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Foreword

We included the initiative and commitment to organise a workshop on load and re-
sponse modelling to our related task plan in the Demand Response related working
package in the second funding period of the project Smart Grids and Energy Markets
(SGEM). When developing the plan for the task we realised that different partners had
excellent expertise that when put together nicely covers the key areas of the field and a
common expert workshop is an excellent way to improve our collaboration mutually
and internationally. Already then we had received a positive answer regarding participa-
tion from our foreign friends who are the experts who developed load and response
modelling in the three large EU projects EU-DEEP, FENIX, and ADDRESS. In the
project SGEM we also had experts from Distribution Network Operators working with
these and closely related questions and we invited them to the workshop. The partici-
pants comprised of experts from research institutes in Finland and Spain, and from
Finnish Distribution Network Operators. The SGEM team in the University of Eastern
Finland took care of the practical arrangements excellently.

Organising the workshop was relatively easy and smooth. We knew whom to ask for
the presentations and those asked were eager to come and give a presentation, because
they also saw the value of this workshop to all the participants. All the presentations and
summaries are of adequate quality and content, and they were prepared in time. The
presentations are valuable, but even more valuable was the lively discussion initiated by
the presentations. It was comfortable, efficient and fruitful to work together with these
competent professionals. The feedback was positive and we look forward to continuing
and further strengthening the collaboration with our Spanish friends. The experience
was so good that we initially plan to have a new workshop focused on some other, but
closely related aspects of demand response.

The organising committee of the workshop comprised:

Jukka Saarenpda and Harri Niska, UEF (University of Eastern Finland)

Pekka Koponen and Goran Koreneff, VTT (Technical Research Centre of Finland)
Antti Mutanen, TUT (Tampere University of Technology).

16" December 2011, on behalf of the organising committee,

Pekka Koponen and Jukka Saarenpéé
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Introduction

The electricity infrastructure is facing new challenges. The necessity of drastically re-
ducing CO; emissions has been understood, and shortage and increasing prices are ex-
pected for some important fuels, such as natural gas. In order to cope with the situation
electricity generation from renewable and distributed energy resources is planned to
increase. Power generation from wind and sun is intermittent. In addition new very big
nuclear power plants increase the challenges for maintaining and managing the power
balance in the electricity network. Competitive electricity markets with unbundled ac-
tors further complicate the picture but provide also an essential part of the solution. In
this context new technologies such as improvement in automation and distributed intel-
ligence, and horizontal connections between systems are needed to avoid excessive ex-
pensive investments in the electricity networks and in reserve and peak power genera-
tion, and to enable reducing operational margins to save costs. This can be made possi-
ble by intelligence and automation enabled by modern information and communication
technologies also called smart grids.

Accurate management of the power flows and balances is a necessary key functionali-
ty for smart grids and energy markets. Management comprises state estimation, moni-
toring, predicting, and controlling. All these functionalities are strongly based on load
and response models. This workshop focused on a necessary corner stone of smart grids
and smart energy markets. Important smart grid applications such as balance manage-
ment in electricity market and network management and control rely on these models.
The value of demand response is much bigger if the load and its responses can be pre-
dicted and optimised. The operational margins of the electricity networks and genera-
tion assets can be smaller, if also the loads and responses can be controlled accurately.

The main purpose of this workshop was to bring together and review the electricity
load modelling expertise within the SGEM project and thus help planning and coordina-
tion of the work and collaboration. This included also strengthening and sharing the
international contacts with those Spanish experts in this field that were responsible for
developing load and response modelling in the big European Smart Grid projects EU-
DEEP, FENIX, and ADDRESS, and have worked in this field in many other projects as



Introduction

well and written many good scientific papers on the subject. The workshop comprised
presentations on utilizing and analysing smart metering data and environmental data for
load modelling and long term scenarios, physically based load response models, and
approaches for developing and structuring load models and load profiles. This provided
adequate coverage of the field for meeting the objectives of the workshop.



Opening words
Dear Reader,

On behalf of the University of Eastern Finland, hosting the “Load and response model-
ing workshop” in Kuopio on November 10", 2011, I would like to express my gratitude
to the organizing committee for excellent work, as well as to the presenters for their
contribution to this successful workshop. It was a real pleasure to have you all here; the
Finnish Cleen/SGEM partners as well as the Spanish collaborators. I hope this occasion
will guide and focus the work on this important area to contribute to the creation of a
new level of smart electricity distribution networks which are reliable and cost effective
to both customers and energy corporations.

Mikko Kolehmainen, professor

Environmental Informatics
University of Eastern Finland



Utilizing AMR in network business

Markku Kauppinen
Vattenfall Verkko Oy

Background

This is summary of a presentation how AMR can be utilized in a distribution company.
Following are examples about applications based on AMR system implemented in a
Finnish Distribution Company Vattenfall Verkko Oy.

What AMR enables

A view of the intended functionalities is needed for the specification of a smart metering
system or an AMR (Automated Meter Reading) system. AMR enables opportunities to
versatile development of the business of the distribution network operator. Figure 1
shows which business processes can utilise smart metering. Thus almost all business
processes of the DNO can benefit from smart metering. But developing and replacing
only the meters is not enough to achieve this. Even bigger investments are needed in the
various Information Technology (IT) systems of the DNO so that the information pro-
vided by the meters can be utilised in them.

10
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Figure 1. What AMR enables.
MDMS Main Functionality

In this context Meter Data Management System is a central IT system. Its most important
functionalities include

e Supervision of received data

e Control of validation and estimation

e Control of progress of billing and settlement readiness
e Control of fuse size and connection demands

o Network loss calculation and reporting

e Control of distribution business periodization

e Power quality reports

e Service requests

e Self control

¢ Data quality monitoring.

Of these receiving, validating, and distributing metered data to the other systems can be
especially mentioned. Monitoring and managing the quality of data is an important
functionality of the MDMS. It is not limited to metered data but covers all information
and data that is exchanged through the interfaces of the MDMS.

11
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AMR and low voltage network monitoring

Traditionally only substations and MV (medium voltage) network could be monitored
in real time so that alarms and measurements were received automatically. Similar au-
tomation can be extended to cover also the LV (low voltage) network by using the
AMR-meters and a smart metering system. This will multiply the amount of distribution
network that is automatically monitored. The most important functionalities include in
addition to automatic alarms also queries to individual meters or meter groups initiated
from the control room. Such queries are mainly used for getting fast real time situational
awareness regarding those parts of distribution network that seem to be most critical at
that time. As a result the following benefits are achieved:

e Number of customer trouble calls reduced

e Faster fault repairing and shorter interruptions

e Reduced amount of trouble shooting and unnecessary customer visits

e Security: real-time information of zero conductor faults and voltage level
e Accurate and extended reporting and statistics.

On-line web presentation

Benefits from AMR to end customers such as consumers are often mentioned. One such
benefit is provision of metered data to the use of end customers. Hourly metered data
can be shown over the Internet as soon as it is in the data base of the MDMS. In Finland
the new electricity market legislation requires that the customers have access to hourly
metered data in the beginning of 2014 at the very latest. The customers benefit from this
data in monitoring their energy consumption and identifying targets for energy saving
measures. Reporting the hourly metered data has big impact in increasing the awareness
of their own energy usage. Figure 2 shows the on-line web report. The customers have
quickly and widely adopted this service.

12
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Figure 2. On-line web presentation for a family house equipped with accumulated electric heating
(electric heating with a heat storage tank).

13



Analyzing AMR measurements to be applied for
long term scenarios

Ville Rimali, Pirjo Heine & Markku Hyvarinen
Helen Electricity Network Ltd., Finland

Matti Koivisto & Matti Lehtonen
Aalto University, School of Electrical Engineering, Finland

Foreword

The presentation “Analysing AMR measurements to be applied for long term scenarios”
reports a work that has been carried out in the Smart Grids and Energy Markets
(SGEM) research program coordinated by CLEEN Ltd. The project is a part of the
CLEEN SGEM project representing during the first funding period the work package
WP 1.4 as Task 1.4.1: First Generation Smart Metering and Spatial Load Analysis. The
work continued in the second funding period as WP 6 and Task 6.11: Spatial load analysis.
The partners of the work have been Helen Electricity Network Ltd., Aalto University
School of Electrical Engineering, TEKLA, and Vantaa Energia Sahkdéverkot. Vattenfall
joined the task during the second funding period.

This presentation mainly focuses on the research work done by Ville Rimali from
Helen Electricity Network Ltd. and Matti Koivisto from Aalto University.

The spatial forecasting of the electrical energy and power is a vital task for distribu-
tion system operators (DSO). Spatial load scenarios provide information how much
power must be delivered (magnitude), where (space) and when (time) it will be needed.
The time scales for forecasting are long. While realization of investments in high volt-
age transmission routes and primary substations in city urban areas may take from sev-
eral years to over a decade the scenarios should cover e.g. 30-50 years. The total time
scale is several decades. However, some intermediate views should be taken e.g. by
having time steps of 10 years. The more remote future the forecasting covers, the more
alternative scenarios should be considered.
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The starting point of the future spatial forecasting is the present loading. The devel-
opment of the whole society is the general guide line for the future. The socio-economic
factors of the area in question, like the growth of population and workplaces, the pur-
pose of use of the land (residential, industry, municipal, etc.), the costs of energy, politi-
cal incentives and penalties especially in the energy field, affect the future energy use.
In addition, the present load profiles are developing. In spatial forecasts, some basic
factors are taken into account. The future will bring changes for this present situation
and the main developments arise from

e changes in present consumptions
o future growth and redevelopment of areas.

At the moment, AMR meter deployment is going on in Finland. By the end of 2013
practically all the customers will have new meters. In the future, a considerable amount
of hourly metered load data will be available and new applications based on this data is
being developed.

In this SGEM project utilizing AMR data to be installed for long term spatial load
forecasts, the measured load data acts as a starting point of the scenarios. In addition, by
analyzing the measurements understanding and knowledge of the characteristics of the
present use of electricity can be achieved. Only by understanding the characteristics of
the present electricity use, changes and modifications modeling the future can be in-
cluded in the forecasts.

In this SGEM project, the main performed analyses are:

1. Background data from various sources, like the network information system,
the customer data base, municipality registers, interviews, the temperature da-
ta, was linked to the measured AMR data. One major question is the common
data between various data bases. Between the data bases within DSO, the
common data was straightforward to determine. However, the combining of
AMR data to the data of city registers may be challenging. In this project, this
linking was made with coordinates and succeeded well. When having done
this, a major amount of background data was available. In this part, e.g. spe-
cific consumptions were determined for the demo areas for various customer
groups. This data was further applied in the scenarios when modeling the ef-
fect of future construction of the city on spatial electricity use.

2. Present spatial load curves can be modeled utilizing linear regression where
outside temperature, day length, and day type are used as explanatory varia-
bles. Based on hourly measurements of an individual customer, different cus-
tomer types can be recognized mathematically exploiting key figure method.
Customer groups can then be obtained using clustering or limiting value
method.

15
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3. Based on hourly measurements of an individual customer, different customer
types can be recognized mathematically exploiting principal component anal-
ysis (PCA) and clustering.

A spatial simulation method is applied to create the load forecasts. In this part, the spa-
tial future construction of the area is critical input data. In addition, the future changes
of the use of electricity and totally new loads can be added to the present, temperature
normalized load curve. Thus, it is possible to model the changes arising in the coming
decades.

In the project, spatial load forecasts were created for two different districts of Helsinki.
Only future construction plans of the city were modeled. The other city district has
mainly apartment houses with households and offices, the other mainly small and row
houses. The expectations of the coming construction activity are considerably different
and are clearly seen in the results. The scenarios covered the years 2010-2030. For the
time being, the first scenarios and demos have been created manually. During the com-
ing months, the analyses are deepened, new demo areas are handled and the actual demo
tool is further developed. Main efforts are addressed also to the modeling of the future
development of electricity use.

Reference

SGEM report: Development of spatial load forecasting utilizing AMR measurements,
2/2011Master thesis: Ville Rimali, Etéluettavan energiamittaustiedon hyédyntaminen
alueellisissa kuormitusennusteissa, Aalto yliopisto, 11/2011.

