
	 	 VTT	WORKING	PAPERS	156

Jussi Lahtinen, Kim Björkman, Janne Valkonen, Juho Frits
& Ilkka Niemelä

Analysis	of	an	emergency	diesel	
generator	control	system	by	
compositional	model	checking

MODSAFE	2010	work	report

2

ISBN 978-951-38-7497-1 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2010

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Series title, number and
report code of publication

VTT Working Papers 156
VTT-WORK-156

Author(s)

Jussi Lahtinen, Kim Björkman, Janne Valkonen, Juho Frits & Ilkka Niemelä
Title

Analysis of an emergency diesel generator control
system by compositional model checking
MODSAFE 2010 work report
Abstract

Digital instrumentation and control (I&C) systems containing programmable logic
controllers are challenging to verify. They enable complicated control functions and
the state spaces (number of distinct values of inputs, outputs and internal memory) of
the designs easily become too large for comprehensive manual inspection.

Model checking is a formal method that can be used for verifying that systems
have been correctly designed. A number of efficient model checking systems are
available which provide analysis tools that are able to determine automatically
whether a given state machine model satisfies the desired safety properties.

The practical case analysed in this research project is called an ”emergency diesel
generator control system” and its purpose is to provide reserve power to critical
devices and computers that must be available without interruption. This report
describes 1) the development of a compositional approach for checking the models
in large system designs, 2) the development of a modular model checking approach
for modelling function block diagrams with the Uppaal model checker and 3) the
experience of utilising the new modelling approaches in practice.

ISBN
978-951-38-7497-1 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Working Papers
1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

41251

Date Language Pages
December 2010 English 35 p.

Name of project Commissioned by
Model-based safety evaluation of automation
systems

Keywords Publisher

Model checking, automation system, I&C,
NuSMV, Uppaal, system safety, emergency
diesel, MODSAFE, SAFIR

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

1. Introduction

4

Preface

This report has been prepared as part of the research project Model-based Safety
Evaluation of Automation Systems (MODSAFE), which is part of the Finnish Research
Programme on Nuclear Power Plant Safety 2007–2010 (SAFIR2010). The goals of the
project were to develop methods for model-based safety evaluation, apply the methods
in realistic case studies, evaluate the suitability of formal model checking methods for
Nuclear Power Plant (NPP) automation analysis and develop recommendations for the
practical application of the methods. This report describes the development of a
compositional model checking approach for analysing large system designs and
summarises a case study where the approach was utilised.

We wish to express our gratitude to the representatives of the organisations who
provided us with the case examples and all those who have given their valuable input in
the meetings and discussions during the project.

Espoo, December 2010

Authors

1. Introduction

5

Contents

Preface ... 4

1. Introduction ... 7

2. Model checking ... 9

3. Description of the EDG system ... 11
3.1 Emergency diesel generator control ... 11

3.2 About the desired system properties... 14

4. Compositional verification methods for large systems .. 15

5. Modelling of the system .. 22
5.1 NuSMV modelling ... 22

5.1.1 The environment model.. 23

5.2 Uppaal modelling .. 23

5.2.1 Asynchronous model.. 24

5.2.2 Synchronous model.. 25

6. Results and findings.. 26
6.1 Utilisation of compositional model checking methods ... 26

6.2 Comparison of model checking performance.. 26

6.3 Findings .. 28

6.3.1 Findings related to overlapping of sequences .. 28

6.3.2 Findings related to the asynchronous behaviour of the system.................................. 29

7. Conclusions... 31

References ... 33

1. Introduction

7

1. Introduction

Verification of digital instrumentation and control (I&C) systems is challenging because
programmable logic controllers enable complicated control functions and the state
spaces (number of distinct values of inputs, outputs and internal memory) of the designs
easily become too large for comprehensive manual inspection. Design verification is a
key task in the design flow, because it can eliminate tricky design errors which are hard
to detect later in the development process and are very expensive to repair, often leading
to a major redesign and reimplementation cycle. Typically, verification and validation
(V&V) activities rely heavily on subjective evaluation, which covers only a limited part
of the possible behaviours of the system, and therefore more rigorous formal methods
are required. Such formal methods have been studied (see [28] for an overview, for
example) but they are not yet widely used.

Model checking [14] is a formal method that can be used for verifying the correctness
of system designs. Before the Model-based Safety Evaluation of Automation Systems
(MODSAFE) project, it was not previously applied in the safety evaluation of nuclear
power plant (NPP) automation systems (at least in Finland), but internationally it has been
used in verifying the correct behaviour of e.g. hardware and microprocessor designs, data
communications protocols and operating system device drivers. A number of efficient
model checking systems are available which provide analysis tools that are able to
automatically determine whether a given state machine model satisfies given
specifications. Model checking can also handle delays and other time-related operations,
which are crucial in safety I&C systems and challenging to design and verify.

The objective of the MODSAFE project was to evaluate and develop methods based
on formal model checking and apply them to the safety analysis of NPP safety
automation (I&C). The purpose was to compile a group of methods and tools that can
support the practical safety evaluation work and benefit utilities, regulators and vendors.
The main tasks of the first two project years were to review the state of the art of
employing formal methods and models for safety evaluation of industrial and nuclear
safety systems [28], to develop basic methodology for applying model checking to
safety evaluation and to study the feasibility of the approach [17, 29, 30, 31]. The

1. Introduction

8

objective of the third and fourth project year was to develop an approach that was more
flexible and suitable for analysing larger models [6, 7, 32, 18, 8].

This report summarises the experiences gained during project year 2010 while
developing a compositional approach for model checking in large system designs,
developing a modular model checking approach for modelling function block diagrams
with Uppaal and utilising the approaches for analysing a case study concerning the
control system of an emergency diesel generator

The rest of the report is structured as follows: Section 2 provides background
information on model checking methodology. Section 3 describes the emergency diesel
generator control system and a selection of its main requirements. Section 4 introduces
some compositional system verification approaches and explains the compositional
technique developed in the MODSAFE project. The emergency diesel control system
was analysed using the NuSMV and Uppaal model checkers. Section 5 describes how
the NuSMV and Uppaal models were constructed and their special features. Finally,
Section 6 sums up the results and findings concerning the emergency diesel generator
case, and Section 7 concludes the report.

