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Preface 

Currently, much of product creation in all economic sectors, from micro-electronics to 
built environments, is carried out within a paradigm introduced by the industrial 
revolution. That paradigm is the execution of design, production, and distribution by 
professional experts working at a few specialized locations. Many business models, 
ranging from extended enterprises to virtual organizations, have been developed within 
this established paradigm. Nonetheless, the established paradigm has limited potential to 
achieve radically improved user-orientation and radically reduced environmental 
impacts. 

These two limitations are extremely significant because, across economic sectors and 
global regions, organizations face regulatory and market pressures to increase the 
sustainability of their products and processes. Further, organizations are driven by 
competitive pressures to differentiate their offerings and increase their sales by 
increasing the involvement of customers/users. Yet, product users cannot easily 
participate in the established paradigm. Rather, the established paradigm is populated by 
professional experts in design and production who find out what product users may 
want through a variety of professional intermediaries such as market researchers. 
Moreover, environmental impacts cannot be radically reduced by the established 
paradigm. For example, production within the established paradigm involves separate 
parts being manufactured at several different locations, and then being transported long 
distances for assembly at one or more other locations. 

A new paradigm comprising point-of-demand product creation by non-experts could 
better enable user-orientation and bring about radical reductions in environmental 
impacts. However, this new paradigm cannot be enabled by established computer-aided 
design / computer-aided manufacturing (CAD/CAM) systems which are developed for 
use by professional experts such as building architects, industrial designers, 
manufacturing engineers etc. By contrast, combining AMT with generative computation 
may have the potential to enable a wide range customers/users to create the products 



1. Introduction 
 
 
 

5 

that they need/want at point-of-demand. Generative computation automatically 
produces options that are not stored previously in computer. These options adhere to 
key requirements, but are unpredictable and involve little, or no, external human input 
after initial programming. The potential of various types of generative computation to 
automatically produce designs has been recognized for some years. More recently, it has 
been proposed that generative computation can be extended from the production of 
designs to the production of what is described by those designs. This can range from the 
production of the very large (e.g. buildings) to production of the very small (e.g. micro-
electro-mechanical systems). Generative computation combined with AMT can be 
described as generative production systems. This Working Paper provides an overview 
of generative production systems and the opportunities which they introduce. 
 

Stephen Fox  

Espoo, July 2009 
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1. Introduction 

1.1 Background 

Increasing the sustainability of human enterprises is a global priority (Karl et al., 2009; 
Pachauri and Reisinger, 2007). As illustrated in Figure 1, sustainability involves 
individuals, organizations and societies meeting their needs and expressing their 
potential while preserving natural ecosystems (Buckley et al., 2008).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Three criteria of sustainability. 

It is explained in the second section of this report how advanced manufacturing 
technologies (AMT) have the potential to meet all three sustainability criteria during the 
creation of physical goods. It is also explained in that section, why the potential of 
advanced manufacturing technologies is currently restricted by the functionality of 

 

sustainable

meet needs express potential

preserve eco-systems



1. Introduction 
 
 
 
 

12 

established computer-aided design (CAD) and computer-aided manufacturing (CAM) 
technologies. 

In the third section, the potential of generative computation to overcome current 
CAD/CAM restrictions is explained. As highlighted in Figure 2, generative production 
systems are defined as generative computation combined with advanced manufacturing 
technologies. An outline of the foundations of generative computation is also provided. 
In particular, the importance of formal grammars is discussed. 

 
 

 

 

 

 

Figure 2. Definition of Generative Production Systems. 

In the fourth section, details are provided about the formulation of shape grammars: that 
is one type of formal grammar which has particular relevance to product creation. The 
major stages of formulation are described. The stages include: defining a vocabulary of 
basic forms, developing rules for the manipulation of those basic forms. 

In the fifth section, details are provided about the computation of shape grammars. 
These include: definition with shape algebras, enabling with algorithms, description 
with pseudo-code, implementation with software, and the combination of shape 
grammars with other computational methods. 

Overall, the analysis of shape grammars provides insights into the formulation and 
computation of formal grammars in general. Further, the consideration of combination 
with other computational methods reveals that one formal grammar can provide only a 
starting point for generative computation, and generative production systems. For 
example, different types of grammars such as shape grammars and graph grammars can 
be combined. Further, shape grammars can take input from ontology, and outputs can be 
improved through a variety of optimally-directed search techniques. 

In the sixth section, an overview is provided of challenges in the development of 
generative production systems. In particular, challenges are described under the 
headings of: inherent ambiguity, domain complexity, computational complexity, and 
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software development. Subsequently, potential resources for meeting the challenges are 
discussed. 

In the seventh section, examples are presented of application opportunities for 
generative production systems. Some of these opportunities are common across 
economic sectors, while others are particular to certain types of market offerings. 

1.2 Research goal 

The goal of the research reported in this VTT working paper was to investigate the 
potential for combination of generative computation with advanced manufacturing 
technology in order to introduce widespread sustainable product creation. The 
objectives of the research were to address the following questions: what CAD/CAM 
limitations can restrict the potential of advanced manufacturing technologies to meet 
sustainability criteria; to what extent can generative computation overcome those 
limitations; what are the foundations of generative computation; what are common 
stages and important details in generative computation; what challenges are there to 
broader implementation of generative computation, and its combination with advanced 
manufacturing technologies; what resources are available to meet those challenges; 
what are the major application opportunities for generative computation combined with 
advanced manufacturing technologies. 

1.3 Research method 

The research comprised literature review and exploratory interviews with experts in 
generative computation, and advanced manufacturing technology. 
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2. Sustainable product creation 

2.1 Overview 

Creation means bringing something into existence. Here, product creation means 
bringing physical products into existence through their design and production. 
Sustainable means that processes are able to be carried out for an indefinite period in 
such a way that individuals, organizations, and societies are able to meet their needs, 
and express their greatest potential in the present, while preserving natural ecosystems. 
Accordingly, sustainable product creation can be considered under the three headings 
of: meeting needs, expressing greatest potential, and preserving natural ecosystems. The 
definition for sustainable product creation used in this paper is presented in Figure 3. 
 

 

 

 

 
 
 

Figure 3.  Definition of sustainable product creation. 

In this section, the potential of advanced manufacturing technologies (AMT) to enable 
sustainable production creation is described. First, an outline of different categories of 
AMTs is provided. Then, opportunities for AMTs to enable major reductions in the 
extraction and processing of natural resources are discussed. Next, opportunities are 
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outlined for AMTs to enable more people to expresses their greatest potential. 
Subsequently, opportunities for AMTs to meet needs for social products and distributed 
employment are described. In conclusion, challenges for effective implementation of 
AMT are outlined. 

2.2 Advanced Manufacturing Technologies (AMT) 

Advanced Manufacturing Technologies (AMT) enable improved production and/or 
components by surpassing, in one or more characteristics, traditional combinations of 
manufacturing and materials. Different types of AMT can be grouped into the following 
three broad process categories: subtractive processes (e.g. electrical discharge 
machining, high speed milling, laser processing); forming processes (e.g. direct 
production casting, incremental sheet forming, reconfigurable molds, robotic bending); 
and additive processes. It is important to note that additive processes can be divided into 
non-layer additive processes, which can realize one dimensional complexity (e.g. laser 
joining, robotic welding), and layer additive processes which can realize three 
dimensional complexity (e.g. 3D printing, laser sintering, stereolithography, ultrasonic 
consolidation). Common across AMT is their potential to be digitally-driven by direct 
transfer of digital design data. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. AMT (Advanced Manufacturing Technologies). 
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AMT can be used to produce everything from molecular sized solid components to very 
large volumetric products such as entire buildings. Further, AMT makes it possible to 
transcend previously intractable trade-offs including: performance requirements versus 
materials microstructures; and geometric complexity versus production time/cost. This 
enables the introduction of new types of high performance physical goods which are 
person-specific, location-specific, and/or event-specific. 

2.3 Preserving ecosystems 

With regard to preserving ecosystems, sustainable product creation should involve 
reduced consumption of natural resources, which leads to major reductions in the 
extraction and processing of natural resources which destroys natural ecosystems. Use 
of Advanced Manufacturing Technologies (AMT) can lead to reduced consumption of 
natural resources in several ways. First, consumption of raw materials can be reduced 
by production of topologically optimized designs which have, for example, minimal 
wall thicknesses. Also, excessive raw material wastage arising from traditional 
subtractive processes can be eliminated. Further, AMT can radically reduce the need for 
tooling and, hence, consumption of the raw materials that are traditionally used in the 
production of tooling. Furthermore, clean lightweight AMT machinery can enable 
point-of-demand production, and thereby radically reduce the need for packaging 
materials. A summary is provided in Table 1 below. 

 
Table 1. AMT enablers for reducing consumption of natural resources. 

Opportunity Enabling factor 

Topologically optimized designs 

More net shape production 

Much less need for tooling 

Production Materials 

Packaging of goods for transportation is not required 

Fewer energy intensive conversion processes 

Fewer secondary manufacturing and assembly processes 

Refurbishing, repairing, remanufacturing existing components 

Process Energy 

Less transportation and transportation of lighter goods 

 
In addition to multiple reductions in raw materials usage, AMT can enable multiple 
reductions in energy consumption. First, AMT can replace traditional production 
processes where energy is consumed in heating and cooling cycles, for example, when 
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converting solid materials into molten liquids. Energy consumption is also reduced by 
the reductions in secondary manufacturing processes and assembly processes. These 
reductions are achieved when AMT is applied to produce net shape consolidated 
assemblies. Also, AMT can reduce transportation energy consumption through point-of-
demand production of consolidated assemblies, which traditionally have been 
manufactured as several separate parts at several different locations. Further 
transportation energy consumption reductions are possible when goods produced by 
AMT are lighter in weight because they are topologically optimized. These goods can 
be lighter weight products which are being transported, and/or lighter weight 
components which are part of the transportation vehicles themselves (Reeves, 2008). 
Certain AMT techniques are also well-suited for modernizing, refurbishing or repairing 
existing components for further use, or remanufacturing them as updated or new 
products. This continued use of existing components can involve less consumption of 
raw materials and energy than the production of entirely new components. 

2.4 Expressing greatest potential 

With regard to expressing greatest potential, sustainable product creation should involve 
increased scope for self-expression among non-experts in the design and production of 
physical goods that they need and/or want. It should also involve increased scope for 
establishing income generating enterprises that provide employment - irrespective of 
geographical location. There are a number of reasons why AMT has the potential to 
enable greater self-expression among non-experts. First, AMT can be used to produce 
goods that comprise only a few consolidated assemblies rather than many separate parts. 
Hence, only one, or very few, machines are needed to produce goods. As a result, the 
range of production knowledge required to produce goods is radically reduced. Further, 
AMT can be used to produce goods at point of demand. This is because the reduced 
need for specialist heavy equipment and inventory goods obviates the need for 
traditional factories. Thus, non-experts can stay close to home and need to know much 
less in order to create products themselves. Further, the production of single products, 
which are person-specific, location-specific, and/or event-specific, is much more 
economically viable using AMT because investment is not required in production 
tooling, etc. Moreover, AMT enables creation of complicated geometries and integrated 
functionality that can express, for example, one person's unique aesthetic ideas; 
particular functional requirements; and/or physical characteristics. Unique aesthetic 
ideas can come wholly from one person's imagination or can involve adaptation of, for 
example, characters from a computer game which can be downloaded for physical 
creation using AMT.  
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There are several reasons why AMT offers increased scope for establishing income 
generating enterprises that provide employment. First, there is much less need for 
capital investment because there is reduced need for specialist heavy equipment, 
inventory goods, and factories for holding them. Further, it can be possible to rent time 
on AMT machinery that is owned and operated by others. Also, there can be little, if 
any, need for costly conventional market research. This is because, for example, the 
goods that are produced can be person-specific and manufactured to order on receipt of 
order. In addition, there is less, if any, need for costly conventional distribution 
arrangements. This is because AMT is digitally-driven. Thus, digital product data can 
be uploaded to the AMT facilities that are nearest to the customer. The potential for 
digital distribution opens up potential for an enterprise based at one single location 
anywhere in the world to create and serve a market that spans the whole world. All 
together these enablers radically reduce the uncertainties that have traditionally caused 
many entrepreneurial ventures to fail and prevented many potential entrepreneurial 
ventures from even starting. It is important to note, that established business models are 
not likely to encompass the sustainability requirement of expressing greatest potential. 
This is because the established business models, as summarized in Figure 1 above, are 
the domain of specialized professional experts. The business models of engineer-to-
order and design-to-order do offer authority, rather than just choice, to individual 
customers. However, individual customers express themselves through professional 
experts such as building architects and industrial designers. Thus, individual customers 
do not express themselves directly, but do so through intermediaries. Although it is 
clear that the creation of very large physical goods, such as cruise ships, will continue to 
involve the participation of hundreds of people, AMT has the potential to enable 
individuals to express their needs and wants much more directly through the rapid 
creation of physical scale models. A summary of AMT enablers for increased self-
expression is shown below in Table 2. 
 

Table 2. AMT enablers for expression of potential. 

Opportunity Enabling factor 
Less production expertise needed 
Production can be carried out at a single location 
Production of person-specific goods is economically viable 

Creation of goods 

Possible to produce from external sources such as computer games 
Little, if any, initial capital investment in production plant 
Conventional market research is not necessary 
Digital, rather than physical, distribution 

Establishing enterprises 

Can create and serve a global market from just one location 
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2.5 Meeting needs 

With regard to meeting needs, sustainable product creation involves meeting ever 
increasing demand for social products such as medical aids and low-cost housing. AMT 
can enable the creation of a wide variety of person-specific medical goods from scan 
data, including: conformal seating; crash helmets; dental aligners; dental bridges and 
crowns; hearing aids; orthotic footwear; prosthetics; surgical cutting guides; surgical 
implants. Person-specific medical goods can provide better performance. Person-
specific hearing aids, for example, can provide increased comfort and increased 
performance through reduced feedback. Different people can make different distinctions 
between needs and wants. One person, for example, may regard perfect alignment of 
their teeth as being a need. By contrast, another person may regard perfect alignment of 
teeth as being a want. In either case, person-specific transparent dental aligners, which 
are more attractive and less invasive than traditional dental braces, can be produced with 
AMT. Similarly, one person may need a dental crown and want it to made from gold. 
By contrast, another person may need a dental crown and be satisfied to have it made 
from a non-precious material. In either case, more accurate and less expensive dental 
bridges and crowns can be made directly from patient scan data using AMT. 

In addition to medical goods, AMT has the potential to revolutionize the creation of 
low cost housing. This can be achieved through the digitally-driven manufacture of 
interlocking envelope components at point-of-demand. Further, these components can 
be assembled right first time by non-experts. Moreover, AMT has the potential to 
enable improved performance from all building types through the embedding of sensors, 
actuators etc., into building components during their manufacture. Embedded devices 
can be used to make buildings responsive to, for example, heat loss through open 
windows by triggering the closing of the open window or the sending of a message for a 
person to do so. In addition, AMT has the potential to enable improved performance 
from all building types through the more rapid and economic production of location-
specific devices for capturing and conducting heat. These devices could have, for 
example, the specific and complex geometries required to most efficiently capture solar 
energy at a particular inner city rooftop. 

Importantly, AMT has the potential to meet the need for distributed employment 
throughout nation's regions. Within existing business models, product development, 
product production and product despatch are often concentrated at the few physical 
locations of companies� premises. The number of physical locations can become even 
fewer when companies off-shore product development, product production, and/or 
product despatch to other countries to take advantage of lower resource costs. The 
concentration of employment in a few locations leads to nations having regions of 
disproportionately high under employment and/or unemployment. As a result, nations 
can have regions of under population with consequent national problems such as 
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infrastructure being under-utilized; long-term territorial integrity being compromised; 
etc. (e.g. Beale, 2000). By contrast, AMT can enable production, and hence 
employment, at any location. This is because of the enablers outlined above: reduced 
investment in plant; reduced need for costly market research; digital, rather than 
physical distribution; and potential to serve a global market from one location. Further, 
the labour cost component of product created with AMT is relatively low. This factor, 
combined with the potential to digitally distribute production to each particular point-of-
demand, means that there is little incentive to outsource from a higher labour cost 
economy to a lower labour cost economy. As well as it being technically feasible and 
economically viable to produce goods at point-of-demand, it is also commercially 
beneficial. This is because meeting increasing person-specific, location-specific, and/or 
event-specific demand through concentrated product development, production and 
despatch introduces increasing complexity into existing business models. Thus, point-
of-demand production can reduce non-value adding costs, such as production defects 
and overtime working, that arise from complexity. A summary of AMT enablers for 
meeting needs of individuals, organizations, and societies is shown in Table 3. 
 

Table 3. AMT enablers for meeting needs of individuals, organizations and societies. 

Opportunity Enabling factor 

More economic production of higher performance medical goods Social products 

More economic production of higher performance buildings 

Feasible and viable to manufacture anywhere Distributed employment 

Commercially beneficial to manufacture anywhere 

 

2.6 Challenges for effective implementation of AMT 

As illustrated in Figure 2, the overview provided in the preceding paragraphs describes 
the potential of Advanced Manufacturing Technologies (AMT) to address all three 
sustainability criteria: meeting needs; expressing greatest potential; and preserving 
natural ecosystems. 

However, design for AMT production processes presents a number of challenges for 
effective implementation of AMT. Firstly, AMT introduces many new design spaces for 
designers to explore. These new design spaces arise from the capabilities of AMT to 
produce, for example, complicated geometries. As outlined in the preceding section, 
AMT can enable the production of topologically optimized designs which have, for 
example, minimal structural thicknesses. This can involve the production of 
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complicated constructions such as lattices or honeycombs. Moreover, it can involve 
discontinuous (i.e. digital) material placement rather than the continuous (i.e. analogue) 
material placement that is typically used in manufacturing. Further, AMT can enable the 
consolidation of many parts into single piece assemblies. These assemblies will often 
have much greater geometric complexity than the individual parts which they supersede. 
As well as complex geometries, which are "inside" products, AMT can enable the 
production of complex geometries, which make up the external form of products, such 
as the envelopes of buildings; the shells of mobile phones, and so on. Designers are 
largely unfamiliar with the nature of the new design spaces introduced by AMT. 
Further, the scope of design spaces opened up by Advanced Manufacturing 
Technologies (AMT) is so vast, and expanding so rapidly, that they cannot be explored 
quickly or comprehensively by human designers using only traditional CAD tools. 
Accordingly, new computational methods are required to enable definition and 
exploration of AMT-enabled design spaces. Some of the outcomes could be, for 
example, definition of geometric ranges for sustainable low-cost social housing made 
from alternative types of indigenous materials; definition of geometric ranges for 
mobile phones within an established brand identity. 

A second challenge for widespread adoption of AMT arising from design is the 
difficulty of modelling geometrically complex constructions using current CAD and 
CAM systems. These difficulties are aggravated when a single component comprises 
multiple materials. In simple terms, current CAD and CAM systems become slower and 
less reliable the more surfaces and materials have to be encompassed within 
computation. Moreover, current CAD and CAM systems are typically dependent on 
going human input during their operation. During the exploration of design spaces, for 
example, they rely on continual decision making by human designers. As a result, the 
exploration of design spaces is extremely time-consuming. Further, it is likely to be 
influenced by designers' prior training and experience of, for example, established 
design for manufacture and assembly principles which are made obsolete by AMT. 
Accordingly, new computational methods are required to enable rapid and reliable 
product creation using AMT. 