16



Using AMR measurements in load profiling and
network calculation

Antti Mutanen
Tampere University of Technology (TUT), Finland

Background and motivation

Finland has a long history in load profiling and network calculation with load profiles.
Finnish electric utilities started to co-operate in load research in the 1980°s. As a result
of this co-operation, load profiles were born. In 1992, Finnish Electricity Association
(Sener) published customer class load profiles for 46 different customer classes. Since
then, these load profiles have been used extensively in distribution network calculation.
Load profiles are used for example in load flow calculation, planning calculation, state
estimation, pricing and tariff planning. Pretty much any function in a distribution man-
agement system that contains either load flow calculation or load estimation relies on
load profiles.

However, there are several defects in the current load profiles. The biggest problem is
that the load profiles are old. The original Sener load profiles, which are still used in
many utilities, are based on measurements that were done over 20 years ago. This is not
acceptable, since electricity consumption habits change over years. For example, during
the past 20 years the amount of heat pumps and air-conditioners has multiplied, the use
of entertainment electronics has increased and electricity consumption in recreational
dwellings has changed. Furthermore, in the future, the changes will be even bigger if
plug-in hybrids and customer-specific distributed generation become popular. The load
profiles have also several other error sources. Such as, sampling errors, errors caused by
geographical generalization and errors related to customer classification.

While load profiles have grown old, the requirements for network calculation accura-
cy have become tighter than before. Modern smart grid functions, such as co-ordinated
voltage control, require accurate information on the network state. When automation

17
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and intelligent control are used to increase the network utilization rate, the requirements
for planning calculation and state monitoring become tighter. Therefore, smart grids
need also better load models.

TUT goals in load profiling

In Tampere University of Technology (TUT), our goal is to improve load profiling ac-
curacy by utilizing the measurement data provided by AMR systems. AMR data can be
used for creating new load profiles and updating customer classifications. Since AMR
data is collected continuously, adding dynamic and adaptive properties to the load pro-
files is also possible. In our vision, dynamism and adaptivity are achieved through con-
stant load profile updating. More accurate load profiles will ultimately lead to more ac-
curate network calculation.

For easy and fast practical implementation, the new load profiles should be compati-
ble with existing network calculation software. That is why the load profile format is
kept unchanged. The full potential of existing load profile format is harnessed by updat-
ing the load profile content. Currently, load profiles are expressed either as topogra-
phies or as index series. Topographies can contain more information and that is the for-
mat we are going to work with. Topographies contain expectation values and standard
deviations for each hour of the year. They can also include monthly temperature de-
pendencies [%/°C] and power factors.

Temperature dependency parameters

Outdoor temperature has a clear effect on electricity consumption. This should be taken
into account when making load forecasts and planning calculations. AMR measure-
ments and regional temperature measurements make the calculation of temperature de-
pendency parameters possible. The temperature dependency parameters can be calculat-
ed with simple linear regression. In our calculation method, the effects of daily and
monthly fluctuations in electricity demand are eliminated by choosing the dependent
and determining variables as follows:

e Dependent variable (regressand): the percent error between the daily energy
consumption and the average daily energy consumption on a similar day (same
day of the week and month).

e Determining variable (regressor): difference between the daily average temper-
ature and the average temperature on a similar day.

Linear regression from this data set gives results directly in the form %/°C.

18



Using AMR measurements in load profiling and network calculation

Clustering

There are several ways to use AMR data to improve load profiling accuracy. AMR
measurements can be used to reclassify customers to the nearest existing customer class
load profile or they can be used to update existing customer class load profiles. Natural-
ly, the best result is achieved if these two methods are combined. Combining customer
reclassification and load profile updating requires an iterative process where reclassifi-
cation and profile updating are repeated until the customer classification does not
change anymore. Basically, this is a clustering problem and can be solved with clustering
algorithms such us K-means or ISODATA. Figure 1 shows how the above-mentioned
methods affect load profiling accuracy.

% Relative square sum of errors
120
100
100 93
80 70
64 64
60 —
40 —
20 —
0
Original Reclassification of Updated load  K-means clustering  ISODATA clustering
classification and customers profiles (6 customer classes) (6 customer classes)
load profiles {14 customer (6 customer classes)
classes)

Figure 1. Comparison on the impact of different load profiling methods.

The clustering method we have developed utilizes weighted K-means clustering with
pattern vectors. Each AMR measurement series is converted into a pattern vector witch
consist of 864 hourly values. The hourly values are calculated as monthly averages for
three day types (workday, Saturday and Sunday). Pattern vectors help us to reduce the
dimension of the clustering problem and since they are formed from temperature nor-
malized measurements, they can contain information from several different years.

The flow chart in Figure 2 describes the clustering method developed. After the for-
mation of pattern vectors, the initial cluster centres are calculated using the original cus-
tomer classification. After first K-means clustering, outliers which do not fit any cluster
are filtered and customer-specific load profiles are calculated for them. Then the K-
means clustering is repeated and finally customer class load profiles are calculated for
each cluster.
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Calculate pattern vectors

v

Calculate initial clusters  |-a—

Y

K-means clustering

Y

Qutlier detection — -

v

K-means clustering

v

Calculate customer class
profiles for each cluster

Original customer
classification

Calculate customer -
specific load profiles

Figure 2. Flow chart of the clustering method developed.
Customer-specific load profiles

Since all customers cannot be modelled accurately with customer class load profiles,
customer-specific load profiles are also needed. Load profiling accuracy can be en-
hanced by increasing the number of customer-specific load profiles but the amount of
load profiles that can be handled in current network calculation software is limited.
Therefore, we must select the customer-specific profiles with care. In the previous clus-
tering method, outlier filtering was done so that only those customers who would have
the largest absolute profiling errors when using customer class load profiles are selected
for individual profiling.

When forming customer-specific load profiles, we should remember that last year’s
measurement does not directly forecast next year’s electricity consumption. The cus-
tomer-specific load profiles, as the other load profiles, should be normalized to long
term monthly average temperature. When used, the load profiles are corrected to the
forecasted or expected temperature by using the temperature dependency parameters.

A single customer usually has high stochasticity. The stochasticity can be filtered by
using type days (workday, Saturday, Sunday) and calculating hourly mean values for
each month. Type days also enable the calculation of standard deviations which would
otherwise be impossible from one year’s measurement data. The final customer-specific
load profiles are formed from the type days. Special days, such as Easter, Christmas and
New Year’s Day, should of course be taken into account when forming the final load
profiles.
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Ongoing and future work

During the SGEM project, we will use the aforementioned load profiling methods in a
demonstrative Matlab program that uses AMR data to reclassify customers and updates
load profiles. As Figure 3 shows, the Matlab program will read AMR measurements
from a database, performs clustering and exports updated customer classifications and
load profiles in to the network information system (NIS).

Reclassification and
calculation of new load
profiles

_ MATLAB
Measurements
» Hourly energies
for each customer

=  Hourly
temperatures

Update

Load profiles
Customer
classification
Temperature
dependencies
Forecasts for
yearly energies
Power factors

Read
Customer ID
Old customer
classification

Figure 3. Load profiling demonstration.

NIS

Once the load profiling is done, we will use NIS to make calculations and comparisons
on how the new load profiles affect network calculation and state estimation accuracy.
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DDM/CI methods and experiments in load
modelling using AMR and other environmental
data

Harri Niska & Jukka Saarenpéaa
University of Eastern Finland (UEF)

Introduction

Load modelling is an important part of planning and management of smart grids. The
AMR meters, which are soon to be found from every home, provide a large amount of
electricity measurement data. In addition, huge amount of external environmental data,
which has been collected over the years to the various registers of the society, are con-
stantly more open and available to public use.

Some of the registers currently available and possibly opened for free use in the future
include:

e Building information (VTJ/RHR/KTJ)

e Socio-ecomonomic data (Statistics Finland)
e Weather (FMI)

e Land use (MML/CORINE/SLICES).

The better availability of large amounts of data provides interesting opportunities in
load modelling and possibly enables creation of a new type of models that are more
accurate. For privacy and technical reasons the data is often restricted to regional/spatial
level, which suggests developing regional modelling (or spatial analysis) approaches.

DDM/CI techniques

When dealing with large amount of environmental data, it is often difficult for human to
notice the patterns and interrelationships within. However, in “data-rich” conditions
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data-driven modelling (DDM) methods provide new possibilities for the analysis and
modelling. More sophisticated DDM methods rely often on novel data mining / computa-
tional techniques contributed by the field of Computational Intelligence (ClI), including:

Neurocomputing

Evolutionary and genetic algorithms

Fuzzy logic

Clustering methods (k-means/fuzzy c-means/Isodata).

The DDM methods combined with conventional statistical methods and geocomputing
techniques could result in substantial enhancements in solving modelling problems re-
lated to planning and management of smart grids.

Advantages of DDM/CI methods are that they are capable of (i) searching complex
spatiotemporal patterns, load curves, in different data presentation levels, (ii) modelling
non-linearity and temporal dynamics of loads, including time-delays and interaction
with external variables, (iii) forecasting future behaviour of load series and (iv) handling
measurement errors, noise and missing data.

Main load modelling experiments using DDM/CI methods so far
Redefinition of load curves

Methods for redefinition of load curves (Figure 1) using AMR data were developed
using the data from 4454 small scale customers (Savon Voima). The basic principles of
the method are described in Rasénen and Kolehmainen (2009) and Rdsénen et al.
(2010). At general level, i.e. not paying attention to the details of implementation, the
main stages of the load curve redefinition were as follows:

e Temperature corrections

e Feature extraction from AMR data

e Clustering AMR data using the features extracted (SOM+k-means)
e Extracting new load curves basis of cluster centers

e Evaluating the new load curves.
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Figure 1. Load curves redefined from the AMR data.
Regional modelling

Spatial load forecasting is required in long-term distribution network planning. As there
is high uncertainty involved in the long-term planning, it is recommendable to prepare
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for several possible scenarios. To facilitate this process regional modelling experiments
were done. The research so far has been mainly focused on:

e Assessing regional loads in scenarios involving changes in residential heating sys-
tems using data from Population Register Centre’s Building and Dwelling Register

e Modelling the regional potential for PHEV adoption based on socio-economic
characteristics using data from Statistics Finland’s Grid Database and Finnish
Transport Safety Agency’s Vehicular and driver data register.

In both cases the common approach has been to first simulate the phenomena leading to
changes in loads (i.e. changing heating type or obtaining electric vehicle). The question
is then: How to predict which consumers change their electricity consumption behav-
iour by obtaining new technology? Consequently, new or updated load models must be
adapted to the scenario, the problem being: How to select or modify the load model
when consumers change their behaviour?

The basic hypothesis is that similar customers have similar behaviour, which leads to
the question of how to measure the similarity.

A methodology for predicting regional electricity loads in scenarios where consumers
change their residential heating system has been proposed by Saarenpdd (2011) and
Niska et al. (2011). The modelling has been demonstrated using rich internet application
based on Silverlight, Matlab and ArcGIS Server (Figure 2).

Figure 2. Regional modelling tool for assessing loads in heating system scenarios.

25



DDM/CI methods and experiments in load modelling using AMR and other environmental data

The idea is to reduce the uncertainty involved by enabling easy creation and inspection
of multiple scenarios. In each scenario, the consumers who are most probable to change
their heating system according to given scenario are first identified. This could be mod-
elled using historical data of heating system changes, but since such data is not easily
available, utilizing expert knowledge is necessary. In the second phase, new load mod-
els are allocated using non-linear regression based on the Self-organizing map. In the
regression model, building characteristics are used as independent variables while load
curve type or yearly electricity consumption are used as the dependent variable.

Conclusions

AMR data combined with external data will open new possibilities in the field of load
modelling, both from the perspective of network management (load-response) and net-
work strategic planning. Data-driven and computationally intelligent methods excel in
finding patterns and previously unknown interrelationships in new data.

Further work is required in developing and applying DDM/CI approaches for con-
structing physical-based load/response models using AMR and external environmental
data (such as temperature measurements, building information, socio-economic data).

Additionally, in respect to the strategic planning of the electric grid, new type of spa-
tial load modelling methods are needed for assessing loads in future scenarios. In this
context, particular issues include the encapsulation of DG/DER scenarios into load
models (e.g. EV, solar panels) and the prediction of behaviour on different regions.

