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Preface 

This report has been prepared as part of the research project Model-based Safety 
Evaluation of Automation Systems (MODSAFE), which is part of the Finnish Research 
Programme on Nuclear Power Plant Safety 2007–2010 (SAFIR2010). The goals of the 
project were to develop methods for model-based safety evaluation, apply the methods 
in realistic case studies, evaluate the suitability of formal model checking methods for 
Nuclear Power Plant (NPP) automation analysis and develop recommendations for the 
practical application of the methods. This report describes the development of a 
compositional model checking approach for analysing large system designs and 
summarises a case study where the approach was utilised.  

We wish to express our gratitude to the representatives of the organisations who 
provided us with the case examples and all those who have given their valuable input in 
the meetings and discussions during the project.  
 
 
Espoo, December 2010 
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1. Introduction 

Verification of digital instrumentation and control (I&C) systems is challenging because 
programmable logic controllers enable complicated control functions and the state 
spaces (number of distinct values of inputs, outputs and internal memory) of the designs 
easily become too large for comprehensive manual inspection. Design verification is a 
key task in the design flow, because it can eliminate tricky design errors which are hard 
to detect later in the development process and are very expensive to repair, often leading 
to a major redesign and reimplementation cycle. Typically, verification and validation 
(V&V) activities rely heavily on subjective evaluation, which covers only a limited part 
of the possible behaviours of the system, and therefore more rigorous formal methods 
are required. Such formal methods have been studied (see [28] for an overview, for 
example) but they are not yet widely used.  

Model checking [14] is a formal method that can be used for verifying the correctness 
of system designs. Before the Model-based Safety Evaluation of Automation Systems 
(MODSAFE) project, it was not previously applied in the safety evaluation of nuclear 
power plant (NPP) automation systems (at least in Finland), but internationally it has been 
used in verifying the correct behaviour of e.g. hardware and microprocessor designs, data 
communications protocols and operating system device drivers. A number of efficient 
model checking systems are available which provide analysis tools that are able to 
automatically determine whether a given state machine model satisfies given 
specifications. Model checking can also handle delays and other time-related operations, 
which are crucial in safety I&C systems and challenging to design and verify. 

The objective of the MODSAFE project was to evaluate and develop methods based 
on formal model checking and apply them to the safety analysis of NPP safety 
automation (I&C). The purpose was to compile a group of methods and tools that can 
support the practical safety evaluation work and benefit utilities, regulators and vendors. 
The main tasks of the first two project years were to review the state of the art of 
employing formal methods and models for safety evaluation of industrial and nuclear 
safety systems [28], to develop basic methodology for applying model checking to 
safety evaluation and to study the feasibility of the approach [17, 29, 30, 31]. The 
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objective of the third and fourth project year was to develop an approach that was more 
flexible and suitable for analysing larger models [6, 7, 32, 18, 8].  

This report summarises the experiences gained during project year 2010 while 
developing a compositional approach for model checking in large system designs, 
developing a modular model checking approach for modelling function block diagrams 
with Uppaal and utilising the approaches for analysing a case study concerning the 
control system of an emergency diesel generator 

The rest of the report is structured as follows: Section 2 provides background 
information on model checking methodology. Section 3 describes the emergency diesel 
generator control system and a selection of its main requirements. Section 4 introduces 
some compositional system verification approaches and explains the compositional 
technique developed in the MODSAFE project. The emergency diesel control system 
was analysed using the NuSMV and Uppaal model checkers. Section 5 describes how 
the NuSMV and Uppaal models were constructed and their special features. Finally, 
Section 6 sums up the results and findings concerning the emergency diesel generator 
case, and Section 7 concludes the report.  
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2. Model checking 

Model checking [14, 12, 25] is a computer-aided verification method developed to 
formally verify the correct functioning of a system design model by examining all of its 
possible behaviours. The models used in model checking are quite similar to those used 
in simulation, as basically the model must describe the behaviour of the system design 
for all sequences of inputs. However, unlike simulation, model checkers examine the 
behaviour of the system design with all input sequences and compare it with the system 
specification. In model checking, at least in principle, the analysis can be fully 
automated with computer-aided tools. The specification is expressed in a suitable 
language, temporal logics being a prime example, describing the permitted behaviours 
of a system. Given a model and a specification as inputs, a model checking algorithm 
determines whether the system has violated its specification. If none of the behaviours 
of the system violate the given specification, the (model of the) system is correct. 
Otherwise, the model checker will automatically give a counter-example execution of 
the system demonstrating how the specification has been violated.  

