms employed inside UPPAAL 
[3, 14] are able to check a subset of the temporal logic TCTL (Timed Computation Tree 
Logic) [3] by explicit state model checking that explicitly traverses the finite graph 
induced by the behaviour of the system. The main strength of UPPAAL is in analysing 
the complex timing behaviour of a system. However, it is not too well suited to systems 
with a very high amount of non-determinism as induced by, e.g., reading a large number 
of input variables (sensor readings) provided by the environment because each combination 
of inputs is explicitly explored by the employed model checking algorithms. 



4. Modelling of the Stepwise Shutdown Logic 
 
 
 

15 

4. Modelling of the Stepwise Shutdown Logic 

4.1 UPPAAL Model of the System 

Two UPPAAL models were created based on logic designs A and B in Figures 1 and 2. 
In the following, the model of design A is described in detail. The logic design B can be 
modelled in a similar way as design A. 

The UPPAAL model consists of four timed automata. The logic design includes three 
timer blocks, which are chosen as a basis for three of the automata. The fourth 
automaton takes care of input signal sampling. Other signal logic of the system is 
modelled as part of those four automata as guard constraints. 

The automata synchronize with each other through five globally declared channels, 
which are: broadcast chan T2_change, broadcast chan 
input_change, chan reset, chan output_change, and broadcast 
chan flow_change. The model also has three global Boolean variables: T2_out, 
or_out, and flow_out. Those variables are used in the guard constraints for enabling or 
disabling transitions in different states. The system is composed by instantiating the 
timer automata as shown in Appendix A. 

4.1.1 Timer 1 

The template automaton modelling Timer 1 (T1) is shown in Figure 4. The T1 
automaton consists of three locations. One of them is committed and the other two 
represent the state of the timer block. The location named Out0 is the initial location of 
the automaton. In this location, the output of the time pulse block is 0 and in location 
Out1 the output is 1. 

The automaton synchronizes with other automata through three channels, which are: 
T2_change, input_change, and output_change. The length of the time 
delay is passed as the delay parameter for the template automaton. A local clock 
variable d is used in modelling the delay. 
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There are two transitions from the location Out0 to the committed location 
Trigger. Both transitions have synchronization through a broadcast channel. The 
transition with synchronization T2_change is only taken if the guard or_out == 1 
evaluates to true. The synchronization T2_change is sent by the automaton modelling 
Timer 2 (T2) when there is a falling edge in the output of that automaton. The guard 
ensures that the other input of the AND block is also 1. The guard is needed so that the 
transition is taken only when the rising edge of the input signal is detected. 

The second transition synchronizes through the input_change channel when some 
of the input signals change from 0 to 1. The guard constraint T2_out == 0 ensures 
that the output of T2 is 0, which is needed for the AND block to give 1 as output.  

 

 

Figure 4. Automaton modelling Timer 1. 

 

Figure 5. Template automaton modelling Timer 2. 

From the location Trigger, there is only one transition to the Out1 location. The 
transition is taken without delay because the location Trigger is marked as 
committed. When taking the transition, the automaton synchronizes with the T2 
automaton through the output_change channel. The update part of the transition 
resets the internal clock d. 
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In the Out1 location the output of the timer block is 1. The Out1 location contains 
an invariant constraint d <= delay and the outgoing transition has a guard constraint 
d == delay. These two constraints force the automaton to be in location Out1 for 
exactly delay time units and after the time has passed the automaton must take the 
transition back to the Out0 location. 

4.1.2 Timer 2 

The template automaton modelling Timer 2 (T2) is shown in Figure 5. The automaton 
takes as a parameter the length of the time pulse. The automaton has three locations. 
Locations Out0 and Out1 represent the output states 0 and 1 just as in T1. The third 
location, called Resetting, forces the synchronizations to happen in the proper order. 

If the automaton is in the Out0 location and it receives the output_change 
synchronization, it takes a transition to the Out1 location. This transition resets the 
clock d and sets the T2_out variable to value 1. There is also a transition from Out1 
back to itself with synchronization output_change because the timer block 
disregards the rising edge of the input when the output is 1. The automaton sends the 
T2_change synchronization when the output of the block changes from 1 to 0 because 
only this change can cause the input signal of the T1 to change from 0 to 1. 