In parallel with developing new load modelling methods and approaches, technical is-
sues related to data interfaces and model integration should be investigated. Moreover,
modelling approaches developed should be demonstrated to the potential end-users.
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A new approach to load profiles: the use of
building blocks

Goran Koreneff
VTT, Finland

Introduction

There are 46 load profiles in use in Finland (SLY 1992, Seppala 1996) and they stem
from sparse and infrequent measurements in the 1980°s and early 90’s. The number of
customer end recordings behind each profile varies. For single family house profiles, the
number of recordings behind them is between 4 and 56, but it is good to remember that
each recording might be just a few months long. They are also from different seasons
and years. The profiles have nevertheless proven their usefulness for the network utili-
ties. VTT updated these models partially in 2002, but access to the updated models is
restricted to the project partners of that time.

With AMR being on the march into every household, the availability of measure-
ments will be on a very different scale. Thus, updating the national profiles or even cre-
ating new local network dependent profiles will be possible, even updating or automat-
ing the profile classifications (see e.g. Mutanen 2010, 2011a, and 2011b). However,
especially for network long-term planning purposes, national easy-to-use and clearly
defined profiles will be advantageous.

The main obstacles to continuing touse the existing classification of 46 load profiles
are the overwhelming changes that take place at the end-users’ consumptions. A lot of
new significant part loads have been or are to be introduced in households. The new
additional part loads in the households do not only change the annual energy consump-
tion, but they also change the profile and in very decisive ways. In addition, parts of the
loads are temperature dependent, other parts not. Scalability of load curves is another
problem, as even if the right class is used, the internal share of the part loads might be
wrong for a single customer. The question is, shall we nevertheless try to introduce new
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profile classes for all the main combinations, use the old classification, or is there an-
other solution?

The building block research here is based on the research recommendations (Koreneff
2010) from the Inca-project.

The problem

There are 12 load profiles for single family houses:

110 direct electric heat, water boiler < 300 liter

120 direct electric heat, water boiler = 300 liter

130 direct electric heat, floor heating > 2 kW

210 partial storage electric heat, short disconnect periods
220 partial storage electric heat, long disconnect periods (7-22)
300 full storage electric heat, (7-22)

400 heat pump

510 dual heat, flat tariff

520 dual heat, night tariff

530 dual heat, seasonal tariff

601 no electric heat, no electric sauna

602 no electric heat, electric sauna.

In the future, we would need a tremendous amount of profiles (NB! the calculations
have been updated from the workshop presentation):

e 4 types of basic one family houses heating modes (no electric heating, direct
heating, partial storage heating, full storage heating)

e 4 types of basic electric heating sources with different behaviour (direct elec-
tric, ground source heat pump (GSHP), air-water heat pump (AWHP), and ex-
haust air heat pump (EAHP))

e 6 additional heat source possibilities with different behaviours (no additional,
air-air heat pump (AAHP), AWHP, solar heat, micro-CHP, and a manual
source such as a stove/fire place)

o 11 different electric vehicle (EV) constellations (0...2 pieces, full EV(FEV) or
plug-in hybrid EV (PHEV), smart or dumb charging)

e 4 types of micro generation possibilities (none, photovoltaics (PV), wind power,
micro-CHP)

e electric sauna or not.
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This would result in (1 + 3*4)*6*11*4*2 = 6864 new distinctive load curves for one
family houses, which is not manageable. Even with AMR, it would be very difficult to
get enough measurements for all the classes, as some combinations are rarer than other.

Approach

One solution to the exploding amount of profiles needed is to divide the load into feasi-
ble and more easily managed part loads (building blocks), see Figure 1. A similar ap-
proach has been studied and tested in different connections for household electricity,
that is, household appliances and lighting, but we are not convinced that is the right way
for load profiles. Here we plan to do the opposite: model the household electricity (ap-
pliances and lighting) as a whole. Instead, model large distinctive parts of the load (e.g.
heating, EV) separately. There is, for example, no benefit in modelling a coffee maker,
as it is such a small part of the whole, there is no CIS information on it, and the usage is
in short and quite irregular spells. As there are several small, independent and stochastic
loads in a single household, it is easier and more useful to manage their sum load. On
the other hand, modelling of the direct electric heating separately is very useful: it is
large, it has a distinctive temperature dependent profile which can be influenced by other
likewise distinctive profiles (additional heat sources such as AAHP or solar heat).

10000 T

8000 [

6000 % Dumb EV

B Heating
4000
® Household

2000 m AAHP

-2000

Figure 1. The end-user load can consist of several very distinctive part loads, even negative ones
(i.e. savings). The sum of the part loads form the total end-user load.

29



A new approach to load profiles: the use of building blocks

The building block approach suggests that we construct a user’s load using part load
profiles, which can be added or subtracted. For example, the customer’s load can be
calculated as:

+ household electricity

+ DHW

- solar heat panel for DHW (= savings)

+ direct electric heating

- AAHP in electric heated house (= savings)
+ AAHP during the summer

+ one PHEV without smart charging

+ sauna.

The number of building block (bb) load profiles can now be restricted to (NB! calcula-
tions have been updated from the workshop presentation):

e Household: 1 bb; electricity used for appliances, lighting etc.,
e Domestic hot water: DHW: 1 bb
¢ Basic heating need: 1 bb; basic heating need is also the same as direct el heating

e Additional main electric heating curves or models: 3 bb; GSHP, AWHP or
AAHP, EAHP, etc.)

e Heat storage: 1-3 bb (zero, 3 load curves, or a model dependent of storage size
and heat demand)

e Heating saving (negative) building blocks: 5 bb; AAHP, AWHP, stove, solar,
micro-CHP

e Electricity saving building blocks: 1-3 bb; PV, wind, micro-CHP
e Extra consumption blocks: 5 bb; EVs, directly heated sauna.

All in all, approximately 1 + 1 + (4 *(1...3) + (0...3)) + 5+ 3 +5 = 20...27 building
blocks are enough to construct any single family house constellation.

Discussion

One of the benefits of building blocks is that part of the loads can be calculated instead
of relying on measurement. Traditional load profiles have also been partly modelled
through their temperature dependency, so it is not a new idea, but here the benefits of
modelling are becoming clearer, as we can use separate models tailored for each sub-
load. When one uses one profile for the whole load, it is not easy to adjust it to take into
account condition changes that affect only part of the load, but using tailored sub-load
models makes it easier to take into account that, for example:
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e temperature dependency concerns only the heating and the regression coefficient
can itself be temperature dependent,

e demand response is not easily measured, per se,
e sub-loads may depend on variable inputs such as the spot price or varying tariffs,

e heating electricity may depend on the usage of auxiliary electric or non-electric
heaters, and

e usage of heat storage is not only a amplitude issue, it is also a time duration issue.

Some parts of the loads, especially the household electricity, are best based on meas-
urements. Household electricity is too complicated to be modelled using sub-loads; a
better and a more usable load profile can probably be achieved using measurements of
household electricity.

The building block approach is modular and as such also easy to expand. Amending
single building block doesn’t affect other building blocks. Overall, maintenance of the
system shows promises of being very straight-forward.

Results

The aim of this project is to test the feasibility of this approach by designing the setup
and constructing logical rules for the usage of building blocks. As a part of the feasibil-
ity study, a number of part load profiles and models will be constructed based on, for
example, SGEM funding period 1, 2, and 3 results (among others Laitinen 2011), Inca-
project results (Koreneff 2010, Mutanen 2010), SEKKI-project results (Koreneff 2009).
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Physically based load modeling for distributed
energy resources applications: EU-DEEP project

Carlos Alvarez
University of Valencia, Spain

This presentation is devoted to reinforce the need to detailed physical modeling of customer
processes to allow credible customer response to energy prices in electricity markets.

The first part of the presentation is oriented to connect Customer Demand response
and SmartGrids initiatives. Customer issues are centric in SmartGrids, and a massive
response of the customers is a basic objective of this initiative as rational and intelligent
energy consumption is basic in the framework of Distributed Energy resources imple-
mentations and solutions.

Most of Demand Side Management initiatives have been Supply oriented, and now is
the time for fully integrated Supply and Demand solutions.

A large 5 years European Project (EU-DEEP, The birth of a EUropean Distributed
EnErgy Partnership that will help the large-scale implementation of distributed energy
resources in Europe) was completed in 2009, whose objective was to investigate oppor-
tunities to enhance the integration of Distributed Generation, Storage and Demand in
Europe.

The Institute for Energy Engineering of the Universidad Politecnica de Valencia was
in charge of the Demand Research and Modeling tasks in this project, and some relevant
results are shown in this presentation.

The energy consumers were first segmented all over Europe according energy con-
sumption issues, resulting in: 93 segments for residential consumers, 154 in the com-
mercial and 378 in the industrial segment.

All these segments where documented (mainly with utility data) and ranked according
to their suitability to implement Distributed Generation, Distributed Storage and De-
mand Response.
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The highest ranked segments were analyzed and modeled in detail, in order to pro-
duce real figures and information that allowed the selection of real customers for three
pilot experiences that were implemented in EU-DEEP.

The main objective of these experiences was to show the ability of Distributed Energy
Resources (DER) in providing Balancing Mechanisms. More specifically:

— Case 1: Aggregating Demand response and DER contracts to compensate im-
balances caused by Renewable Energy Generation.

— Case 2: ESCO/Aggregator using customer flexibility and micro-CHP for sell-
ing Balancing Services.

— Case 3: ESCO internal balancing to cope with long term contracts.

The developed modeling tools were Physically Based process oriented, according to
Figure 1.

Segments \
\ Energy consumption
(electricity, gas, other)
2
LTS Operacional
e I » —» 3 " variables
L 2
Technology & /
equipment data

Generation curves

Figure 1. Main steps of the modeling process.

Where three modeling steps can be identified:
e Demand Module, where the use of each single process is identified.

e Physically Based Module, where each process is modeled according to physi-
cal mathematical description laws.

e Aggregation module, where all customer consumption processes are aggregat-
ed to find the customer total energy consumption.
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The presentation is completed with a demonstration about the use of some models: Ho-
tels, Apartments and one industrial example.

Editor’s explanations of abbreviations:

ESCO Energy Service Company
LTS Local Trading Strategies that connect DER with the electricity market. (See Figure 1.)
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Models for Customer Flexibility evaluation for
Price Demand response

Carlos Alvarez
University of Valencia, Spain

This presentation is devoted to show a methodology for customer energy demand analy-
sis and organization for participation in electricity markets.

The organization of the customer energy needs into Demand Bids is first discussed,
where each “piece” of demand required by the customer is assigned a price that corre-
sponds to the benefit the customer will obtain by consuming this energy.

The result of this demand organization is the hourly energy need for this customer, as
shown in the next figure (Results from EU-DEEP project):

BIDS - Segment "Hotels"

1000

900 Others no Others
controlable controlable
800 4
: A HVAC no

700 Lighting no controlable
- controlable

600 A -
% Ventilation no
12
2 500 A controlable

HVAC

[
£ 400 controlable
o

300 Ventilation Lighting

controlable controlable
200 4
100 A
0 T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Traded Power kW

Figure 1. Demand Bids, an example.
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One of the most relevant issues in building this “demand Curve” is the price determination,
that is usually determined by means of some other indirect costs/benefits (Substitution
costs, Stand by generation, Contracted insurances, Long term planning costs, etc.).

More important for customer demand participation in ancillary services markets is the
short term ability to modify its consumption. This can be found in the processes where
some short term flexibility in the energy consumption can be found. This flexibility can
be organized also in Demand Packages (DP) characterized by:

e Trigger price: to account costs incurred by the reduction/increase of the energy
consumption

o direct costs

0 costs of the control equipment
0 cost of Storage.

e Size and shape of the package.
e The notice time required for the change in the demand

o other limitations such as reliability of the package (possible penalties once
committed), number of occasions/season, year, etc.

Once identified this process flexibility and associated price, it can be organized as
shown in the Figure 2:
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Figure 2. Offers to reduce power in operational markets, an example.
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Figure 2 represents the power that can be traded in operation markets, for one specific
hour and customer facility (Results from EU-DEEP project).

Extensive physically based models have been used for different customers to evaluate
their flexibility.

As conclusion, a methodology for the evaluation of the Demand response capacity of
customers based on customer interaction to perform the evaluation of the impact (eco-
nomic) of the energy in the customer processes.