2. Model checking

9

2. Model checking

Model checking [14, 12, 25] is a computer-aided verification method developed to
formally verify the correct functioning of a system design model by examining all of its
possible behaviours. The models used in model checking are quite similar to those used
in simulation, as basically the model must describe the behaviour of the system design
for all sequences of inputs. However, unlike simulation, model checkers examine the
behaviour of the system design with all input sequences and compare it with the system
specification. In model checking, at least in principle, the analysis can be fully
automated with computer-aided tools. The specification is expressed in a suitable
language, temporal logics being a prime example, describing the permitted behaviours
of a system. Given a model and a specification as inputs, a model checking algorithm
determines whether the system has violated its specification. If none of the behaviours
of the system violate the given specification, the (model of the) system is correct.
Otherwise, the model checker will automatically give a counter-example execution of
the system demonstrating how the specification has been violated.

The MODSAFE project has been using two model checkers: NuSMV [11, 22], which
was originally designed for hardware model checking, and UPPAAL [27], which
supports model checking of timed automata. NuSMV is a state-of-the-art symbolic
model checker that supports synchronous state machine models where the real-time
behaviour must be modelled with discrete time steps using explicit counter variables
that are incremented at a common clock frequency. NuSMV supports model checking
using both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) [14],
making it quite flexible in expressing design specifications. The model checking
algorithms employed in this work are based on symbolically representing and exploring
the state space of the system by using Binary Decision Diagrams (BDDs) [6, 9, 20]. In
addition, SAT-based (Propositional Satisfiability) bounded model checking [4] is also
supported by NuSMV [5] for finding bugs in larger designs. The sophisticated model
checking techniques used by NuSMV can handle non-determinism induced by free
input variables well, but modelling real-time aspects can be more challenging due to the

2. Model checking

10

inherently discrete time nature of the synchronous state machine model employed by
NuSMV.

UPPAAL is a model checking tool for timed systems based on modelling the system
as a network of timed automata that communicate through message channels and shared
variables. The timed automata have a finite control structure and real-valued clocks [1],
making the modelling of timers fairly straightforward. Networks of timed automata can
express the real-time behaviour of the system in continuous time and still be
automatically analysed. This is feasible because all the possible behaviours of the
system can be captured using a finite graph where different clock valuations with the
same behaviour, intuitively, are grouped into a finite number of equivalence classes
called regions [1]. The model checking algorithms use symbolic methods to compactly
represent the clock valuations associated with each state of the system quite efficiently
in terms of memory. The model checking algorithms employed inside UPPAAL [2, 19]
are able to check a subset of the temporal logic TCTL (Timed Computation Tree Logic)
[2] by explicit state model checking that explicitly traverses the finite graph induced by
the behaviour of the system. The main strength of UPPAAL is in analysing the complex
timing behaviour of a system. However, it is not well suited to systems with a very high
amount of non-determinism as induced by, e.g., reading a large number of input
variables (sensor readings) provided by the environment because each combination of
inputs is explicitly explored by the employed model checking algorithms.

3. Description of the EDG system

11

3. Description of the EDG system

3.1 Emergency diesel generator control

In this case study the behaviour of an emergency diesel generator system was examined.
The case study is based on high-level design documentation that does not take into
account the redundant implementations of the system and related voting logic that will
be realised in the final system. This work focuses on the control logic of the diesel
generator system that is represented as function block diagrams.

The purpose of the emergency diesel system is to provide reserve power, as it is
essential that electricity is always available to the maintained system. In case of a black
out or a power failure in the main power supply, the diesel generators can be quickly
turned on to keep the necessary devices available.

The inputs of the control logic include voltage and frequency measurements, operator
commands, check-back signals and measurements of the conditions of the diesel
generator. The outputs of the logic are control signals for the diesel generator, the
breakers, cooling systems and load protection signals for several pumps and other
devices, for which power can be supplied by the diesel generator.

In addition to the function block diagrams, parts of the system environment, i.e. the
expected diesel functionality, the busbar and the related breakers are also included in the
model.

Figure 1 illustrates the high level architecture of the electrical connections. Besides
the main power supply and the diesel generator, there is another additional diverse back-
up power supply.

3. Description of the EDG system

12

Figure 1. High level architecture of the power supply.

There is a large amount of logic related to the diesel generator control and part of it is
shown in Figure 2. The system analysed here covers 10 different control functions,
including functions related to the activation of the diesel generators, operation of the
diesel generators, protection of the diesel generators, and voltage and frequency
regulation. In addition, some functions are diverse implementations of other functions.

The functions of the diesel generator system are intentionally decentralised and, thus,
the diverse functions especially are typically not implemented on the same computer
equipment. As a result, it is presumed that two functions communicating with each
other via a bus will not be in full synchronisation. The signals sent from one computer
are received only after a few clock cycles by the other computer. Additionally, it is
possible that the computers’ clock frequencies differ marginally so that the same time
delay in the logic results in different actual time lapse.

Because of the multiple diverse systems, priority logic is also involved in the system.
Typically, all breakers, pumps and valves are controlled by a separate module that
prioritises the control signals related to that device. In this case study, only the priority
logic related to the three breakers (see Figure 1) is considered.

13

Figure 2. Part of the logic of the emergency diesel system.

13

3. D
escription of the E

D
G

 system

3. Description of the EDG system

14

3.2 About the desired system properties

The emergency diesel system provides reserve power for critical power plant devices in
case of power failures. There are a few constraints that need to be taken into account
when the diesels are used. Some of the general system requirements are:

o If there is a reason to start the diesels, they will be started, and they will
eventually feed power to the busbar.

o When the diesels are started, a specified starting sequence is followed.

o Loads are connected to the diesels according to a specified loading sequence.

o The diesels take a few seconds to reach their operating speed. No loads should
be connected to the generators during this time.

o The connections to the busbar are controlled by several breakers as illustrated in
Figure 1. The breakers should be operated in a safe fashion.

o The control of the diesels is realised by several diverse systems. The
prioritisation of the different systems’ signals must be correct.

o There should be no race conditions.