The MODSAFE project has been using two model checkers: NuSMV [11, 22], which 
was originally designed for hardware model checking, and UPPAAL [27], which 
supports model checking of timed automata. NuSMV is a state-of-the-art symbolic 
model checker that supports synchronous state machine models where the real-time 
behaviour must be modelled with discrete time steps using explicit counter variables 
that are incremented at a common clock frequency. NuSMV supports model checking 
using both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) [14], 
making it quite flexible in expressing design specifications. The model checking 
algorithms employed in this work are based on symbolically representing and exploring 
the state space of the system by using Binary Decision Diagrams (BDDs) [6, 9, 20]. In 
addition, SAT-based (Propositional Satisfiability) bounded model checking [4] is also 
supported by NuSMV [5] for finding bugs in larger designs. The sophisticated model 
checking techniques used by NuSMV can handle non-determinism induced by free 
input variables well, but modelling real-time aspects can be more challenging due to the 
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inherently discrete time nature of the synchronous state machine model employed by 
NuSMV. 

UPPAAL is a model checking tool for timed systems based on modelling the system 
as a network of timed automata that communicate through message channels and shared 
variables. The timed automata have a finite control structure and real-valued clocks [1], 
making the modelling of timers fairly straightforward. Networks of timed automata can 
express the real-time behaviour of the system in continuous time and still be 
automatically analysed. This is feasible because all the possible behaviours of the 
system can be captured using a finite graph where different clock valuations with the 
same behaviour, intuitively, are grouped into a finite number of equivalence classes 
called regions [1]. The model checking algorithms use symbolic methods to compactly 
represent the clock valuations associated with each state of the system quite efficiently 
in terms of memory. The model checking algorithms employed inside UPPAAL [2, 19] 
are able to check a subset of the temporal logic TCTL (Timed Computation Tree Logic) 
[2] by explicit state model checking that explicitly traverses the finite graph induced by 
the behaviour of the system. The main strength of UPPAAL is in analysing the complex 
timing behaviour of a system. However, it is not well suited to systems with a very high 
amount of non-determinism as induced by, e.g., reading a large number of input 
variables (sensor readings) provided by the environment because each combination of 
inputs is explicitly explored by the employed model checking algorithms. 
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3. Description of the EDG system 

3.1 Emergency diesel generator control 

In this case study the behaviour of an emergency diesel generator system was examined. 
The case study is based on high-level design documentation that does not take into 
account the redundant implementations of the system and related voting logic that will 
be realised in the final system. This work focuses on the control logic of the diesel 
generator system that is represented as function block diagrams.  

The purpose of the emergency diesel system is to provide reserve power, as it is 
essential that electricity is always available to the maintained system. In case of a black 
out or a power failure in the main power supply, the diesel generators can be quickly 
turned on to keep the necessary devices available.  

The inputs of the control logic include voltage and frequency measurements, operator 
commands, check-back signals and measurements of the conditions of the diesel 
generator. The outputs of the logic are control signals for the diesel generator, the 
breakers, cooling systems and load protection signals for several pumps and other 
devices, for which power can be supplied by the diesel generator.  

In addition to the function block diagrams, parts of the system environment, i.e. the 
expected diesel functionality, the busbar and the related breakers are also included in the 
model. 

Figure 1 illustrates the high level architecture of the electrical connections. Besides 
the main power supply and the diesel generator, there is another additional diverse back-
up power supply.  
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Figure 1. High level architecture of the power supply. 

There is a large amount of logic related to the diesel generator control and part of it is 
shown in Figure 2. The system analysed here covers 10 different control functions, 
including functions related to the activation of the diesel generators, operation of the 
diesel generators, protection of the diesel generators, and voltage and frequency 
regulation. In addition, some functions are diverse implementations of other functions. 