This methodology could also be used by ESCO companies to evaluate the aggregated
response of its customer portfolio.
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Identification of simple physically based models
of the response dynamics of electrical heating
loads

Pekka Koponen
VTT

Introduction

In the smart grids demand response will be extensively applied. Predictability of loads
will be increasingly important as operational margins are reduced with the help of au-
tomation. Thus it becomes necessary to predict the responses of load control actions.
The traditional load control models described and developed by Seppéld (1996) have
been so far successfully applied in Finland, but those models cannot predict control re-
sponses. A solution is to use simple physically based models of the building heat dy-
namics with parameters identified from measured data and building properties. In addi-
tion the physically based dynamic models can predict the responses to outdoor tempera-
ture variations better than the models by Seppéld (1996) and do not require quite as
much and as complete measurement data time series for updating.

Already Haase (1971) and Martikainen et al. (1987) applied simple physical models
of building heat dynamics in simulations of load control responses of electrical heating.
Koponen (1997) applied them for predicting the responses of direct control of electrical
heating and Koponen et al. (2006 and 2007) in optimisation of load control responses.

Approach
The suggested modelling approach is the following. The controllable houses are classi-
fied to some segments based on the type of the heating system and the building proper-

ties. Measurement data and a priori information are used for this. For each segment
some simple dynamic model structures are defined based on the heat dynamics of a typ-
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ical house. Also feasible range of the model parameters is defined. Then the model
parameters are fitted so that the response agrees with measured control responses, the

load of a non-controlled reference group, and long term measurement data.
The models are made to predict the load of groups of houses using as inputs

e measured and predicted environmental conditions such as outdoor temperature
in the region

e load control actions
e available information on usage of the houses.

Figure 1 illustrates the modelling approach. In addition to measurement from smart
meters also other available measurements can be used such as power measurements
from distribution substations. Especially when modelling individual houses also
measurements of indoor temperatures in the houses have been used taking into account
that the state variables of the model represent lumped temperatures of the house.

measurements from smart
meters and/or substations
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Figure 1. Response models are built combining measurements with information on building heat
dynamics.
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Model

Typically the simple physical model comprises 3 to 8 state variables. As an example
such a model taken from Koponen (1997) is shown next followed by results with it.

: (7’:\'1
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The variables and parameters in the example model are described next. The state
variables were the following lumped temperatures:

x1(t) temperature of the heating element e.g. in case of floor heating
x2(t) temperature of the indoor air

x3(t) temperature of the outside walls

X4(t) temperature of the other heat storing masses of the building.

The constant parameters were
C1,C2,C3and C4 the heat storage capacities related to each state variable

k12, k23, k24, k20, k30 the thermal conductivities between the state variables
(temperatures in the model).

The time variable input variables were

Tout(t) outdoor temperature
P(t) the electrical power heating the house.

After adding the control loop, P(t) becomes the main output variable.
Results

Figure 2 shows a comparison of the model response (simulation) with response estimat-
ed from measurements at substation for load control of 463 vacation house metering

41



Identification of simple physically based models of the response dynamics of electrical heating
loads

points in a resort. Outdoor temperature was -19 °C. The control actions were applied
separately to four groups of houses and each group was controlled at a different time to
shut down their controlled loads for half an hour.

Regularly repeating load variations and impact of temperature variations are filtered
out. The responses were identified from measurements at substations. The normal load
profile was eliminated using both simultaneous measurements at non controlled refer-
ence substations and identified temperature dependency model. Normally the 4 groups
were operated in a way that roughly cancelled the payback peaks, but in the test the tim-
ing is different to make the payback peaks visible and better identifiable. For more in-
formation, see Koponen (1997).
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Figure 2. An example of a response identified in the direct load control field tests of electrically
heated houses in winter 1996-1997 (Koponen 1997).

Discussion

It can be expected that the simple dynamic response models can be identified from
smart metering measurements that have time resolution of some minutes during the load
control tests and time resolution of one hour otherwise. The above example shows that
simple dynamic models can sometimes be identified even from data measured from the
substations. They have also been applied for predicting and optimising responses of
individual houses.

Data from well-designed load control field tests is needed for updating and improving
the models based on the old tests. A new field test is reported by Jappinen et al. 2006,
but the usefulness of its results is limited by the fact that neither long term measure-
ments nor reference group measurements are available from it.

Increasing availability of smart metering data and improved simulation models enable
the development of the simple dynamic load response models. Research collaboration
within SGEM and internationally is needed for making it possible to utilise these mod-
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els as one important building block in a comprehensive load modelling framework. To
enable that also a methodology and tools for developing and maintaining the models
need to be developed.

Conclusions
A promising solution is suggested to the increasing need of load response models.
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This work has been carried out within the ADDRESS project (Active Distribution
network with full integration of Demand and distributed energy RESourceS) which is a
4-year large scale R&D project launched in June 2008 and is funded by the European
Commission within the 7th Framework Program, FP7. The project coordinator is ENEL
Distribuzione and the Technical Manager is EDF. The consortium consists of 25
partners from 11 European countries including research centres and universities, utilities
and manufacturers. Major participants in the ADDRESS consortium are ENEL, EdF,
Iberdrola and ABB together with e.g. KEMA, VITO, Ericsson, Landis & Gyr, Philips,
Alcatel, Electrolux and universities of Manchester, Cassino, Comillas and Siena.

The ADDRESS project aims to deliver a comprehensive commercial and technical
framework for the development of “Active Demand” in the smart grids of the future.
Specifically, ADDRESS investigates how to effectively activate participation of
domestic and small commercial consumers in the power system markets and in the
provision of services to the different power system participants.

In the proposed ADDRESS architecture, the Aggregator is the key mediator between
the consumers on one side and the markets and the other power system participants on
the other side. The aggregator: gathers (“aggregates”) the flexibilities of consumers to
“build” Active Demand (AD) services, offers the AD services to the power system
participants via the markets, manages the risks associated with uncertainties in the
markets and responsiveness of the consumer base, maximizes the value of consumers’
flexibility and interacts with consumers through price and volume signals and assesses
their response and behaviour

At the consumer level, the Energy Box is the interface between the consumer and an
aggregator. It receives the price and volume signals from the aggregator as well as local
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information about some individual load consumption and displays them to the
consumers. In addition, it carries out the optimisation and the control of the loads and
local distributed energy resources at the consumer’s premises.

The objective of the developed residential load demand model is to forecast the
aggregated load demand curve of a group of customers (cluster or prototype) under the
effect of a specific price/volume signal. The deviation of the obtained curve from the
one corresponding to the base case, that is, without price/volume signals, represents the
demand flexibility of the aggregator. This algorithm is intended to be run by the
aggregator for different price/volume signals in order to assess how the demand
flexibility offered by the customers changes according to the different incentive
patterns. This information is essential for the Aggregator in order to estimate the load
demand flexibility of the consumers in its portfolio, and therefore to define the
strategies for market participation and consumers’ portfolio optimization.

Input data to the model can be classified into two main groups:

1. Prototype information: it comprises data related to the consumers in the prototype
that is going to be simulated such as, contractual power and tariff, characteristics
of the building, controllable equipment ownership, technical characteristics
and usage of controllable equipment and flexibility characteristics.

2. Simulation information: it includes specific information for the simulation that
is going to be carried out. It includes the price/volume signal that the
Aggregator wants to simulate, the simulation period, the sample size and
forecasts of outdoor temperature and load demand curve in the base case.

The tool employs a “bottom-up” approach based on physical end-use load models where first
a sample of consumers of the prototype is randomly generated according to their statistical
reference patterns and afterwards the responses of their individual loads to the considered
price/volume signal are simulated. Finally, the load demand curves of all simulated
consumers are aggregated in order to build the aggregated response of the prototype.

Simulation of the response of each individual consumer is performed employing a
household load model based on an optimization algorithm. The controllable loads
included in the model are shiftable loads characterised by having a fixed power
consumption profile (washing machine, dish-washer, dryer) and thermal load (air-
conditioning and space heating system)

The optimization algorithm optimizes the overall power consumption of the
household for the next 24 hours. The approach is based on reproducing the rescheduling
that the EnergyBox would perform over the operation set-points of the controllable
appliances in the household if it received the considered price/volume signal. This
calculation is based on the assumption that the algorithms implemented in the
EnergyBox search the objective of minimizing the electricity bill while user comfort
preferences are maintained. The possible control actions consist of delays on the
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starting-times of the shiftable appliances to time-periods with lower electricity prices
(higher incentives) and changes on the temperature set-points of the thermal loads by
performing pre-cooling or pre-heating actions during off-peak periods and switching off
the devices or reducing their consumption during peak price hours.

Comfort preferences are modelled with price-sensitivity factors that define the
willingness of the consumer to lose living comfort, that is, to perform control actions
over his controllable appliances, as a function of electricity prices. This parameter
quantifies the demand flexibility offered by the consumer as a function of the electricity
prices which in case of shiftable loads defines the maximum time that it allows to delay
the starting time of the appliances according to electricity prices and in case of thermal
loads the maximum number of degrees that it allows to increase/decrease the
temperature set-point accordingly.

The optimization algorithm includes physical models for simulating the power
consumption of the loads. Shiftable loads are characterised by their power consumption
profiles. Thermal loads are simulated with a thermal model describing the dynamics of
the house as a function of the outside temperature and building thermal characteristics.

The objective function can be written as follows:

Minimize i:(Costi —~ Incentive,)+i/15 :|ATimg|, + i/lt -|ATemp),
i=1 k=1 i=1

where:

N Number of time-steps in the scheduling period

K Number of shiftable appliances

|Atime|k Delay applied to the starting time of the shiftable appliance k (h).

|ATempl|; Deviation between the initial temperature set-point and the final one
(°C).2s Price-sensitivity of the consumer for shiftable loads (€/h)

At Price-sensitivity of the consumer for thermal loads (€/°C)

The first summation in the previous equation represents the final cost of the electricity
for the end-user. It is calculated as the difference between the electricity cost paid to the
retailer and the incentive received from the Aggregator which will depend on the power
consumption performed by the consumer during the time-step 1.

The second summation introduces a penalty for each shiftable appliance over the
difference between the initially scheduled starting-time by the end-user and the finally
scheduled one by the Energy Box.

Similarly, the third summation is a term that models the price-sensitivity of the
consumer regarding thermal loads by penalising deviations between the actual
temperature and the ideal one (temperature set-point) for each time-step of the
scheduling period.
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As a result, one obtains the optimal starting time of shiftable appliances and the

optimal temperature set-point of the air-conditioner/space-heating system for all time-
steps of the scheduling period that minimise the electricity bill while price-sensitivity of
the consumer is fulfilled. With this information, the load demand curve of the
considered end-user during the simulation period under the effect of the considered
price/volume signal is obtained.

The Residential Load demand model estimates the forecasted demand curve of all the

consumers within the prototype under the effect of the considered price/volume signal.
This information will be employed together with the demand curve corresponding to the
base case, to estimate the flexibility offered by the consumers in the prototype in case
such an incentive scheme was delivered by the Aggregator.

The following graph shows a comparison of the results obtained for load reduction

with three different control signals:

1. Two price steps and high incentives; from 15:00 to 17:45 consumer receives 5
cent€ per time-step, if power consumption is lower than 1 kW.

2. Two price steps and low incentives; from 15:00 to 17:45 consumer receives 1
cent€ per time-step, if power consumption is lower than 1 kW.

3. Three price steps; consumer whose power consumption is less than or equal to 1
kW is rewarded with 2 cent€, and each consumer whose power consumption is
between 1 and 2.5 kW is rewarded with 1cent€.
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It can be seen that the higher the incentive, the higher the load reductions that can be
achieved because the consumers offer more flexibility and therefore they are more
willing to control their loads. Consequently, they allow higher delays on the starting
times of shiftable appliances and higher modifications on the temperature set-points of
the air-conditioning system. Similar comparison was also made for the load increase
requests.
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A direct load control model for virtual power
plant management

Nerea Ruiz
Tecnaliaz, Spain

This work was carried out within the FENIX project. The main concept of this project is
the Virtual Power Plant (\VPP) which is based on the idea of aggregating the capacity of
many distributed energy resources (DER) — generation, storage or demand- in order to
create a single operating profile. In this way, individual DERs gain visibility and man-
ageability to system operators, optimizing their position and maximizing their revenue
opportunities. A VPP is comparable to a conventional power plant with its own operat-
ing characteristics such as schedule of generation, generation limits and operating costs.
It can be used to make contracts in the wholesale market and to offer services to the
System Operator.