Based on some general system requirements, a list of 17 detailed requirements was
created. These requirements were formalised and used as input when the model of the
system was verified. The detailed requirements and temporal specifications are not
covered in this report.

15

4. Compositional verification methods for large
systems

Many systems are so large that conventional model checking methods cannot be applied
because of the state space explosion. In such systems, it is often possible to break down
the specification into several properties describing the behaviour of individual modules
of that system. Checking these local properties is usually more feasible, and if the
conjunction of the local properties implies the original specification, it is possible to
deduce that the entire system satisfies the specification as well. These compositional
verification techniques [3, 24, 13] require that the system is composed of interconnected
modules.

Several compositional verification approaches exist. These techniques include
compositional minimisation, assume-guarantee reasoning (including circular reasoning
techniques), partitioned transition relations and lazy parallel composition.

In the compositional minimisation technique [13] the system is abstracted using
reduced versions of some of the system’s modules. The reduced modules, or “interface
modules”, are abstracted away from their inner functionality, so that only signals visible
to other modules are implemented. Interface modules can reduce the state space of the
model significantly.

Another compositional verification technique is the assume-guarantee reasoning
technique [26, 23]. In this technique, an assumption is made of the environment of a
module. The assumption can be verified separately. When the assumption is known to
hold, we can check if a specification is true in an individual module under this
assumption. If the specification is true in the individual module, it is also true in the
whole system.

Traditional assume-guarantee reasoning requires non-trivial human input. However, it
is also possible to avoid this by using a learning algorithm to create assumptions of the
model automatically. The learning algorithm creates assumptions of the environment
model, and iteratively improves these assumptions based on the model checker’s output
(see e.g. [16]).

4. Compositional verification methods for large systems

16

Some verification techniques are based on circular reasoning [21]. In this approach,
each module is verified to behave correctly if its environment behaves correctly. For
instance, correctness of module A is assumed when module B is verified and vice versa.
The circularity of the reasoning can be resolved using induction over time.

The state space explosion in large models can also be diminished by special-purpose
model checking algorithms. Traditional model checking algorithms calculate a parallel
composition of the components and create a global model that depicts the whole system.
The number of states in the global model is exponential to the size of the component
models. Techniques such as partitioned transition relations [10] or lazy parallel
composition [3] examine the transition relations of different components in the model
separately, which can reduce the state space.

The compositional model checking approach we have chosen supports the existing
modelling methods of function block diagram-based designs. The idea behind the
method is that usually not every part of the logic is needed to verify properties in a
system. The approach is based on compositional minimisation on two abstraction levels
and program slicing, but does not prevent additionally using assume-guarantee
reasoning. The reasoning used in the approach requires that only properties stating that
“no undesired behaviour occurs” (safety properties) are examined.

Our existing modelling technique already partitions the design in suitable modules
defined by the function block diagrams. These modules are further divided into a set of
function blocks.

In this approach, function block diagrams are modelled as follows. Each module
(function block diagram) has a set of inputs and a set of outputs. A module’s output
values are calculated by a set of function blocks that are instantiated from a function
block library of these components.

Compositional minimisation can be applied on these modules in several different
abstraction levels; see Figure 3. The modules can be reduced into completely over-
approximated interface modules or semi-interface modules containing parts of the
original logic of the modules. Either way, compositional verification requires a
systematic way of reducing the behaviour of the modules into interface modules.

In our models, the full-interface modules are easy to construct. A full-interface
module contains no function blocks, and the outputs of the module are defined as free
variables. The inputs of a full-interface module are left intact because of technical issues
allowing compatibility with the model, but the inputs have no influence on the outputs.
Definition of the output variables as free variables is a complete over-approximation of
the module, i.e. no restrictions on the behaviour of the module are set. Full-interface
versions of modules can be constructed in parallel with the normal model construction.

17

Figure 3. Abstraction of function block diagrams on different levels. A red box indicates that the
function block is a non-abstracted version. A white box indicates that an interface function block
is used instead. The image on the left represents a non-abstracted module (function block
diagram). The image on the right is a full-interface module without inner functionality. The
middle image represents a semi-interface module, in which some function blocks are left intact,
and some are over-approximated by interface function blocks.

Semi-interface modules are partially over-approximated modules, in which some
function blocks are non-abstracted, and some are approximated by “interface function
blocks”. Interface function blocks are dummy function blocks, the outputs of which are
defined as free variables. Some interface function blocks cannot be completely over-
approximated in this way, because the ranges of the output signals of these blocks might
not be known. These function blocks are abstracted on a case-by-case basis. For easy
utilisation, an interface function block library can be created.

The semi-interface module is created as follows. The parameters of the abstraction are
a set of module outputs and the depth n of the abstraction. According to these values, a
program slicing method is used to choose the function blocks that can be reached by n
steps from the defined outputs and may have influence on the given outputs. This set of
function blocks remains non-abstracted. All other function blocks are transformed into
interface function blocks. Semi-interface modules can be created on-the-fly using a
small computer script when needed.

The combination of modularity and the possibility to use interface modules enables
effortless selection of the model configuration, i.e. which modules are non-abstracted
and which modules are interface/semi-interface modules. In our previous modelling
techniques, abstracting away from some functionality of a large system requires manual
effort. This work is reduced to selecting an abstraction level for each module. The
model can then be generated using a simple computer script.
Different model configurations are shown in Figure 4, Figure 5 and Figure 6. The model
in these figures consists of five modules. Each of these modules has a set of function
blocks. The function blocks are depicted as boxes, where red boxes stand for non-
abstracted function blocks and white boxes stand for interface function blocks. Figure 4
illustrates a model configuration in which the modules are non-abstracted. Figure 5

4. Compositional verification methods for large systems

18

illustrates a model configuration in which one module is non-abstracted, and four
modules are full-interface modules. Figure 6 represents a configuration of one non-
abstracted module, one semi-interface module and three full-interface modules.