A third challenge is diversity of people who could make good direct use of AMT. 
Traditionally, the use of sophisticated design/production equipment has been restricted 
to professional experts who have extensive training and supporting colleagues. 
However, AMT has the potential to enable production of person-specific, location-
specific, and/or event-specific physical goods close to point-of-demand by people who 
do not have to be experts in AMT. These non-experts could include, for example, 
medical professionals such as surgeons and dentists; small business operators such as 
furniture makers and boiler makers; enthusiasts for hobbies such as hunting, shooting 
and fishing. A boilermaker, for example, carrying out refurbishment of a plant room 
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could use AMT to produce a single assembly instead of having to cut, bend and join 
several parts. Such use of AMT could be enabled by having proprietary AMT "stations" 
within all the branches of an industrial wholesaler. Similarly, person-specific 
accessories for hunting, shooting and fishing equipment could be enabled by also 
having interactive, easy-to-use AMT "stations" within the outlets of an outdoor goods 
retailer. However, the drawback of current CAD and CAM systems is that, as well as 
being incompatible with AMT capabilities, they are not easy-to-use without extensive 
prior training. To draw an analogy, what is required is AMT "stations" that are similar 
to, for example, check-in automats at airports: rather than the check-in software systems 
which are used by trained airport ground crew behind check-in desks. This will involve 
establishing computer-enabled design procedures for AMT that are much simpler, but 
can still meet inherent domain requirements for safety etc., as well as large sets of 
problem specific requirements and constraints. A summary of challenges to effective 
implementation of AMT arising from design issues is provided in Table 4. 

 
Table 4. Challenges for effective implementation of AMT. 

Challenge Example 

Vast new design spaces Topologically optimized structure within complex external form 

CAD/CAM limitations Modelling of multi-surface, multi-material assemblies 

Diversity of potential users Boiler makers; medical professionals 

 
Overall, these challenges mean that the opportunities for sustainable product creation 
cannot be met by further implementation of established manufacturing materials and 
machines, conventional CAD software, established human design / engineering skills. 
The potential of Generative Production Systems to fulfil these challenges is discussed in 
the next section. 
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3. Generative Production Systems  

3.1 Overview 

The potential of various types of generative computation to automatically produce 
designs has been recognized for some years. More recently, it has been proposed that 
generative computation can be extended from the production of designs to the 
production of the artefacts that are described in those designs (Fischer et al., 2005; 
Hornby, 2005; Hornby and Pollack, 2001). This involves digital production in the 
virtual reality of CAD and digital production in the physical reality of CAM. For 
example, digital chair designs are generated through computation and then physically 
"printed" directly from digital data (CAD/CAM News, 2009). This type of generative 
design and production may be better enabled by the use of physical voxels in production 
which match virtual voxels that are used in design (Hiller and Lipson, 2009). The term, 
voxel, is an abbreviation for "volume element", and can be thought of as being 
something like a three dimensional version of a pixel. In this paper, the term generative 
production system is used to encompass manufacture and assembly, as well as design. 
Moreover, in the penultimate section of this paper, it is proposed that Generative 
Production Systems could, and should, encompass the elicitation of requirements. In 
particular, it is argued that Generative Production Systems could make it possible to 
have a seamless progression from mental visualization of an artefact to physical 
production of that artefact (i.e. from mind to machine). In particular, the term generative 
production system is used in this paper to mean generative computation combined with 
AMT. This definition is highlighted in Figure 3 below. 

In this section, important aspects of Generative Production Systems are described. 
First, production system formalisms are outlined as the underlying mechanism for 
Generative Production Systems. Then, the use of transformational-generative grammars 
within production system formalisms is discussed. Next, the potential of one type of 
transformational-generative grammar to meet challenges for effective implementation of 
AMTs is described. That particular type of formal grammar is shape grammar. The 
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computation of shape grammar is described in the fifth sub-section. The capability of 
shape grammars to enable infinite spatial emergence is discussed in the sixth sub-
section. In the concluding sub-section, reasons are given for making reference to shape 
grammars in the development of Generative Production Systems for sustainable product 
creation.  

3.2 Production system formalisms 

Production system formalisms (Post, 1943) can provide an underlying mechanism for 
Generative Production Systems. Formalisms involve the representation formal structure 
rather than the representation of content. Typically, a formal system consists of a formal 
language (e.g. finite strings of letters or symbols) together with a deductive system of 
inference rules. Production system formalisms are computer programs consisting of a 
knowledge base of rules and general facts, a working memory of facts concerning the 
current case, and an inference engine for manipulating both.  

Within production system formalisms, rules consist of a condition part (e.g. an IF 
statement) and an action part (e.g. a THEN statement). With the condition part of a rule 
being on its left-hand side (LHS) and the action part being on its right-hand side (RHS). 
Such rules can be described as condition-action rules (i.e. IF condition THEN action), 
and can be expressed as A → B. The inference engine in a production system must 
determine which rules are relevant and choose which one(s) to apply. The inference 
engine can be described as a finite state machine with a cycle consisting of three action 
states: match rules, select rules, and execute rules. In the first state, match rules, the 
inference engine tests the conditions (IF statement on LHS) against the working 
memory. If a rule's precondition matches the working memory, then the production is 
said to be triggered.  In the second state, select rules, the inference engine applies some 
selection strategy to determine which rules will actually be executed. In the third state, 
execute rules, the inference engine executes the actions (THEN statement on RHS) of 
the selected rules. When a rule's action is executed, it is said to have fired. Usually, the 
actions of a rule change the working memory, but they may also trigger further 
processing outside of the inference engine (for example, interacting with users through a 
graphical user interface or calling local or remote programs). The inference engine then 
cycles back to the first state and is ready to start over again.  

The inference engine stops either on a given number of cycles, controlled by the 
operator, or on a quiescent state of the data store when no rules match the data. Since 
the working memory is usually updated by executing rules, a different set of rules will 
match during the next cycle after these actions are performed. An important element of 
inference engines is the rule interpreter. This must provide a mechanism for prioritizing 
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productions when more than one is triggered. The three action states (i.e. recognize-act 
cycle) are summarized below in Table 5. 

 
Table 5. Action states for inference engines in production systems. 

State Action 

Match rules The inference engine tests the condition parts (IF statements on LHS) of 
rules against the working memory. 

Select rules The inference engine applies some selection strategy to determine which 
rules will be actually be executed. 

Execute rules The inference engine executes the action parts (THEN statements on RHS) 
of rules and thus changes the working memory. 

 

3.3 Transformational-generative grammars 

As stated above, production system formalisms are computer programs consisting of a 
knowledge base of rules and general facts, a working memory of facts concerning the 
current case, and an inference engine for manipulating both. The rules are defined 
within formal grammars. These are sets of formation rules that describe which strings 
formed from the alphabet of a formal language are syntactically valid within the 
language. Formal grammars are congruent with the doctrine of formalism that formal 
structure, rather than content, is what should be represented. In particular, a formal 
grammar addresses the location and manipulation of the strings of the language.  

Transformational-generative grammars were introduced by Noam Chomsky (1957) in 
his efforts to develop a mechanism that would generate exactly the set of "grammatical" 
English sentences. Subsequently, other types of grammars have been developed that 
generate arrays, trees, graphs, and shapes (Stiny and Gips, 1980). Chomsky developed 
the idea that each sentence in a language has two levels of representation � a deep 
structure and a surface structure. He argued that the deep structure is mapped on to the 
surface structure via transformations involving phrase-structure rewrite rules. In 
particular, phrase-structure rewrite rules specify that a given phrase may be replaced by 
another given phrase. The key elements of this conceptualization are summarized by the 
term, transformational-generative grammar. As well as being generative, such 
grammars can be used to determine what is, and is not, grammatical (i.e. what does, and 
does not, belong in the language). In Chomsky's grammars, complex forms are created 
by successively replacing parts of a simple object by using the rewriting rules. It is 
important to note that rules are applied in sequence (e.g. one at a time) in Chomskyan 
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grammars. By contrast, rules are applied in parallel (e.g. all at once) in, for example, 
Lindenmayer grammars (Lindenmayer, 1968). 

Chomsky's grammars are defined over an alphabet of symbols, and map strings of 
symbols into strings of symbols to generate a language of symbols. Shape grammars are 
a geometrical adaptation of Chomsky's grammars (Speller et al., 2007) in which shape 
grammar is defined over a set of shapes, and maps shapes into shapes to generate a 
language of shapes (Stiny, 1976). Despite their similarities, shape grammars differ from 
Chomsky's transformational-generative grammars in at least two respects. Firstly, 
symbols that are rewritten are the same symbols that occur in the final design. Secondly, 
the symbols that are rewritten are geometrical entities, for example line segments, rather 
than discrete symbols that represent such entities. 

Rules within Chomsky's phrase-structure rewrite grammars can be expressed as A → 
B C. This means that the constituent A is separated into the two sub-constituents B and 
C. An example is S → NP VP, which means a sentence consists of a noun phrase 
followed by a verb phrase. Rules within shape grammars can be expressed as a → b, 
where both a and b are shapes. Each rule application involves selection of rules; 
identification of sub shapes; implementation of rule; and generation of new shape. The 
generation of new shapes through rule implementation can involve shape addition and 
shape subtraction (Stiny, 1980; 2006). Shape generation can take place in phases: with 
the level of the solution being lowered from high-level/abstract to a low-level/complete, 
until it satisfactorily represents the requirements (Deak et al., 2006). In simple terms, 
rules are chosen from a rule set and applied to an evolving entity to change it in some 
way (Agarwal and Cagan, 2000). 

Through computation, shape grammars have been used to generate designs and the 
physical artefacts that are described in those designs. Although there are unresolved 
challenges in the implementation of shape grammars, they may provide the most 
comprehensive and best documented source for informing the development of 
Generative Production Systems.  This is because the formulation and computation of 
shape grammars has been carried out by range of scientists, and reported in refereed 
scientific periodicals, for more than three decades. The following sub-sections provide 
examples of shape grammar applications; an overview of shape grammar computation; 
and a discussion of how infinite spatial emergence is enabled by shape grammar 
computation. Subsequently, the potential of shape grammars to inform development of 
Generative Production Systems for sustainable product creation is considered. 
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3.4 Shape grammar applications 

Shape grammars have been formulated within research for a variety of product types 
including: automobiles (Orsborn et al., 2006); bicycles (Suppapitnarm et al., 2004); 
buildings (Stiny and Mitchell, 1978); cameras (Lee and Tang, 2006); chairs (Hsiao and 
Chen, 1997); coffeemakers (Agarwal and Cagan, 1998); mobile telephones (Ahmad and 
Chase, 2006); motorcycles (Pugliese and Cagan, 2002); transmission towers (Shea and 
Smith, 1999). Within research, shape grammars have also been formulated to generate 
design options for a variety of component types including: car panels (McCormack, 
2002); micro-electromechanical resonators (Agarwal et al., 2000); packaging (Chen et 
al., 2004); and trusses (Shea and Cagan, 1999). Importantly, novel components designs 
can be compatible with other components. Novel car body panels, for example, can be 
compatible with car engines (McCormack and Cagan, 2002). 

Also within research, shape grammar rules have been formulated which relate to 
physical materials and production machinery, as well as to the geometric forms of 
shapes (Heisserman and Woodbury, 1993; Brown et al., 1995; Wang and Duarte, 2002). 
Such shape grammar rules enable the manufacture of designs generated by shape 
grammars (Sass, 2008). Furthermore, shape grammars can enable designs to be 
produced in different sizes using different types of manufacturing equipment - from the 
same one file (Sass, 2007a). This offers the possibility of production of a scale model 
for the purpose of assembly instruction; and production of full-sized components for 
assembly into a completed product by individuals who do not have relevant prior 
assembly experience. Also, components can be produced which have accurate friction-
fit/snap-fit joints with the necessary parameters for tolerance, material thickness and 
structural modulation being included into the members of the shape vocabulary 
(Cardoso and Sass, 2008). This further reduces the amount of assembly skill required. 

If shape grammars are to facilitate production, then the shape grammar rules need to 
be congruent with the properties of materials and the functionality of machines (Sass 
and Oxman, 2006). Many board materials, for example, are supplied in flat sheets with a 
limited number of standard stock sizes. Machines for milling sheet materials often have 
flat beds and have, so called, two and a half D milling paths (i.e. 2D plus thickness). 
Accordingly, if board materials are to be used in production, shape grammar rules need 
to be congruent with their properties (e.g. standard stock sizes) and associated 
machining techniques (e.g. flat bed milling). Generation of machine information from 
design information can be a three-stage process if a product is to be assembled from a 
number of components. First, a design description is generated. Second, definitions of 
material properties need to be applied in order to determine sub-assembly dimensions 
etc. Third, definitions of machine functionality need to be applied in order to define tool 
paths etc (Sass and Oxman, 2006). Shape grammars rules have been formulated which 
relate to a range of production processes including: fuse deposition modelling (Wang 
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and Duarte, 2002); laser cutting, plasma cutting, and water-jet cutting (Kilian, 2003; 
Sass et al., 2005); sheet notching, bending and punching (Soman et al., 2003); and 
stereo-lithography (Heisserman and Woodbury, 1993). 
In addition, within research, it has been demonstrated that expressions can be associated 
with shape grammars rules which enable appraisal of manufacturing cost throughout the 
design process (Agarwal et al., 1999). However, most applications of shape grammars 
have focused on the development of product forms rather than the satisfaction of 
functional requirements (Ang et al., 2006). Nonetheless, it has been argued that shape 
grammars can be particularly useful for products that are differentiated primarily on the 
basis of form but are driven by function (Agarwal et al., 1999). As summarized in 
Table 6 below, shape grammars can enable digitally-driven design, manufacture, 
assembly.  
 

Table 6. Applications of shape grammars within research. 

Application Benefit 

Design Multiple design options can be generated, which do adhere to defined 
constraints, but involve little, or no, input by the user. 

Manufacture Components can be produced in different sizes using different types of 
manufacturing equipment � from the same file. 

Assembly Scale models and full-sized components can be produced to communicate 
and facilitate assembly by non-experts. 

 
Importantly, it is possible for these digitally-driven processes to be carried out by non-
experts. Moreover, automatic generation of emergent geometries is fundamental to 
computation of shape grammars.  Thus, the computation of shape grammars has clear 
potential for addressing the challenges in successful implementation of AMT 
summarized in Table 6 above: new design spaces; CAD/CAM limitations; and diversity 
of potential users. 

3.5 Shape grammar computation 

A sequence of shapes is generated during the computation of shape grammars. Each 
shape, except for the first shape, is generated automatically from the previous shape by 
the application of one or more rules (Knight, 2003a). The definition and application of 
rules involves algebras (e.g. Krstic, 2001). In particular, shape algebras (Stiny, 1991) 
within which letters or other symbols are used to represent shapes rather than numbers. 

Formally, a shape grammar has four components: S is a finite set of shapes; L is a 
finite set of symbols; R is a finite set of shape rules in the form a → b; and  I is an initial 
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shape. Applying a shape rule involves the following three steps: First, compare the left 
shape under one or more Euclidean transformations (e.g. reflection, rotation, scaling, 
translation). Second, IF there is a match, THEN subtract the left shape under the same 
transformation and, third, add the right shape under the same transformation. These 
steps can be expressed more precisely as: IF t(a) ≤ c, THEN c′ := [c � t(a)] + t(b). a 
being the left-hand shape; b being the right-hand shape; c being the current shape; c′ 
being the new current shape; t being one of the Euclidean transformations or a finite 
sequence thereof; - meaning subtract or erase; + meaning add or draw; ≤ meaning is a 
part of; := meaning is assigned the value of. If there is more than one transformation 
under which the left shape matches the current shape, then there is more than one way 
to apply the rule. Parametric grammars are extensions of regular grammars, and the 
steps in their computation can be expressed as: IF t(g(a)) ≤ c, THEN c′ := [c � t(g(a))] + 
t(g(b)). With g being a parametric assignment subject to some constraint (Li, 2002; 
Stiny, 1991). All shape generation must start with an initial shape such as a point, or a 
coordinate axis. This initial shape need not be visible in the final design which is 
generated. It can be, for example, a global or a local coordinate system (Orsborn et al., 
2006).  If shape generation is to end, there should be a terminal rule that prevents any 
other rules from being applied after it. Alternatively, shape generation can continue 
indefinitely and outputs could be chosen at any point in the process. 

The computation of shape grammars can be driven by "hard coding". This involves 
attaching alphanumeric labels and symbol markers to a shape. The labels and markers 
determine which rules can and cannot be applied to the shape. As a result, they ensure 
that mutually exclusive rules cannot be applied to the same design. Labels that describe 
function, for example, can be used to maintain the proper function-to-form sequence, 
and to ensure that all functional requirements are met before the generation process 
terminates. Also, certain elements of design become important only under certain 
conditions and labels can be used to indicate the applicability of rules (Agarwal and 
Cagan, 2000). Properties can be included with the inclusion of, so called, weights 
(Stiny, 1992). Properties can be aesthetic, functional, structural, and so on. For example, 
points can have diameters; lines can have thicknesses; planes can have colours; solids 
can have materials; and so on. In a study involving generation of micro-
electromechanical systems (MEMS), the four main elements (central mass, actuators, 
anchors, and springs) were each assigned a different weight to ensure that feasible 
designs were generated. In particular, shapes of higher weight overlapped and erased 
shapes of lower weight (Agarwal et al., 2000).  

Also, the computation of shape grammars can be driven by parametric shape 
recognition. This enables any shape within predefined allowable limits to be recognized 
by the rule and thus allows the rule to be applied. Parametric shape recognition offers 
more possibilities for emergent design than only hard coding. It also offers possibilities 
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for faster implementation than hard coded shape grammars. However, parametric shape 
recognition is more challenging than hard coding, because a rule needs to recognize a 
shape regardless of scaling, rotation and/or other allowable transformations 
(McCormack and Cagan, 2002; 2006). Hard coding and shape recognition can be 
combined (Orsborn et al., 2006). A summary of important enablers in shape 
computation is provided in Table 7 below. 

 
Table 7. Important enablers in shape computation. 

Enablers Example 

Initial shape Coordinate system 

Terminal rule Removes labels that enable rule application 

Generation in phases High-level to low-level 

Hard coding Labels, markers, weights 

Parametric shape recognition Recognizes a shape regardless of scaling, rotation etc. 

Enabling software Shape grammar interpreter 

 
As stated above, shape grammars are examples of production system formalisms. That 
is computer programs which include rule interpreters within inference engines. 
Accordingly, a computer program for shape grammar generation can be referred to as a 
shape grammar interpreter (Heisserman, 1994; Krishnamurti, 1982; Krishnamuriti and 
Giraud, 1986; Piazzalunga and Fitzhorn, 1998; Tapia, 1996, 1999). The user can guide 
the program in selecting the rule to be applied and where in the current shape to apply it. 
Alternatively, an automated optimization routine can make the choices presented by the 
interpreter concerning rule selection, application, and parameters during instantiation. 
After each rule application, the design is examined, and if the design is deemed 
completed, it is presented to the user. If not, the design is modified by the user or by the 
optimization routine (Cagan et al., 2005). Perhaps the most sophisticated type of shape 
grammar interpreter is one that uses parametric subshape recognition. Such an 
interpreter surpasses shape grammar interpreters that are limited to nonparametric 
subshape matching or parametric shape matching (McCormack and Cagan, 2006). It has 
been argued that a program suitable for carrying out analyses using shape grammars can 
be referred to as a parsing program. This type of program would be given a shape 
grammar and a shape. The program would determine if the shape is compatible with the 
grammar and, if so, gives the sequence of rules that produces the shape. A third type of 
program could generate a shape grammar based on automated analysis of a corpus of 
existing designs. Such software could be called an inference program. A fourth type of 
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program would be a CAD program that would help the user design shape grammars 
(Gips, 1999). 