The functions of the diesel generator system are intentionally decentralised and, thus, 
the diverse functions especially are typically not implemented on the same computer 
equipment. As a result, it is presumed that two functions communicating with each 
other via a bus will not be in full synchronisation. The signals sent from one computer 
are received only after a few clock cycles by the other computer. Additionally, it is 
possible that the computers’ clock frequencies differ marginally so that the same time 
delay in the logic results in different actual time lapse. 

Because of the multiple diverse systems, priority logic is also involved in the system. 
Typically, all breakers, pumps and valves are controlled by a separate module that 
prioritises the control signals related to that device. In this case study, only the priority 
logic related to the three breakers (see Figure 1) is considered. 
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Figure 2. Part of the logic of the emergency diesel system. 
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3.2 About the desired system properties 

The emergency diesel system provides reserve power for critical power plant devices in 
case of power failures. There are a few constraints that need to be taken into account 
when the diesels are used. Some of the general system requirements are: 

o If there is a reason to start the diesels, they will be started, and they will 
eventually feed power to the busbar. 

o When the diesels are started, a specified starting sequence is followed. 

o Loads are connected to the diesels according to a specified loading sequence.  

o The diesels take a few seconds to reach their operating speed. No loads should 
be connected to the generators during this time.  

o The connections to the busbar are controlled by several breakers as illustrated in 
Figure 1. The breakers should be operated in a safe fashion.  

o The control of the diesels is realised by several diverse systems. The 
prioritisation of the different systems’ signals must be correct. 

o There should be no race conditions. 

Based on some general system requirements, a list of 17 detailed requirements was 
created. These requirements were formalised and used as input when the model of the 
system was verified. The detailed requirements and temporal specifications are not 
covered in this report. 
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4. Compositional verification methods for large 
systems 

Many systems are so large that conventional model checking methods cannot be applied 
because of the state space explosion. In such systems, it is often possible to break down 
the specification into several properties describing the behaviour of individual modules 
of that system. Checking these local properties is usually more feasible, and if the 
conjunction of the local properties implies the original specification, it is possible to 
deduce that the entire system satisfies the specification as well. These compositional 
verification techniques [3, 24, 13] require that the system is composed of interconnected 
modules.  

Several compositional verification approaches exist. These techniques include 
compositional minimisation, assume-guarantee reasoning (including circular reasoning 
techniques), partitioned transition relations and lazy parallel composition.  

In the compositional minimisation technique [13] the system is abstracted using 
reduced versions of some of the system’s modules. The reduced modules, or “interface 
modules”, are abstracted away from their inner functionality, so that only signals visible 
to other modules are implemented. Interface modules can reduce the state space of the 
model significantly. 

Another compositional verification technique is the assume-guarantee reasoning 
technique [26, 23]. In this technique, an assumption is made of the environment of a 
module. The assumption can be verified separately. When the assumption is known to 
hold, we can check if a specification is true in an individual module under this 
assumption. If the specification is true in the individual module, it is also true in the 
whole system. 

Traditional assume-guarantee reasoning requires non-trivial human input. However, it 
is also possible to avoid this by using a learning algorithm to create assumptions of the 
model automatically. The learning algorithm creates assumptions of the environment 
model, and iteratively improves these assumptions based on the model checker’s output 
(see e.g. [16]). 
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Some verification techniques are based on circular reasoning [21]. In this approach, 
each module is verified to behave correctly if its environment behaves correctly. For 
instance, correctness of module A is assumed when module B is verified and vice versa. 
The circularity of the reasoning can be resolved using induction over time. 

The state space explosion in large models can also be diminished by special-purpose 
model checking algorithms. Traditional model checking algorithms calculate a parallel 
composition of the components and create a global model that depicts the whole system. 
The number of states in the global model is exponential to the size of the component 
models. Techniques such as partitioned transition relations [10] or lazy parallel 
composition [3] examine the transition relations of different components in the model 
separately, which can reduce the state space. 

The compositional model checking approach we have chosen supports the existing 
modelling methods of function block diagram-based designs. The idea behind the 
method is that usually not every part of the logic is needed to verify properties in a 
system. The approach is based on compositional minimisation on two abstraction levels 
and program slicing, but does not prevent additionally using assume-guarantee 
reasoning. The reasoning used in the approach requires that only properties stating that 
“no undesired behaviour occurs” (safety properties) are examined. 