Figure 4. A model configuration, in which all the modules are non-abstracted.

19

Figure 5. A model configuration, in which one module is non-abstracted, and four modules are
full-interface modules.

4. Compositional verification methods for large systems

20

Figure 6. A model configuration of one non-abstracted module, one semi-interface module and
three full-interface modules.

As the configurations can be easily compiled, the remaining questions are: 1) How are
the abstract configurations used to deduce whether a property is true in the accurate
non-approximated model? 2) How can the correct configuration of modules be found,
that both allows a property to be verified and is computationally manageable?

The first question can be answered when the examined system property is a safety
property, i.e. the property states that undesired behaviour never occurs. In case of safety
automation systems, the temporal properties that need to be verified are typically safety
properties.

If a safety property is true in a model configuration, in which some of the modules are
replaced by interface modules, the same property is also true in the accurate non-

21

abstracted model. Interface modules are over-approximations, i.e. they have more
behaviour than the regular non-abstracted modules. If a model configuration that uses
these interface modules cannot produce undesired behaviour (violate the checked
property), then the accurate model also cannot violate the property.

If a safety property is false in a model configuration containing interface modules, it
should be determined whether the violation of the property is feasible in the non-
abstracted model, or if the violation is caused by the interface modules. This check can
be performed manually, but could also be done automatically using the counter-example
given by the model checker.

If the property is violated because of the behaviour of the interface modules, a new
configuration of interface modules and non-abstracted modules should be selected for
examination.

Regarding the second question, it is our vision that an automatic method for the
selection of model configurations (similar to [15]) can be created, and thus the
verification of large systems can in many cases be automated based on an iterative
algorithm. These subjects are left open for future research.

5. Modelling of the system

22

5. Modelling of the system

The emergency diesel generator control system was modelled with two model checkers:
NuSMV and Uppaal. The tools have different modelling methodology and thus the
models are not completely identical. The strengths of the tools were taken into
consideration in the modelling process. Our existing function block diagram modelling
techniques could be used with NuSMV effectively. Therefore, with NuSMV we tried to
focus on how to manage and check properties of large models using compositional
verification. With Uppaal the focus was more on the creation of a methodology for the
model checking of function block diagrams and laying the foundation for the
methodology of asynchronous function block models.

5.1 NuSMV modelling

The objective of NuSMV modelling was to study the compositional verification of large
models. Substantial parts of this work are the techniques for interface module
construction and a technique for easy selection of model configurations that consist of
non-abstracted and interface modules.

The NuSMV model consists of nine modules representing the ten system functions
(two functions were merged in the model), a function block library and four modules
representing the environment of the system. In addition, interface modules were created
for each module (13 modules). It is also possible to create semi-interface modules, in
which the output values of some function blocks can change freely. For this purpose an
interface function block library was also created. Details of interface and semi-interface
modules can be found in Section 4.

The NuSMV model has 2200 lines of code, including tests and comments. This does
not include code for interface modules (680 lines) or the interface function block library
(230 lines).

The NuSMV model assumes that the whole system is one synchronous unit, in which
a signal travels through all modules during one clock cycle. The assumption is,
however, false because the modules are typically implemented on separate decentralised

23

processors. Using this assumption, the model checking is simpler, but some faults may
remain undetected. In NuSMV, it is also assumed that all modules use the same clock,
i.e. clock drift or similar phenomena are not taken into account. The clock cycle used in
the NuSMV can be changed. The clock cycle values used in this case study were 0.1 s
and 1.0 s.

5.1.1 The environment model

The environment model includes the expected diesel functionality as it is turned on, the
relevant busbar and three circuit breakers. The busbar is modelled as a separate module
and it is powered if a breaker connected to an operational power supply is closed.

The three breakers are modelled as separate modules. A breaker can be open or closed
based on its inputs. The priority logic of the signals controlling the breakers is also
modelled.

The diesel generator model contains the functionality of the generator as it is turned
on. The model includes the control inputs of the generator, the time dependent
behaviour from start-up to full power operation and the outputs of the generator, such as
the speed of the diesel generator and information of produced voltage level.

5.2 Uppaal modelling

A modular model checking approach was developed for modelling function block
diagrams with Uppaal. In addition to modularity, one objective of the Uppaal modelling
was to study asynchronous features of the system and how Uppaal is suited to
investigating asynchronous systems.

The Uppaal models are different from NuSMV models: there is no clock cycle, but
the system changes state whenever some of the inputs changes or some timeout
happens. Two versions of the model were created in Uppaal. One version is synchronous
as in NuSMV and the other is completely asynchronous, taking into account all possible
signal propagation orders.

Corresponding to the function block libraries used in the NuSMV modelling,
component libraries for both modelling approaches (synchronous and asynchronous)
were created. In the component library there is one parameterisable automaton template
for each function block. The models are created by instantiating the templates. The
automata communicate with each other through synchronisation channels and with shared
variables. Shared variables are used to keep track of the current value of each signal.

The component libraries make modelling new function block diagrams easier. The
models can also be created in some other ways, by combining several function blocks
into one automaton, for example. With those techniques a somewhat smaller state space
can be obtained, but the modelling is more difficult and time-consuming because the

5. Modelling of the system

24

automata cannot be reused. Modular models are also easier to read and understand. In
addition, making modifications to a modular model is easy if a new revision of the
system needs to be modelled.

Figure 7. Signal propagation by synchronisation in asynchronous and synchronous Uppaal
models.

5.2.1 Asynchronous model

The asynchronous model takes into account all the different signal propagation
sequences. This makes it possible to find bugs related to distributed systems. In the case
of asynchronous models the model checker investigates all the possible interleavings of
the signals.

In asynchronous models there is one synchronisation channel for each signal in the
logic diagram. The signals are relayed between the function blocks one block at a time.
When some signal changes, synchronisation is sent to all the blocks receiving the signal
as input. When synchronisation about a signal change is received, globally shared signal
values are used as guards to determine which transitions are enabled. The receiving
blocks then send new synchronisations if their outputs change. In this way the signal
changes propagate through the whole logic diagram.