3.6 Infinite spatial emergence 

The operation of shape grammars should emulate what people do when they draw or 
erase shapes, build, modify or move shapes around producing different spatial relations 
(Krstic, 2008). As stated above, shape grammars can be considered to be a geometrical 
adaptation of Chomsky's grammars (Speller et al., 2007). Chomsky theorized that 
unlimited extension of a language such as English is possible only by the recursive 
device of embedding sentences in sentences. The term, recursion, is used in 
mathematics and computer science to refer to a class of objects or methods defined by a 
simple base case (or cases) and rules to reduce all other cases toward the base case. For 
example, the following is a recursive definition of a person's ancestors: one's parents are 
one's ancestors (base case); the parents of one's ancestors are also one's ancestors 
(recursion step). In other words, the output of the rule may be used as an input to the 
same rule either immediately or after other operations have occurred. Thus, recursion is 
the process a procedure goes through when one of the steps of the procedure involves 
rerunning the procedure. A procedure is a set of steps that are to be taken based on a set 
of rules. The running of a procedure involves actually following the rules and 
performing the steps. An analogy might be that a procedure is like a menu in that it is 
the possible steps, while running a procedure is actually choosing the courses for the 
meal from the menu. Recursion can enable definition of an infinite set of objects by a 
finite statement. Accordingly, an infinite number of computations can be described by a 
finite recursive program, even if this program contains no explicit repetitions (Wirth, 
1976). The computation of a shape grammar involves a recursive sequence of rule 
applications.  

Within shape grammars, a shape is a finite arrangement of spatial elements from 
among points, lines, planes, volumes, or higher dimensional hyperplanes, of limited but 
non-zero measure. Within shape grammars, shapes can be constructed from certain parts 
and then decomposed into other parts that become the basis for continuing the 
computation (Knight, 2003b). Any of the subshapes (parts) of a shape can be recognized 
and used in a shape computation. Points, lines and planes that are parts of shapes, for 
example, can be recognized and transformed through the execution of shape rules 
(McCormack and Cagan, 2002). In other words, shapes do not have fixed primitives that 
limit the ways in which they can be computed. Rather, shapes are moving targets. Thus, 
shapes are ambiguous throughout computation and can vary as computations unfold 
(Stiny, 1999). Moreover, the emergent shapes that can be recognized in any step of a 
shape grammar computation can be limitless in number because shapes are freely 
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decomposable (Knight, 2003a). This is very different from the traditional shape 
representations used in computer graphics systems. There, shapes are often represented 
as sets of lines that cannot be further decomposed, i.e. no portions of lines can be easily 
recognized. In Constructive solid geometry (CSG), for example, primitives are cuboids, 
cylinders, prisms, pyramids, spheres and cones. The set of allowable primitives being 
limited by each software package. 

Shapes can be within a Cartesian coordinate system (Stiny and Mitchell, 1978). That 
being a system for locating and measuring points in space based on a three dimensional 
axis labeled X, Y, Z.  Shapes can be parametric. That is, shapes may have no intrinsic 
structure. They can be indefinite with some details or characteristics that are fixed and 
others that vary. The characteristics that vary are the variables of the shape. The range 
of variation for each variable can be set by conditions that values assigned to the 
variable must satisfy. When values are assigned to the variables of a parametric shape, a 
definite shape is defined. 

A shape is part of another shape if it is embedded in the other shape as a smaller or 
equal element. A part of a shape can be called a subshape (Stouffs and Krishnamurti, 
1994). The form of a bottle, for example, has been decomposed into subshapes such as: 
cap, upper part, label region, lower part, and bottom (Chau et al., 2004). The form of a 
mobile phone, for example, has been decomposed into body and fascia (Ahmad and 
Chase, 2006). The form of motor vehicles, for example, has been decomposed into front 
wheels, rear wheels, front wheel well, rear wheel well, front fender, rear fender, front 
bumper, rear bumper, front windshield, rear windshield, grill, headlight, hood, roof, 
trunk, taillight, rocker, door, front side window, rear side window, door handle, ground, 
belt line (Orsborn et al., 2006). Then, for example, headlight can be decomposed into 
curves, and hood can be decomposed into straight lines (McCormack and Cagan, 2002; 
2006). Within research, for example, the complicated forms of a sample of forty-two 
different motor vehicles were captured using the basic form of four-control-point Bezier 
curves (Orsborn et al., 2006). The connectivity of subshapes can be maintained by 
allocating labels to them. It is important to note that there can be alternative 
decompositions of the same shape depending on the domain of analysis. Shapes can be 
categories within families of shapes that, for example, comprise a particular assembly 
within a product. In addition to shapes and subshapes that are sufficiently regular to be 
described easily in traditional Euclidean geometry, shapes can include fractals. Those 
are rough or fragmented geometric shapes that can be split into parts, each of which is 
approximately a reduced-size copy of the whole. Natural objects that approximate 
fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, and 
snow flakes. In shape grammars for fractals, the number of rules is small and the 
number of recursions high (Ediz and Çağdaş, 2007; Schmitt and Chen, 1991). Important 
characteristics of shapes within shape grammars are summarized in Table 8. 
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Table 8. Important characteristics of shape within shape grammars. 

Characteristic Summary 

Decomposable Shapes can be decomposed into subshapes that can be described easily in 
Euclidean geometry or as fractals. 

Ambiguous Shapes do not have fixed primitives that limit the ways in which they can be 
computed. Rather, shapes can vary as computations unfold. 

Parametric Shapes can be indefinite with some details or characteristics that are fixed 
and some that vary.  

Maximal A maximal spatial element cannot be combined with any other spatial 
element in the same shape to form a larger spatial element. 

 
Overall, shape decompositions are sets of shapes that emphasize certain properties of 
their sums (Krstic, 2008). The structure of decomposition may be seen on two levels: 
local and global. On the local level the decomposition is a set of shapes which puts 
emphasis on the relations among its elements. By contrast, on the global level the 
decomposition is seen as analyzing a shape (the sum of its elements) so that the 
relations between parts of the shape and elements of the decomposition are exposed. If a  
decomposition is to be an approximation of a shape, then its structure on a global level 
is of the most importance. A decomposition that serves as a shape approximation should 
have the unique representation for each part of the shape it analyzes (Krstic, 2008). 
Within shape grammars, an important enabler of shape and subshape recognition is 
maximal representation. A spatial element in a shape is denoted a maximal spatial 
element if it cannot be combined with any other spatial element in the same shape to 
form a larger spatial element. If a shape only contains maximal spatial elements, the 
shape is termed maximal and its representation is a maximal representation 
(Krishnamurti, 1992; Stouffs and Krishnamurti, 1994).  

As highlighted in Figure 5 below, the recursive application of transformation rules to 
shapes that are decomposable, ambiguous, parametric and maximal makes if possible 
for one shape grammar to produce an infinite number of options for design and/or 
production (Orsborn et al., 2006). Moreover, the way that shape is handled in shape 
grammars enables the options to be emergent rather than predictable.  
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Figure 5.  Mechanism for infinite spatial emergence. 

The emergent shapes that can be recognized in any step of a shape grammar 
computation can be limitless in number because shapes are freely decomposable into 
subshapes such as points, lines and/or planes, rather than just shapes such as circles and 
squares. An emergent shape can be the sum of shapes added by previous rule 
applications; or it can be part of a single shape added previously. Thus, shape 
emergence is not hierarchical. In particular, emergent shapes are not limited to ones that 
are "higher" or "lower"; "simple" or "complex". Shape computation can be used in 
design exploration to generate "emergent" designs. Such designs can range from new 
but conventional designs, which can be generated more readily with computation than 
without it, to unconventional designs that are difficult to create non-computationally 
(Knight, 2003a). 

Overall, shape grammars should emulate the creative processes of people when they 
adopt and follow rules to create options or break the rules only to create and follow new 
ones (Knight, 2003a). In particular, humans generate options which are not stored 
previously in their minds. Rather, options emerge from the creative processes of 
humans. These creative processes can be regarded as a kind of informal computation in 
which designs are transformed into other designs by adding, erasing, or redrawing 
shapes. In each step of this process, the designer may recognize entirely new and 
unanticipated emergent shapes in a design, and then use them in subsequent 
transformations of the design. As a designer works, the design "talks back" to the 
designer, the designer "reframes her or his view of the design, and then proceeds 
accordingly. The design process is continuous, fluid and nonhierarchical (Knight, 
2003a; Schön, 1987). It has been argued that it is the interaction of form that often leads 
to creative designs by allowing new shapes to emerge (Coyne and Newton, 1989). 
Important enablers of infinite spatial emergence are summarized in Table 9 below. 

 
 
 
 

Infinite Spatial Emergence 

recursive application of transformation rules 

to  

decomposable, ambiguous, parametric, maximal spatial elements 
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Table 9. Enablers of infinite spatial emergence 

Characteristic Enabler 

Spatial Shape grammars deal with subshapes such as points, lines and planes, not 
just higher level shapes which are fixed primitives such as circles, squares. 

Infinite Emergent shapes in any step of a shape grammar computation can be 
limitless because shapes are freely decomposable into subshapes. 

Emergent Shape grammars can emulate human creative behaviour because 
unanticipated shapes, comprising subshapes, are recognized and then used. 

 

3.7 Development of Generative Production Systems 

There are several factors which suggest that shape grammars could inform the 
development of generative productions systems for sustainable product creation. First, it 
has been argued that shape grammars differ from other types of production system 
formalisms in their capability for direct handling and reasoning about geometry and 
ability to operate on a parametric geometric representation. Also, grammars allow labels 
to be associated with shapes to carry non-geometric information and guide the 
generation process (Agarwal and Cagan, 2000). Indeed, has been argued that shape 
grammars provide a unifying framework for all expert systems for geometry-based 
engineering domains (Agarwal and Cagan, 2000). 

Second, shape grammar computation generates options in a way that emulates human 
creative behaviour, and hence can generate infinite options for design and/or production 
through the emergence of shapes that cannot be predicted in advance (McCormack and 
Cagan, 2002; Orsborn et al., 2006). Thus, when compared to the computation of shape 
grammars, conventional CAD/CAM software can be considered to be passive tools, 
which typically document modifications that are imposed by external means such as the 
user's decisions. By contrast, computation of shape grammars is active in generating 
options that are not stored previously in a computer. These options do adhere to 
requirements (the grammar), but involve little, or no, input by the user (Chase, 2002). 
As a result, the computer becomes a generator rather than an assistant (Sheaet al., 2005). 
Third, shape computation can be carried out continuously throughout days and nights. 
Thus, shape computation can generate many options might not have been generated by 
an expert human using CAD/CAM software due to lack of time etc. Fourth, as 
summarized in section 3.3, shape grammars can enable the digitally-driven design, 
manufacture and assembly of a many different types of products ranging from buildings 
to MEMS. 
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Overall, it can be argued that the potential for infinite spatial emergence through the 
computation of shape grammars offers new opportunities for exploration and innovation 
in elicitation, design and production. However, it is important to note that there are 
alternative approaches, such as genetic algorithms, which can be used to generate form. 
It is also important to note that there remain unresolved challenges to the 
implementation of shape grammars. Accordingly, it may be more likely that shape 
grammars can inform, rather than solve, the development of Generative Production 
Systems for sustainable production creation. 

Four reasons for making reference to shape grammars when developing Generative 
Production Systems are summarized in Table 10.  

 
Table 10. Reasons for  making reference to shape grammars. 

Characteristic Summary 

Accessibility More accessible to non-experts than other approaches such as genetic 
algorithms. 

Transferability Provides an introduction to fundamental concepts, such as spatial relations 
and transformation rules, which are also important to other approaches. 

Versatility Can be combined with other types of grammars in the development of 
robust Generative Production Systems for a wide variety of product types. 

Functionality Can be combined with other computational methods to develop Generative 
Production Systems with advanced functionality such as optimization. 

 
First, grammars can be more accessible to non-experts than alternative approaches 
(Chase, 2005). Second, consideration of grammars can provide an introduction to 
important concepts, such as spatial relations and transformation rules (Chase, 2005). 
These fundamental concepts are important to other approaches to shape computation 
(Ceccato, 2009), which initially may not be as accessible a shape grammars. Third, 
shape grammars can be combined with other grammars, such as graph grammars, in the 
development of robust Generative Production Systems for a wide variety of product 
types (e.g. Seo, 2007; Soman et al., 2003). Fourth, shape grammars can be combined 
with other computational methods in the development of Generative Production 
Systems with a range of functionality (e.g. Grobler et al., 2008; Shea et al., 2005). 

As sustainable product creation depends upon the broadest possible range of 
populations being able to reduce their environmental impacts, express their potential, 
and meet their needs; these four factors are very important. Accordingly, the 
formulation of entire shape grammars and their computation were the focus of the 
research reported here. However, it is not the purpose of this report to advocate, or 
suggest, that shape grammars are the only approach that should be used to develop 
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Generative Production Systems for sustainable product creation. Hence, the research 
encompassed the computation of rules, as well as the computation of entire grammars, 
and the combination of shape grammars with other computational methods. Further, the 
limitations of shape grammars, and how they might be addressed to better enable the 
development of Generative Production Systems for sustainable product creation, were 
investigated. 



4. Formulation of grammars 
 
 
 
 

38 

4. Formulation of grammars  

4.1 Overview 

In this section, some details are provided about the formulation of shape grammars. The 
details provided offer some insights into the formulation formal grammars in general. 
Much of the shape grammar literature is focused on the generation of designs. 
Accordingly, the details provided here make more reference to design than to 
manufacture and assembly issues. 

Formulation of a shape grammar involves defining a vocabulary of basic forms, and 
defining rules for manipulation of those basic forms. The basic forms can be defined 
from a sample, for example, of a product type or of a building type. The rules define 
spatial relations between the forms and how the forms are related to each other. Shapes 
can exist as points, lines, planes, volumes, or any combination thereof. Shapes in the 
vocabulary are combined to form initial shapes. Shape rules can be applied recursively 
to initial shapes to generate options for design and/or production. This often involves 
generating multiple alternative options through the production of complicated forms. 
This is done by manipulation of the basic forms that have been defined in the shape 
grammar vocabulary. The manipulations are carried out in accordance with the shape 
grammar rules. The manipulations can be carried out by people or by computers (Stiny, 
1980; 2006; Stiny and Gips, 1972).  

4.2 Formulating vocabularies 

Within shape grammars, a vocabulary is a limited set of shapes, no two of which are 
similar (Stiny, 1980). Formulation of shape grammar vocabulary can begin with 
analysis of existing sets of designs. In such cases, existing sets of designs provide the 
corpus to define vocabulary and to infer rules. The resultant shape grammar should 
reveal the common underlying features of the designs in the corpus. Also, it should 
provide the criteria to determine whether a product or building is a design within the 
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same design language as the corpus that has been analysed. In addition, it should specify 
how to generate new designs in that language (Stiny and Mitchell, 1978). Moreover, the 
grammar can be used to generate new design options in the same style as the existing 
sets of designs (Duarte, 2005). 

There are a number of issues to consider in the analyses of designs and their 
subsequent decomposition into vocabularies of shapes. For example, anomalies in sets 
of designs, such as a product that is unlike all others in an industrial designer's work, 
should not be included in the corpus. Also, it is important to note that existing sets of 
designs may be closely tied to the design technologies that were used in their 
production. Their basic forms, for example, may have been drafted using French curves, 
a triangle, a T-square and so on. This raises the issue of whether a shape grammar 
should also be closely tied to the limited number of forms that could be produced with 
such kinds of old technologies (Phillips, 2008). Also, it is important to note that 
decomposition of designs into shape that make up a vocabulary may not be 
straightforward. Design drawings, for example, can contain small errors and 
inconsistencies. Further, constructed buildings and manufactured products can often 
deviate in minor ways from design drawings (Stiny and Mitchell, 1978). Some 
vernacular building architecture, for example, is not described within a corpus of 
drawings or other records. Accordingly, field study may be required to establish the 
corpus (Colakoglu, 2005). 

Another issue is that different decompositions can could arise from analyses in 
different engineering domains such as electrical and mechanical (Agarwal and Cagan; 
2000). Further, many products do not have obvious form-function decomposition. Using 
conventional design practices, this can limit human designers to only a small number of 
previously proven configurations. This in turn makes radical changes and rapid 
performance improvements difficult. In addition, a small change in specifications may 
require a significant time investment. Addressing this issue within shape grammar 
research, a coupled form-function shape grammar has been formulated using micro-
electromechanical systems (MEMS) as the example (Agarwal et al., 2000).  

Another important issue is the structuring of decompositions. Well-known structured 
decompositions are hierarchies. These are often tree-like structures with the original 
shape at the top and the minimum elements (i.e. atoms) at the bottom. Thus, hierarchies 
describe designs and their components as sums of atoms. It has been argued that while 
hierarchies can be useful when conceiving the materialization of an already completed 
design, they can be inadequate for the design process itself. This is because, it is argued, 
hierarchies do not support conjunction, and conjunctive combinations of entities are 
important in design, especially in the early stages of the process. In particular, they yield 
new entities that have new properties not necessarily recognized by the original entities. 
This supports discovery, which is an indispensible ingredient of the creative phases of 
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the design process. Accordingly, a topological decomposition of shape can be more 
useful than a hierarchical decomposition because a topological decomposition of a 
shape satisfies the unique representation requirement by providing for each part of the 
shape a pair of elements that bounds it (Krstic, 2008). On the other hand, it has been 
argued that the ordering of subshapes into a hierarchy can provide an efficient shape-
search order during computation (McCormack and Cagan, 2002). A summary of issues 
to consider when formulating vocabularies of shapes is provided in Table 11. 
 

Table 11. Issues to consider when carrying out analyses of existing sets of designs. 

Issue Summary 

Anomalies Designs which are unlike others in a set of designs should not included in 
the corpus. 

Age Existing sets of designs may be too closely tied to the limited number of 
forms that could be produced with old technologies. 

Inaccuracies Design drawings can contain errors and have some inconsistencies when 
compared to the constructed building or manufactured product. 

Incompleteness Some vernacular buildings may not be described in drawings or other types 
of records. 

Obscurity Many engineering products, for example, do not have an obvious form-
function decomposition. 

Structure Hierarchies can be useful when conceiving the materialization of an already 
completed design but they can be inadequate for the design process itself. 

Subjectivity People can formulate shape vocabularies based on their own personal 
experiences and intentions. 

 
It is important to note that shape vocabularies can be formulated by people subjectively 
defining vocabulary and rules based on their own personal experiences and intentions. 
This could lead to different shape grammars being formulated by different people who 
start from the same sample of designs. To prevent this, objective methods need to be 
developed for the formulation of shape grammars (Mackenzie, 1989). Accordingly, 
statistical decomposition has been tested within research as an alternative to intuitive or 
learned decomposition by people. In particular, a statistical method called principal 
component analysis (Shmueli et al., 2007) has been used in the formulation of shape 
grammar for motor vehicles (Orsborn et al., 2008) with the aim of automating the 
creation of shape grammar rules (Orsborn et al., 2008a). Principal component analysis 
produced chunks of curves which provided the basis for shape grammar vocabulary 
(Orsborn et al., 2008b). The term, chunks of curves, can be explained through another 
use of, chunks, within product design. That is: the use of the word "chunks" to refer to 
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major physical building blocks of a product (Ulrich and Eppinger, 1995). Each chunk is 
made up of a collection of components that implement the functions of the product. 
Similarly, chunks of curves are collections of curves that realize the style of a product. 
In particular, representative curves can be combined into foundational chunks. With 
regard to the definition of shape grammar rules, by selecting principal components with 
related curves, a sequence was automatically created that maintained the shape 
relationships found through the principal component analysis (Orsborn et al., 2008b). 
The chunking of curves can reduce the number of rule applications required to generate 
designs but, on the other hand, can reduce design flexibility.  