 

 

Figure 6. Automaton for input sampling. 

The automaton receives synchronization from the reset channel when the reset signal 
changes from 0 to 1. If the reset synchronization is received while in the Out1 
location, the automaton fires an edge to location Resetting. From there the 
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automaton immediately transfers to Out1 sending the T2_change synchronization 
which is received by the T1 automaton. 

4.1.3 Input Automaton 

The Input automaton assigns values for input variables non-deterministically. The Input 
automaton has three locations as shown in Figure 6. Normally the automaton is in the 
Wait location and it can take a transition to location CheckReset anytime. During 
the transition input variables are given values non-deterministically. Those variables are 
T_111, T_112, T_211, T_212, P_121, P_221, M_141, and M_241. The values of the 
variables are used in the update part of the edge where a function get_input is 
invoked. The function calculates the output of the OR gate (variable or_out) based on 
the values of the inputs which are passed as parameters to the function. The function 
get_input is declared in Appendix B. 

From the CheckReset location the automaton takes one of the two transitions 
leading to another committed location CheckInput, depending on the value of the 
reset_trig variable. If reset_trig equals to true, the manual trip push button has been 
pushed and the automaton sends a reset synchronization. 

The next transition leading back to the location Wait is taken depending on the value 
of the rising_edge variable, which is calculated in the get_input function. If the 
variable equals to true, the automaton sends an input_change synchronization 
indicating that the output of the OR gate has changed from 0 to 1. 

 

Figure 7. Automaton modelling the water inflow inputs. 

4.1.4 Flow Input Automaton 

Because of the switch-on delay block in the water inflow input signals, these inputs 
were modelled as a separate automaton. The automaton shown in Figure 7 models the 
sampling of flow inputs and the switch-on delay of 5 s. 
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The automaton consists of four locations. Locations Out0 and Out1 represent the 
states of the output of the switch-on delay block being 0 and 1. In the edge from Out0 
to CheckInput, values for the variables F131 and F231 are given. From the 
CheckInput location, the automaton takes a transition depending on the values of 
those variables. If both the inputs are 0, the automaton takes a transition back to the 
Out0 location. Otherwise the automaton transfers to location Wait. 

In location Wait the automaton waits for five time units until it takes a transition to 
Out1 sending a flow_change synchronization. The edge from Wait to Out0 
represents the situation when the inputs change back to 0 before the 5-s delay has 
passed. From the Out1 location, the automaton transfers back to Out0 and sets the 
values of the variables back to 0. 

4.2 NuSMV Model of the System  

Two NuSMV models of the stepwise shutdown system were built based on the logic 
diagrams presented in Figures 1 and 2. The models comprised a set of modules that are 
collections of declarations, constraints and specifications. Both models were divided 
into several modules according to the process variable measurements. Since a module 
can contain instances of other modules, a structural hierarchy was constructed. Figure 8 
below illustrates the modules and their hierarchy.  

 

Figure 8. NuSMV module hierarchy. 
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The “Main” module is highest in the hierarchy. It creates instances of the “Stepwise 
reactor shutdown” module and the process measurement variable modules. Besides 
including the module definitions, the main module contains the checked conditions. The 
“Stepwise reactor shutdown” module implements the timing logic. Additionally, it 
connects all the process variable measurement sub-modules through an OR gate and the 
output of this module would be the input of the process control system (see Figure 9). 
Each process variable measurement module contains the input signals and their 
processing and voting logics for a particular process variable measurement. The basic 
function blocks were modelled as individual modules to improve component reusability.  
Both the Stepwise reactor shutdown and the process variable measurement modules 
utilize the function block modules to realize their functionality.  
 

Reactor 
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Module

High Water 
Inflow

Module

Over 
Pressure
Module

Stepwise Reactor Shutdown 
Module 

Function 
Block 

Modules

OR Timing 
logic

Output

Information/event flow

Module is used byManual Trip
Module

 

Figure 9. NuSMV module dependencies. 