The asynchronous model does not make any assumptions concerning the order in
which the function blocks are updated and thus asynchronous modelling allows all
possible orders of events to be examined. As a result, the asynchronous model may even
contain behaviour that the original system cannot reproduce.

In the left side image of Figure 7 is an example of asynchronous signal passing. In the
top row are five automata generating input signals. The other squares depict automata
modelling function blocks. The arrows are synchronisations sent from one automaton to

25

one or more receiver automata. In the figure, input I2 changes its state and
synchronisation is sent to function blocks F1, F3 and F4. If I2’s change causes the
outputs of some of those function blocks to change, they send new synchronisation to
the following function blocks. The order of evaluation of the function blocks F3 and F4
is not specified but they can be evaluated in any order. In this way the model checker
investigates both orders of arrival of the two input signals of F6.

5.2.2 Synchronous model

The behaviour of the synchronous model is more like that of the NuSMV model. All the
function blocks are updated simultaneously as a signal change occurs. In synchronous
models there is only one synchronisation channel, which is used to globally announce
signal changes. For example, if some input changes, all the automata modelling the
function blocks change their state in one global state transition.

On the right side image of Figure 7 a synchronisation of the change of input I2 is sent
to all the automata modelling the function blocks. The signals are propagated in a
predetermined order and, for example, function block F6 calculates its output after both
F3 and F4 have been updated.

6. Results and findings

26

6. Results and findings

This section presents the results of model checking: a comparison of the two model
checking methods and descriptions of some of the unwanted system behaviour that was
found using model checking. The compositional verification techniques described in
Section 4 were not used during the comparison of the methods, but for analysis of the
system to find the NuSMV counter-examples (Section 6.3).

6.1 Utilisation of compositional model checking methods

The non-abstracted NuSMV model has such a large state space that properties cannot be
checked on the non-abstracted model using a practical amount of time or memory. The
examined properties in this case study were verified using the compositional model
checking technique described in Section 4, which reduces the state space and the
required resources. In Uppaal, similar restricted models were constructed manually so
that the model checking was feasible.

Based on the experiences of using the compositional technique in this case study, only
one or two modules are usually needed for the verification of a single property. Some
properties, however, require the inclusion of several modules. The selection of these
relevant modules is not always straightforward, and heuristics for module selection are
still needed. When several modules are required for verification, semi-interface modules
can be used to further avoid state space explosion.

6.2 Comparison of model checking performance

The performance of the two model checking tools and associated modelling methods
was compared. The methodologies of the two tools are quite different. Nonetheless, for
the comparison, models for five different module configurations were constructed in a
way that minimises these differences. For example, the NuSMV models were manually
edited to replace interface modules with a set of free global variables, which better
corresponds to Uppaal models. The checked property (no deadlocks) was also chosen so

27

that tool differences had little effect. The deadlock property is such that the whole state
space is considered in both tools.

The model configurations used in the comparison consisted of only one or two
modules. In other words, the compared models cover only a small part of the diesel
generator control system’s functions.

A timeout limit of one hour was used in the comparison. The memory usage was
limited to 4 GB by the PC used in the comparison. The model checking runs were
performed on a PC with Intel Core 2 Quad Q9550 processor and 8 GB of RAM. The
operating system used was Ubuntu 9.10. For model checking, NuSMV version 2.5.0
and Uppaal version 4.0.11 were used.

Table 1 illustrates NuSMV performance for each module configuration. Using the 1 s
clock cycle, all configurations could be checked well within the limits of time and
memory. Two of the configurations using 0.1 s clock cycles could also be checked,
while three 0.1 s clock cycle configurations could not be checked within one hour.

Table 1. NuSMV results of comparison using 0.1 s and 1.0 s clock cycles.

 0,1 s 1 s

Model Time Mem (MB) Time Mem (MB)

Module 1 > 1 h ≥ 190 3 min 69

Module 2 41 s 41 17 s 20

Module 3 > 1 h ≥ 20 2 min 46

Modules 3, 4 > 1 h ≥ 24 17 min 68

Module 4 10 s 16 4 s 10

Table 2 illustrates Uppaal performance for both (asynchronous and synchronous)
modelling methods. One asynchronous module configuration was checked within
resource limits. Other asynchronous configurations and all synchronous configurations
were either timed out or consumed too much memory.

Table 2. Uppaal (including fault bits) results of comparison for the synchronous and the
asynchronous models.

 Async Sync

Model Time Mem (MB) Time Mem (MB)

Module 1 > 1 h ≥ 1100 – > 4 GB

Module 2 24 s 28 – > 4 GB

Module 3 – > 4 GB – > 4 GB

Modules 3, 4 – > 4 GB – > 4 GB

Module 4 – > 4 GB > 1 h ≥ 140

6. Results and findings

28

Simpler versions of the Uppaal models were created in order to obtain more useful
results. Unlike in the NuSMV models, the fault signals that are carried with every signal
were not included in these Uppaal models. Table 3 illustrates these results. Two of the
asynchronous configurations and two of the synchronous configurations could be
checked, while other configurations exceeded the limits set for time and memory.

Table 3. Uppaal (without fault bits) results of comparison for the synchronous and the
asynchronous models.

 Async Sync

Model Time Mem (MB) Time Mem (MB)

Module 1 > 1 h ≥ 270 – > 4 GB

Module 2 < 1 s 4 3 s 5

Module 3 > 1 h ≥ 920 > 1 h ≥ 400

Modules 3, 4 > 1 h ≥ 2600 > 1 h ≥ 2500

Module 4 24 s 65 20 s 5

6.3 Findings

Model checking of the system properties resulted in several counter-examples that were
analysed. Analysis of these counter-examples led to the discovery of a few system
requirements that were violated. Many of these violations could be explained by the
generality of the design documentation, i.e. the level of detail used in the design
documentation did not fully include signal status handling. Other findings were related
to the timing issues of the logic. The reasons behind these remaining findings can be
divided into three categories: 1) two signals changing values at the same clock cycle
causes unplanned operation, 2) two consecutive operational sequences interfere with
each other and 3) asynchronous operation between modules results in a property
violation. The findings related to asynchronous operation could only be detected using
Uppaal. Other findings can be found using NuSMV. In what follows, two finding types
are examined in more detail.