Within research, shape grammars have been formulated to investigate relationships 
between similar design types; rather than just sets of designs. Similar design types can 
include, for example: products or buildings designed by one person over several 
decades; products designed over several decades by different industrial designers within 
the same product brand or buildings designed over several centuries by different 
architects within the same cultural tradition. Historical developments across similar 
design types can be viewed as a series of style transformations. These style 
transformations may have been the result of corporate planning: for example, 
modifications to the well established style of a branded product. On the other hand, style 
transformations may have been more individual and spontaneous: for example, 
modifications to an inherited tradition of building architecture. In such cases, shape 
grammars can offer a framework for mapping style transformations that have occurred 
over years, over decades, or even over centuries. Subsequently, modification of a shape 
grammar formulated during analysis of similar design types is possible through 
addition, deletion or modification of grammar rules. This can involve shape replacement 
or modification of spatial relations (Knight, 1994). In this way, it is possible to generate 
multiple alternative contemporary design options based on, for example, an established 
product brand identity or based on historical building architecture (Ahmad and Chase, 
2004). 

Also, design types can be analysed across product brands or across architectural 
traditions. Within research, for example a sample of forty-two different motor vehicles 
has been analysed. These different motor vehicles belong to three different classes: 
coupes, pickups and sports utility vehicle (SUVs). Moreover, they had been designed 
within several different brands. Analysis involved separating vehicle classes into views 
and dimensions. Analysis across brands or traditions can enable formulation of shape 
grammars that can be applied to generate cross-over designs and generate new 
categories of designs (Orsborn et al., 2006). 

Shape grammars can also be original, rather than based on analyses of existing 
designs. Such original shape grammars are intended to generate instances of original 
styles of designs. On the other hand, partial shape grammars comprise a reduced set of 
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grammar rules with the intent to modify existing designs, rather than generate a 
complete design from nothing (Deak et al., 2006). A summary of different scopes for 
shape grammars is shown in Table 12 below. 

 
Table 12. Different scopes for shape grammars within research. 

Scope Examples 

Modifying existing designs Partial adaptation of a design 

Adding to sets of designs One particular set within product type or building type 

Extending existing design types Product type within a brand or building type within a tradition 

Developing cross-over designs Different classes of product type or building type 

Developing original designs New styles for product types or building types 

 

4.3 Defining spatial relations 

As stated above, the rules in shape grammars define spatial relations between the forms 
and how the forms are related to each other. Some of the spatial relations of products 
can be relatively obvious. The front wheels of a motor vehicle, for example, generally 
sit within the front wheel wells. Similarly, the base unit of a product will typically sit 
below other units of the product. However, it is important to note that spatial relations 
can become less obvious when parts are integrated. The formulation of a shape grammar 
for coffee makers, for example, involved definition of three main parts: the filter unit, 
the water storage unit, and the base unit. These three units are arranged around the space 
for the coffee pot, which acts as the initial shape for the grammar. The grammar 
generates a complete coffee maker by first designing the base and the filter units, then 
integrating them together using the water storage unit. 

It has been argued that different types of spatial relations between two shapes can be 
defined as: contain, overlap, share boundary and disjoint. A shape a can be said to 
contain a shape b if b is part of a. Two shapes overlap if they have a common part and 
neither shape fully contains the other. Two shape share a boundary if they do not 
overlap, but their boundaries do overlap. If two shapes do not contain, overlap or share 
boundary, they can be said to be disjoint (Stouffs and Krishnamurti, 1994). It has also 
been argued that different types of spatial relations between shapes can be defined as: 
within, intersection, boundary relations, and continuous (Chase, 1997). A summary of 
spatial relations is shown in Table 13 below. 
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Table 13. Types of spatial relations. 

Type Example 

Contain 

Overlap 

Share boundary 

Spatial relations between two shapes 

Disjoint 

Parallel 

Perpendicular 

Spatial relations within one geometric form 

Intersect 

 
Also, many spatial relations can exist within just one geometric form. Consider, for 
example, a square. The four maximal lines in a square encapsulate a variety of spatial 
relationships: each line is the same length, each line is parallel to one other 
perpendicular to two others and each maximal line contains two intersections. Thus, 
even one square contains a rich variety of spatial relationships between the constituent 
elements �� the maximal lines themselves and the intersections (Tapia, 1999). Other 
quadrilaterals, such as rhombus, trapezoid and rectangle, have an equal number of line 
segments to a square but have spatial relations which make them all distinct. A 
rhombus, for example, is like a square in that it has reflection symmetry about 
imaginary lines of symmetry through its diagonals. However, a rhombus is unlike a 
square in that its lines do not intersect at right angles to each other.  

Spatial relations can be used to formulate a default hierarchy of shape 
decomposition. The levels of the hierarchy can defined so that the most constrained 
lines of a shape are those lines that the designer intended exactly. These most 
constrained lines have specified parametric relations to other line segments and those 
relations, if altered, will compromise the designer's intentions. Conversely, the lowest 
level of the hierarchy, which contains the least constrained line segments, implies only a 
specific connectivity between line segments. The formulation of this type of default 
hierarchy involves separating the lines in the shape that the designer specified exactly 
from lines in the shape that were intended as a general scheme. Different rules can be 
allocated to different levels of the hierarchy. In particular, different rules for the lines in 
the shape that the designer specified exactly and other rules for the lines that were 
intended as a general scheme (McCormack and Cagan, 2002). 
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4.4 Developing grammar rules 

As stated above, emergence in shape grammars emulates human creative behaviour in 
design (Knight, 2003a). In particular, human designers generate design options which 
are not stored previously in their minds. Rather, designs emerge from the creative 
processes of human designers. These creative processes can be regarded as a kind of 
informal computation in which designs are transformed into other designs by adding, 
erasing, or redrawing shapes. Accordingly, shape grammar rules should be congruent 
with designers' visual intuitions (Stiny, 1980).  

A shape grammar minimally consists of three shape rules: a start rule, at least one 
transformation rule, and a termination rule. Rules within shape grammars take the form 
a → b, where a and b are both shapes. In order to apply this rule to shape, c, an 
instances of a must be located in c. If a transformation of a, t(a) is located in shape c, 
the rule can be applied to produce a new shape c' by using the equation: c' = c - t(a) + 
t(b). Thus, executing the action part of shape grammar rules involves subtraction and 
addition (McCormack and Cagan, 2006). In simple terms, rules apply in a two-stage 
process: (1) find a part of c that looks like a; and (2) replace this part with a new part 
that looks like b. The two-stages are always linked (Stiny, 1999). 

Transformational rules within shape grammars are rules for spatial transformations. 
The types of spatial transformations include translation, reflection, rotation, scale, and 
shearing. Spatial translation involves moving every point of a shape a constant distance 
in a specified direction. Spatial reflection (i.e. mirror image) involves a transformation 
in which the direction of one axis of a shape is reversed. Spatial rotation involves 
movement of a shape in a circular motion. A two-dimensional shape rotates around a 
center (or point) of rotation. A three-dimensional shape rotates around an axis. 
Translation, reflection and rotation can be thought of a being rigid motions. In 
particular, no amount of translation, reflection or rotation will destroy a specific feature 
of a shape but only more features from place to place. By contrast, anisotropic scaling 
(different scaling factor in all directions) can destroy the symmetry of a shape unless the 
scaling is along perpendicular to the line of symmetry. Isotropic scaling (same scaling 
factor in all directions does not, however, affect the symmetry of a shape. Shearing 
leaves fixed all points on one axis and other points are shifted parallel to the axis by a 
distance proportional to their perpendicular distance from the axis. A summary of the 
types of spatial transformations enabled by shape grammar rules is provided in Table 14 
below. 
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Table 14. Different types of spatial transformations enabled by shape grammar rules. 

Type Summary 

Spatial translation Moving every point of a shape a constant distance in a specified 
direction. 

Reflection  The direction of one axis is reversed and so produces the mirror image. 

Rotation A two-dimensional shape rotates around a centre or point of rotation. A 
three-dimension shape rotates around an axis. 

Anisotropic scaling Different scaling factor is applied in all directions, and destroys 
symmetry unless perpendicular along line of symmetry. 

Isotropic scaling Same scaling factor is applied in all directions, and does not affect the 
symmetry of the shape. 

Shearing Leaves fixed all points on one axis and other points are shifted parallel to 
axis by a distance proportional to their perpendicular distance from axis. 

 
Rules can make ideas explicit so they can be analyzed, changed or communicated more 
easily (Knight, 1999). Rules can be course or fine depending upon the level of detail 
within a rule. By dividing the design process into two stages, shape searches can be 
performed more quickly because the coarse representation contains fewer geometric 
entities than the fine representation. Overall, the level of detail represented in the 
grammar being a function of what is intended to be accomplished with the grammar 
(McCormack and Cagan, 2002). If performance metrics are associated with rules, it is 
critical that the metric depend only on the information provided by the shape rules 
(Agarwal et al., 1999). It is important to note that rules may be needed which do not 
transform shapes (Stiny, 1996). Rather, they enable subsequent transformation through 
the application of other rules or enable the passing of geometric information to 
simulation / analysis software. Such rules may be expressed as a → a, rather than a → b 
(Agarwal and Cagan, 2000). 

The formulation of rules within research has led to a number of useful insights. First, 
it has been argued that creativity in rule-based design lies in the formulation of the rules 
(Colakoglu, 2005). Further, it has been argued that the effective organization of rules is 
critical for their retrieval and adaptation in rule based systems (Seebohm and Wallace, 
1998). This can be facilitated by preparation of a rule dependency graph to elucidate 
relationships between shape grammar rules. In particular, reference to a rule 
dependency graph can clarify how changes to one rule may affect other rules. For 
example, it is important to understand which characteristics of a design appear in more 
than one view and how to link them together through their rule applications (Orsborn. et 
al., 2006). Generally, a modular organization of rules can facilitate the addition, deletion 
and/or replacement of sets of rules. Devising a visual representation of product / 
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building components can be important to facilitate the formulation of rules. Further, 
understanding the intrinsic orders / logical progressions of processes can be important. 
Accordingly, the formulation of rules can be informed by reference to, for example, 
handbooks that describe processes for design and/or production. Reference to such texts 
can provide useful guidance into the structuring of rules into groups which are 
congruent with effective processes. Groups of rules can, for example, cover process 
stages such as: locate functional zones; define circulation scheme; divide zones into 
rooms; introduce details; introduce openings (Duarte, 2005). Stages can correspond 
more or less to natural and intuitive design processes (Stiny and Mitchell, 1978). 

However, it is important to note that rules can be applied in novel orders during 
shape grammar computation. This can be done to explore novel alternatives.  Rules can 
be constrained so that designs are guaranteed to be within a feasible design space, no 
matter how the rules are applied. Thus, certain assumptions and constraints have to be 
imposed on the rule selection algorithm to constrain the design space. These 
assumptions and constraints need to be carefully determined so they do not excessively 
narrow the design space, but do prevent searching a space of infeasible designs. Overall, 
formulation can be a gradual process with numerous problem solving sessions and 
example problems (Soman et al., 2003).  

A parallel grammar is a network of two or more grammars that operate in 
conjunction with each other. One grammar for building architecture could generate floor 
plans; another could generate elevations; another could generate sections; another could 
generate numerical descriptions. The rules of parallel grammar may be linked so that the 
application of a rule in one grammar triggers the application of one or more rules in 
other grammars. The generation of first floor plans, for example, could drive the 
generation of upper floors. Then, the elevations which are generated would be 
determined by the layout of floors (Duarte, 2005). Similarly, a floor plan grammar could 
be linked to a site plan grammar. When the rules of a parallel grammar are linked, the 
linked rules can be expressed as one compound rule. The component rules of a 
compound rule may or may not operate in the same space or domain (Knight, 2003a). 
Parallel grammars are defined in terms of composite algebras (Chase and Ahmad, 2005; 
Knight, 2003b). 

It has been argued that it may be possible to: identify priorities of rules; calculate 
preference values for each rule based on frequency of use; and use preference values as 
speculative tools to provide customizable categorizations of design outcomes. In this 
way, the outcomes from applications of rules could be limited in accordance with the 
particular preferences of particular users (Lim et al., 2008). It can be possible for a 
shape grammar system to enable its users to carry out both rule development and rule 
application (Tapia, 1999). It is important to note that rules for a shape grammar which 
enable physical production need more information and more illustration during 
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formulation (Sass, 2007b). A summary of considerations in the formulation of shape 
grammar rules is shown in Table 15 below. 

 
Table 15. Considerations in the formulation of shape grammar rules. 

Consideration Relevant technique 

Organization for retrieval etc Rule dependency graph 

Intrinsic orders of processes Process guides 

Assumption and constraints Problem solving with examples 

Duration of computation Course rules supported by fine rules 

Level of emergence Optional rules without explicit dimensions 

Dependencies among components Parallel grammars defined in composite algebras 

Particular user preferences Preference values as speculative tools 

Enable physical production More information and illustration during formation 

 
The three kinds of emergence in a shape grammar can be determined during the 
definition of rules: anticipated, possible and unanticipated. With anticipated emergence, 
the authors of a grammar know that certain shapes will emerge from their application. 
In anticipation of these emergent shapes, rules that operate on them are included in the 
grammar. Anticipated emergence is key to analysis applications of shape grammars. In 
analysis, emergence is necessary but must be anticipated so that only a carefully 
circumscribed range of new designs is generated. Rules must generate "all and only" 
designs of a specified kind (Knight, 2003a). Such grammars can be thought of as set 
grammars (e.g. Heisserman and Woodbury, 1994). Nonetheless, designs in computation 
may have global characteristics that cannot be predicted from the local actions of rules. 
With possible emergence, the authors of a grammar write rules and think that, perhaps, 
certain shapes might emerge. Rules are included that apply to these possible shapes just 
in case they do emerge. With unanticipated emergence, the authors of grammar write 
rules and compute with them. Shapes emerge that were not premeditated or anticipated 
in any way. In order to compute with these shapes, the grammar may need to be updated 
with new rules (Knight, 2003a). Unanticipated emergence is pervasive in the processes 
of human designers, particularly in the early, conceptual stages of design when the open 
exploration of novel, unexpected design ideas is important. Unanticipated emergence 
makes much of design happen (Knight, 2003a). A shape grammar can be said to be 
informal when its rules are generally optional; and when relative dimensions are not 
made explicit in the rules (Phillips, 2008). A summary of types of emergence arising 
shape grammar rules is provided in Table 16 below. 

 



4. Formulation of grammars 
 
 
 
 

48 

Table 16. Types of emergence arising from shape grammar rules. 

Emergence Rules 

Anticipated Rules generate all and only designs of a specified kind (i.e.set grammars). 

Possible Rules are included that apply to possible shape which might emerge. 

Unanticipated Rules may be optional and/or may need to be updated. 

4.5 Define initial shapes 

As stated above, shapes can be defined and manipulated within a Cartesian coordinate 
system. That being a system for locating and measuring points in space based on a three 
dimensional axis labeled X, Y, Z. Thus, the initial shape can be, for example, the origin 
of the Cartesian coordinate system (Stiny and Mitchell, 1978). Also, the initial shape 
can be a relative coordinate system which, for example, links the front, rear and side 
views of a car (Orsborn, Cagan, Pawlicki, and Smith, 2006). Coordinate system can 
have real axes (i.e. every point on the axes corresponds to a real number) and an 
associated euclidean metric (Stiny, 1980). It is beneficial, in some cases, for the initial 
shape to be a shape which is congruent with the typical starting place for physical 
production, such as a foundation (Sass, 2007b). The formulation of a shape grammar for 
coffee makers, for example, involved definition of three main parts: the filter unit, the 
water storage unit, and the base unit. These three units are arranged around the space for 
the coffee pot, which acts as the initial shape for the grammar. The grammar generates a 
complete coffee maker by first designing the base and the filter units, then integrating 
them together using the water storage unit. 

4.6 Language of shape  

A shape grammar is defined over a set of shapes, and maps shapes into shapes to 
generate a language of shapes (Stiny, 1976). Language of shape is considered in the 
shape grammar literature in the context of design. For example, it is proposed that shape 
grammar rules should be explicit representations of the underlying properties and 
structures of sets of designs, thus shifting emphasis away from individual designs to 
languages of design (Stiny, 1980). A language of designs has been described as a set of 
descriptions of individual designs: with such descriptions enumerating the component 
elements one-by-one in a finite sequence of symbols. For example, spatial designs � 
architectural, mechanical, or electronic ones - are often given by drawings which consist 
of lines. These drawings can each be encoded by a finite sequence of symbols by listing 
the end points of the lines in them that are not parts of longer lines. In general, 
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descriptions of designs are often given by diagrams, drawings, or schematics. Such 
descriptions can always be given by a finite set of symbols (Stiny and March, 1981). 
Languages of design can be defined in accordance with the steps outlined in the 
proceeding sub-sections: formulate vocabulary of shapes; determine spatial relations 
between shapes in the vocabulary; develop rules; define initial shape. Overall, each 
shape grammar defines a language of designs (Stiny, 1980). Languages of designs may 
be thought of as corresponding to certain "styles" of design (Stiny and March, 1981). 
 It has been argued that when designers use a language of designs, they can avoid the 
combinatorial difficulties of ad hoc design development which lead to the consequences 
of succeeding changes becoming more and more obscure. Also, it has been argued that 
rules can be modified systematically to define new languages of design which reflect 
changing circumstances or incorporate new ideas (Stiny, 1980). 
 More broadly, formal languages are important within the fields of logic, computer 
science and linguistics. An important practical application is for the precise definition of 
syntactically correct programs for a programming language. Apropos, shape grammars 
need to be precisely defined to enable their computation. 
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5. Computation of grammars 

5.1 Overview 

In this section, some details are provided about the computation of shape grammars. 
These details offer some insights into the computation of formal grammars in general. 
First, the definition of shape grammars with algebras is outlined. Then, enabling 
algorithms are discussed. These include standard geometric algorithms as well as those 
which have been formulated specifically to enable computation of shape rules. Next, a 
summary of their description with pseudo-code is provided. Subsequently, various 
aspects of shape grammar implementations with software are described. In conclusion, 
examples are given of computational methods which have been combined with shape 
grammars, such as ontology and optimization techniques. Much of the shape grammar 
literature is focused on the computation of designs. Accordingly, the details provided 
here make more reference to design than to manufacture and assembly issues.  

5.2 Definition with shape algebras 

As shown in Table 17, within shape algebras, letters or other symbols are used to 
represent shapes � rather than numbers (Stiny, 1991). Such algebras provide the 
framework for computation of shape grammars (Knight, 2003b). For example, the 
definition and application of rules is enabled by shape algebras (e.g. Krstic, 2001) with 
subshapes being defined with algebras so their geometries can be constructed, 
recognized, and/or reconstructed through computation (Krishnamurti, 1980; 
Krishnamurti and Earl, 1992). 
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Table 17. Foundations of shape algebra. 

Algebra Objects Basic Elements Boundaries 

 Shapes determined by 
finite sets of maximal 

Defined in 
dimension 

Have finite 
non-zero 

Every basic element has 
a boundary belonging to 

U0  Points  0 -  -  

U1  Lines  1 Length  U0  

U2  Planes  2 Area  U1  

U3  Volumes  3 Volume  U2  

  
As shown in Table 18 below, algebra Uij be presented as a hierarchy (e.g. Knight, 
2003b; Krstic, 2001); with elements of dimension i in a space of dimension j. Thus, U01 

describes a point on a line; and U23 describes a plane in a volume.  
 

Table 18. Shape algebra Uij. 