The objective of the developed model is to manage a VPP composed of a large num-
ber of end-users with controllable appliances. The model, which is based on a direct
load control (DLC), is valid for the aggregation of domestic and commercial customers
with appliances that have thermal storage capabilities (Air-conditioning or Space-
heating systems). The possible control actions are established by contract between the
end-users and the aggregator and can consist of a modification of the thermostat refer-
ence temperature setting or a disconnection of the devices for a predetermined period.
As a result, the load reduction capability of the VPP is obtained so as to define the cor-
responding load reduction bid to be presented in the electricity market.

The first step in the DLC algorithm is to calculate the load consumption curves of the
controllable loads in the base case as well as under the effect of all control actions. In
this way, the reduction in demand that can be achieved through the application of each
control strategy can be determined. It has to be taken into consideration that the con-
sumption of these devices is influenced by many variables: building characteristics (di-
mensions, construction materials, etc.), local climate conditions (temperature, humidity,
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etc.), comfort settings, equipment characteristics,... In order to model it more accurately,
a building energy simulation tool was employed (EnergyPlus software). The methodol-
ogy consists of defining a model building that represents the average behaviour of each
customer type and simulating their thermal behaviour with the mentioned software.
Taking the model building for the base case as a reference and modifying the schedule
of the controllable load according the control strategy considered, a new consumption
curve that represents the influence of such a control action is obtained. This process is
repeated for all control possibilities.

Figure 1 shows an example of the application of this methodology to a domestic air-
conditioner. The model building is considered to be a 90 m* flat sited in a block of
apartments. It is west oriented and the construction materials fulfil the current Spanish
regulation in relation to edification. Regarding the mode of operation of the air-
conditioning system it is assumed to be connected during the whole day being the tem-
perature setting of the thermostat 23°C.
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Figure 1.Simulated impact of a 60 min long interruption of air-conditioning.

The solid line represents the consumption curve for the base case and the dashed line
the consumption when it is switched off during 60 minutes starting at 14:00. It can be
observed the impact of such control action on the temperature inside the building that
reaches almost 27°C and the demand peak occurred just after the control period (which
represents the payback).

Input parameters to the model include the forecast load demand of the aggregator
portfolio, existing customer types that have controllable devices and the number of con-
trollable devices within each customer type, the available control actions for each cus-
tomer type and finally the load consumption curves in the base case and under the effect of
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the different control actions. These curves are simulated in advance with the EnergyPlus
software as it was explained previously.
The decision variables are:

— number of devices of the type K customer which are controlled after the optimi-
zation with the strategy s starting at time-step t

— number of devices of the type k customer no controlled after the optimization.

The objective of the optimization problem, which is based on Integer Load Program-
ming, is to maximize load reduction over the control interval or, which is the same, to
minimize final demand over that period. The values of the final demand for each time-
step can be obtained as the addition of the forecasted demand at that time-step plus the
variation in load that occurs in that time-step when the control actions are applied. This
variation can be divided into two parts: 1) load variation at time-step z due to the control
actions starting at z and 2) load variation at time-step z due to control actions starting
before z:
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The optimization algorithm includes a constraint that limits the final demand after the
control period in order to ensure that the generated payback is within acceptable limits.

The solution to the algorithm provides the optimal combination of control strategies
and the number of devices that should be controlled with each of them in order to max-
imize system load reduction during the control period. The resulting daily load demand
curve can be also calculated.

The following case study aims to demonstrate the applicability of the proposed model
for managing the participation of the VPP in the Spanish Deviation Management Mar-
ket. This market is called by the TSO when deviations between generation and demand
over 300 MW are expected between two intraday markets. When this occurs, market
agents have 30 min. to send their offers. Currently, only generators and pumped storage
power stations can participate in this it.

Simulations have been carried out with information from an actual power system in
northern Spain. The analysis considers a particular power system area characterized as
having a significant number of domestic and commercial buildings connected. It is as-
sumed that an aggregator operates in the region, offering DLC contracts to end-users
with controllable devices in order to obtain a significant load reduction capacity that can
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be offered in the market. It is considered that the TSO calls the deviation management
market for a period running from 14:00 to 16:00. Consequently, the aggregator runs the
algorithm to generate the load reduction bid corresponding to that control interval. The
study is performed in a summer scenario where air-conditioning system control is con-
sidered. The same methodology could be employed for the control of space-heaters in a
winter scenario.

Table 1 shows the results provided by the optimization algorithm. It includes the op-
timal control actions and their durations, the initial time and the number of devices that
must be controlled with each action so as to obtain the maximum load reductions over
the control interval, which runs from 14:00 to 16:00.

Table 1. Results provided by the optimisation algorithm.

Type Action Duration Start time Number of
customers
Domestic OFF 60 min. 14:00 1544
customers
+ 2°C 120 min. 14:00 1830
+ 3°C 90 min. 14:30 2917
+ 4°C 30 min. 15:30 3
Supermarkets + 3°C 90 min. 14:30 12
Offices + 3°C 90 min. 14:00 197

By applying the above control actions, the aggregator can attain the load reductions pre-
sented in Table 2.

Table 2. Load reductions attained with the control actions provided by the optimisation algorithm.

Time-step Load reduction Reduction
(kW) (%)
14:00 — 14:30 2128 2.46
14:30 — 15:00 1864 2.00
15:00 — 15:30 1940 2.06
15:30 - 16:00 2123 2.24

Table 2 also includes the percentage of forecast demand represented by those variations.
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The load reductions achieved are practically constant for all time-steps in the control
period, and average 2 MW. This represents a drop of 2.2% in relation to the expected
demand and a potential energy reduction of 4 MWh for the whole control period.

The following figure shows a graphic representation of the load reduction achieved:
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Figure 2. Forecasted load reduction achieved with the control actions provided by the optimization
algorithm.

It can be observed that consumption drops for the two hours of the control period, but
rises in the subsequent time-steps. This is the payback effect that represents the extra
amount of energy that the air-conditioning systems demand in order to restore their
temperature settings.

Finally, Table 3 shows the load reduction bid that the aggregator would send to the
TSO (constrained scenario). The planning periods considered are 1 hour long, coincid-
ing with the current characteristics of the Spanish market. The bid formulated is upward
because consumption reduction is similar to generation increase. The bid includes the
energy offered for each planning period and the corresponding price. These prices
should be set by the aggregator taking into consideration financial compensation for
customers and its own costs and profit. In addition, the complex condition that estab-
lishes the indivisibility of the bid is defined.
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Table 3. Load reduction bid based on the load reduction forecasted.

14:00-15:00 15:00-16:00
Energy (MWh) 1.996 2.032
Price (E/MWh) P1 P2

Reference

Ruiz, N. Cobelo, I. & Oyarzabal, J. 2009. A direct load control model for virtual power plant
management. IEEE Transactions on Power Systems, Vol. 24, No. 2, pp. 959-966.
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Feedback from workshop participants
Questionnaire

After the workshop, a short questionnaire was produced for the participants to answer.
The participating experts were enquired for their opinions on the future needs of load
modeling and similar workshops. Even though the response rate was only 25 percent,
many good ideas were laid out for the future research and organization of events of sim-
ilar type. The answers of the questionnaire are summed up below.

Question 1. What do you see as the most important things to
develop in load modeling on short (less than 5 years) and long
(over 5 years) term?

Short term

One quite popular opinion among all the respondents is to make good use of the availa-
ble AMR-data. Especially the old load curves utilized in the DSOs could be made more
accurate by using AMR-measurements. ldeally the updating would be an ongoing pro-
cess, handled as automatically as possible, and enabled by easy-to-use software and
adequate interfaces. Moreover, to get more benefits out of the AMR-data, it could be
used for better energy efficiency information and analysis.

As for the other short-term developments, the use of AMR-data is also suggested in
making models for accurately forecasting the load at MV/LV substation level. Such
models are needed for state estimation applications and for the active management of
distribution networks.

On short term, also more dynamic load models compared to the current static ones
would generally be more desirable. However it should be done by taking care of their
usability in the current information systems and processes.
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Long term

Many of the respondents think that, on the long term, modeling of new load types
should be sought after. More specifically, many new types of load behavior and func-
tionality related to smart grids should be somehow considered in the load modeling.
Such things include for instance demand response, electric vehicles, dynamic pricing
scenarios, and the distributed energy resources in general.

Additionally, it was proposed that several aspects of electricity consumer behavior
should be further analyzed. Suggested were the analysis of the specific consumption and
trends, better inclusion of spatial and temporal information in the load analysis and in
the analysis of the behavioral changes in the consumption (e.g. residential heating type
changes, electric vehicles, and consumption habits).

Question 2. What kind of a new perspective or ideas would you
like to see in load modeling?

Three clear themes can be seen in the issues the respondents would want to see ad-
dressed in load modeling. New methods are wanted for modeling non-existing load
types. Additionally, geographical area and grid component level load curves are of in-
terest.

Another perspective the respondents would like to see is a more practical one. For in-
stance different load modeling approaches could be compared in real test cases.

The third theme mentioned by the respondents, is the refining and better utilization of
customer data. This can be seen in different ways, i.e. how to get more relevant infor-
mation about the customer and his electricity consumption as well as how to utilize the
data (e.g. in providing the customers with information about their consumption).

Question 3. What would you like to see changed or done better
in a similar type of seminar/workshop in the future?

The respondents were mostly satisfied with how the workshop was arranged. However,
there is clear demand for more time and opportunities for open discussion. More con-
crete results are also wanted, which could be in the form of a new idea or a new method.
One interesting idea brought up for producing such results would be to have more regu-
lar “virtual workshops” among load modeling experts by using the Internet as means of
communication (i.e. Skype, wikis, Moodle). Overall, more tight cooperation and ex-
change of ideas among the participants are things that should be kept in mind for a simi-
lar event in the future.
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Question 4. Do you think there is a need for a topic specific
seminar/workshop of a similar type also in the future?
Fromwhat topic?

The respondents expressed that there is a need for similar load modeling workshops also
in the future. Moreover, it was suggested that a workshop could be arranged on the ap-
plication of load and demand response modeling in some specific target area such as
electricity supply & trading or distribution planning/management.

Other topics suggested to be covered in a specific workshop were distribution net-
work management with smart metering, distributed generation, demand response, end
user tariffs, distributed energy resources, and activation of the smart customer.

Question 5. Additional comments

Not many additional comments were given. However, a pressing issue in load and re-
sponse modeling seems to be the availability and sharing of raw data for research. Due
to privacy, competitive and technical reasons, the availability of AMR-metering and
other data from the DSOs for research purposes is often extremely restricted. Better
possibilities to share the data would go a long way toward supporting the load and re-
sponse modeling research.
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Conclusions

The workshop is considered a success by the participants. It strengthened contacts and
collaboration between load and response modelling experts. This progress covered both
internal and external international networking of project SGEM. The participants got an
overview of research being conducted in SGEM as well as the results of earlier Finnish
and European smart grids projects. Much useful exchange of information and ideas took
place during the lively discussions following each presentation. Research collaboration
continues and initial planning of a new workshop is starting.
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o
T VATTENFALL -;,

1. Backgroud
2. AMM Concept
3. MDMS Concept
4. Utilization of AMM in Outage Management
5. Utilization of AMM in Asset Management
6. Customer reporting
7. Balance settlement

8 8 VATTENFALL
—
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Appendix A: Utilizing AMR in network business

Architecture of MDMS

phe
Information Customer Energy EDI-EL Workflow
portal information sefilement interface sysiems
( Enterprise Integration ]
Structural information Struchural information
l ‘aboul services Changas.  Valaox andsvorls: 4 ? ‘about resources
T ¢ Meter data |
=== |
ikl Senvice [ Repoting | Resource %
Natwork inforiistion 5 Management 1 Management % E
systems E (Network area [ i Database | A ] { ot of delwery, E 'f{
T § o of asbvery) i Meterng port & H
i o Meter
[ | =5 |||}
T B
[ Mediation | 4 | @
— Changes Wishes and svants —
[irscore [ v integration ]
] Out of scope
D Main functionality ‘ Meter collaction eystems [ Meter collaction systams | ‘ Mater collaction eystems
—4 Information flow
9 9 VATTENFALL

MDMS Main Functionality

+ Supervision of received data

= Control of validation and estimation

« Control progress of billing and settmenent readiness
+ Control of fuse size and connection demands

- Network loss calculation and reporting

« Control of distribution business periodization

+ Power quality reports

+ Service requests

« Self control

- Data quality monitoring

10 VATTENFALL o

A/5



Appendix A: Utilizing AMR in network business

Solution concept of MDMS for Finland

11 VATTENFALL o

_Custom

C%W?er than X% Fuse Size

Custom development of MDMS

Custom

R
Meter Data Export l%‘)
Hourly Data Export

Consumption Less than X% Fuse Size 17
Demand Greater than Contract 18 | Voltage Data Export
| Consumption Less than X% D: j Contract 15 TGR/ MR Data Export
Meter Reading Summary Report & Related Comp:
Hourly Product (>634) Read Detail Report 20 T pplication
Hourly Product (=<63A) Read Detail Report 21 | Record Creators
x::: :::::; f:::i::;:::d\' :e‘aﬂ Report _22 | Custom Stored Procedures to support Record Creators and Provisioning
Network Loz Raport Epo 23 | Report Configuration around custom reports interfaces
= 24 | Custom Tables storing la nguage for custom reports and interfaces

thly Tariff y Report

Manthly Special Summary Report

25 | Custom Sync config xml files

26 | Custom Al125eed Data

Production Premise Validation Error Report

Out of the box
- All basic functionalities

Finland Daily Voltage Devi Report
Finland Weekly Excessive Voltage Alarm Report 27 | Record Creator Lookup Data
First Read Validatien Report 28 | GAP to Auto Close SRs related to Events

12 VATTENFALL o
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Appendix A: Utilizing AMR in network business

1.