6.3.1 Findings related to overlapping of sequences

In two cases a design fault was found, in which a control sequence of the diesel is
disrupted and restarted in a rapid manner. This results in unwanted behaviour since the
first sequence has not ended properly before the second sequence starts.

Part of the logic causing an overlapping sequence is illustrated in Figure 8. The logic
consists of a set-reset flip-flop, two TON timer blocks (8 s, 30 s), a time pulse function
block (10 s), AND-block and an OR-block. The logic intends to carry out a starting

29

sequence of alternating signals given to a device. The sequence is specified so that first
the ON-signal is given for 8 seconds, and then the OFF-signal is given for 10 seconds.
After the OFF-signal, the ON-signal is given again for 12 seconds.

The intended sequence may be interrupted by the Reset signal but the interrupt should
occur in a safe way. In particular, it is expected that the ON-signal is not given
continuously for long periods of time, since this might be harmful to the device. When
this property of the system was examined by model checking, a counter-example was
found that shows how the ON-signal can be continuously set up to a maximum of 22
seconds. This unwanted behaviour occurs when the starting sequence is reset and
quickly restarted just after 8 seconds after the first Start signal. This way the time pulse
block is not reset, which interferes with the newly restarted system behaviour. In
particular, the time pulse will not be re-initiated because the time pulse function block
does not detect the rising edge from the 8 s TON-block.

Figure 8. Part of the logic related to overlapping sequences.

6.3.2 Findings related to the asynchronous behaviour of the system

The asynchronous Uppaal models revealed some unwanted behaviour related to the
distribution of the systems. As mentioned in Section 3.1, the different logic diagrams
are executed in different computers and the computers communicate with each other
through a data bus. If there are any communication delays, the signals might not
propagate from one logic diagram to another within one clock cycle. On the other hand,
if the processors use their own clocks without synchronisation, clock skew can cause the
execution cycles to overlap in such a way that signals do not propagate from one
diagram to another within one clock cycle. This may cause some unexpected behaviour.
With the asynchronous Uppaal models some properties were found to be violated in
case of signals not propagating within one clock cycle.

For example, take a property that a valve may not be controlled to open and close
simultaneously. The valve is controlled to open in one logic diagram and when the
output signal to open the valve is set, a signal preventing the closing of the valve is

6. Results and findings

30

relayed to another diagram running in another processor. Because of signal delays, the
signal does not relay to the other diagram within the same clock cycle and the outputs
are set simultaneously.

With the asynchronous Uppaal models, undesired functionality relating to distributed
operation was found in four of the checked properties. In all of these cases a signal is
relayed to another logic diagram. The functionality can be prevented by not running
those logics in separate processors but this is not always feasible. In that case the logic
needs to be designed so that all asynchronous operations are taken into account.

31

7. Conclusions

An emergency diesel control system was analysed using two model checkers: NuSMV
and Uppaal. The work done with NuSMV tool focused on the development of a
compositional model checking method for large modular systems, while Uppaal was
used to study the systems in more detail, i.e. modelling also the asynchronous
communication between components.

A method of compositional model checking was adopted and successfully utilised in a
real industrial case. The method allows the model checking of large systems that
otherwise could not be examined as quickly and smoothly. The method is based on
compositional minimisation, in which modules can be easily replaced by abstracted
interface modules.

The compositional verification technique used here significantly reduces the manual
work required. The technique can probably be further automated to ease the analysis of
large systems. The objective of the technique is to automatically find a suitable
configuration of modules that is computationally feasible but at the same time describes
the system to be analysed with enough details to enable verification of selected
properties. The responses of the model checking tool could be used for selecting such a
configuration but that question is left for future projects.

However, the benefit of the method is dependent on the checked temporal property.
Only safety properties can be examined with the current methodology. Also, all
properties cannot be checked with the method because some properties are dependent
on a large portion of the logic and, thus, verifying the property requires the inclusion of
too many modules. The methodology brings real added value to the model checking tool
box but it is clear that additional research and development is still required.

Uppaal modelling shows that function block diagrams can be modelled using timed
automata. Additionally, an asynchronous modelling method for function block diagrams
was created for Uppaal that depicts the system in more detail. This technique makes it
possible to find faults that cannot be found using the synchronous NuSMV modelling
technique. However, model checking function block diagrams with Uppaal is currently
inefficient. More effective real-time based model checking techniques are needed.

7. Conclusions

32

The current NuSMV modelling technique is based on an assumption of synchronous
behaviour between different functions that are implemented on separate computers.
Following the technique developed in Uppaal, a similar technique could also be
implemented with NuSMV on top of our current methods.

NuSMV and Uppaal have different strengths. It would be quite beneficial if both tools
could be used in the compositional verification of a single property. Systematic
methodology for this does not yet exist.

Future work includes the development and improvement of compositional model
checking methods for large systems and modelling of systems with more precision so
that the asynchronous phenomena in particular could be taken into consideration.

33

References

1. Alur, R. & Dill, D. L. “A theory of timed automata”. Theoretical Computer Science, 126(2),
1994, pp. 183–235.

2. Alur, R., Courcoubetis, C. & Dill, D. “Model-checking for real-time systems”. In: Proceedings,
Fifth Annual IEEE Symposium on Logic in Computer Science, 1990. Pp. 414–425.

3. Berezin, S., Campos, S. V. A. & Clarke, E. M. “Compositional Reasoning in Model Checking”.
In: Revised Lectures from the International Symposium on Compositionality: The
Significant Difference (COMPOS’97). Roever, W. P. de, Langmaack, H. & Pnueli, A.
(Eds.). Springer-Verlag, London, UK, 1997. Pp. 81–102.

4. Biere, A., Cimatti, A., Clarke E. M. & Zhu, Y. 1999. “Symbolic model checking without BDDs”.
In: Proc. of the Fifth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’99).