Dimension i In a space of dimension j 

 Point Line Plane Volume 
Point U00 U01 U02 U03 
Line  U11 U12 U13 
Plane   U22 U23 
Volume    U33 

 
The algebras in the tables are ordered recursively via basic elements. The ordering 
highlights their underlying properties in terms of the embedding relation, finite content 
(non-zero length, area, and volume) for lines, planes, and solids, and definite boundaries 
for these elements that are shape but not parts. This makes computer implementations of 
shapes possible, ultimately with points that have neither content nor boundaries. 
Moreover, it lets computers calculate with shapes as if this were done by hand and eye 
(Stiny, 1999). By contrast, shapes in traditional computer graphics systems are often 
represented as sets of lines that cannot be further decomposed, i.e. no portions of lines 
can be easily recognized. Shape algebraic representations act against such restrictions, 
as they require only minimal predetermination of structure (Chase, 1996). 

If two algebras are combined in a Cartesian product, then a reciprocal relationship 
can be formed (Stiny, 1991) in which rules defined in one algebra (e.g. U0) control the 
use of rules defined in another algebra (e.g. U1). Generally, Cartesian product can be 
thought of as the set of elements common to two or more sets; "the set of white cars is 
the intersection of the set of cars and the set of white things". A set is a group of things 
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of the same kind that belong together and are so used; "a set of books"; "a set of golf 
clubs"; "a set of teeth". More precisely, Cartesian product can be described as the 
collection of all ordered pairs of two given sets such that the first elements of the pairs 
are chosen from one set and the second elements from the other set: this procedure 
generalizes to an infinite number of sets. Within shape computation, a point can be 
chosen from U0 shape vocabulary, for example, can be associated with a line chosen 
from U1 shape vocabulary. The point can control the use of the line, for example, by 
determining what rotations of the line can be executed. With regard to the formulae, a 
→ b, and, c′ := [c � t(a)] + t(b), if the use of rules are to be controlled by augmenting a 
in a Cartesian product, then the devices used for this purpose must be incorporated in c. 
This requires that the object that begins the computation and right hand side of the rules 
(i.e. b) also be augmented. How this is achieved varies from one case to the next (Stiny, 
1991). 

Every algebra of shapes, Uij,  0 ≤ i ≤ j, has most of the properties of a Boolean algebra 
(Stiny, 1993). The term, Boolean algebra, honors George Boole (1815�1864), a self-
educated English mathematician. In abstract algebra, a Boolean algebra, or Boolean 
lattice, is a complemented distributive lattice. In mathematics, a lattice is a partially 
ordered set in which any two elements have a unique supremum (the elements' least 
upper bound; called their join) and an infimum (greatest lower bound; called their 
meet). Lattices can also be characterized as algebraic structures satisfying certain 
axiomatic identities. Since the two definitions are equivalent, lattice theory draws on 
both order theory and universal algebra. Moreover, this type of algebraic structure 
captures essential properties of both set operations and logic operations. An operation 
being an action or procedure which produces a new value from one or more input 
values. In particular, every algebra of shapes, Uij,  0 ≤ i ≤ j, is a relatively complemented 
distributive lattice (Stiny, 1993). In the mathematical discipline of order theory, a 
complemented lattice is a bounded lattice in which every element  a has a complement, 
i.e. an element b satisfying a v b = 1 and a ◦ b = 0. A relatively complemented lattice is 
a lattice such that every interval is complemented. Complements need not be unique. 

An algebra Uij can be augmented by associating labels from a given vocabulary with 
basic elements to classify them in shapes, or to introduce additional information. This 
allows for shapes to be formed as collections of others that are distinguished by distinct 
labels. Members of different collections interact if they are distinguished by the same 
label, and are independent otherwise. A new algebra Vij is so defined that preserves the 
Boolean properties of Uij , too, if labels are invariant under the transformations (Stiny, 
1992). Labels may be given simply to identify and classify points, or they may have a 
semantics allowing them to carry important information about shapes and other things 
(Stiny, 1991). Furthermore, weights can be introduced in an algebra Uij to obtain a new 
algebra Wij (Stiny, 1992). Weights are familiar in traditional art and design, where lines 
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of different thicknesses (i.e. weights) are used in drawing. However, weights in shape 
computation can encompass a much broader range of properties. Properties can be 
aesthetic, functional, structural, and so on. For example, points can have diameters; 
lines can have thicknesses; planes can have colours; solids can have materials; and so 
on. In a study involving generation of micro-electromechanical systems (MEMS), the 
four main elements (central mass, actuators, anchors, and springs) were each assigned a 
different weight to ensure that feasible designs were generated (Agarwal et al., 2000). A 
summary of the different algebras is provided in Table 19 below.  

 
Table 19. Applications for different algebras. 

Algebra Application 

Uij Shapes determined by finite sets of maximal points, lines, planes, volumes  

Vij Labels to identify and classify points, or carry important information 

Wij Weights to include properties, e.g.  aesthetic, functional, structural, in shapes 

 
The Cartesian product of algebras can be represented in a matrix. In particular, parallel 
grammars defined in terms of composite algebras (Knight, 2003b) are suited to this 
representation (e.g. Duarte, 2005). As stated above, a parallel grammar is a network of 
two or more grammars that operate in conjunction with each other.  

5.3 Enabling with algorithms 

As stated above, shape grammars are examples of production system formalisms (Post, 
1943). These are computer programs consisting of a knowledge base of rules and 
general facts, a working memory of facts concerning the current case, and a rule 
interpreter within an inference engine. Rule interpreters generally execute a forward 
chaining algorithm for sequences of rule applications. Forward chaining starts with the 
available data in the working memory and searches the rules until it finds one where the 
condition (e.g. IF statement on LHS) is known to be true. When found it can infer the 
action (e.g. THEN statement on RHS), resulting in the addition of new information to 
its working memory. Then, searching the rules continues. 

An algorithm is a finite sequence of instructions that provide an explicit, step-by-step 
procedure for solving a problem. It is formally a type of effective method in which a list 
of well-defined instructions for completing a task will, when given an initial state, 
proceed through a well-defined series of successive states, eventually terminating in an 
end-state. An effective method for a class of problems being a method for which each 
step in the method may be described as a mechanical operation and which, if followed 
rigorously, and as far as may be necessary, is bound to work for all instances of 
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problems of the class. Algorithms have been formulated to enable shape rule 
applications (Krishnamurti, 1980; Krishnamurti and Earl, 1992; Krishnamurti and 
Stouffs, 2004). In addition, standard geometric algorithms can be used to enable shape 
computation. De Casteljau's algorithm, for example, has been used in curve-matching 
during shape recognition (McCormack and Cagan, 2006). De Casteljau's algorithm is a 
recursive method to evaluate polynomials in Bernstein form or Bézier curves. The de 
Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier 
curves at an arbitrary parameter value. Also, Lagrange's theorem has been suggested to 
classify the possible actions of a → b in terms of the symmetries of the shapes a and b 
(Stiny, 1999). Lagrange's Theorem simply states that the number of elements in any 
subgroup of a finite group must divide evenly into the number of elements in the group. 
A consequence of Lagrange's Theorem would be, for example, that a group with 45 
elements could not have a subgroup of 8 elements since 8 does not divide 45. It could 
have subgroups with 3, 5, 9, or 15 elements since these numbers are all divisors of 45. 

It is important to appreciate that carefully formulated data structures are needed for 
efficient operation of algorithms. When De Casteljau's algorithm has been used in 
curve-matching during shape recognition, for example, shapes have been decomposed 
into a hierarchy of subshapes ordered by decreasing restrictions on their spatial 
relations. A high level of restriction on spatial relations could be, for example, that lines 
intersect perpendicularly and are the same length. A lower level of restriction could be, 
for example, that lines intersect. This type of ordering enables subshapes of a whole 
shape to be dealt with individually when performing the subshape recognition process, 
and yet can allow an entire shape to be parametrically recognized through their 
combination. Thus, the ordering of shapes into a hierarchy based on spatial relations can 
provide an efficient shape-search order (McCormack and Cagan, 2002). Further 
efficiency in the parametric recognition of curved-line shapes can be achieved by 
employing a two-step approach. The set of potential matches can be found first on the 
basis of a representative straight-line shape (i.e. coarse matching). Then, potential 
matches can be validated or rejected by comparing actual curve (fine checking). This 
approach has advantages over the pure matching of characteristic polygons in that it can 
match equivalent curves with differing characteristic polygons, in addition to emergent 
shapes. The representative straight-line shape can be a collection of lines connecting 
distinct points from the curvy shape. The set of distinct points includes intersections 
between curves, curve endpoints, and projected intersections of well-know curves such 
as circles. Endpoints can be used as distinct points for matching otherwise indeterminate 
shapes.  Fine checking can be performed using a number of different methods. Control 
polygons can be compared for equivalence if the number of control points defining each 
curve is the same. Control points can be added to a polygon with fewer points without 
changing the curve, in order to allow for comparison (McCormack and Cagan, 2006). It 
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is within such carefully formulated data structures that algorithms can operate 
efficiently. A summary of important issues relating to algorithms is provided in Table 
20 below.  

 
Table 20. Issues in the formulation of algorithms. 

Issue Approach 

Chaining Forward chaining  

Sources Shape grammar literature; standard geometric algorithms 

Data structures Decompositions and rules need to facilitate efficient operation of algorithms 

5.4 Description with pseudo-code 

In order to facilitate the planning of computer program development, algorithms can be 
expressed as pseudo code before actual coding is carried out. Typically, pseudo-code 
will provide a description of the key principles of an algorithm using words of natural 
language such as IF and THEN together with some compact mathematical notation. 
Pseudo-code descriptions are not intended to be machine readable, and can be much 
easier for a broad range of people to understand than programming language code. Also, 
pseudo-code descriptions can be read more quickly than programming language code 
because details are omitted which are not essential for human understanding of the 
algorithm, such as variable declarations, system-specific code and subroutines. 

Although pseudo-code will seldom obey the syntax rules of any particular 
programming language; style and syntax may be borrowed from some conventional 
programming language such as BASIC, C++, Java, and Lisp. Thus, the use of pseudo-
code can avoid many of the ambiguities common in natural language statements, while 
remaining independent of a particular implementation language. Examples of pseudo-
code for algorithms formulated to enable shape rule applications are presented in the 
literature (e.g. McCormack and Cagan, 2006; Soman et al., 2003). 

5.5 Implementation with software 

Programming languages enable expression of algorithms in a form that can be executed 
by a computer. Shape grammars have been implemented in a variety of languages 
including: ACIS, AutoLISP, C/CLP, CLIPS, C++, Java, LISP, Perl, PROLOG, and 
SAIL (Chau et al., 2004). One interpreter, for example, has been implemented in C++; 
and was compiled and run on a Windows workstation (McCormack and Cagan, 2006). 
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The need for effective user interfaces for the generation, visualization and 
manipulation of shapes has led to the use of 3D graphics APIs such as Open Inventor in 
conjunction with, for example, Java (Wang and Duarte, 2002). The potential of scripting 
languages, such as ActionScript, to improve user-interactivity has been recognized (Wu, 
2005). Scripting languages enable the encoding of new functionality into an existing 
program, rather than developing new software from scratch (Loukissas, 2003). Thus, 
more time can be spent focusing on function, structure, and interface, rather than 
focusing on coding and testing (Wu, 2005). There are limitations to what can be scripted 
in any given software environment. However, scripting provides sufficient access to 
underlying structures to enable development of personal and/or project-specific tools. 
Such tools can be developed so they are more easily usable by a wide range of people 
who may be involved in carrying out a relatively narrow range of tasks. It has been 
argued that scripting languages can offer massive increases in productivity with little or 
no negative effects on eventual system performance (Greiner, 2008). RhinoScript, for 
example, is the scripting language of the 3D CAD software Rhineceros (Rhino), and has 
been used in explorations of shape computation involving implementation of a few rules 
(Loukissas, 2003). 

Shape grammars can be implemented as an extension to design drafting software, 
such as AutoCAD (Romeo, 2002, cited in Loukissas, 2003), and integrated with 
parametric design software, such as Generative Components (Shea et al., 2005). 
Drafting software can be thought of as "traditional" CAD systems because they can be 
seen as evolved, automated versions of the traditional drafting table of the architect or 
engineer. By contrast, parametric design software allows users to define geometrical 
entities by establishing relationships of geometrical or mathematical dependency 
between different elements of the design (Cardoso and Sass, 2008). In either case, there 
are challenges in shape grammar implementation with CAD software. For example, a 
major challenge to shape grammar implementation with parametric CAD is that this 
type of software involves top-down manipulation in which changes in the general shape 
are propagated to the parts. By contrast, the computation of shape grammars involves 
bottom-up changes on the overall shape by the addition and subtraction of parts. 
Nonetheless, a generative structural design system called eifForm has been combined 
with the parametric CAD software package called Generative Components. This has 
been achieved by use of "federated" systems architecture and the employment of 
eXtensible Markup Language (XML) for integration. XML can provide flexible and 
adaptable information identification because it is a meta-language, i.e. a language for 
describing other languages that allows individuals to design their own markup 
languages for almost any type of document. XML is a human-readable open standard 
with off-the-self parsers for common programming languages such as C, C+, C++, Java, 
Perl and Python. Flexibility and interoperability make XML a useful format for 2D 
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web-graphics, 3D modelling and VRML (virtual reality mark-up language) rendering 
(Shea et al., 2005). The motivations for integrating eifForm with Generative 
Components include: development of richer input models; more effective visualization 
and manipulation of geometric and topological relations; improved interplay between 
generated shapes and whole design (Shea et al., 2005). A summary of issues relating to 
implementation with software is provided in Table 21 below.  

 
Table 21. Issues in the formulation of algorithms. 

Issue Approach 

Programming ACIS, AutoLISP, C/CLP, CLIPS, C++, Java, LISP, Perl, PROLOG, SAIL, 
Open Inventor, ActionScript, Rihnoscript have been used. 

CAD Use of "federated" systems architecture and the employment of eXtensible 
Markup Language (XML) for integration. 

CAD/CAM Innovations, such as CAD scripting, file formats like STL, and bilateral 
contouring, can facilitate streamlining of design and production. 

Web Innovations, such as Extensible 3D (X3D) Graphics and gesture-responsive 
scripting may facilitate running of shape grammars on the internet. 

 
Potential for combining shape grammars with CAD/CAM (computer-aided 
manufacturing) has been explored within research. This has led to the observation that 
there is a lack of software to simultaneously support design growth and design 
flexibility. The term, design growth, refers to the potential for designs to evolve during 
the application of shape grammars. The term, design flexibility, refers to the potential 
for design to be realized at different physical scales with different materials and 
different machines (Cardoso and Sass, 2008). Nonetheless, the introduction of CAD 
software and file formats for digitally-driven manufacturing opens up more possibilities 
for streamlining creative design with physical production. STL, for example, is a file 
format native to the stereolithography CAD software created by 3D Systems. STL 
supported by many other software packages; it is widely used for rapid prototyping and 
computer-aided manufacturing. An STL file describes a raw unstructured triangulated 
surface using a three-dimensional Cartesian coordinate system. Further, research has 
demonstrated that manufacture at two different scales with two different types of 
machines from the same geometric data is possible. In particular, geometric descriptions 
are needed that co-ordinate geometries between device types. This involves the 
rethinking of tool path goals and artefact assembly methods through approaches such as 
bilateral contouring (Sass, 2007a) and rationalizing materials so they are of one type 
irrespective of machine (e.g. flat solid material).  
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Also, the potential to streamline very creative design with physical production with, 
so called, CAD scripting, using computer-aided design packages such as Rhino has been 
recognized for some years (Sass et al., 2005). It has been argued that scripting can help 
relate creative design to manufacturing and assembly. This requires the tailoring of 
scripts for specific materials properties and machine characteristics. In order to generate 
a robust model for a 3D printer, for example, a script must specify only solid objects. 
Further, objects must be above a minimum thickness and beneath a maximum size: with 
the allowable thickness of a model being partly a function of the overall proportion of 
the model (Loukissas, 2003).  

It has been proposed (Wang and Duarte, 2002) that shape grammars could run 
directly on the internet from web browsers that have 3D interactive user interfaces with 
standard file formats such as VRML (Virtual Reality Markup Language � now 
superseded by X3D). Also, it has been proposed that direct "gestural inputs" from users, 
such as scanned images, digitally drawn shapes, or 3D digitized three dimensional 
objects, can be enabled through "gesture-responsive" scripts. Those being scripts with a 
rule set open to definition in relationship to an existing shape (Loukissas, 2003). 

An overview of different representations of shape grammars throughout their 
formulation and computation is shown in Figure 6. This shows that the representations 
are primarily spatial in the corpus, during formulation of vocabulary, and in the 
development of rules. The development of rules, the composition of algorithms and the 
writing of pseudo code can involve shape algebra and natural language. Implementation 
with software will involve the use of computer programming languages. Subsequently, 
the outputs of shape grammar computation will be spatial representations. 

 
 
 
 
 
 
 
 
 

 

 

Figure 6. Representational methods. 
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5.6 Complementary computational methods 

It has been recognized that better generative systems can be achieved if shape grammars 
are implemented in conjunction with other computational methods rather than 
implemented in isolation (Bruton, 1997). Within research, for example, shape grammar 
has been used in conjunction with ontology. In one study, design knowledge was 
captured in the ontology and processed by the shape grammar. The interaction between 
shape grammar and ontology included a list of questions that the shape grammar posed 
for a specific design type. The research suggests that ontology and shape grammar may 
have complementary properties that when combined can strengthen the overall process 
of design (Grobler et al., 2008).  

Also, combining shape grammars with graph grammars can be beneficial. In simple 
terms, graphs are diagrams displaying data, in particular diagrams showing the 
relationship between two or more variables. Graph grammars consist of production rules 
to create valid configurations of graphs for a specific domain (Plump, 1999). In 
particular, the rules in graph grammars enabling match and replace operations for nodes 
and edges in a network.  Compared to shape grammars, graph grammars offer the 
advantage of expressing connectivity between elements. This allows representation of 
non-serial component arrangements and functional relationships. Hence, graph 
grammars have been used in a similar way to shape grammars to design graphs for the 
mechanical configurations of gear boxes, electric motors and a variety of machines 
(Schmidt and Cagan, 1997). One study combined graph grammars and shape grammars 
in apartment house design (Seo, 2007). This was considered necessary because 
relational meanings between consisting parts are a relatively minor concern in shape 
grammars. By contrast, design often starts from the conception of approximate forms 
out of unrefined candidate configurations in human design processes. Thus, topology 
and form interplay from the outset to achieve, for example, building functionality in 
human design. In another study, a grammar was developed which operates on the nodes 
and arcs of a graph but generates a complete shape. The positions of the nodes within 
the graph directly represent elements of sheet metal (Soman et al., 2003). More 
generally, it has been argued that shape grammars could be combined with graph 
grammars to overcome the problem of shape grammars not being able to deal with CAD 
primitives directly (Deak et al., 2006). 

Many of the outputs of Generative Production Systems will be of limited usefulness 
unless the generative process is directed towards specific goals. Accordingly, shape 
grammars have been combined with a variety of computational techniques for optimally 
directed search. A search conducted in this way will find near-optimal solutions without 
necessarily finding the optimal solution (Cagan and Agogino, 1991a; 1991b). Thus, 
techniques do not guarantee that exact mathematically optimal solutions are generated. 
Rather, optimization techniques direct the generation of shapes towards specified 
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objectives or criteria. These can be for design and for production. Within design, for 
example, elegance based on an aesthetic value determined from spatial uniformity can 
be important (Shea and Cagan, 1997). Within production, for example, process times 
and energy consumptions can be important. Accordingly, optimization could direct 
generation towards minimizing both time and energy (Soman et al., 2003). Optimization 
techniques can enable shape rules to be tested for possible application before they are 
actually applied. If the shape produced by a rule advances towards the specified 
objectives, then the rule is applied. In order to determine if a shape advances toward the 
objectives, the shape is evaluated and described using an external algorithm. 
Evolutionary algorithms, for example, have been combined with shape grammars by 
several research scientists. Such algorithms can be applied to automate design search 
and evaluation. It has been argued that evolutionary algorithms have potential for 
replacing the manual effort of rule selection and design evaluation associated with shape 
grammars. Further, it has been argued that application of such algorithms can lead to 
evolution of new generations of shape grammars that can produce better designs than 
their initial shape grammar formulated by human experts. For example, through 
mutation and cross-over of rules (Ang et al, 2006; Caldas, 2008; Chouchoulas, 2003; 
Gero et al., 1994; Lee and Tang, 2004). An illustrative overview of possible 
combinations of other computational methods with shape grammars is shown in 
Figure 7. 
 