Backgroud

AMM Concept

MDMS Concept

Utilization of AMM in Outage Management
Utilization of AMM in Asset Management

Customer reporting

N~ o ols w N

Balance settlement

13 13 VATTENFALL o

Remotely monitored network today

Remotely monitored network in the past

High voltage network Medium voltage network Low voltage network
1500 km 22 000 km 38 000 km

.kJ II
[] ]
Substations Distribution transformers Customers
130 pes 21 000 pcs 390 000 pcs
14 14 VATTENFALL ___',
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Appendix A: Utilizing AMR in network business

AMR and low voltage networl

* Number of customer trouble calls reduced

+ Faster fault repairing and shorter interruptions

- Reduced amount of trouble shooting and unnecessary customer visits

« Security: real-time information of zero conductor faults and voltage level

+ Accurate and extended reporting and statistics

"missing link”

: \r’l -

Substation and Feeder KAVA  XPowerDMS AMR  AMR meter
Automatl On SCADA SYSTEM Distribution Management System

18 15 VATTENFALL o

AMR alarms and queries in XP

Alarms Queries
« Phase missing » Device responding - no alarms

« Voltage level » Device responding - active alarms

+ \oltage unbalance ' + Device not reached
« Zero conductor fault + Device unknown

« Device switched off

18 16 VATTENFALL o
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Appendix A: Utilizing AMR in network business

- System automatically proposes query after MV-fault
- Especially for finding LV-faults under MV-faults

17 17 VATTENFALL ‘o

1.

Backgroud

AMM Concept

MDMS Concept

Utilization of AMM in Outage Management

Utilization of AMM in Asset Management

Customer reporting

N o @A w N

Balance settlement

18 18 VATTENFALL ‘o
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Appendix A: Utilizing AMR in network business

o oo i o o AT |

« Hourly consumption series
- Active and reactive power

More detailed load flow calculation
compared to load curves

Network dimensioning and re-investment

T

priorization b

P Sy I <
A A A S ;((!;66
LA 47 af LI, ]

+ Power quality information
Voltage level

Not necessarily compared to standard

Bringing forward and setting priority of

"weakest” areas

T ¢ EwT

aoE

—

Backgroud

AMM Concept

MDMS Concept

Utilization of AMM in Outage Management
Utilization of AMM in Asset Management

Customer reporting

~flo o oa @

Balance settlement

20 VATTENFALL oo
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Appendix A: Utilizing AMR in network business

Hourly consumption web reporting — Phase 1

EnergylP Platform

eMeter cssenial sotware for Smart Grid Suceess

8.3.2011 - 14.3.2011
""" Energia = Limpotila

JITE NS IR TE

8.3 9.3 10.3 11.3 12.3 13.3 14.3 15.3

21 VATTENFALL o

ON-line web presentation

1223102010 Sahkon kaytts (KWh)

00:00 - 01:00 492

01:00-02:00 350

02:00-03:00 152

03:00-04:00 118

04:00-05:00 162

05:00-06:00 151

06:00-07:00 153

07:00-08:00 27

08:00- 09:00 055

09:00-10:00 0.38

10:00-11:00 | 039

11:00 - 12:00 0,39

12:00- 13:00 0.45

13:00-14:00 | 047

14:00-15:00 0.59

15:00-16:00 055

16:00 - 17:00 053

17:00-18:00 | 0.44 :

18:00-19:00 | 038 & Tunti

19:00-20:00 038 B pats

20:00-21:00 0.45 ;f“::lanm

21:00-22:00 0.4

22:00-23:00 199

1 : [ Nayts raportti |

23:00-00:00 43 s

- 2 22 VATTENFALL o
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Appendix A: Utilizing AMR in network business

ON-line web presentation — Phase 2

24.10.2011 - 30,10.2011

U Energila = Vertalluryhmdl (kWh)  — Liimpitita

ma ot ke la sy ma
2410 2510 2610 27.10 28.10 29.10 3010 31.10

Lars Gameeus

ON-line web presentation — Phase 2

24.10.2011 - 30.10.2011

B siirto T mMyynti

B

6..

.‘d. - -

z_" l .
I | ! |

T . T T
23.10 24.10 25.10 16.10 27.10 28.10 29.10

plitvE
aw a e

¥ Tomplkasian tegor ©

s © Fai
© Kuukausi & Kuukaus
| & Vuosi £ Yuosi
- 2 24 VATTENFALL
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Thank you!
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Appendix B: Analyzing AMR measurements to be
applied for long term scenarios

sgem

S and Energy Markets

SGEM:
1st funding period: WP 1.4.1 First generation Smart Metering
and Spatial Load Analysis

Vantaan Energia

Sihkoéverkot Oy
i
\ ~
Stalistical anak es N Demoltool
Mathematical m&gls \ ong term load forecasts now

and in the future
\ \

N

~
Input data for demo Inegs
(determination, collecting,
linking data bases)

Helen
Sadhkdverkko Oy

—
oy
- e

~, =
¢ Ville Rimali’s master thesis: Development of spatial ) sgem
~ Joad forecasting utilizing AMR measurements g

-
_— e — — i — ’, Aalto=yliopisto
Sahkdtekniikan

korkeakoulu

e
—

/v Helsingin Energia
e Helen Sihkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

SGEM:
2nd funding period: WP 6.11 Spatial load analysis

y . N .

[ Aalto \q Vantaan Energia

- o 4 Sihkdverkot Oy
T S .._;r__-?;"'

Helen
Sidhkdverkko Oy

- = ek
,, Aalto=yliopisto
Sadhkbtekniikan
korkeakoulu

/v Helsingin Energia
& Helsingin Energia Helen Sahkoverkko Oy

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

SPATIAL LOAD *=
ANALYSIS

AMR
MEASUREMENTS

/v Helsingin Energia
& Helsingin Energia Helen Sahkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

ANALYZING AMR MEASUREMENTS TO BE APPLIED
FOR LONG TERM SCENARIOS

MOTIVATION: Why long term scenarios?

The planning and construction of power systems takes years, in case of cities and highest
voltage levels even a decade. DSO has to be prepared for the future development of the
city, society and use of electricity. This preparation includes in its early stages various
scenarios how the load will develop in various parts of the city. Spatial load scenarios act as
an input for long-term plans for the construction of the power system — where and when and
what kind of new generation plants, new substations, new transmission lines etc. will be
needed?

MOTIVATION: Why spatial load analysis?

To be able to make scenarios it will have to be known the present load in various parts of
the city (spatial load). This acts as a starting point for future scenarios. To be able to model
the future changes in the use of electricity it is needed to know how the present load is
consisted of (e.g. shares, types and load curves of heating, air conditionfventilation,
illumination).

& Helsingin Energia

v Helsingin Energia
Helen Sahkoverkko Oy

WHAT IS THE PRESENT SPATIAL LOAD ?

& Helsingin Energia

v Helsingin Energia
Helen Sahkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

WHY SCENARIOS ?

12000

10000 i

S0 e history

6000 ————————=—1 ———-2,00%

= | - 15%-> 0%

Annual energy (GWh)

4000

—=—-0,5%--0%

2000 ———--0,5%-> 0%

o

1980 2000 20ac 2040

How to develop to present power system to be able
to respond to various scenarios?

/v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

SPATIAL LOAD
ANALYSIS

AMR
MEASUREMENTS

/v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

ANALYSES

1. AMR measurements linked with background data
— background data explains the electricity load
— linking data from various data bases
— input: AMR measurements and background data
— output: spesific consumptions (kWh/FA-m2), e.g.
+ houses/offices with various heating / cooling
+ houses/offices of building of different ages

2. only AMR measurements

AMR measurements are analysed without any data of customers nor buildings etc.
— input: AMR measurements and temperature
— output: new load curves, temperature coefficients
— two methods:
— 2.1 principal component analysis + K-means clustering;
— 2.2 key figure method + clustering
v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia

SPATIAL LOAD ANALYSES: 1) AMR data with background data

AMR data base NIS CUSTOMER DATA BASE
AMR measurements from every Structure of the power system. Annual energies of earlier
customer Customer type and indexed years.
load curve. Customer types.
e
- Sy
o~ ~~
o %N\
\
( SCENARIO TOOL )
\_ /
P 4
‘\c,,‘% ™
.
CITY REGISTER FUTURE CONSTRUCTION CLIMATE
Data of real estates and Spatial forecast of future Temperatures
buildings. Data like floor areas, construction of the city
year of construction, heating
type
/v Helsingin Energia
& Helsingin Energia

Helen Sahkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

SPATIAL LOAD ANALYSES: 1) AMR data with background data

How to link AMR measurements, NIS, customer data base and city registers ?

O O — Real estate
point

+ coordinate of the connection point + permited bu.i\ding volume
- data of the matering points belonging t each - data of buildings belonging to a certain real estate
connection paint + coordinates of the borders of the real estate
Metering point Building

+ AMR * floor area

* customer type + year of construction

- ot L=l (o

n & n
Highway to the background data
/v Helsingin Energia
& Halsingin Energia Helen Sahkoverkko Oy

SPATIAL LOAD ANALYSES: 1) AMR data with background data

How to link AMR measurements, NIS, customer data base and city registers ?

O O — Real estate
point

+ co-ordinate of the connection point & TR g v ol
- data of the matering points belonging t each « data of buildings belonging to a certain real estate
connection paint + coordinates of the borders of the real estate
Metering point Buildin
+ AMR * floor area (FA-mZ2)
+ year of construction

+ customer type

- etc. * etc.

|

SPESIFIC CONSUMPTION (KWh /FA- m2), e.g.