5. Biere, A., Heljanko, K., Junttila, T., Latvala, T. & Schuppan, V. 2006. “Linear Encodings of
Bounded LTL Model Checking”. Logical Methods in Computer Science 2(5:5), pp. 1–64.

6. Björkman, K., Frits, J., Valkonen, J., Lahtinen, J., Heljanko, K., Niemelä, I. & Hämäläinen, J.J.
2009. Verification of safety logic designs by model checking. In: Proceedings of the
Sixth American Nuclear Society International Topical Meeting on Nuclear Plant
Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT
2009, Knoxville, Tennessee, April 2009.

7. Björkman, K., Frits, J., Valkonen, J., Heljanko, K. & Niemelä, I. 2009. Model-based analysis of a
stepwise shutdown logic. VTT Working Papers 115, VTT Technical Research Centre of
Finland, Espoo. 36 p. + app. 4 p. http://www.vtt.fi/inf/pdf/workingpapers/2009/W115.pdf.

8. Björkman, K., Valkonen, J. & Ranta, J. Verification of Automated Changeover Switching Unit by
Model Checking. In: Proceedings of the 7th International Topical Meeting on Nuclear Plant
Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2010),
November 7–11, 2010, Las Vegas, Nevada. Pp. 1719–1728.

9. Bryant, R. E. 1986. “Graph-Based Algorithms for Boolean Function Manipulation”. IEEE
Trans. Computers 35(8), pp. 677–691.

10. Burch, J. R., Clarke, E. M. & Long, D. E. “Symbolic Model Checking with Partitioned Transition
Relations”. North-Holland, 1991, pp. 49–58,

11. Cavada, R., Cimatti, A., Jochim, C. A., Keighren, G., Olivetti, E., Pistore, M., Roveri M. &
Tchaltsev, A. 2010. “NuSMV 2.5 User Manual”. FBK-irst.

12. Clarke, E. M. & Emerson, E. A. 1981. “Design and synthesis of synchronization of skeletons
using branching time temporal logic”. In: Proceedings of the IBM Workshop on Logics
of Programs, Vol. 131 of LNCS, Springer. Pp. 52–71.

http://www.vtt.fi/inf/pdf/workingpapers/2009/W115.pdf

34

13. Clarke, E., Long, D. & McMillan, K. “Compositional model checking”. In: Proceedings of the
Fourth Annual Symposium on Logic in computer science, IEEE Press, Piscataway,
NJ, USA, 1989. Pp. 353–362.

14. Clarke, E. M., Grumberg, O. & Peled, D. A. 1999. “Model Checking”. The MIT Press.

15. Clarke, E. M. “SAT-Based Counterexample Guided Abstraction Refinement”. In: Proceedings
of the 9th International SPIN Workshop on Model Checking of Software. Bosnacki, D.
& Leue, S. (Eds.). Springer-Verlag, London, UK, 2002.

16. Cobleigh, J. M., Giannakopoulou, D. & Păsăreanu, C. S. “Learning assumptions for compositional
verification”. In: Proceedings of the 9th international conference on tools and
algorithms for the construction and analysis of systems (TACAS'03). Garavel, H. &
Hatcliff, J. (Eds.). Springer-Verlag, Berlin, Heidelberg, 2003. Pp. 331–346.

17. Lahtinen, J. 2008. Model checking timed safety instrumented systems. Vol. 3. Espoo:
Helsinki University of Technology. TKK reports in information and computer science.
ISBN 978-951-22-9445-9. http://lib.tkk.fi/Reports/2008/isbn9789512294459.pdf.

18. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J. & Niemelä, I. “Model checking methodology
for supporting safety critical software development and verification”. In: European
Safety and Reliability Conference, ESREL2010. Rhodes, Greece, 5–9 Sept. 2010.
Reliability, Risk and Safety – Back to the Future. Ale, Papazoglou & Zio (Eds).
European Safety and Reliability Association, ESRA. London (2010). Pp. 2056–2063.

19. Larsen, K. G., Pettersson, P. & Yi, W. “UPPAAL in a nutshell”. International Journal on
Software Tools for Technology Transfer, 1(1–2), 1997, pp. 134–152.

20. McMillan, K. L. 1993. “Symbolic Model Checking”, Kluwer Academic Publ.

21. McMillan, K. L. “Circular Compositional Reasoning about Liveness”. In: Proceedings of the
10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME’99), Laurence Pierre and Thomas Kropf
(Eds.). Springer-Verlag, London, UK, 1999. Pp. 342–345.

22. NuSMV Model Checker v.2.4.3, 2008. http://nusmv.irst.itc.it/.

23. Păsăreanu, C. S., Dwyer, M. B. & Huth, M. “Assume-Guarantee Model Checking of Software: A
Comparative Case Study”. In: Proceedings of the 5th and 6th International SPIN
Workshops on Theoretical and Practical Aspects of SPIN Model Checking, Dennis
Dams, Rob Gerth, Stefan Leue, and Mieke Massink (Eds.). Springer-Verlag, London,
UK, 1999. Pp. 168–183.

24. Peng, H. & Tahar, S. “Survey on compositional verification”. Technical report, Department of
Electrical and Computer Engineering, Concordia University, Montreal, Canada,
November 1998.

25. Quielle, J. & Sifakis, J. 1981. “Specification and verification of concurrent systems in CESAR”.
In: Proceedings of the 5th International Symposium on Programming. Pp. 337–350.

http://lib.tkk.fi/Reports/2008/isbn9789512294459.pdf
http://nusmv.irst.itc.it/

35

26. Rushby, J. “Formal Verification of McMillan’s Compositional Assume-Guarantee Rule”. Technical
Report, University of Minnesota, Minneapolis, 2001.

27. UPPAAL integrated tool environment v. 4.0.6, 2009. http://www.uppaal.com/.

28. Valkonen, J., Karanta, I., Koskimies, M., Heljanko, K., Niemelä, I., Sheridan, D. & Bloomfield, R. E.
2008. “NPP Safety Automation Systems Analysis – State of the Art”. VTT Working Papers
94, VTT, Espoo. 62 p. http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf.