 
 
 
 
 
 
 
 
 
 

Figure 7. Illustrative combinations with other computational methods. 

Shape grammars have also been combined with another computation method for 
optimizing search and evaluation: simulated annealing.  The process arising from this 
combination has been called, shape annealing (Shea and Cagan, 1997; 1999). Simulated 
Annealing is a computational technique for finding a good solution to an optimization 
problem by trying random variations of the current solution. It exploits an analogy 
between the way in which a material is heated and then cooled for making the material 
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less brittle. Simulated annealing can be said to expose a "solution" to "heating" and 
"cooling" to produce a more optimal solution (Kirkpatrick et al., 1983). More broadly, 
shape optimization can be viewed as a part of the branch of computational mechanics 
called structural optimization. In structural optimization problems, data of the 
mathematical model are set up that describe the behaviour of a structure in order to find 
a situation in which the structure exhibits a priori given properties. In shape 
optimization, the optimization of the geometry is of primary interest. Shape 
optimization activities can be grouped into three categories. First, sizing optimization 
involves optimizing the typical size of a structure: for example, a thickness distribution 
of a beam or a plate). Shape optimization itself involves optimizing the shape of a 
structure without changing the topology. Then, topology optimization involves 
optimizing the topology, as well as the shape, for example by creating holes (Haslinger 
and Mäkinen, 2003). Shape annealing has been put forward as a stochastic method that 
combines discrete topology changes with continuous shape and sizing of topologies to 
generate, for example, optimally directed planar trusses (Reddy and Cagan, 1995). In 
particular, the shape annealing method builds structures by using a shape grammar; 
optimizes the structures with the stochastic optimization method of simulated annealing; 
and analyses the structures by using the finite element method (Shea and Cagan, 1997). 
Shape annealing has been shown to be capable of generating traditional solutions to 
structural design problems provided the design generation is properly constrained. 
When these constraints are removed, shape annealing generates functional yet spatially 
innovative solutions for the same design problem (Shea et al., 2005; Shea and Cagan, 
1997). 

In addition, shape grammars have been combined with cellular automata. The aim of 
this combination was to explore the potential for reducing the manual effort associated 
with both cellular automata and shape grammars. Cellular automata comprise rules for 
evolving the state of a discrete dynamical system. The same rule is applied repeatedly to 
a system state, and new states are generated in parallel as a step function (Speller et al., 
2007). A summary of computational methods combined with shape grammar within 
research is provided in Table 22 below. 
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Table 22. Computational methods combined with shape grammars within research. 
 
Method Finding 

Ontology Ontology and shape grammar may have complementary properties 
that when combined can strengthen design process. 

Graph grammars The interplay between topology and form can be explored and 
represented.. 

Evolutionary algorithms New superior generations of shape grammars can be evolved. Effort 
and time can be reduced. 

Simulated annealing Alternatives can be generated for designers with different purposes, 
while providing insight into relations between form and function. 

Cellular automata The human intuitive approach for visualization of the abstract can 
be combined with a generative computational system. 

User interfaces Interaction scenarios could for users of shape grammars could 
include: full control; partial control; no control. 

 
Shape grammars have also been combined with a variety of user interfaces. Perhaps the 
most sophisticated is an interface that facilitates the building of 3D CAD representations 
of a product type by starting with inputting words for describing the image of the 
required product (Hsiao and Chen, 1997; Hsiao and Wang, 1998) It has been proposed 
that possible interaction scenarios could include: full control; partial control; no control. 
With full control, the user is responsible for each rule invocation as well as grammar 
development. This is analogous to a non-computerized system. With partial control, 
there is user selection during some aspects of rule invocation. With no control, the 
grammar is predefined, possibly computer-generated. The system automatically 
generates designs without user intervention. It has been argued that non-modal 
interactions techniques are preferable because designers work in a non-linear manner as 
they switch between tasks (Chase, 2002). Further, it has been argued that software 
demonstrators are necessary for the development of intuitive, interactive interfaces 
(Shea and Gourtovaia, 2004). 
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6. Challenges and resources 

6.1 Overview 

As explained in section 2, the opportunities for sustainable product creation cannot be 
fulfilled by further implementation of established manufacturing materials and 
machines; conventional CAD software; and established human design / engineering 
skills. Accordingly, it will become increasingly necessary to overcome whatever 
challenges to the development of Generative Production Systems are remaining. Shape 
grammars provide a good basis for examining for these challenges, because advances in 
their formulation and computation has been reported in scientific periodicals for three 
decades. Moreover, the reporting of the development of shape grammars includes 
numerous criticisms (e.g. Caldas, 2008) and descriptions of challenges to 
implementation (e.g. Benros and Duarte, 2009). In this section, details are provided of 
challenges and resources for the development of Generative Production Systems. First, 
existing implementations of shape grammars are discussed. Then, technological 
challenges are described under the following four headings: inherent ambiguity, domain 
complexity, computational complexity, and software development. Next, technological 
resources are described under the same four headings. In conclusion, an assessment of 
development opportunities presented. 

6.2 Implementations in industry 

At least one new proprietary technology which can enable generative CAD design is 
reported to becoming available. The term, generative, has already been incorporated 
into the titles of existing CAD software packages used for building design (e.g. 
Generative Components) and product design (e.g. Generative Shape Design). Despite 
their use of the term, generative, the potential of such software packages to enable 
infinite spatial emergence may be quite restricted (Cardoso and Sass, 2008). Moreover, 
such software packages are for use by professional designers. Thus, they have limited 
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potential to enable the broadest possible range of populations to carry out sustainable 
product creation. Also, scripting of partial grammars to enable automated evolution of 
some geometric features is becoming established in building architecture. However, 
such scripting is more often intended to enable form-finding rather than form-
generation. In form-finding, a geometric form is defined within CAD software possibly 
after having been generated through traditional design practices which may include 
hand sketching and manual modelling. Then, the form is evolved through shape 
deformation enabled by the scripts (Ceccato, 2009). Again, this is the work of 
professional designers. Moreover, it is often carried out by professional designers who 
have interest and expertise in computation. 

There is one example of an entire shape grammar being implemented in industry. 
That is a shape grammar to route systems tubing through an airplane. The associated 
design representations include geometric models (boundary representation solid 
models), parts and assemblies, part classifications, part interfaces, and functional 
schematics. The shape grammar is used interactively to generate complete CAD 
geometry of aircraft tubing, including the associated fittings, clamps, and mounting 
brackets. The rules include the manufacturing constraints for the geometry of the tubes; 
constructive rules for tube routing; fittings types and compatibilities; materials; and 
clearance constraints between different components and systems. The shape grammar 
was used to design several hundred tube assemblies on the 767-400ER (Antonsson and 
Cagan, 2001). The development path for this shape grammar was quite conventional. It 
involved a doctoral scholar carrying his research forward into industry (Heisserman, 
1991; 1994; Heisserman and Callahan, 1996). This suggests that the computation of 
shape grammars can be transferred from research to practice if there is a necessity for 
implementation.  

The lack of industry examples suggests that there may have been very few 
circumstances which would necessitate implementation of an entire shape grammar for 
one specific application. However, necessity for an innovation to be implemented often 
does not occur for years, or even decades. For example, when 19th century chemists 
distilled petroleum to obtain fuel for oil lamps, they discarded the most volatile fraction, 
gasoline, as an unfortunate waste product. This practice continued until it was found to 
be an ideal fuel for internal combustion engines. However, motor vehicles powered by 
internal combustion engines did not come into widespread use immediately after 
Gottlieb Daimler built his first engine in the 1880s. This was because, at that time, there 
was no shortage of horses and no dissatisfaction with railroads. It was not until the First 
World War that implementation of internal combustion engines, and use of gasoline to 
fuel them, became a pressing necessity when lorries and horses could not take sufficient 
supplies quickly enough from railheads to troop positions. Thus, necessity can be the 
mother of implementation; as well as the mother of invention. With regard to shape 
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computation there are at least three factors which prevent their widespread 
implementation before there are circumstances which make their implementation a 
pressing necessity. These factors are: functionality of conventional CAD software; 
prevalence of established manufacturing materials and machines; interests of designers 
and engineers. 

Here, the term, conventional CAD software, means CAD software that does not 
involve shape grammars. Conventional CAD software includes: drafting CAD, 
parametric CAD, and configurator CAD. Parametric CAD software allows users to 
define geometrical entities by establishing relationships of geometrical or mathematical 
dependency between different elements of the design. Once the constraints and chains 
of dependency are defined by the designer, the driving geometry can be changed in 
order to produce design variations that retain the logic of the constraints (Cardoso and 
Sass, 2008). By contrast, drafting CAD software can be regarded as "traditional" CAD 
tools because they can be seen as evolved, automated versions of traditional drafting 
table of the architect or engineer. When compared to parametric CAD software, drafting 
tools are primarily non-hierarchical and non-relational (Cardoso and Sass, 2008). CAD 
drafting software is prevalent throughout industries. Further, designers from building 
architects to industrial designers are likely to have been trained with CAD drafting 
software. Furthermore, parametric CAD software tools are often extensions of CAD 
drafting software and/or have the similar interfaces and displays as CAD drafting 
software. Similarly, CAD configuration tools are often extensions of CAD drafting 
software and/or have the similar interfaces and displays as CAD drafting software. CAD 
configuration tools are used in conjunction with some assemble-to-order (ATO) market 
offerings such as coaches; conservatories; elevators. CAD configuration tools (i.e. 
configurators) are software tools which can help users, including customers, to develop 
approved product configurations quickly and accurately with a minimum of effort. 
Users create designs by picking from pre-determined component options and arranging 
them to suit their own individual requirements. Often, CAD configurators can generate 
information for manufacturing such as bills of materials or cutting lists. The prevalence 
of established manufacturing materials and machines in product creation means that 
best available material / machine utilizations can be incorporated into conventional 
CAD/CAM software, as well as into CAD configurator software. This can be achieve 
through, for example, data validation routines; libraries of parts; parametric product 
models.  

It is possible that shape grammars could be implemented to improve the functionality 
of conventional CAD software and CAM software in meeting established design 
challenges. However, diffusion of innovation requires awareness of the innovation 
among potential implementers (Larsen, 2005; Rogers, 2003), and awareness of shape 
grammars may be limited because research into shape grammar tends refer only to itself 
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(Gerzso, 2003). Moreover, improving the functionality of conventional CAD software 
with shape grammars could involve there being less employment for professional 
designers. This could happen, for example, if shape grammars were implemented to 
automatically generate more design options than several professional designers could 
generate. Similarly, improving the functionality of conventional CAM software could 
involve there being less work for professional engineers. Accordingly, professional 
designers and professional engineers could perceive the implementation of shape 
grammars as being not in their interests. Accordingly, it is possible that professional 
designers/engineers might resist implementation of shape grammars even if they did 
know about them. 

 It is notable that the one known shape grammar implementation in industry is being 
used to carry out design work that offers few opportunities for human designers / 
engineers to exercise professional flair from which they are likely to receive a high 
degree of internal satisfaction or external recognition. Although important, the routing 
of systems tubing through an airplane is not a particularly prestigious design / 
engineering assignment. Indeed, it is an assignment that human designers might prefer 
to have automated. Moreover, it is an assignment that can clearly benefit from the 
application of generative geometric design enabled by shape grammars. This is because 
it is unlikely that the best available solution can be obtained and verified without the 
generation of many alterative routings. Further, airplane tubing is well suited to part 
count reduction, assembly simplification and weight reduction through the application 
of advanced manufacturing and materials. This means that prior knowledge of 
established manufacturing materials and machines is of limited usefulness. Hence, it can 
be argued that the functionality of conventional CAD software; the prevalence of 
established manufacturing materials and machines; the interests of designers and 
engineers may not be major barriers to the implementation of shape grammars for the 
routing of systems tubing through an airplane. Moreover, as explained in section 2, the 
opportunities for sustainable product creation cannot be met by further implementation 
of established human design / engineering skills; conventional CAD software; and 
established manufacturing materials and machines. Accordingly, it will become 
increasingly necessary to overcome whatever challenges to shape computation 
implementation are remaining from research. Shape grammars provide a particularly 
good basis for examining for these challenges because the development of their 
formulation and computation has been reported in scientific periodicals for three 
decades. This reporting of the development of shape grammars continues to include 
numerous criticisms (Caldas, 2008) and descriptions of challenges to implementation 
(Benros and Duarte, 2009). Technological challenges are discussed in the next section; 
before technological resources are described in the subsequent section. 
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6.3 Technological challenges 

Challenge 1: Inherent ambiguity 
The computation of shape grammars has to be able to deal with the ambiguity that is 
inherent within design requirements and the designs that are generated in response to 
them. It is claimed that in design, ambiguity serves a positive and deliberate function 
(Fleisher, 1992). In principle, shape grammars can be devised to take advantage of 
ambiguity in creating novel designs. However, ambiguity, in general, is inherently 
counter-computable, and the level of ambiguity has to be controlled for any 
computational implementation to be tractable. In order to translate into programming 
code, shape rules have to be specified in a computational-friendly way: that is, shape 
grammars need to be quantitatively specified and there needs to be enough precision in 
the specification to disallow generation of ill-dimensioned configurations. 

As well as the ambiguity that is inherent within design requirements and the designs 
that are generated in response to them, shapes themselves can be ambiguous (Knight, 
2003b). For example, the shape of a circle in an architectural drawing can be part of a 
sign indicating north; a round stool in plan, a manhole cover, a lighting fixture, a 
decorative pattern, and so on. Within natural language, there is also great potential for 
vagueness and ambiguity. For example, the word, cat, can refer to a feline mammal; a 
youth; or a computed axial tomography scan. However, semantics supplies meanings to 
sentences, and these meanings may not change as the composition accumulates. In 
contrast to reading, seeing compositions of shapes is an act of renewable and revisable 
organization. In particular, the meaning of shape cannot always be the accumulation of 
the meanings of sub-shapes (Fleisher, 1992). Further, natural language sentences have a 
linear sequence, while shapes can be three dimensional. Also, compositions of shapes 
are realized through the physical processing of materials and physical experiences of 
people. 

Such factors call into question the robustness of Chomsky's formal grammars as a 
basis for shape grammars. Further, there is debate as to what type of grammar is most 
relevant to shape grammars. For example, it has been argued that designs are very 
context sensitive, and that there is always an exception to the rule (Rudolph, 2006). 
Thus, the relative merits of Chomsky's context free grammars, Chomsky's 
transformation rules; and attribute grammars are discussed in the research literature 
(Fleisher, 1992; Schmittwilken et al., 2007). Moreover, it has been argued that some 
uses of labels and markers in shape grammars can make them ambiguous grammars 
(Aho and Ullman, 1972).  Further, it has been argued that insufficient understanding of 
grammars is a significant flaw within shape grammar research. In particular, it has been 
pointed out that papers on shape grammars tend to only refer to other papers in their 
own field, and fail to convincingly relate their work to the vast literature on grammars in 
other fields (Gerzso, 2003). 
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Challenge 2: Domain complexity 
Some challenges for shape grammar implementation within the domain of engineering 
have been defined as listed below (Deak et al., 2006). 

• Engineering domains have a large set of inherent domain requirements, and each 
specific design to be generated will have a large set of problem specific 
requirements and constraints related to that instance. Creating a grammar rule set 
that contains the maximal amount of domain knowledge, while remaining flexible 
and adaptable enough to fulfil the greatest number of designs can result in a large 
complicated grammar rule set. 

• Further, in order to use shape grammars in an automatic design generation 
scenario in most engineering domains, the grammar has to prohibit the 
introduction of flaws into the design. 

• Yet, it is very difficult to verify a grammar. A recursive rule set can define an 
infinite space of possible solutions, and therefore contain designs that may be 
flawed in ways that were not anticipated by the grammar designer. 

• It is difficult to create a "designerly" grammar, where the order and application of 
rules proceeds in a way that makes sense to the user. 

• Communicating grammar is difficult; justification for individual grammar rules 
can be difficult to provide, as they may not have a direct significance on a design, 
instead playing a linking role where they prepare parts of the design for further 
grammar rules to work on. This can make maintenance, and understanding of the 
grammar by anyone who was not involved with its creation difficult. 

 
Challenge 3: Computational complexity 
Typically, high-level programming skills are required for the production of 
sophisticated and highly detailed designs using shape grammars (Sass and Oxman, 
2006). Challenges for shape grammar computation have been defined as listed below 
(Chau et al., 2004): 

• incorporate intuitive user interface 
• enable subshape recognition and shape emergence 
• enable automatic shape recognition under Euclidean transformations 
• allow parametric shape rules 
• enable automatic shape recognition for parametric shape grammars 
• allow three dimensional shapes 
• allow curvilinear basic elements 
• support surfaces and solids 
• provide aesthetic measures for ranking designs for automated selection 
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• provide unambiguous interpretation of resulting designs to their physical 
realization. 

More broadly, it has been argued that improving the reasoning abilities of 
computational tools will continue to be a challenge (Cagan et al., 2005), and that 
parametric design is preferable to shape grammar computation when the level of 
intelligence of the desired program is low (Benros and Duarte, 2009). 

Shape grammar schema may be necessary to address two important challenges. First, 
designs can be grouped into categories on the basis that they are dimensional variations 
of each other. However, shape grammars require that each member of a category be 
computed individually. Since categories can be indenumerably infinite, so can 
computations over their members. Accordingly, it would be very useful to be able to 
apply grammar rules to entire categories at once. Second, shapes are often used in 
application to represent specific geometric constructs. Notions of incompleteness in 
grammatical derivation must be dealt with through addition of new parts of a shape or 
modifications of existing parts. There is no inherent notion of partiality. Shape schemata 
are objects that capture a class of shapes by assigning variables to the structure of a 
shape and giving a set of constraints over the variables. Any assignment of specific 
values to the variables creates a (possibly reducible) shape and any such assignment that 
is consistent with the constraints of a schema is an instance of the schema (Woodbury, 
1997). 
 
Challenge 4: Software development 
Overall, there is a need for shape rules to follow a certain computation-friendly 
framework. There has been some success in efforts to reduce the coding work required 
to develop shape grammar interpreters with increased functionality. For example, 
counter-computational hindrances that commonly occur in shape grammars have been 
addressed (Yue and Krishnamuri, 2008). Also, reductions in computational load in the 
communication of shape grammar have been achieved (Sass, 2007b). Further, with 
regard to the combining of shape grammars with optimization techniques, the A-Design 
agent-based approach has been used to reduce the level of stochastic search 
(McCormack and Cagan, 2002). Nonetheless, in spite of the depth of shape grammar 
research, there are no robust general purpose parametric interpreters for shape 
grammars. This deficiency has limited the practical use of shape grammar to hand 
manipulation, which serves an educational value in itself, and by self-development of 
customized software which may have limited generalizability for other applications 
(Stiny quoted in Speller et al., 2007). This may be due to mathematical complexity 
(Piazzalunga and Fitzhorn, 1998) and the potential for shape grammars to produce a 
possibly infinite number of outcomes (Knight, 1996). 