The design of the logic consisted of 10 input signals (five per redundancy) of which six 
are binary signals and four are analogue signals. The binary signals were simply 
modelled as Boolean variables. The value range of the analogue input variables was 
abstracted because it was quite large, ranging 0–200. Including the whole value range 
would have considerably increased the size of the state space, thus making the model 
checking less practical. The value range was reduced from [0, 200] to {0, 1, …, 10}, 
where 0 represents the original value range of 0 to 18, 1 represents 19 to 36, and so on. 
The input signals were allowed to get any value at any given time step so that the 
environment could behave as freely as possible.  

Because NuSMV does not support continuous time like UPPAAL, the time-
dependent components were modelled to operate in discrete fixed-length time steps. 
During each time step, the inputs of the functional blocks are first sampled and then the 
outputs are updated.  
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When using discretized time, modelling the control logic is straightforward (see, e.g., 
Figure 11 on page 25 which illustrates the NuSMV code of the “Over Pressure” module, 
which also includes fault status information of the input signals) but modelling time 
pulse blocks requires the use of so-called timer variables. Consider, e.g., the 
functionality of the rightmost 3-s time pulse block illustrated in Figures 1 and 2. It was 
modelled with a single automaton in UPPAAL (see Figure 4). In NuSMV, the time 
pulse block was modelled as a separate code module consisting of an input signal, a 
local timer variable and conditions allowing the triggering of the timer only with the 
rising edge. The output of the module remains 1 as long as the timer is running. Figure 
11 illustrates the NuSMV code when the length of the time step is 1 s and therefore the 
timer variable Timer can have values from 0 to 3. The timer is triggered if the input of 
the module is 1, the previous value is 0, and the value of the timer is 0. When the timer 
gets a value higher than or equal to 3, the timer is reset. The value of the timer grows by 
one at each time step, if it is higher than 0. 

 

Figure 10. NuSMV model of the 3-s time pulse. 

4.3 Verified Properties 

Both the UPPAAL and NuSMV models were checked against four properties that 
formalize a specification stating that each of the process variable measurements should 
trigger the stepwise shutdown system. The properties are: 

1. If at least two of the four temperature measurement signals exceed the limit, then 
eventually the output of the system gets the value 1. 

2. If at least one of the two over-pressure signals has the value 1, then eventually 
the output gets the value 1. 

3. If at least one of the two water inflow signals has been on for at least 5 s, then 
eventually the output gets the value 1. 

4. If at least one of the two manual trigger signals has the value 1, then eventually 
the output gets the value 1. 
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In all properties, there is also a condition that the output of the 15-s time pulse block 
must be zero. This ensures that only the inputs that should, according to their 
specifications, trigger the 3-s time pulse block are considered. In UPPAAL, the 
properties can be formalized with TCTL [3]. For example, the second property can be 
captured by the following TCTL formula: 

A□ (((In.P121 or In.P221) and T2_out == 0) imply A◊ T1.Out1) . 

This formula was expressed in the UPPAAL specification language with the special 
leads-to operator “-->” as follows: 

((In.P121 or In.P221) and T2_out == 0) --> T1.Out1. 

In NuSMV, the specifications were formalized with LTL [11] and, for instance, 
property 2 was expressed in LTL as follows:  

LTLSPEC G(((press.I121 | press.I221) & stepwiseshutdown. 
tp2.output = 0) -> F(stepwiseshutdown.Output)); 

4.4 Comparison of Results  

A design error in logic design A was found during verification of the system model. The 
design error causes the output of the system to freeze to zero if the manual trip push 
button is pushed during the 3-s time pulse. Then the 15-s block is reset and the 3-s block 
will not receive a rising edge as long as at least one of the process variable measurement 
trigger conditions is active since the 3-s time pulse is running. This feature of design A 
causes a violation of all of the four checked properties. Design B was found to operate 
correctly with respect to the four properties. 

Both UPPAAL and NuSMV revealed the design error causing the output to freeze to 
zero in logic design A. With NuSMV, the properties were checked with different 
settings where the time step was between 10 ms and 1 s. The erroneous behaviour of 
design A was discovered in all the considered settings. When using the 10-ms time step, 
the size of the state space of the models of designs A and B is 3·1015 and 1018 and that 
of the reachable state space 2·1012 and 4·1014, respectively.  