29. Valkonen, J., Pettersson, V., Björkman, K., Holmberg, J.-E., Koskimies, M., Heljanko, K. &
Niemelä, I. 2008. Model-Based Analysis of an Arc Protection and an Emergency
Cooling System. VTT Working Papers 93, VTT, Espoo. 13 p. + app. 38 p.
http://www.vtt.fi/inf/pdf/workingpapers/2008/W93.pdf.

30. Valkonen, J., Koskimies, M., Pettersson, V., Heljanko, K., Holmberg, J.-E., Niemelä, I. &
Hämäläinen, J. J. 2008. Formal Verification of Safety I&C System Designs: Two
Nuclear Power Plant Related Applications, Enlarged Halden Programme Group
Meeting. Proc. Man – Technology-Organisation Session. Loen, Norway, 18–23 May.

31. Valkonen, J., Koskimies, M., Björkman, K., Heljanko, K., Niemelä, I. & Hämäläinen, J. J.
2009. Formal verification of safety automation logic designs. In Automaatio XVIII 2009
Seminaari.

32. Valkonen, J., Björkman, K., Frits, J. & Niemelä, I. “Model Checking Methodology for
Verification of Safety Logics”. In: Proceedings of the 6th International Conference on
Safety of Industrial Automated Systems (SIAS 2010) Tampere, June 14–15, 2010.

http://www.uppaal.com/
http://www.vtt.fi/inf/pdf/workingpapers/2008/W94.pdf
http://www.vtt.fi/inf/pdf/workingpapers/2008/W93.pdf

VTT CREATES BUSINESS FROM TECHNOLOGY
 Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT W
O

R
KIN

G
 PA

PER
S 156 A

N
A

LYSIS O
F A

N
 EM

ER
G

EN
C

Y D
IESEL G

EN
ER

A
TO

R
 C

O
N

TR
O

L SYSTEM
 BY C

O
M

PO
SITIO

N
A

L...

ISBN 978-951-38-7497-1 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Working Papers

141 Juha Forström, Esa Pursiheimo, Veikko Kekkonen & Juha Honkatukia.
Ydinvoimahankkeiden periaatepäätökseen liittyvät energia- ja kansantaloudelliset
selvitykset. 2010. 82 s. + liitt. 29 s.

142 Ulf Lindqvist, Maiju Aikala, Maija Federley, Liisa Hakola, Aino Mensonen, Pertti
Moilanen, Anna Viljakainen & Mikko Laukkanen. Hybrid Media in Packaging.
Printelligence. 2010. 52 p. + app. 7 p.

143 Olavi Lehtoranta. Knowledge flows from incumbent firms to newcomers. The growth
performance of innovative SMEs and services start-ups. 2010. 36 p. + app. 2 p.

144 Katri Grenman. The future of printed school books. 2010. 42 p.
145 Anders Stenberg & Hannele Holttinen. Tuulivoiman tuotantotilastot. Vuosiraportti

2009. 2010. 47 s. + liitt. 5 s.
146 Antti Nurmi, Tuula Hakkarainen & Ari Kevarinmäki. Palosuojattujen puurakenteiden

pitkäaikaistoimivuus. 2010. 39 s. + liitt. 6 s.
147 Juhan Viitaniemi, Susanna Aromaa, Simo-Pekka Leino, Sauli Kiviranta & Kaj

Helin. Integration of User-Centred Design and Product Development Process within
a Virtual Environment. Practical case KVALIVE. 2010. 39 p.

148 Matti Pajari. Prestressed hollow core slabs supported on beams. Finnish shear tests
on floors in 1990–�2006. 2010. 674 p.

149 Tommi Ekholm. Achieving cost efficiency with the 30% greenhouse gas emission
reduction target of the EU. 2010. 21 p.

150 Sampo Soimakallio, Mikko Hongisto, Kati Koponen, Laura Sokka, Kaisa Manninen,
Riina Antikainen, Karri Pasanen, Taija Sinkko & Rabbe Thun. EU:n uusiutuvien
energialähteiden edistämisdirektiivin kestävyyskriteeristö. Näkemyksiä määritelmistä
ja kestävyyden todentamisesta. 130 s. + liitt. 7 s.

151 Ian Baring-Gould, Lars Tallhaug, Göran Ronsten, Robert Horbaty, René Cattin, Timo
Laakso, Michael Durstewitz, Antoine Lacroix, Esa Peltola & Tomas Wallenius. Wind
energy projects in cold climates. 2010. 62 p.

152 Timo Laakso, Ian Baring-Gould, Michael Durstewitz, Robert Horbaty, Antoine
Lacroix, Esa Peltola, Göran Ronsten, Lars Tallhaug & Tomas Wallenius. State-of-
the-art of wind energy in cold climates. 2010. 69 p.

153 Teemu Tommila, Juhani Hirvonen & Antti Pakonen. 2010. Fuzzy ontologies for
retrieval of industrial knowledge – a case study. 54 p. + app. 2 p.

154 Raili Alanen. Veneiden uudet energiajärjestelmät. 2010. 82 s.
156 Jussi Lahtinen, Kim Björkman, Janne Valkonen, Juho Frits & Ilkka Niemelä. 2010.

Analysis of an emergency diesel generator control system by compositional model
checking. MODSAFE 2010 work report. 35 p.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	Contents
	1. Introduction
	2. Model checking
	3. Description of the EDG system
	3.1 Emergency diesel generator control
	3.2 About the desired system properties

	4. Compositional verification methods for largesystems
	5. Modelling of the system
	5.1 NuSMV modelling
	5.1.1 The environment model

	5.2 Uppaal modelling
	5.2.1 Asynchronous model
	5.2.2 Synchronous model

	6. Results and findings
	6.1 Utilisation of compositional model checking methods
	6.2 Comparison of model checking performance
	6.3 Findings
	6.3.1 Findings related to overlapping of sequences
	6.3.2 Findings related to the asynchronous behaviour of the system

	7. Conclusions
	References