- housing
- offices
- year of construction 7y HEISingin Energia
: : - area
©Helsingin Energia b listamacyon Helen Sihkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

97 Setekaian
SPATIAL LOAD ANALYSES: 2) only AMR data st

Matti Koivisto, Aalto University, School of Electrical Engineering

Customer types, e.q.
househald- no electric heating
household— elactric storage heating
ANALYSE2.1 househald— direct electric heating,
- customer types office — no electric heating

and load curves

ANALYSE2.2
- customer types
and load curves Load curves
E.g. all AMR measuremepts of ;Coefﬁments of
. - emperature and
one city district bl len it
Temperature
coefficients

99@@‘65 o temperature ranges

@5\ f<-5 °C, -5 °C={<13 °C, =13 °C
/v Helsingin Energia

Sl =R Eopia Helen Sahkoverkko Oy

,’ Aalto-yliopisto
Sahkitekniikan
korkaakoulu

SPATIAL LOAD ANALYSES: 2) only AMR data

Matti Koivisto, Aalto University, School of Electrical Engineering
ANALYSE 2.1
Input: AMR data
Analysing method:
1) Principal component analysis,

2) K-means clustering

Output: customer types, indexed load curves

- + District/0 | Heating 0 . # District/Dil Heating
m . - & Office/Shop 2 ® Offica/Shop
® Direct Llactric Heat b ..' ® Direct lactric Heat
E & Storage Elact. Heat & 2w .  Storage Elect, Feat &
. # Storage Elect, Heat 3 ff o, % % #StorageElact keats
] 0
g s g 5
B~ & £
8 -20 - - = 8
= et s - S
=3 &
g oy ﬁ’é“:.fn 2
£ 3 £y %
- 8
A A
- -
. b Y
220 110
20 -7 =20 n A 133 A 1= A o u =0
Principal Component 1 Scara _ Principal C 3 Score
Principal components 1&2 and Principal components 3&4 and
5 i K-means clusterin o H
K-means clustering g Helsingin Energia
Sl =R Eopia Helen Sahkoverkko Oy

B/7



Appendix B: Analyzing AMR measurements to be applied for long term scenarios

’ Aalto-yliopisto
Sahkotekniikan
korkeakoulu

y
SPATIAL LOAD ANALYSES: 2) only AMR data A

Matti Koivisto, Aalto University, School of Electrical Engineering

ANALYSE 2.1

Principal component analysis
— input matrix
rows: customers
+ columns: AMR hourly measurements

In principal, there will be as many principal components as there are columns.
However, in Helsinki analysis of connection points, already with four principal
components were found five various types (household and offices with various heating
and air condition solutions)

K-means clustering

Determining load curves for each customer type

v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia

Aalto-yliopisto
Sahkstekniikan
korkeakoulu

A”
ANALYSE 2.1

SPATIAL LOAD ANALYSES: 2) only AMR data

Matti Koivisto, Aalto University, School of Electrical Engineering

b g
— L
1-id

-
——Ninr

il =

—

S

BB

7§
G 0 o ¢

Household — district or oil heating ~ Household — direct electric heating ~ Office or shop — no electric heating

Household - electric storage heating A Household — electric storage heating B

v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

SPATIAL LOAD ANALYSES: 2) only AMR data A" B

Matti Koivisto, Aalto University, School of Electrical Engineering ANALYS E 22

Key figure method and clustering
Regression Using Day Length, Temperature and Day Type as Explanatory Variables

":“l“”}"' — Temperature is a moving average of two days.
1 e e LEny Day length Is hours of light for a day.
o - Fifis s
.,I.Jrf’ ’ " i Correlation between these two explanatory variables
b b [l =0.84.
chila) | ]
el Y
v Helsingin Energia
SRR e Helen Sahkoverklo Oy
A’, g:lp:ylirp_i_ito
SPATIAL LOAD ANALYSES: 2) only AMR data e

Matti Koivisto, Aalto University, School of Electrical Engineering

ANALYSE 2.2
Key figure method and clustering
Regression Using Day Length, Temperature and Day Type as Explanatory Variables

—
o — |

':"“rl‘ Direct Electric Heating:

,_.
=

-*»lﬁww‘ 0 ,WU ! Variable b b-standardized
il : J”M Hr{l b0 1.32943% 1.000000
T Temp -0.050326 -0.547933
nh dLen -0.015270 -0.068437
. Eve 0.055730 0.019588
Holiday  0.067620 0.023766
i ’ ’ Qil/District Heating:
mnlt " i Varigble b b-standardized
b '\fa M bo 1272928 1.000000
hh\\ o Temp -0.008875 -0.096626
! iy f;,h‘f‘* dien  -0.022192 -0.099462
i i Eve 0.100533 0.035335
b, ¥ Holiday ~ 0.104053 0.036572
T DEE RN [EER] 7 He'singln Energia
Sl =R Eopia Helen Sahkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

2020

- Mew construction in city areas /
Renovation of city areas
- Changes in electricity use

SPATIAL LOAD
ANALYSIS

AMR
MEASUREMENTS

/v Helsingin Energia
e Helen Sihkoverkko Oy

SCENARIO: CHANGES IN THE USE OF ELECTRICITY

Analyses of the present consumption determines the basis for the modelling of the
future changes. The future changes need to be modeled in scenarios.

+ air condition / ventilation

+ district cooling

+ electric cars, trains, metro, trams

+ ships at harbours connected to main land power system

+ serving centres

+ heat pumps

+ spesific consumption

VY Helsingin Energia

Sl =R Eopia Helen Sahkoverkko Oy
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

L e N

Forecast of new residential construction 2011 — 2030

‘vvv Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia

City district 1

harwihlday

All permitted ﬂoor area has been (;ah&trl]cted.

o AV |“fl-¢|,‘r.

WL i d
'8 ,1 N
is m “* i. and; wcv':\Eah ‘:)y "{% 30
1o ~ Land use plan by 2020
# £ & ¥ & ¥ & o & 4 #
& LA S A

Here, only the planned new construction is modeled. No changes in the electricity use

is included in this model.
‘v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

SCENARIOS

City districts 1 and 2

Here, only the planned new construction is modeled. No changes in the electricity use
is included in this model.

v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

ANALYSES

1. AMR measurements linked with background data
— background data explains the electricity load
— linking data from various data bases
— input: AMR measurements and background data
— output: spesific consumptions (kWh/FA-m2), e.g.
+ houses/offices with various heating / cooling
+ houses/offices of building of different ages

2. only AMR measurements
— AMR measurements are analysed without any data of customers nor buildings ete.
— input: AMR measurements and temperature
— output: new load curves, temperature coefficients
— two methods:
— 2.1 principal component analysis + K-means clustering;
— 2.2 key figure method + clustering

v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia
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Appendix B: Analyzing AMR measurements to be applied for long term scenarios

ANALYZING AMR MEASUREMENTS TO BE APPLIED FOR
LONG TERM SCENARIOS

SCENARIOS
For the time being
only future construction has been modelled

The scenario tool is under construction !

... SGEM 6.11 and the future

Analysing of AMR data continues
Modeling of the future trends
Creating of the demo scenario tool

v Helsingin Energia
Helen Sahkoverkko Oy

& Helsingin Energia
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Appendix C: Using AMR measurements in load
profiling and network calculation

SGEM WP4 task 2

Workshop on load and response modeling
Kuopio, November 10-11, 2011

Using AMR measurements in load
profiling and network calculation
Antti Mutanen
Department of Electrical Energy Engineering
Tampere University of Technology

sgem

ergy Markets

Antti Mutanen — Using AMR measurements in lcad profiling and network calculation

Contents

1. Background and motivation
2. TUT goals in load profiling

3. Methods for load profiling
Clustering
Customer-specific load profiles
Temperature correction

4. Ongoing / future work

5. Conclusions

Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix C: Using AMR measurements in load profiling and network calculation

Background and motivation

» Finland has a long history in load profiling and network
calculation with load profiles.

« Electric utilities started to co-operate in load research in
the 1980’s.

* In 1992, Finnish Electricity Association published
customer class load profiles for 46 different customer
classes.

« Since then, these load profiles have been used
extensively in distribution network calculation
o Load flow calculation
o Planning calculation
o State estimation
o Pricing and tariff planning etc...

-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation

Background and motivation

» Large amounts of AMR data have recently become available

* Requirements for network calculation accuracy have become
tighter

» Active control of distribution networks is increasing => automatic control
methods require accurate information on network states

o Increasing the utilization rate of distribution networks requires better
accuracy from planning calculation and state monitoring
» Defects in existing load models
o Finnish load profiles are mostly based on 16-25 years old measurements

» Electricity consumption has changed over the years
» Heat pumps and air-conditioners have multiplied
> Entertainment electronics have multiplied
- Electricity consumption in recreational dwellings is changing

- Future technologies e.g. plug-in hybrids and customer-specific distributed
generation will change the behaviour of electric loads

-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix C: Using AMR measurements in load profiling and network calculation

TUT goals in load profiling

» Our goal is to utilize the huge amount of measurement
data provided by AMR systems.

» This data can be used for creating new load profiles and
updating customer classification. Also, adding dynamic
and adaptive properties to the load profiles is one
objective.

* More accurate load profiles will lead to more accurate
network calculation.

« For easy practical implementation, the new load profiles
should be compatible with existing network calculation
software.

= The load profile format is kept unchanged.

- the customer classification and load profile content is updated with
the help of AMR measurements

H TAMPERE UNIVERSITY OF TECHNOLOGY
Antti Mutanen - Using AMR measurements in load profiling and network calculation

TUT goals in load profiling

« Currently, load profiles are expressed as topographies
which contain expectation values and standard deviations
for each hour of the year. They can also include:

> Monthly temperature dependencies [%/C]
o Power factors.

« Dynamism and adaptivity are achieved through “constant”

load profile updating.

H TAMPERE UNIVERSITY OF TECHNOLOGY
Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix C: Using AMR measurements in load profiling and network calculation

Methods for load profiling

Customer reclassification
- Original (survey-based) customer classification is often incorrect.

> With AMR measurements, customers can be reclassified to the nearest
existing customer class load profile.

Load profile updating

> AMR measurements can
also be used to update o —
existing customer class
load profiles. ' 7

— 52

Relative square sum af errors

Clustering
- Combines reclassification
and updating. &
o Load profiling accuracy can )
be further enhanced Wllh or m':,I;;.g:;;or ard Fec assificet o of Uodatedload orofiles 16 K-means clustering (6

customers (L4 custaner customar classes) custoer classes)
clustering.

clazsos)
-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation

Methods for load profiling

Examples of cluster center load profiles
(onky second week of January is shown)

Developed clustering method

——— Giamdard deviarien

» Clustering is done with “pattern Cala I" : —== R "
vectors” D } 3: RN !

« Pattern vectors consist of 864 Eak n’ ‘L __"] J.\ J\/ﬁ [UU B
hourly values. They are calculated E o M7 l e
as monthly averages for three day ’ ' ,
types (workday, Saturday and — |- e Yot~
Sunday) | _"w\ p e

+ Pattern vectors are formed from T g 14t

, = 3 i

temperature normalized AMR %% L el
measurements ol I

+ Weighted k-means algorithm is : s

used in clustering

A

Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix C: Using AMR measurements in load profiling and network calculation

Customer-specific load profiles

= All customers can't be modelled accurately with customer class
load profiles —> customer-specific load profiles are needed for
these customers
* The amount of load profiles that can be handled in current
network calculation software is limited
o The customer-specific load profiles must be selected with care
» The proposed outlier detection method:
1. Calculate distances (squared Euclidean distance) to the
nearest cluster center using pattern vectors
2. Multiply the distance with the square of customers yearly
energy consumption

3. Select N customers with largest distances, where N is the
desired number of customer-specific load profiles

-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY
Antti Mutanen - Using AMR measurements in load profiling and network calculation

Customer-specific load profiles

» Customer-specific load profiles shouldn’t be formed directly
from AMR measurements. At least the following issues
should be taken into account:

1. Temperature dependency

Electic load vs temperaiune

e - - 1
—ad 10 i E - ] Termpécaturs 2006
E— o Tempergure 2005 |

E000— -0

E -'IL". {l kM ", H) Hm\w _

- - : . : _30)
a a0 40 1] & 100 120 40 160 ]
Time ()

=
Temperature ()

-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY
Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix C: Using AMR measurements in load profiling and network calculation

Customer-specific load profiles

2. Special days / holidays, especially the ones that don't have a fixed
date (Eastern etc.)

3.  Stochastic nature of the load
—>» Use typedays to filter stochasticity and calculate means and
standard deviations
« Proposed profiling method for customer-specific load
profiles:
1. Calculate temperature dependency
2. Normalize measurements to the long term (monthly) average

temperature

3. Calculate average typedays (workday, Saturday, Sunday) for each
month

4. Form the load profile from typedays, taking into account special
days.

H TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation

Temperature correction

Temperature dependency calculation:

= The temperature dependency parameters are calculated with linear
regression analysis.

+ The effects of daily and monthly fluctuations in electricity demand are
eliminated by choosing the dependent and determining variables as follows:

Tahd -1.52 WIC

Dependent variable (regressand): il > % % R ™)
the percent error between the daily sl -
energy consumption and the average ke " e
daily energy consumption on a similar o R, =, S
day (same day of the week and month).  °%f T Tl

ok - e
Determining variable (regressor): o3 g ) '-."?"'4
difference between the daily average i o e
temperature and the average nu:' i
temperature on a similar day. mal

2 a ] -!Ii 4 ] 4 B B

H TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation

Cl6



Appendix C: Using AMR measurements in load profiling and network calculation

Ongoing / future work

« Demonstrative (Matlab) program that uses AMR data to
reclassify customers and update load profiles

- Case studies how new load profiles affect network calculation
and state estimation accuracy

Reclassification and
calculation of new load
profiles NIS

———> MATLAB . odate
Measurements

+ Customer
classification
s  Temperature

+ Hourly enargies

for each customer
= Hourly
temperatlures

dependencies
Forecasts for
yearly energies

¢ Power factors

Read
+ Customer ID
« Oid customer

H classification
TAMPERE UNIVEHSIIY UF IECHNULOGY
Antti Mutanen - Using AMR measurements in load profiling and network calculation

Conclusions

* AMR data and existing load profile structure can be
used to enhance load profiling accuracy

» Clustering is an effective tool for customer
classification

« Customer-specific load profiles should be formed for
large customers that do not fit to any customer class

* Including temperature dependencies in the load
models is essential.