Model checking was carried out with UPPAAL version 4.0.6 and NuSMV version 
2.4.3 on a PC with 2 GB of RAM and an Intel Core 2 Duo E6320 processor running at 
1.86 GHz. The model checking times of the verification runs for UPPAAL and NuSMV 
(with three different time steps) are presented in Tables 1 and 2. The model checking 
times of UPPAAL models were between 9 and 21 s and of NuSMV models between 1 
and 31 s. In most cases, the model checking times of property 3 were the longest due to 
the 5-s delay element related to the water inflow signals (see Figures 1 and 2). Except 
for property 3, the model checking times of design B with UPPAAL were about twice 
as long as those of design A. This is because the error in design A caused the properties 
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to be violated and, thus, the model checker did not have to go through the whole state 
space of the model. In NuSMV, the model checking times of both designs were of the 
same order. 

Table 1. Model checking times for design A(s). 

Design A  
NuSMV   

Property UPPAAL
1 s 100 ms 10 ms 

Property 1 9.1 0.6 1.6 7.1 
Property 2 9.1 0.6 1.6 7.2 
Property 3 20.6 0.6 1.4 16.4 
Property 4 9.1 0.6 1.6 6.1 

 

Table 2. Model checking times for design B(s). 

Design B  
NuSMV   

Property UPPAAL
1 s 100 ms 10 ms 

Property 1 17.7 0.3 1.2 7.7 
Property 2 18.0 0.3 1.2 7.6 
Property 3 17.7 0.6 1.5 30.4 
Property 4 17.6 0.3 0.8 7.0 

 

4.5 Failure Models 

In addition to verifying the correct behaviour of the stepwise shutdown logic (design B), 
the fulfilment of a single failure criterion was analysed with the NuSMV model. The 
International Atomic Energy Agency (IAEA) [13] defines single failure as “A failure 
which results in the loss of capability of a system or component to perform its intended 
safety function(s), and any consequential failure(s) which result from it”. A single 
failure criterion is defined as “A criterion (or requirement) applied to a system such that 
it must be capable of performing its task in the presence of any single failure”.   

The fulfilment of the single failure criterion was tested with several different failure 
models. In the failure models, it was assumed that a failure can only affect one input 
signal of each process variable or one computer at a time. With respect to modelling, in 
the case of a computer failure it was assumed that all outputs of the failed computer are 
faulty. The logical components were assumed to function correctly.  



4. Modelling of the Stepwise Shutdown Logic 
 
 
 

24 

The starting point of the model was that no faults were present. The original model 
was evolved with more challenging fault models by considering increasingly more 
complicated fault scenarios. Different faults were classified according to their effect and 
diagnostic perceptivity. The following three models were considered: 

1. All failures are detected, failed signals get a non-deterministic value, and input 
signals or computers may fail or recover at any time step. 

2. Failures may remain undetected, failed signals keep their previous values, and 
input signals or computers may fail or recover at any time step. 

3. Failures may remain undetected, failed signals get a non-deterministic value, and 
input signals or computers may fail or recover at any time step. 

To model faults, each input signal was given an additional Boolean value that 
represented the fault status of the signal (see Figure 11). The NuSMV model was 
checked with each of the failure models present against two properties that formalize a 
specification declaring that the stepwise shutdown logic should fulfil the single failure 
criteria. The properties are:  

1. A single failure should not spuriously trigger the stepwise shutdown. 
2. A single failure should not prevent the actual execution of the stepwise shutdown. 

Design B fulfilled both of the single failure criterion properties completely with failure 
models 1 and 2. With failure model 3, the design did not fulfil property 1 because a 
single undetected faulty binary signal with value 1 could spuriously trigger the stepwise 
shutdown system. As the design is two-redundant based on 1 out of 2 voting, this 
property cannot even be expected to be fulfilled. However, in this case, the system fails 
in the safe direction. With failure model 3, design B fulfils property 2, i.e. no failures 
with dangerous consequences were discovered.  

The introduction of the failure models increased the size of the state space. When 
using the 10-ms time step, the state space of design B was 2·1036 and the model 
checking times were between 1 s and 4 h. The longest model checking times were 
measured for property 1 with failure model 3 (including computer failures), when the 
time step was 10 ms; however, in this case the value range of the analogue signals was 
further reduced to [0, 1, 2, 3] to make the model checking more practicable. 
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Figure 11. NuSMV model of the OverPressure module (including fault model 1). 
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5. Safety Cases 

The general definitions of a safety case [1, 7] say that it is a way of presenting a clear, 
defensible argument that a system is adequately safe to operate in its intended 
environment. A safety case document contains all the necessary information for 
justifying the safety of a system together with an argument that explains how the 
available evidence supports the safety claims.  