Our existing modelling technique already partitions the design in suitable modules 
defined by the function block diagrams. These modules are further divided into a set of 
function blocks.  

In this approach, function block diagrams are modelled as follows. Each module 
(function block diagram) has a set of inputs and a set of outputs. A module’s output 
values are calculated by a set of function blocks that are instantiated from a function 
block library of these components. 

Compositional minimisation can be applied on these modules in several different 
abstraction levels; see Figure 3. The modules can be reduced into completely over-
approximated interface modules or semi-interface modules containing parts of the 
original logic of the modules. Either way, compositional verification requires a 
systematic way of reducing the behaviour of the modules into interface modules. 

In our models, the full-interface modules are easy to construct. A full-interface 
module contains no function blocks, and the outputs of the module are defined as free 
variables. The inputs of a full-interface module are left intact because of technical issues 
allowing compatibility with the model, but the inputs have no influence on the outputs. 
Definition of the output variables as free variables is a complete over-approximation of 
the module, i.e. no restrictions on the behaviour of the module are set. Full-interface 
versions of modules can be constructed in parallel with the normal model construction. 
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Figure 3. Abstraction of function block diagrams on different levels. A red box indicates that the 
function block is a non-abstracted version. A white box indicates that an interface function block 
is used instead. The image on the left represents a non-abstracted module (function block 
diagram). The image on the right is a full-interface module without inner functionality. The 
middle image represents a semi-interface module, in which some function blocks are left intact, 
and some are over-approximated by interface function blocks. 

Semi-interface modules are partially over-approximated modules, in which some 
function blocks are non-abstracted, and some are approximated by “interface function 
blocks”. Interface function blocks are dummy function blocks, the outputs of which are 
defined as free variables. Some interface function blocks cannot be completely over-
approximated in this way, because the ranges of the output signals of these blocks might 
not be known. These function blocks are abstracted on a case-by-case basis. For easy 
utilisation, an interface function block library can be created. 

The semi-interface module is created as follows. The parameters of the abstraction are 
a set of module outputs and the depth n of the abstraction. According to these values, a 
program slicing method is used to choose the function blocks that can be reached by n 
steps from the defined outputs and may have influence on the given outputs. This set of 
function blocks remains non-abstracted. All other function blocks are transformed into 
interface function blocks. Semi-interface modules can be created on-the-fly using a 
small computer script when needed.  

The combination of modularity and the possibility to use interface modules enables 
effortless selection of the model configuration, i.e. which modules are non-abstracted 
and which modules are interface/semi-interface modules. In our previous modelling 
techniques, abstracting away from some functionality of a large system requires manual 
effort. This work is reduced to selecting an abstraction level for each module. The 
model can then be generated using a simple computer script.  
Different model configurations are shown in Figure 4, Figure 5 and Figure 6. The model 
in these figures consists of five modules. Each of these modules has a set of function 
blocks. The function blocks are depicted as boxes, where red boxes stand for non-
abstracted function blocks and white boxes stand for interface function blocks. Figure 4 
illustrates a model configuration in which the modules are non-abstracted. Figure 5 
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illustrates a model configuration in which one module is non-abstracted, and four 
modules are full-interface modules. Figure 6 represents a configuration of one non-
abstracted module, one semi-interface module and three full-interface modules. 

 

 

Figure 4. A model configuration, in which all the modules are non-abstracted. 
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Figure 5. A model configuration, in which one module is non-abstracted, and four modules are 
full-interface modules. 
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Figure 6. A model configuration of one non-abstracted module, one semi-interface module and 
three full-interface modules. 

As the configurations can be easily compiled, the remaining questions are: 1) How are 
the abstract configurations used to deduce whether a property is true in the accurate 
non-approximated model? 2) How can the correct configuration of modules be found, 
that both allows a property to be verified and is computationally manageable? 

The first question can be answered when the examined system property is a safety 
property, i.e. the property states that undesired behaviour never occurs. In case of safety 
automation systems, the temporal properties that need to be verified are typically safety 
properties. 

If a safety property is true in a model configuration, in which some of the modules are 
replaced by interface modules, the same property is also true in the accurate non-
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abstracted model. Interface modules are over-approximations, i.e. they have more 
behaviour than the regular non-abstracted modules. If a model configuration that uses 
these interface modules cannot produce undesired behaviour (violate the checked 
property), then the accurate model also cannot violate the property. 