6. Challenges and resources 
 
 
 
 

70 

On the other hand, shape grammar interpreters have undergone considerable 
progression within research. Since the early 1980s, for example, interpreters have 
progressed from maximal representation of straight lines; to three dimensional 
geometry; to complex solid models; to shape grammar schema; to parametric shape 
recognition; and to shape emergence (Agarwal and Cagan, 1998; Flemming, 1987; 
Heisserman, 1991; 1994; Krishnamurti, 1982; Krishnamurti and Giraud, 1986; 
Piazzalunga and Fitzhorn, 1998; Tapia, 1996; 1999; Woodbury, 1997). Accordingly, it 
is quite possible that the deployment of resources by industry could lead to further 
progression. With regard to the development of user interfaces, the interactions 
available to users can be limited in scope when compared to conventional CAD 
software. This may be due to a lack of understanding about how grammars relate to the 
design process to the difficulty of handling the unexpected nature of emergent features 
(Chase, 2002). Indeed, it has been opined that alternatives to shape grammars are 
required to better enable the emergence of unexpected design characteristics (Caldas, 
2008). A summary of challenges to implementations of shape grammars is provided in 
Table 23 below. 

 
Table 23. Shape computation challenges. 

Challenge Example 

Inherent ambiguity One shape can have several meanings. 

Domain complexity Large sets of problem specific requirements and constraints. 

Computation complexity Automatic subshape recognition. 

Software development Difficulty of handling emergent features. 

 

6.4 Technological resources 

Resources for dealing with inherent ambiguity (Challenge 1) 
Although it is important to draw attention to differences between reading natural 
language (linear sequence) and seeing compositions of shapes (three dimensional 
arrangements); it is also important to recognize that natural language discourses which 
are handled by computation can be far from being linear. Rather, they can be iteratively 
multimodal and involve prosody, gesture, reiteration, etc. Furthermore, gestures which 
are often used instead of words, such as pointing, take place in three dimensions. The 
challenge of computing ambiguous meanings in natural languages, within 
implementations such as in car spoken dialogue systems and intelligent tutoring 
systems, is dealt with by computational semantics. An introduction to computational 
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semantics is provided by Blackburn and Bos (2005). Implementations of computational 
semantics actually involve integrated computation of grammar, pragmatics, and 
machine control, as well as semantics. Often these are combined in mixed initiative 
systems which enable the lead in human-computer discourse to be taken either by the 
human or the computer as necessary. By contrast, the need for mixed initiative 
discourses in design space exploration is recognized within research, but has not been 
implemented (Datta, 2006). Further, implementations of computational semantics 
involve intuitively understandable user-interfaces which have yet to be developed for 
shape computation. 

Like shape grammars, computational semantics draws upon Chomsky's grammars. 
For example, in the analysis of spoken input into an in-car dialogue system such as, 
"where can I get Chinese?" (i.e. where is the nearest Chinese restaurant?). However, it is 
important to note that different grammars are used within computational semantics. 
Chomsky's Context-Free Grammar formalism may be used. Alternatively, Unification 
Grammar may be used. The advantage of context-free grammar is that it provides a 
simple and precise mechanism for describing the methods by which natural language 
phrases are built from simpler components. The disadvantage is that important features 
of natural language such as agreement and reference cannot be easily expressed. The 
advantage of Unification Grammar is the potential to encompass multimodal inputs, 
such as gesture, as well as natural language. 

Also, while it has been argued that semantics supplies meanings to sentences in 
natural language, and these meanings may not change as the composition accumulates; 
it is important to note that understanding of what is meant can certainly change as the 
composition accumulates. For example, the understanding of the sentence, "I shall walk 
to the bank..." can change as the composition accumulates "...to collect my new credit 
card" or accumulates "...to see the new jetty onto the river". Thus, the argument that: in 
contrast to reading, seeing compositions of shapes is an act of renewable and revisable 
organization, is somewhat superficial. This is because each reader's understanding of 
written words can be an individual act of renewable and revisable organization. Further, 
different participants' understanding in a natural language discourse can often be 
renewed and revised in accordance with their perceptions of congruence or 
incongruence between the words that people utter and their tones of voice. Perceptions 
of a tone being sarcastic, for example, can lead to a sentence such as "you have done a 
good job once again, I see" being understood to be critical. Then, when the discourse 
proceeds to the silent handing over of a bonus payment, the initial perception of the 
statement can be revised. Moreover, while it has been argued that the meaning of shape 
cannot always be the accumulation of the meanings of sub-shapes; it is important to 
note that the meaning of natural language discourses cannot always be the accumulation 
of the meaning of each dialogue act. Rather, some dialogue acts in a discourse mean 
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more than others. One punch, for example, can carry far greater meaning than a 
thousand conciliatory words that are spoken before it is thrown. Thus, in natural 
language discourse, as in the combinations of shapes, proportion can exert a 
determining influence over meaning. The potential for evolution of meaning as 
composition accumulates, and discourses progress, is dealt with in the computation of 
natural language through the use of underspecified semantic representations. These 
representations are assigned to dialogue acts, such as speech and gesture, and allow for 
further specification as composition accumulations, for example through the progression 
of discourse. 

Further, while it is important to note that compositions of shapes are realized through 
physical processing of materials (e.g. to make products and places) and human 
experience (e.g. holding a product; walking in a place), it is also important to recognize 
that natural language interactions that are handled by computational semantics 
implementations can also involve physical processing and human experience. For 
example, in car spoken dialogue system for music selection will control machines such 
as DVD player, speakers etc. From this machine control comes computer output such as 
the playing of requested music. Alternatively, computer output could be a spoken query 
through a speech synthesizer. 

Overall, it can be argued that the computation of shape could benefit from application 
of techniques used in the computation of multimodal natural language interactions.  

 
Resources for dealing with domain complexity (Challenge 2) 
It is important to draw attention to domain complexity. For example, that each specific 
design to be generated will have a large set of problem specific requirements and 
constraints related to that instance. However, it is also important to recognize that 
domain complexity is not an insurmountable barrier to implementation. For example, 
successful computational semantics applications, such as Intelligent Tutoring Systems 
(I.T.S.), operate within the complexity of domains such as ship handling. I.T.S. use 
simulations and other highly interactive learning environments that require trainees to 
apply their knowledge and skills within the context of a particular domain. I.T.S. 
provide individualized guidance by developing a model of each trainee's skills via 
observation and assessment of their actions within interactive environments. I.T.S. can, 
for example, infer trainees' level of confidence through recognition of vocal cues such 
as rate, pausing and pitch. Such cues might also be used to detect conceptual 
misalignment, when a trainee's understanding of a concept is different from that of the 
tutor. Thus, Intelligent Tutoring Systems deal with the complexity of instructional 
domains, such as ship handling, and at the same time deal with the complexity of 
human�computer discourse. 
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This compound complexity is dealt with in computational semantics applications by 
what can be thought of as a "team of experts". The team of experts is not a team of 
human experts but a team of computational tools. These include grammars, but can also 
include domain ontology; communicative ontology; Stochastic Language Models; 
Support Vector Machines. These different computational tools can have overlapping 
expertise, and each can be more or less useful within the same application depending on 
the nature of different communications that each application encounters. Thus, 
developers of computational semantics applications recognize that not all functional 
demands can be met solely grammars. Rather, they recognize that all grammars "leak" 
to some extent. In other words, no grammar is capable of dealing with every aspect of 
every communication that an application may encounter. Within the field of shape 
grammars, by contrast, there may be insufficient recognition of the advantage that can 
arise from placing grammars within a team of computational tools. 

 
Resources for dealing with computational complexity (Challenge 3) 
It is important to draw attention to computational complexity. For example, to draw 
attention to the computational complexity of achieving robust automatic subshape 
recognition. However, it is also important to recognize that computational complexity is 
not an insurmountable barrier to implementation. For example, computational semantics 
applications, such as in-car dialogue systems, operate successfully within domain 
complexity and human-computer discourse complexity through use of computational 
tools such as Stochastic Language Models or, so called, classifiers including Support 
Vector Machines. Stochastic Language Models (SLM) can process inexact inputs such 
as mispronounced or misspelt words. SLM assign a most probable classification to an 
input based on a probability developed through observation of, for example, the 
language used by domain experts in their work. Classifiers, such as Support Vector 
Machines (SVM), use knowledge of features to determine what something is. SVM 
make use of pattern recognition algorithms. The application of classifiers may have the 
potential to overcome the need to have expert programmers add new unanticipated parts 
to shape grammars that are found to be insufficient by users. For example, a user of a 
shape grammar could draw an additional shape and it could be processed by a classifier. 
The use of digital pens could make this a fully computational process. 

Also, the challenges faced by expert human programmers can be reduced through 
machine learning. The term, machine learning, refers to the ability of a program to learn 
from experience. In other words, to modify its execution on the basis of newly acquired 
information. Machine learning techniques include Markov models; neural networks; 
decision tree classification; and vector-based clustering. Within computational 
semantics, machine learning techniques have been applied to classification, to parsing, 
and to dialogue management. All of these can involve applying machine learning 
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algorithms to corpora. The term, corpora, is used to refer to sets of existing texts. It can 
also be used to refer to existing designs. Machine learning techniques depend on having 
some initial "training examples" prepared by human experts to learn from. Nonetheless, 
the use of machine learning can greatly reduce the need for human expertise in corpora 
analysis and in subsequent programming work. Within computational semantics 
applications, machine learning can be restricted to the development phases of 
computational semantics applications. Alternatively, machine learning techniques can 
be deployed to enable an application to learn from new instances during its use. This is 
can be referred to as "learning in the wild". The potential benefits of applying machine 
learning to shape computation have been recognized for some years (Gero et al., 1994), 
but have yet to be widely applied. In efforts to reduce the computational challenges 
faced by individual expert human programmers, a potential alternative, or complement, 
to machine learning could be human-based computation. This can involve having large 
distributed groups of non-expert people working on small components of a 
computational challenge. This can be achieved by setting up on-line games that extract 
knowledge from people, with their consent, in an entertaining way. 

 
Resources for dealing with software development (Challenge 4) 
It is important to draw attention to the general lack of progress in developing user-
friendly software packages for shape grammars. However, it is also important to 
recognize that seeking to develop general purpose parametric interpreters may be 
counter-productive. Given the domain complexity and computational complexity 
outlined above, specialization of software packages may lead to the more rapid 
development of more robust programmes. By contrast, endeavouring to develop a 
software program that is good for everything could lead to the development of software 
that is not very good at anything. In particular, breadth of scope could come at the loss 
of accuracy in domain. 

Nonetheless, there will be activities which are common to the development of 
specialized software packages. Across a range of computational semantics applications, 
for example, the early stages of development often involves typical systems analysis 
activities. In particular, developers have to learn about the real world domain of interest. 
Then, for example, when developing an Intelligent Tutoring application, the developers 
will need to learn about general strategies for tutoring. Further, the developers will need 
to learn about the specific application domain. For example, when developing an 
Intelligent Tutor for ship handling, the developers will need to learn about the many 
aspects of seamanship that are relevant to ship handling. Furthermore, the developers 
will need to learn about the communication procedures, jargon, prosody etc., which are 
prevalent in ship handling. In addition, the developers will need to learn about the 
working of devices that will be used in the application such as devices for speech 
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recognition, speech synthesis, visualization etc. Also, the developers will model the 
system, and component devices, that will be interacted with during that activity. 
Moreover, the developers will model how communication processes will embody the 
interactions involved in that activity. All together this enables the formulation of 
preliminary systems architecture for the particular application. Then, applications can be 
developed through configurable modular systems architectures. This enables initial 
components to be developed concurrently by different contributors. Also, new 
components can be added as the scope of an application develops. Moreover, 
components can be enhanced over time as computational semantics advances and/or 
greater resources become available. 

Alignment of shape computation programs with legacy CAD / CAM systems could be 
an important issue when, for example, the costs of transferring all of production to 
AMM are initially too high for companies in the value chains for consumer goods. In 
such cases, examples of alignment among computer languages during computational 
semantics applications can provide useful insights (Sowa, 2008). 

Overall, it is important to note that fewer programming resources have been available 
for developing shape grammar software than for developing, for example, 
computational semantics application software. The development of robust user-friendly 
software packages may be much more likely when increased programming resources 
are combined with a focus on increased specialization, and the deployment of modular 
systems architectures. Moreover, robustness may be facilitated by determination of 
which activities can be handled more reliably outside of shape grammars and considered 
extragrammatical or noncomputational. A summary of resources available for meeting 
implementation challenges is provided in Table 24 below. 

 
Table 24. Shape computation resources. 

Challenge Resources 

Inherent ambiguity Techniques used in multimodal natural language computation 

Domain complexity "Team" of integrated computational tools such as SLM, SVM 

Computational complexity Classifiers; machine learning; human-based computation 

Software development Specialization; configurable modular systems architectures 
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6.5 Assessment  

The consideration of resources for meeting implementation challenges has made 
extensive reference to computational semantics applications. Within shape grammar 
research, there has been little consideration of computational semantics. One possible 
example of a starting point is an image database that has been developed for 
relationships between product shapes and image words. This makes it possible to 
initiate and regulate product shapes by inputting image words (Hsiao and Chen, 1997; 
Hsiao and Wang, 1998). More broadly, the need to consider semantics has been 
discussed within shape annealing (Cagan and Shea, 1999) and graph-based grammars 
(Rudolph, 2006). It has argued, for example, that through the use of labels, semantics 
based on functional, behavioural, and aesthetic design requirements can be incorporated 
into a shape grammar. This creates a functional grammar that enables the quantification 
of relations between form and function in the spatial layouts of functional systems (Shea 
and Cagan, 1997). However, as illustrated in Figure 8, the thinking, methods, and 
techniques, that have been used together to enable successful computational semantics 
applications have yet to be applied to shape computation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Computation of shape language. 

Thus, the combination of computational semantics with shape grammars offers a 
potentially fruitful direction for the development of the Generative Production Systems 
needed for sustainable production creation. Potential fields of application for Generative 
Production Systems are introduced in the next section. 
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7. Examples of application opportunities 

7.1 Overview   

In this section, examples of application opportunities for Generative Production 
Systems are provided. To begin with, opportunities which are common across economic 
sectors are outlined. Subsequently, more specific opportunities are discussed. First, the 
potential for Generative Production Systems to enable integration of elicitation with 
design and production is discussed. Second, the potential for new business models 
arising from use of Generative Production Systems by non-experts is considered. Then, 
opportunities for more rapid exploration of materials' potential, and of parts 
consolidation, are examined. Next, opportunities for rapid generation of new 
product/component styles, and building environment topologies/geometries, are 
outlined. Subsequently, opportunities for creation of different types of products are 
defined. In conclusion, preliminary criteria for generative production criteria are 
provided. 

7.2 Integration of elicitation with design and production   

Established business models for product creation involve design being carried out by 
professional experts in disciplines such as architectural design; heating, ventilation, and 
air conditioning design; industrial design; engineering design; design for manufacturing 
and assembly; etc. Design experts from different disciplines may be located together at 
one place in one company or working at different global locations for different 
companies. Also within established business models, production is carried out by 
professional experts in fields such as manufacture, fabrication, assembly, and 
installation. All of production may be carried out at a single location or may be carried 
out at different global locations. Production experts contributing to a product may all 
work for one company or may all work for different companies. As shown in Figure 9, 
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established product creation business models have a variety of titles but can be 
categorized in four groups.  
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Figure 9. Established business models for product creation. 

These four groups comprise a continuum (engineer-to-order; design-to-order; assemble-
to-order; make-to-stock). As shown in Figure 9 and listed below, different business 
models involve offering different types of authority to individual customers. Typically, 
companies achieve best operational performance (e.g. highest productivity, lowest 
defects) when they make standard goods to stock. 

• Engineer-to-order: authority over design and production (e.g. products such as 
buildings and ships) 

• Design-to-order: authority over design (e.g. products such as wedding dresses) 
• Assemble-to-order: authority over selection and configuration of pre-designed 

components (e.g. products such as cars) 
• Make-to-stock: authority over selection of pre-designed products (e.g. fast moving 

consumer goods). 
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Figure 10. Established business models: customer authority. 

As shown in Figure 11 below, different business models encompass different levels of 
involvement from individual customers during the elicitation of requirements. In 
particular, the engineer-to-order and design-to-order business models involve elicitation 
of actual customers' order-specific requirements. By contrast, assemble-to-order and 
make-to-stock involve various methods for eliciting the opinions and ideas from 
samples of potential customers within different market segments. These methods 
include, for example, market research; user-centred design; on-line communities; on-
line competitions; etc. It is important to note that although assemble-to-order 
organizations (e.g. car makers) and make-to-stock organizations (e.g. personal care 
product companies) have increasingly sought input from users of their products, they 
continue to offer pre-determined choices, rather than authority, to individual customers.  

 
 
 
 

 
 
 

 



7. Examples of application opportunities 
 
 
 
 

80 

  

  

  

  

  

  

Individual 
Customer 
Authority 

 

 

BEST 

BESTOperational
Performance

elicitation of order-specific requirements 
from individual customers 

elicitation of product type requirements  
from samples of potential customer groups 

 

Figure 11.  Established business models: elicitation. 

As illustrated in Figure 12 below, the elicitation of requirements, the development of 
designs, and the production of physical goods currently involves numerous languages 
barriers. These can be barriers among natural languages used by the different disciplines 
involved and the different types of customers/users of physical goods. Also, these can 
be barriers among the computer languages used by different types of software in 
elicitation, design and production. As illustrated in Figure 13, Generative Production 
Systems which are based on the computation of spatial elements such as points, lines, 
planes and volumes rather than fixed primitives have the potential to introduce what can 
be described as unified shape production languages (USPL). Those being shape 
languages that can be used effectively throughout elicitation, design and production. As 
discussed in section 5, file formats such as STL, and Markup Languages such as 
XTML, can enable shapes to be processed by a variety of CAD/CAM systems. In 
simple terms, USPL should enable seamless progression from mental visualization of an 
artefact to physical production of that artefact (i.e. from mind to machine). This could 
do much to enable product creation by non-experts, and so facilitate the meeting of 
needs, and the expression of potential, that is essential to sustainable product creation. 
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Figure 12.  Different shape languages in mind, in design, in production. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Unified Shape Production Language (USPL). 
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7.3 New business models   

As shown in Figure 14 below, beyond existing business models for product creation, it 
is envisaged that individual customers with little, if any, prior expertise could design 
and produce sophisticated products themselves by using Generative Production 
Systems.  Moreover, individuals would be able to create the products that they want at 
times and costs commonly associated with make-to-stock and assemble-to-order 
products.  
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Figure 14. Beyond established business models.  

Further, combining Generative Production Systems with Web 2.0 could revitalize 
manufacturing and generate new employment. Web 2.0 is the second generation of the 
World Wide Web. It has enabled the movement away from static web pages to creation 
of dynamic, shareable content by non-experts working individually and/or within Web 
2.0 enabled social networks. Already a few companies, such as FigurePrints, Ponoko 
and Shapeways, have recognized the potential of combining Web 2.0 with AMT. For 
each customer, FigurePrints takes digital data which describes a character in a virtual 
game and, then, manufactures a three-dimensional physical replica. In doing so, 
FigurePrints connects the synthetic economy of virtual world transactions with the real 
economy of exchanging physical goods for money. Through its website, Ponoko offers 
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kits to help individual customers design and make a variety of physical goods. 
Shapeways offers on-line support for individual customers to design and sell products 
that can be produced by additive layer manufacturing. 