Earlier in the MODSAFE project (2007), formal methods and models applied in the 
safety evaluation of industrial and nuclear safety systems were reviewed [19]. As part of 
the review, the concept of a safety case was introduced and considered.  

The primary objective of trying the safety case methodology for the stepwise 
shutdown system (described in Section 2) was to get experience on how the safety case 
development proceeds in practice, how difficult it is, and how the ASCE (Assurance 
and Safety Case Environment) tool [2] could be used for supporting the safety case 
development. The purpose was not to make a complete safety case of the system but to 
try the safety case development in practice, get information on the different features of 
the development process and utilize the experience later for reporting the results of 
model checking. 

This section makes a general comparison of two safety case methodologies, Claim 
Argument Evidence (CAE) and Goal Structuring Notation (GSN), and describes the 
development of an exploratory safety case of the stepwise shutdown logic. 

5.1 Safety Case Development and Model Checking 

The general definition of a safety case refers to making it “for providing evidence that 
the system is adequately safe for a given application and environment over its lifetime”. 
This means making a safety case as complete as reasonably possible and taking all the 
possible viewpoints and circumstances into account. Thus, safety cases may contain 
several different types of evidence, and the results of model checking can be used for 
supporting certain goals. However, the role of model checking in safety case creation is 
limited because only certain features of the system can be modelled and model checked.  
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Model checking suits well certain types of verification tasks but other evidence is 
needed to fully support high-level safety claims. The safety case notation could be 
effectively used for documenting the results of model checking. Then, the objective is 
not to consider extensively all the viewpoints for verifying the whole system but to 
concentrate on those aspects where model checking could help in providing reliable 
evidence.  

5.2 Comparing Safety Case Notations 

The MODSAFE project has considered two methodologies for safety case  
development: CAE (Claims, Arguments, Evidence) and GSN (Goal Structuring 
Notation). They both are introduced in concept level in the MODSAFE project report 
2007 [19]. This section lists some differences and similarities of the notations.  

The structure of the CAE methodology is rather simple to understand because it has 
only three main entities (claim, argument, evidence) and a general entity (other) for 
everything that does not fit under the three main ones. The structure is simple and 
makes CAE clear and concise to follow. Each claim is followed by argumentation, sub-
claims or evidence. Because of the small number of entities, the expressive power of 
CAE is not very high compared with GSN. It means that lots of narrative is needed to 
explain and justify the structure and the choices made in the safety case development.  

GSN has eight entities (goal, context, strategy, justification, assumption, solution, 
model, notes) that make the methodology rich in expressive power. Narrative can be 
added to the entities just like in CAE but the main idea of GSN is to visualize 
everything essential through the entities. Basically, narrative is used only for the details. 
Compared with CAE, users may find it problematic to utilize all the available entities 
and to know how to use them.  

In CAE, the approach is bottom–up. Higher-level claims are divided into more precise 
sub-claims. There may be several levels of sub-claims that are followed by evidence 
showing that the claims are true. Claims are followed by arguments justifying the next 
steps and explaining the facts and reasons behind the decisions. The direction of the 
arrows connecting the entities is bottom–up. The lower-level entities are connected to 
the upper levels by arrows with labels “sub-claim of”, “evidence for” or “supports”.  

Contrary to CAE, GSN uses a top–down approach. Goals are “solved by” lower-level 
goals or other elements of the notation. Any entity may also be connected to a lower-
level entity with an arrow labelled “in context of”. That may be used, e.g., in branching 
the safety case based on certain contexts such as compliance with a standard or 
considering the system design. 

Basically, the main elements of the two methodologies are almost equivalent. Claim 
equals goal, argument equals strategy, and evidence equals solution. In both notations, 
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the relationships of the entities are described by arrows. The selection of arrow labels is 
somewhat restricted in both notations but it is not significant because the main point is 
the variety of entities.  