If a safety property is false in a model configuration containing interface modules, it 
should be determined whether the violation of the property is feasible in the non-
abstracted model, or if the violation is caused by the interface modules. This check can 
be performed manually, but could also be done automatically using the counter-example 
given by the model checker. 

If the property is violated because of the behaviour of the interface modules, a new 
configuration of interface modules and non-abstracted modules should be selected for 
examination.  

Regarding the second question, it is our vision that an automatic method for the 
selection of model configurations (similar to [15]) can be created, and thus the 
verification of large systems can in many cases be automated based on an iterative 
algorithm. These subjects are left open for future research. 
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5. Modelling of the system 

The emergency diesel generator control system was modelled with two model checkers: 
NuSMV and Uppaal. The tools have different modelling methodology and thus the 
models are not completely identical. The strengths of the tools were taken into 
consideration in the modelling process. Our existing function block diagram modelling 
techniques could be used with NuSMV effectively. Therefore, with NuSMV we tried to 
focus on how to manage and check properties of large models using compositional 
verification. With Uppaal the focus was more on the creation of a methodology for the 
model checking of function block diagrams and laying the foundation for the 
methodology of asynchronous function block models.  

5.1 NuSMV modelling 

The objective of NuSMV modelling was to study the compositional verification of large 
models. Substantial parts of this work are the techniques for interface module 
construction and a technique for easy selection of model configurations that consist of 
non-abstracted and interface modules. 

The NuSMV model consists of nine modules representing the ten system functions 
(two functions were merged in the model), a function block library and four modules 
representing the environment of the system. In addition, interface modules were created 
for each module (13 modules). It is also possible to create semi-interface modules, in 
which the output values of some function blocks can change freely. For this purpose an 
interface function block library was also created. Details of interface and semi-interface 
modules can be found in Section 4.  

The NuSMV model has 2200 lines of code, including tests and comments. This does 
not include code for interface modules (680 lines) or the interface function block library 
(230 lines). 

The NuSMV model assumes that the whole system is one synchronous unit, in which 
a signal travels through all modules during one clock cycle. The assumption is, 
however, false because the modules are typically implemented on separate decentralised 
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processors. Using this assumption, the model checking is simpler, but some faults may 
remain undetected. In NuSMV, it is also assumed that all modules use the same clock, 
i.e. clock drift or similar phenomena are not taken into account. The clock cycle used in 
the NuSMV can be changed. The clock cycle values used in this case study were 0.1 s 
and 1.0 s. 

5.1.1 The environment model 

The environment model includes the expected diesel functionality as it is turned on, the 
relevant busbar and three circuit breakers. The busbar is modelled as a separate module 
and it is powered if a breaker connected to an operational power supply is closed.  

The three breakers are modelled as separate modules. A breaker can be open or closed 
based on its inputs. The priority logic of the signals controlling the breakers is also 
modelled. 

The diesel generator model contains the functionality of the generator as it is turned 
on. The model includes the control inputs of the generator, the time dependent 
behaviour from start-up to full power operation and the outputs of the generator, such as 
the speed of the diesel generator and information of produced voltage level.   

5.2 Uppaal modelling 

A modular model checking approach was developed for modelling function block 
diagrams with Uppaal. In addition to modularity, one objective of the Uppaal modelling 
was to study asynchronous features of the system and how Uppaal is suited to 
investigating asynchronous systems. 

The Uppaal models are different from NuSMV models: there is no clock cycle, but 
the system changes state whenever some of the inputs changes or some timeout 
happens. Two versions of the model were created in Uppaal. One version is synchronous 
as in NuSMV and the other is completely asynchronous, taking into account all possible 
signal propagation orders. 

Corresponding to the function block libraries used in the NuSMV modelling, 
component libraries for both modelling approaches (synchronous and asynchronous) 
were created. In the component library there is one parameterisable automaton template 
for each function block. The models are created by instantiating the templates. The 
automata communicate with each other through synchronisation channels and with shared 
variables. Shared variables are used to keep track of the current value of each signal. 