More generally, Web 2.0 provides dynamic shareable content to fuel ideation and so 
lead to many new product ideas. Also, Web-enabled social networks like facebook®, 
flickr®, youtube® can be used to rapidly propagate new ideas around the world. Until 
now, established product brand holders, such as Electrolux, Lego, and Philips, have 
used Web 2.0 to harvest the great product ideas of ordinary people via on-line 
communities and competitions. They have then fed those great ideas into their design 
departments. In doing so, they have stuck with the paradigm of concentrated design, 
production and dispatch that began with the industrial revolution. Such use of Web 2.0 
can introduce further complexity into the operations of established brand holders and 
their suppliers. For example, they can have many more product ideas to evaluate. Next, 
they can have many more product types that need to be designed, manufactured, and 
packaged. Alternatively, existing brand holders can choose to discard ninety-nine 
percent of the product ideas that they harvest via the Web. This can avoid introducing 
further complexity into their operations but, on the other hand, this can lead to many 
opportunities for increased sales being missed. 

Instead, existing brand holders could harness the full potential of Web 2.0 by 
allowing people who come up with new product ideas to operate design and production 
under licence using Generative Production Systems. Some established brand holders 
already provide web-based design tools. The next step is for them to allow transfer of 
digital design data to point-of-demand AMTs. In addition to the reduction of 
environmental impacts, this offers at least four advantages for established brand holders. 
First, ever more complexity is not introduced into existing design and production. 
Second, opportunities for potential sales within their brand are not missed. Third, 
additional demand for core brand products is stimulated by the profusion of new add-on 
products introduced via Web 2.0 plus point-of-demand Generative Production Systems. 
Fourth, established brand holders receive a royalty for each sale via Web 2.0 plus 
Generative Production Systems. The advantage for national economies is that the people 
who come up with new product ideas can, depending on the amount of sales, make 
some money, employ themselves, set-up businesses employing others. Also, Web 2.0 
plus Generative Production Systems enables work to stay where product ideas originate, 
rather than work being off-shored by established brand holders. In other words, the 
three hundred year old paradigm of concentrated design, production and dispatch 
carried out by experts can be supplemented by the new paradigm of Factory 2.0. As 
illustrated in Figure 15, Factory 2.0 can be summarized as highly distributed sustainable 
ideation, propagation and creation of physical products � enabled by Web 2.0 plus 
Generative Production Systems. 
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Figure 15. Factory 2.0: Web 2.0 plus Generative Production Systems. 

An even bigger opportunity for establishing new employment is for individuals to ideate 
and propagate products outside of existing brands. Consider, for example, how 
downloading enabled by Web 2.0 has allowed open digital propagation of new music to 
supersede closed physical distribution of music. Previously, new music had to pass 
through the high control gates of brand holders such as record labels. These control 
gates are high because of the high prior investments of brand holders and their 
suppliers. By contrast, digital propagation of music via Web 2.0 requires such low 
investment that almost anybody can offer their musical work for sale. Now, there is no 
fundamental reason why digital design data cannot be downloaded on demand for 
physical production to point-of-demand AMTs. As a result, design can be carried out 
anywhere a product idea originates and production can be carried out at any point of 
demand. Point being both point on the map and point in time. Moreover, point-of-
demand production can include the manufacture of products with a high level of 
functionality. This can be achieved with so called, "direct-write", additive 
manufacturing machines which incorporate the functionality of circuits, sensors, 
controls etc., into assemblies during their production. 

The creation of physical products with Generative Production Systems includes their 
design as well as their production. Accordingly, the full potential of AMTs will be 
unlocked when non-AMT experts are able to carry out both design and production. As 
well as people with great new product ideas, non-AMT experts are a wide range of 
product customers, for example, displaced people who need to make robust low cost 
housing; medical technicians who need to make prosthetics; maintenance personnel who 
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need to make replacement fittings; gift shoppers who want to make jewellery; and 
children who want to make toys. User friendly AMTs, such as 3D printers, are 
becoming increasingly affordable through the efforts of established machine companies 
and communities of AMT enthusiasts. Thus, production by non-AMT experts is 
becoming increasing feasible and viable. To enable highly distributed point-of-demand 
production, suppliers can install AMT equipment at a variety of locations including 
wholesaler premises (for B2B sales) and retail outlets (for B2C sales). Production time 
can be bought on AMT machines and generate additional income for established AMT 
suppliers. In addition, when there are enough sales, new businesses based on new 
Factory 2.0 products can buy or lease their own AMT machines and locate them at 
points-of-demand. A summary of the potential advantages of Factory 2.0 is provided in 
Table 25 below. 

 
Table 25. Advantages of Factory 2.0. 

Type Example 
Further complexity is not introduced into existing design and 
production. 
Opportunity for potential new sales lines within their brands are 
not missed. 
Additional demand for core brand products is stimulated by the 
profusion of new add-on products introduced via Factory 2.0. 

Existing brand holders 

Brand holder receives a  royalty for each Factory 2.0 sale within 
existing brand. 

Eco-systems The potential environmental advantages of AMT, which are 
summarized in Table 1, can be realized. 
The possibilities for AMT to enable the expression of greatest 
potential, as summarized in Table 2, can be realized. 

National economies 

The possibilities for AMT to enable the meeting of needs of 
societies, as summarized in Table 3 can be realized. 

 
In conclusion, it is important to recognize that the established paradigm of concentrated 
design, production and dispatch by experts will continue to be useful for some types of 
products. Nonetheless, the established paradigm has limited potential to minimize 
environmental impacts, and to generate new regional employment. By contrast, Factory 
2.0 can create new jobs anywhere that product ideas originate � and enable much lower 
consumption of materials and energy wherever there is demand for those products. 
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7.4 Rapid exploration of materials' potential 

When the use of a material is well established in product creation, its potential is usually 
well defined in professional education, and in CAD/CAM software. Its geometric limits, 
mechanical characteristic, manufacturing properties, etc., for example, are well known 
and widely applied. The design, engineering, manufacturing and assembly potential of 
some synthetic materials, such as polymers and composites, have been defined over 
decades of experimentation. The potential of many more synthetic materials, such as 
ceramics and alloys, have been defined over centuries of trial, error and 
experimentation. The potential of natural materials, such as wood and stone, have been 
defined over millennia of trial, error and experimentation. Further, new materials are 
often modifications and/or combinations of established materials. Hence, variations in 
geometric limitations, mechanical characteristics, manufacturing properties, etc., can be 
quite predictable and easy to test within established experimental procedures. Moreover, 
new materials are very often applied within established conventions for design, 
engineering, manufacturing and/or assembly. Such new materials provide professional 
experts with new possibilities for creating improved products. These could be, for 
example, smaller and/or lighter consumer products such as mobile phones. Also, they 
could be, for example, wider and/or taller, built products such as bridges. 

Accordingly, there is only need for rapid exploration of materials' potential when that 
material needs to be introduced quickly and that material (i) will not be applied within 
established conventions for design, engineering, manufacturing, assembly; and/or (ii) 
that material is not known to be similar to an established material. The increasing need 
for sustainability will accelerate the need for rapid introduction of materials that will not 
be applied within established conventions. Manufacturing with physical 3D voxels is 
one important case of materials not being applied within established conventions (Hiller 
and Lipson, 2009). The term, voxel, is an abbreviation for "volume element", and can 
be thought of as being something like a three dimensional version of a pixel. Physical 
voxels can be used as building blocks for additive layer manufacturing. In particular, 
additive layer manufacturing involving selective arrangement of voxels in a three 
dimensional lattice. This discontinuous (i.e. digital) material placement is a very 
important new alternative to the continuous (i.e. analog) material placement that is 
typically used in manufacturing. It is very important because it opens up the possibility 
for both design and production to comprise the same digital building blocks: voxels that 
have virtual representation in design, then physical representation in production. This, 
combined with the potential of unified shape production languages to integrate the 
elicitation of requirements with design, opens up the possibility of a shortened and fully 
digital process of product creation. This possibility is illustrated in Figure 16 below. 
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Figure 16. Fully digital product creation. 

Rapid determination of the geometric limits, mechanical characteristic, manufacturing 
properties, etc., of physical voxels will require extensive computational exploration. In 
particular, the computation of shape grammar rules, which are congruent with the 
properties of relevant AMT, and are operated in conjunction with methods for 
optimization search and evaluation, could make a significant contribution to 
determining the potential of physical voxels. Similar computational exploration will 
also be required for many established materials when legal requirements for increased 
sustainability make it a pressing necessity to use them in conjunction with advanced 
manufacturing machines (i.e. not within established conventions). Also, there may be 
some cases in the future when a material must be used that is not known to be similar to 
a material that is already established in design, engineering, manufacturing and 
assembly. One example could be the use of indigenous materials for off-Earth building 
fabrication. In such cases, extensive exploration of a material's potential for enabling the 
fabrication of buildings with location-specific high performance geometries will be 
needed. Again this could be carried out through computation of shape grammar rules, 
which are congruent with the properties of relevant AMT, and are operated in 
conjunction with methods for optimization search and evaluation. 

Overall, rapid exploration of materials' potential is essential to the primary 
sustainability goal of preserving natural ecosystems. This is because using materials 
within established conventions for design, engineering, manufacturing, assembly etc., 
will not enable radical reductions in material extraction, processing and consumption. 
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7.5 Rapid exploration of potential for consolidation   

As discussed in section 2, AMT can be used to produce net shape consolidated 
assemblies at point-of-demand. This production of consolidated assemblies can take the 
place of several separate parts being manufactured at several different locations, and 
then being transported for assembly at one or more other locations. Thus, processes, as 
well as parts, are consolidated. In particular, the number of manufacturing, assembly, 
and distribution operations is radically reduced. As well as reducing the amount of 
materials used and energy consumed in production and distribution; the consolidation of 
parts and processes can reduce the complexity of product creation. Production 
complexity can arise from creation being both complicated and unpredictable. Product 
creation can be complicated because it involves many components, and unpredictable 
because of the vagaries of component supply. Thus, the reduction of parts and processes 
reduces sources of complexity in product creation. Production complexity can often lead 
to product defects and overtime working. This, in turn, leads to non-value adding 
material use and energy consumption. As discussed in section 2.3, one known example 
of shape grammar implementation in industry is for the routing of systems tubing 
through an airplane. The shape grammar was used to design several hundred tube 
assemblies on the 767-400ER. As discussed in section 3.4, exploration of potential for 
parts / process consolidation can clearly benefit from the application of generative 
geometric design enabled by shape grammars operated in conjunction with 
computational methods for optimized search and evaluation. This is because it is 
unlikely that the best available solution can be obtained and verified without the 
generation of many alterative routings. Further, there are many opportunities for part 
count reduction, assembly simplification and weight reduction through the application 
of advanced manufacturing and materials. Hence, prior knowledge of established 
manufacturing materials and machines is of limited usefulness. Accordingly, it would 
be beneficial for shape grammar rules to be formulated which are congruent with the 
properties of relevant AMT. 

Overall, there are innumerable opportunities for meeting the primary sustainability 
goal of preserving natural ecosystems through consolidation of parts and processes. 
Moreover, many of these opportunities are particularly well suited to early adoption of 
shape computation. This is because they are opportunities for the consolidation of parts 
and processes, such as ducting, that are often a low priority for human designers. 

7.6 Rapid generation of new product/component styles   

As outlined in section 3, shape computation can enable unanticipated emergence of 
forms. Generation of unpredicted forms has the potential to provide the basis of many 
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new product styles that better enable people to express their potential. Also, geometric 
styling has the potential to increase functionality. Buildings, for example, can be better 
able to handle solar energy if their envelopes have unique geometries which are specific 
to their orientation and location. Moreover, many types of products offer improve 
ergonomics through better styling with unique geometries. Importantly, shape 
computation can enable the generation of new styles of components, such as car body 
panels, which must be compatible with other components, such as car engines.  

7.7 Rapid creation of customer-designed branded products 

As discussed in section 2, sustainable product creation should involved increased scope 
for self-expression among non-experts in the design and production of the physical 
goods that they need and/or want. However, many physical goods are valued more in 
acquisition, in use, and/or in resale if they have a recognized brand identity. 
Accordingly, many non-experts would prefer to create their own products, but have 
those products conform to an established brand identity. An increasing number of 
existing brand holders are already opening up their product development functions to 
ideas for new products from product users. This is being enabled by, for example, 
setting up web-enabled on-line communities and/or competitions. This provides brand 
holders with a wealth of ideas for product variations. However, it also provides them 
with increasing complexity in the development, production and distribution of products. 
An alternative would be to set up web-enabled facilities for sustainable product 
creation. Shape grammars, which are formulated to enable generation of original 
designs that conform to brand identity and regulatory requirements, could be at the 
centre of these web-enabled facilities. As discussed in section 3, such grammars are 
well-established within research. Further, these shape grammars could be congruent 
with the properties of those AMT which can optimize production. Furthermore, the 
web-enabled facilities could enable uploading of digital designs to the nearest AMT 
equipment. Alignment of shape computation programs with legacy CAD/CAM systems 
could be an important issue when, for example, the costs of transferring all of 
production to AMT are initially too high. In such cases, examples of alignment among 
computer languages during computational semantics applications can provide useful 
insights. 

Overall, web-enabled product creation facilities driven by shape computation could 
enable non-experts to create products that they value themselves, and that potential 
future buyers would value in second hand markets. At the same time, brand holders 
could increase their sales and, at the same time, avoid further increasing complexity in 
the development, production and distribution of their products. Moreover, by using 
generative systems in their internal product development activities, brand holders could 
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accelerate the formulation of new brand identities as represented in the geometry and 
features of physical products. 

7.8 Rapid creation of customer-designed volumetric products 

Sustainable product creation involves meeting ever increasing need for volumetric 
social products such as low-cost housing. As described in section 3, shape grammars 
can be formulated that generate individual designs which are congruent with established 
styles of building architecture. These styles can arise from the cultural traditions of 
particular geographical areas and the materials which are indigenous to those areas. 
Accordingly, creation facilities for low-cost housing should be driven by shape 
grammars which are congruent with local cultural traditions. They should also be 
congruent with the properties of those AMT machines which can optimize production 
using indigenous sustainable materials. Further, shape grammars should enable the 
production of physical scale models which can be used by non-experts to learn how the 
full-sized components should be put together. Moreover, component joints should be 
friction-/snap-fit with parameters for tolerance, material thickness and structural 
modulation being included into the members of the shape vocabulary. Such forms of 
assembly could also be applied to the creation of other social products such as 
windmills. 

7.9 Rapid creation of customer-designed solid products 

As discussed in 2, sustainable product creation involves meeting ever increasing need 
for social products such as person-specific medical goods including: conformal seating; 
crash helmets; dental aligners; dental bridges and crowns; hearing aids; orthotic 
footwear; prosthetics; surgical cutting guides; and surgical implants. Compared to social 
products such as low-cost housing, such goods can be categorized as being solid rather 
than volumetric. Such goods can be much more effective if they are person-specific. 
However, they must conform to best practice and legal regulations. Accordingly, the 
time and cost of their creation can be reduced by combining shape grammars, which 
conform to practices and regulations, with AMT that can most efficiently produce high 
performance medical goods. Moreover, design data generated by shape grammar 
computation must be compatible with digital outputs from person-specific scans. 
Accordingly, examples of alignment among computer languages during computational 
semantics applications can provide useful insights. 

A summary of opportunities for meeting primary sustainability goals through 
applications of AMT combined with shape computation is provided in Table 26 below. 
As described in section 2, sustainable means that processes are able to be carried out for 
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an indefinite period in such a way that individuals, organizations, societies are able to 
meet their needs, and express their greatest potential in the present, while preserving 
natural ecosystems. 

 
Table 26. Fulfilment of sustainability goals. 

Application Principal sustainability goal 

Integration of elicitation with design and production Expressing greatest human potential 

New business models Meeting needs of people and societies 

Rapid exploration of materials potential Preserving natural ecosystems 

Rapid exploration of potential for consolidation Preserving natural ecosystems 

Rapid generation of new product styles Expressing greatest human potential 

Rapid creation of customer-designed branded products Expressing greatest human potential 

Rapid creation of customer-designed volumetric products Meeting needs of people and societies 

Rapid creation of customer-designed solid products Meeting needs of people and societies 

 

7.10 Prelimary criteria for Generative Production Systems 

Three preliminary criteria for Generative Production Systems are provided in Table 27 
below. Meeting these criteria will enable realization of the potential applications 
outlined above. First, Generative Production Systems should encompass the elicitation 
of requirements, as well as design, manufacture, assembly etc.  Second, they should 
emulate human creativity in the generation of infinite unpredicted options. Third, 
Generative Production Systems should exceed human capacity for generation of 
unpredicted options. For example, by being able to be run continuously throughout days 
and nights.  

 
Table 27. Preliminary criteria for Generative Production Systems. 

Criteria Summary 

Comprehensive Enable digital elicitation, design, manufacture and assembly by non-experts 

Creative Emulate human creativity in the generation of infinite unpredicted options 

Continuous Exceed human capacity for generation of unpredicted options  
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8. Conclusions 
The principal findings from the research reported in the preceding sections are 
summarized below. 

• Advanced manufacturing technologies (AMT) have the potential to meet the goals 
of sustainable product creation: design and production of physical goods with 
technologies that enable individuals, organizations and societies to meet their needs 
and express their greatest potential while preserving natural ecosystems. 

• The potential of AMT to meet the goals of sustainable product creation is currently 
restricted by the limitations of CAD/CAM systems which cannot enable rapid 
exploration of new design spaces; modeling of multi-surface, multi-material 
assemblies; product creation by non-experts. 

• The potential of various types of generative computation to automatically produce 
designs has been recognized for some years. More recently, it has been proposed 
that generative computation can be extended from the production of designs to the 
production of the artifacts that are described in those designs. 

• Combining AMT with generative computation to develop Generative Production 
Systems has the potential to overcome the current limitations imposed on AMT by 
typical CAD/CAM systems. 

• Generative computation automatically produces options that are not stored 
previously in computer. These options adhere to key requirements, but are 
unpredictable and involve little, or no, external human input after initial 
programming. 

• There are numerous approaches to generative computation: each with relative 
strengths and weaknesses. However, their relative accessibility, transferability, 
versatility, and functionality, make shape grammars an important source for the 
development of Generative Production Systems. 

• Shape grammars can be considered to be a type of transformational-generative 
grammar which operates within production system formalisms. Through the 
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recursive application of transformation rules to decomposable, ambiguous, 
parametric, maximal, spatial elements, shape grammars can enable infinite spatial 
emergence. 

• Shape grammars have been formulated for a wide variety of products and 
components, ranging from buildings to MEMS. Further, shape grammars have been 
formulated which relate to a wide variety of machines and materials for physical 
production including fuse deposition modeling and stereolithography. 

• The formulation of shape grammars involves defining vocabulary, spatial relations, 
grammar rules, and initial shape which will generate a language of shapes. 
Computation of shape grammars involves definition with shape algebras, enabling 
with algorithms, description with pseudo-code, implementation with software. 

• Challenges in the implementation of shape grammar can be grouped under the four 
headings of: inherent ambiguity, domain complexity, computational complexity, and 
software development. Similar challenges have been dealt with successfully in the 
computation of natural language discourses. Accordingly, the combination of 
computational semantics with shape grammars offers a potentially fruitful direction 
for the development of Generative Production Systems. 

• Application opportunities for Generative Production Systems before product 
creation include: development of Unified Shape Production Languages which can 
enable the integration of elicitation with design and production; the introduction of 
new business models; rapid exploration of materials' potential, and parts 
consolidation; and rapid generation of new product/component styles. 

• Application opportunities for Generative Production Systems during product 
creation include rapid creation of: customer-designed branded products; customer-
designed volumetric products; and customer-designed solid products. 

• Preliminary criteria for Generative Production Systems can be summarized as: 
comprehensive, creative, and continuous. In particular, enable digital elicitation, 
design, manufacture and assembly by non-experts; emulate human creativity in the 
generation of infinite unpredicted options; exceed human capacity for generation of 
unpredicted options. 
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