5.3 Making an Example Safety Case of the Stepwise Shutdown 
Logic 

In the experimental safety case carried out in the project, the goal was to get hands-on 
experience on how the safety case development proceeds, how difficult it is, and what 
kinds of viewpoints are required to make a safety case. The starting point was to create 
a formal model of the stepwise shutdown logic and use it for verifying the behaviour of 
the system with model checking. The system and its modelling process are described 
earlier in this document.  

The CAE notation was chosen for the experimental case based on its simple entity 
structure. Because the aim was to analyse the design of the shutdown system, the top-
level claim (goal) for the safety case was chosen to be: “Shutdown system design meets 
reactor safety requirements”. The top-level claim was divided into branches handling 
claims originating from functional and non-functional requirements. They were further 
divided into increasingly more specific sub-claims. To maintain the structure in an 
understandable way and make it possible to be followed later, each claim should be 
justified and explained. It is essential to argue why it was acceptable to divide the claim 
into sub-claims and what were the reasons for it.  

The structure of the example safety case can be seen in Figure 12 below. The blue 
circles are claims, the green rectangles with round corners are arguments and the red 
rectangles are evidence. The example safety case is still far from a complete safety case 
because only the claims that could be shown to be true with model checking were 
considered. To make the safety case complete would require complementing all the blue 
leaves with (possibly several levels of) more detailed sub-claims, argumentation and 
finally evidence.  
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Figure 12. Sketch of the example safety case made with CAE notation. 

An example of a claim-argument-evidence triplet can be seen in Figure 13 below. It 
concerns the design of the manual bypass function of the stepwise shutdown system 
described in Section 2. The claim is a sub-claim under another sub-claim called “Timing 
of the output signal meets reactor requirements”. The argument shown in the Figure 13 
just says that model checking is suitable evidence for this kind of claim. The evidence 
consists of the results of model checking.  
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Figure 13. Example of a claim-argument-evidence triplet. 

 In the example safety case, the main focus was on the functional claims concerning the 
correct behaviour of the system design. The claims where model checking was found to 
be suitable evidence concerned the manual bypass of the delay function (see Figure 13), 
driving the system towards a safer state for 3 s, and not freezing the output. All of them 
were verified by model checking. As mentioned earlier, the parts of the safety case 
where model checking was not suitable evidence were not investigated further because 
they were out of the scope of the project.  
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One way to utilize the safety case notation could be using it only for documenting the 
results of model checking. The verifiable requirements can be written as claims, their 
justification and additional information can be written under argument and the results of 
model checking can be documented as evidence. In addition, safety case entities can be 
colour coded showing the confidence levels of evidence or the success of model 
checking. Such a structured and visually rich way of documenting the model checking 
results could be beneficial when the system (e.g. requirements or design) is changed and 
its behaviour has to be verified again. The tests that failed or passed are easy to spot 
from a colour-coded tree structure. The safety case styled way of documenting could 
then be used to support the safety cases aiming at complete safety demonstration. 
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6. Conclusions  

Digitalized I&C systems are able to perform increasingly more complicated control 
tasks. They often combine real-time aspects such as timers with non-trivial control 
logic, making their design and validation very challenging. Model checking is a 
promising formal method that enables complete verification of designs of such systems. 
It requires a state machine model of the design and its relevant environment and seems 
to suit well the verification of safety logic designs.  

In the MODSAFE project, the use of two types of model checking approaches was 
studied to verify safety logic designs involving timing aspects. One approach was to use 
timed automata as the modelling framework and the other to employ finite state 
machines typically used in verifying hardware. For the former approach, the UPPAAL 
model checking system was used and for the latter NuSMV. The approaches were 
compared using two similar designs of a safety logic demonstrating how small subtle 
changes in the design can lead to unexpected errors that are hard to detect without using 
model checking techniques. A straightforward approach to modelling such designs was 
developed using timed automata and finite state machines and the performance of the 
model checking tools when verifying the safety requirements of the designs was 
studied. 