The component libraries make modelling new function block diagrams easier. The 
models can also be created in some other ways, by combining several function blocks 
into one automaton, for example. With those techniques a somewhat smaller state space 
can be obtained, but the modelling is more difficult and time-consuming because the 
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automata cannot be reused. Modular models are also easier to read and understand. In 
addition, making modifications to a modular model is easy if a new revision of the 
system needs to be modelled. 

 

 

Figure 7. Signal propagation by synchronisation in asynchronous and synchronous Uppaal 
models. 

5.2.1 Asynchronous model 

The asynchronous model takes into account all the different signal propagation 
sequences. This makes it possible to find bugs related to distributed systems. In the case 
of asynchronous models the model checker investigates all the possible interleavings of 
the signals. 

In asynchronous models there is one synchronisation channel for each signal in the 
logic diagram. The signals are relayed between the function blocks one block at a time. 
When some signal changes, synchronisation is sent to all the blocks receiving the signal 
as input. When synchronisation about a signal change is received, globally shared signal 
values are used as guards to determine which transitions are enabled. The receiving 
blocks then send new synchronisations if their outputs change. In this way the signal 
changes propagate through the whole logic diagram. 

The asynchronous model does not make any assumptions concerning the order in 
which the function blocks are updated and thus asynchronous modelling allows all 
possible orders of events to be examined. As a result, the asynchronous model may even 
contain behaviour that the original system cannot reproduce. 

In the left side image of Figure 7 is an example of asynchronous signal passing. In the 
top row are five automata generating input signals. The other squares depict automata 
modelling function blocks. The arrows are synchronisations sent from one automaton to 
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one or more receiver automata. In the figure, input I2 changes its state and 
synchronisation is sent to function blocks F1, F3 and F4. If I2’s change causes the 
outputs of some of those function blocks to change, they send new synchronisation to 
the following function blocks. The order of evaluation of the function blocks F3 and F4 
is not specified but they can be evaluated in any order. In this way the model checker 
investigates both orders of arrival of the two input signals of F6. 

5.2.2 Synchronous model 

The behaviour of the synchronous model is more like that of the NuSMV model. All the 
function blocks are updated simultaneously as a signal change occurs. In synchronous 
models there is only one synchronisation channel, which is used to globally announce 
signal changes. For example, if some input changes, all the automata modelling the 
function blocks change their state in one global state transition. 

On the right side image of Figure 7 a synchronisation of the change of input I2 is sent 
to all the automata modelling the function blocks. The signals are propagated in a 
predetermined order and, for example, function block F6 calculates its output after both 
F3 and F4 have been updated. 
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6. Results and findings 

This section presents the results of model checking: a comparison of the two model 
checking methods and descriptions of some of the unwanted system behaviour that was 
found using model checking. The compositional verification techniques described in 
Section 4 were not used during the comparison of the methods, but for analysis of the 
system to find the NuSMV counter-examples (Section 6.3). 

6.1 Utilisation of compositional model checking methods 

The non-abstracted NuSMV model has such a large state space that properties cannot be 
checked on the non-abstracted model using a practical amount of time or memory. The 
examined properties in this case study were verified using the compositional model 
checking technique described in Section 4, which reduces the state space and the 
required resources. In Uppaal, similar restricted models were constructed manually so 
that the model checking was feasible. 

Based on the experiences of using the compositional technique in this case study, only 
one or two modules are usually needed for the verification of a single property. Some 
properties, however, require the inclusion of several modules. The selection of these 
relevant modules is not always straightforward, and heuristics for module selection are 
still needed. When several modules are required for verification, semi-interface modules 
can be used to further avoid state space explosion. 

6.2 Comparison of model checking performance 

The performance of the two model checking tools and associated modelling methods 
was compared. The methodologies of the two tools are quite different. Nonetheless, for 
the comparison, models for five different module configurations were constructed in a 
way that minimises these differences. For example, the NuSMV models were manually 
edited to replace interface modules with a set of free global variables, which better 
corresponds to Uppaal models. The checked property (no deadlocks) was also chosen so 
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that tool differences had little effect. The deadlock property is such that the whole state 
space is considered in both tools. 

The model configurations used in the comparison consisted of only one or two 
modules. In other words, the compared models cover only a small part of the diesel 
generator control system’s functions. 