UPPAAL supports direct modelling of timers using real-valued clock variables in 
timed automata so that also the control logic is easy to capture. However, the analysis 
techniques in UPPAAL are based on state space enumeration techniques which have 
scaling problems when the number of input variables in the model grows. NuSMV 
lends itself well to handling control logic but modelling time-dependent components is 
less straightforward as such components need to be modelled operating in discrete time 
steps. However, the symbolic model checking techniques used in NuSMV scale much 
better as the number of input variables grows. Both approaches are able to verify 
moderate size designs, indicating that current model checking techniques are already 
applicable to verifying involved safety logic designs. In addition to verifying the correct 
behaviour of the design, NuSMV was successfully used to analyse whether single 
failure criteria based on different fault models are satisfied. The results strongly suggest 
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that model checking has the potential to become a valuable tool that can be used both in 
the design and licensing of safety automation. 

In addition to modelling and model checking the stepwise shutdown logic, two safety 
case notations, CAE and GSN, were compared in the project. The main differences 
between the notations were found to be the number of available entity types that affect 
the amount of narrative needed to explain the safety case, and that CAE uses a bottom–
up approach while GSN is top–down.  

The CAE notation was used to make an exploratory safety case concerning the design 
of the stepwise shutdown system. Only the branches where model checking could be 
used as evidence were investigated in the project. The other branches were left on a 
rough level just to outline the structure of a more complete safety case. The safety case 
notations could be used just for documenting the results of model checking, thus 
offering a visually rich and reusable way of reporting.  
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Appendix A: System Declarations of the UPPAAL 
Model 
// Instantiations of the timer automata. 
 
// Delay of 3 seconds 
// Parameters: const int delay 
T1 = Delay(3); 
 
// Delay of 15 seconds with additional reset input 
// Parameters: const int delay 
T2 = Delay_R(15); 
 
// Input automaton taking care of input sampling 
In = Input(); 
 
// Automaton modeling flow inputs and the switch-on delay of 5 seconds 
flow = Flow(); 
 
// List one or more processes to be composed into a system. 
system T1, T2, In, flow; 
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Appendix B: Local Declarations of the Input 
Automaton of the UPPAAL Model 
clock d; 
bool or_out, or_out_prev; 
bool reset_signal, reset_prev, reset_trig; 
bool rising_edge; 
int T111, T112, T211, T212, P121, P221, M141, M241; 
 
// Chosen signal values used in modelling: 
// 0  below limit 
// 1  over limit 
bool Temperature(int T_111, int T_112, int T_211, int T_212) { 
  int ones = 0; // number of signals over the limit 
  T111 = T_111; T112 = T_112; T211 = T_211; T212 = T_212; 
  if(T_111 == 1) 
    ones++; 
  if(T_112 == 1) 
    ones++; 
  if(T_211 == 1) 
    ones++; 
  if(T_212 == 1) 
    ones++; 
  if(ones >= 2) // At least two signals over the limit 
    return 1; 
  else 
    return 0; 
} 
 
// Over pressure (P) signals 
// P: 2 redundant signals, 1 out of 2 voting, default 0 
bool Pressure(int P_121, int P_221) { 
  P121 = P_121; P221 = P_221; 
  if(P_121 == 1 || P_221 == 1) 
    return 1; 
  else 
    return 0; 
} 
 
// Manual trip signals 
bool Manual(int M_141, int M_241) { 
  M141 = M_141; M241 = M_241; 
  reset_prev = reset_signal; 
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  if(M_141 == 1 || M_241 == 1) 
    reset_signal = 1; 
  else 
    reset_signal = 0; 
  reset_trig = reset_signal & !reset_prev; 
  return reset_signal; 
} 
 
// Calculates the output value of the OR-port based on the sampled 
input values. 
// Parameters: 
// T_*:  Temperature measurement signals 
// P_*:  Pressure measurement signals 
// F_*:  Flow measurements 
// M_*:  Manual trip signals 
void get_input(int T_111, int T_112, int T_211, int T_212, 
        int P_121, int P_221, int M_141, int M_241) { 
  bool T_out, P_out, M_out; 
 
  T_out = Temperature(T_111, T_112, T_211, T_212); 
  P_out = Pressure(P_121, P_221); 
  M_out = Manual(M_141, M_241); 
 
  or_out_prev = or_out; 
  or_out = T_out || P_out || M_out || flow_out; 
  rising_edge = !or_out_prev && or_out; 
} 
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