A timeout limit of one hour was used in the comparison. The memory usage was 
limited to 4 GB by the PC used in the comparison. The model checking runs were 
performed on a PC with Intel Core 2 Quad Q9550 processor and 8 GB of RAM. The 
operating system used was Ubuntu 9.10. For model checking, NuSMV version 2.5.0 
and Uppaal version 4.0.11 were used. 

Table 1 illustrates NuSMV performance for each module configuration. Using the 1 s 
clock cycle, all configurations could be checked well within the limits of time and 
memory. Two of the configurations using 0.1 s clock cycles could also be checked, 
while three 0.1 s clock cycle configurations could not be checked within one hour. 

Table 1. NuSMV results of comparison using 0.1 s and 1.0 s clock cycles. 

 0,1 s 1 s 

Model Time Mem (MB) Time Mem (MB) 

Module 1 > 1 h ≥ 190 3 min 69 

Module 2 41 s 41 17 s 20 

Module 3 > 1 h ≥ 20 2 min 46 

Modules 3, 4 > 1 h ≥ 24 17 min 68 

Module 4 10 s 16 4 s 10 

 
Table 2 illustrates Uppaal performance for both (asynchronous and synchronous) 
modelling methods. One asynchronous module configuration was checked within 
resource limits. Other asynchronous configurations and all synchronous configurations 
were either timed out or consumed too much memory. 

Table 2. Uppaal (including fault bits) results of comparison for the synchronous and the 
asynchronous models. 

 Async Sync 

Model Time Mem (MB) Time Mem (MB) 

Module 1 > 1 h ≥ 1100 – > 4 GB 

Module 2 24 s 28 – > 4 GB 

Module 3 – > 4 GB – > 4 GB 

Modules 3, 4 – > 4 GB – > 4 GB 

Module 4 – > 4 GB > 1 h ≥ 140 
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Simpler versions of the Uppaal models were created in order to obtain more useful 
results. Unlike in the NuSMV models, the fault signals that are carried with every signal 
were not included in these Uppaal models.  Table 3 illustrates these results. Two of the 
asynchronous configurations and two of the synchronous configurations could be 
checked, while other configurations exceeded the limits set for time and memory. 

Table 3. Uppaal (without fault bits) results of comparison for the synchronous and the 
asynchronous models. 

 Async Sync 

Model Time Mem (MB) Time Mem (MB) 

Module 1 > 1 h ≥ 270 – > 4 GB 

Module 2 < 1 s 4 3 s 5 

Module 3 > 1 h ≥ 920 > 1 h ≥ 400 

Modules 3, 4 > 1 h ≥ 2600 > 1 h ≥ 2500 

Module 4 24 s 65 20 s 5 

6.3 Findings 

Model checking of the system properties resulted in several counter-examples that were 
analysed. Analysis of these counter-examples led to the discovery of a few system 
requirements that were violated. Many of these violations could be explained by the 
generality of the design documentation, i.e. the level of detail used in the design 
documentation did not fully include signal status handling. Other findings were related 
to the timing issues of the logic. The reasons behind these remaining findings can be 
divided into three categories: 1) two signals changing values at the same clock cycle 
causes unplanned operation, 2) two consecutive operational sequences interfere with 
each other and 3) asynchronous operation between modules results in a property 
violation. The findings related to asynchronous operation could only be detected using 
Uppaal. Other findings can be found using NuSMV. In what follows, two finding types 
are examined in more detail. 

6.3.1 Findings related to overlapping of sequences 

In two cases a design fault was found, in which a control sequence of the diesel is 
disrupted and restarted in a rapid manner. This results in unwanted behaviour since the 
first sequence has not ended properly before the second sequence starts.  

Part of the logic causing an overlapping sequence is illustrated in Figure 8. The logic 
consists of a set-reset flip-flop, two TON timer blocks (8 s, 30 s), a time pulse function 
block (10 s), AND-block and an OR-block. The logic intends to carry out a starting 
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sequence of alternating signals given to a device. The sequence is specified so that first 
the ON-signal is given for 8 seconds, and then the OFF-signal is given for 10 seconds. 
After the OFF-signal, the ON-signal is given again for 12 seconds. 

The intended sequence may be interrupted by the Reset signal but the interrupt should 
occur in a safe way. In particular, it is expected that the ON-signal is not given 
continuously for long periods of time, since this might be harmful to the device. When 
this property of the system was examined by model checking, a counter-example was 
found that shows how the ON-signal can be continuously set up to a maximum of 22 
seconds. This unwanted behaviour occurs when the starting sequence is reset and 
quickly restarted just after 8 seconds after the first Start signal. This way the time pulse 
block is not reset, which interferes with the newly restarted system behaviour. In 
particular, the time pulse will not be re-initiated because the time pulse function block 
does not detect the rising edge from the 8 s TON-block.  

 

 

Figure 8. Part of the logic related to overlapping sequences. 

6.3.2 Findings related to the asynchronous behaviour of the system 

The asynchronous Uppaal models revealed some unwanted behaviour related to the 
distribution of the systems. As mentioned in Section 3.1, the different logic diagrams 
are executed in different computers and the computers communicate with each other 
through a data bus. If there are any communication delays, the signals might not 
propagate from one logic diagram to another within one clock cycle. On the other hand, 
if the processors use their own clocks without synchronisation, clock skew can cause the 
execution cycles to overlap in such a way that signals do not propagate from one 
diagram to another within one clock cycle. This may cause some unexpected behaviour. 
With the asynchronous Uppaal models some properties were found to be violated in 
case of signals not propagating within one clock cycle. 

For example, take a property that a valve may not be controlled to open and close 
simultaneously. The valve is controlled to open in one logic diagram and when the 
output signal to open the valve is set, a signal preventing the closing of the valve is 
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relayed to another diagram running in another processor. Because of signal delays, the 
signal does not relay to the other diagram within the same clock cycle and the outputs 
are set simultaneously. 

With the asynchronous Uppaal models, undesired functionality relating to distributed 
operation was found in four of the checked properties. In all of these cases a signal is 
relayed to another logic diagram. The functionality can be prevented by not running 
those logics in separate processors but this is not always feasible. In that case the logic 
needs to be designed so that all asynchronous operations are taken into account. 
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7. Conclusions 

An emergency diesel control system was analysed using two model checkers: NuSMV 
and Uppaal. The work done with NuSMV tool focused on the development of a 
compositional model checking method for large modular systems, while Uppaal was 
used to study the systems in more detail, i.e. modelling also the asynchronous 
communication between components. 

A method of compositional model checking was adopted and successfully utilised in a 
real industrial case. The method allows the model checking of large systems that 
otherwise could not be examined as quickly and smoothly. The method is based on 
compositional minimisation, in which modules can be easily replaced by abstracted 
interface modules.   

The compositional verification technique used here significantly reduces the manual 
work required. The technique can probably be further automated to ease the analysis of 
large systems. The objective of the technique is to automatically find a suitable 
configuration of modules that is computationally feasible but at the same time describes 
the system to be analysed with enough details to enable verification of selected 
properties. The responses of the model checking tool could be used for selecting such a 
configuration but that question is left for future projects. 

However, the benefit of the method is dependent on the checked temporal property. 
Only safety properties can be examined with the current methodology. Also, all 
properties cannot be checked with the method because some properties are dependent 
on a large portion of the logic and, thus, verifying the property requires the inclusion of 
too many modules. The methodology brings real added value to the model checking tool 
box but it is clear that additional research and development is still required.  

Uppaal modelling shows that function block diagrams can be modelled using timed 
automata. Additionally, an asynchronous modelling method for function block diagrams 
was created for Uppaal that depicts the system in more detail. This technique makes it 
possible to find faults that cannot be found using the synchronous NuSMV modelling 
technique. However, model checking function block diagrams with Uppaal is currently 
inefficient. More effective real-time based model checking techniques are needed. 
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The current NuSMV modelling technique is based on an assumption of synchronous 
behaviour between different functions that are implemented on separate computers. 
Following the technique developed in Uppaal, a similar technique could also be 
implemented with NuSMV on top of our current methods. 

NuSMV and Uppaal have different strengths. It would be quite beneficial if both tools 
could be used in the compositional verification of a single property. Systematic 
methodology for this does not yet exist. 

Future work includes the development and improvement of compositional model 
checking methods for large systems and modelling of systems with more precision so 
that the asynchronous phenomena in particular could be taken into consideration.
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