-a- TAMPERE UNIVERSITY OF TECHNOLOGY

Antti Mutanen - Using AMR measurements in load profiling and network calculation
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Appendix D: DDM/CI methods and experiments i
load modelling using AMR and other environ-
mental data

General background

Automated meter reading (AMR) data increasingly available
In addition, there are available ("public”) external environmental data,
which could be useful in load modeling

- Network management

— Network long-term planning

Available datasets include: . e
— Building information (VTJ/RHR/KTJ) - -
— Socio-ecomonomic data (Statistics Finland) &= =t _’.4
~  Weather (FMI) o

— Land use (MML/CORINE/SLICES)
The data are mainly restricted
to regional/spatial level, which suggest ar
developing regional modeling (or spatial analysis) g, ; 4
approaches

D/1



Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

DDM/CI techniques

* In"data-rich” conditions:
— Data-driven modelfing (DDM) methods provide new possibilities for load modeling
* Main emphasis on novel data mining / computational techniques
contributed by the field of Computational Intelligence (Cl)
— Neurocomputing

SOM, MLP, SVR/SVM, RBF |_9_1.J
— Ewolutionary and genetic algorithms o
= Fuzzy logic S
~ Clustering methods x [ |
K-means/fuzzy c-means/Isodata S
+  Conventional statistical methods . e Ell - Fra

— Linear regression
— Principal compenent analysis (PCA)
- PCR/PLS

Combination with GIS

Possible advantages of DDM/CI methods

+ Searching complex spatiotemporal patterns (clusters) in data

— Constructing load curves at different levels of presentation
(appliance...customer...region)

* Modeling non-linearity and temporal dynamics of loads

— Complex interaction with external variables
(e.g. socio-economic related variables)

~ System time-delays (e.g. influence of outdoor temperature f0f ioads}
Forecasting future behaviour of time-series % 7

— Short-term predictions required in load control T
Handling of measurement errors and noise and
missing data

D/2



Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Example (I) AMR data exploration

* AMR data can be represented through to lower dimensional data space,
maintaing at the same time continuous mapping to 2D lattice

M .'Cl:luﬁtel'.', L ibpeake ke b abe she Jha A1

Example (1) Load prediction

*  Hourly load of customer predicted using Day length,Weekday,and

Temperature
mip{d=0.95467)
Obs
(1%} Pred
0.8

7200 7300 7400 7500 7800 7700 7800 7900 EOOD 8100 8200
t
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Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Main experiments so far...

Re-definition of load curves

+ Based on AMR data: 4454 small scale customers (Savon Voima) and the
developed clustering approach with the following data processing:
— Temperature corrections (based on customer specific temperature factors)
- Feature extraction from AMR data
~ Clustering AMR data using the features extracted (SOM+k-means)
— Extracting new load curves basis of cluster centers
— Ewaluating new load curves (NIS/PG)

B

D/4



Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Regional modeling

*  Mainly focused on:
- Heating system scenario modeling using VTJ/RHR building data
- PHEV modeling, modeling regional adoption potential based on socio-economic
characteristics
+ Basic hypothesis: similar customers have similar behaviour,
leads to question how to measure the similarity, &£
and further under this:
- 1) How to predict which customers change their
behavior (investigated in PHEV modeling)
—  2) How to select new load curve(s)
when customers change their behavior
(e.g. changing heating system)
= Of further interest:
~ Regional data available,
.. Regional load curve approach?

Regional modeling web application

Demo avallable http Iffeena.uef filsgem

D/5



Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

:

What next??

+  Two main directions
—  Applying DDM/CI approaches in load modeling

+ Evaluating possibilities of region, customer-class, customer specific
modeling
- How much AMR data is needed, and which accuracy, to achieve sufficient
generalization
Modeling load components (basis on the external background data +
appliance data from pilot houses),
is it possible to discover and learn customer behaviour (shiftable loads,
heating, ...) from AMR data at different levels of representation and how
= Analysis interaction with indoor air quality (pilot houses)
— Scenario modeling (long-term planning)
» Encapsulating DG/DER scenarios into load models (e.g. EV, solar panels)
and perfoming runs in the selected target areas
~ Predicting which regions are probable to change their behavior and selecting load
curves
Technical issues and IT solutions (data interface, model intergration, etc)
and demonstrations (mainly in SGEM WPE)

i

Appliance data (I)

Lighting carport
100
80} B
winter -
60}
= Y
40+ ! Satumn
Weekday 1 spring
20/ Saturday \
Sunday A A summier
o L i
0 5 10 15 20 25
Hour
Lighting backyard
80
60
z 40
20+
M, = ——
[i] 5 10 15 20 25
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Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Bl e

Appliance data (II)

Alr conditioning

200
150
Weekday
= Saturday
100+ Sunday
50 n L . L
] 5 10 15 20 25
Hour
Heat exchanger
83
B
=
a4
80
] 5 10 15 20
Hour

Bl o

Appliance data (ll1)

Stowe 1/2

Weekday
Saturday
100 | Sunday
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Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Appliance data (V)

Kitchen power
100
801
80| i
= i
401
¥
' 1
20| | \
ol ] ! L s et
Q 5 10 15 20 25
Hour
Sauna stowe 173
2000
1500 |
= 1000/
500 +
N
ok N Sy
0 5 10 15 20 25

General observations/challenges

*  Proper validation of load maodels is somewhat difficult (e.g. the definition of

= Supporting information on customers are imperfect (incomplete, unreliable
or totally missing)

D/8



Appendix D: DDM/CI methods and experiments in load modelling using AMR and other
environmental data

Thank you for your attention!

Harri Niska

Environmental Informatics

Department of Environmental Science
University of Eastern Finland

P.O.Box 1627, FI-70211 Kuopio, Finland

Phone: +358 44 2651 291
Fmail* harri niska@muesf fi

:

Recent publications

+ Niska et al. (2011) Scenario based electricity load prediction tool for
distribution planning and management. CIRED 2011.

= Saarenpai (2011) Modeling electricity consumption using the self-
organizing map. M.Sc. Thesis. Computer Science.

* Rasanen et al. (2010) Data-based method for creating electricity use load
profiles using large amount of customer-specific hourly measured electricity
use data. Applied Energy 87 3538-3545
Ré&sanen and Kolehmainen (2009) Feature-based clustering for electricity
use time series data. Lecture Notes in Computer Science 5495 401-412.

» Rasanen et al. (2008) Reducing energy consumption using self-organizing
maps to create more personalized electricity use information. Applied
Energy 85 830-840
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Appendix E: A new approach to load profiles:
the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 1 _J‘m

A new approach to load profiles:
the use of building blocks

SGEM WP4 task 2 workshop on load and response modeling 10.11.2011
Goran Koreneff
VTT Technical Research Centre of Finland

- sge m SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 2 ‘J‘m

Load curves in use in Finland

= Profiles in use in Finland date back to the 80's and 90’s, see e.q.
= 1992 (Electric utilities load research), SLY (Seppéala and Paananen)
= => number of recordings behind them few and timely sparse
= 2002 (restricted partial updates by VTT), Maija Ruska et al

= All in all 46 profiles, for
= households 18, whereof
= 12 are for one family houses (recordings a 4...65),
= 1 for semi-detached houses
= 1 for summer cottages
= 2 for flats and 2 for block of flats

= agriculture 8,
= industries 10, and
= service sectors 12

- sge m SGEM load workshop in Kuopio 10.-11.11.2011

E/1



Appendix E: A new approach to load profiles: the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 3 _JLV’T

Load curves for one family houses

= 110 direct electric heat, water boiler <300 liter

= 120 direct electric heat, water boiler =300 liter

» 130 direct electric heat, floor heating >2kW

= 210 partial storage electric heat, short disconnect periods
= 220 partial storage electric heat, long disconnect periods (7-22)
= 300 full storage electric heat, (7-22)

= 400 heat pump

= 510 dual heat, flat tariff

= 520 dual heat, night tariff

= 530 dual heat, seasonal tariff

= 601 no electric heat, no electric sauna

= 602 no electric heat, electric sauna

- sge m SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND A ‘JLV’T

Load profiles for one family houses - los problemos uno

Electricity use may be a sum of very
differently behaving part loads, e.g.

= direct electric heating,

= auxiliary air-air heat pump
= hot water, and

= household electricity, ....

= and in the future in addition
maybe a solar heat collector, an

® Dumb EV
B Heating
® Household

u AAHP

electric sauna, a photovoltaic
panel or one or several electric
vehicles.

- sge m SGEM load workshop in Kuopio 10.-11.11.2011
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Appendix E: A new approach to load profiles: the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 5 _J‘W-

...80, load profiles in the future for one

With all the new significant developments, we'll need a lot more profiles, e.g.:

= 4 types of basic one family houses heating modes (no electric
heating, direct heating, partial storage heating, full storage heating)

= 4 types of basic electric heating sources with different behaviour
(direct electric, GSHP, AWHP, EAHP)

= 5 additional heat sources sources possibilities with different
behaviour (no additional, wood burning/kamin/stove/fire place, AAHP,
AWHP, solar heat)

= different electric vehicles constellations (0...2 pieces, FEV or PHEV,
smart or dumb charging)

= 3 types microgeneration slections (none, PV, some wind thingy)
= electric sauna or not
=(1 +3*4)*5*(3*2*2)*3*2 = 4680 new load curves for one family houses

- sgem SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 6 _J‘W-

Temp. related problems with existing load curves approach -
los problemos due

QOutside temperature
dependency concerns electric
heating, but not other parts of
the load
=determination is a bit vaque
and stetsonian

—=4%/degree might be ok on a
daysum level, but heat
storages and/or night tariffs
bring a long difficulties

—temp. dependency may vary
with temperature (e.g.

AAHP) 12345678 91011121314151617181920212223 4

- sgem SGEM load workshop in Kuopio 10.-11.11.2011

Direct electric heating

= = Directand a 8 degree
temp drop

———Full storage

————— Full storage and 2 8
degree temp drop, alft 1

il storage and 2 8
degree temp drop, alt 2

E/3



Appendix E: A new approach to load profiles: the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Scaleability issue - los problemos tres

= Scaleability (using annual consumptions) works quite incorrectly in
one family houses with quite different shares used for heating
= Scaling is used for the whole, but some parts are more or less
static (household electricity) while others should change even
more strongly

= Summer behaviour after down-scaling to 50 %:

A
-5 —
i- \ _:
-
p —

§OTH GRS Pe NN N Y WS ECW THO MM N

ANRSROrRAEANATTE
sgem SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND ‘JLV’T

La solution a la los problemos?

= Some loads are very time and day but not temperature dependent
= household electricity, DHW
» Some loads are very temperature dependent
= all associated with electric heating
= Some loads/items affect or even diminish other loads
= AAHP or solar heat in direct electric heated houses
= Some loads are mobile or might be very flexible
= EVs
So, what can we do? For example,

= New profiles with or without automatic profile classifications from
AMR data

= Management based on forecasting/simulating single loads
= load profile building blocks (bb)

- sge m SGEM load workshop in Kuopio 10.-11.11.2011
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Appendix E: A new approach to load profiles: the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND o _fm

Load profile building blocks - la solution a la los problemos!

THE MAIN IDEA

= Divide the load into feasible and more easily managed part loads

= Only the largest part load chunks, which also benefit the most from being
treated separately

= For building blocks, models can be used instead of measurements

= The basic load, household electricity, should however be based on good
and clean measurements

= Easy to add new building blocks

What is it not about?

® |tis not atomic: it is not about single electric appliances or all the
individual loads

= |t is not NIALM (non-intrusive load modeling, see H.Pihala/\WWT4.2)

- sgem SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 10 _fm

Using load profile building blocks — how many are needed?

= Household: 1 bb; electricity used for appliances, lighting etc.,
= DHW: 1 bb
» Basic heating need: 1 bb; basic heating need is also the same as direct el

= Additional main electric heating curves or models: 4 bb; GSHP, AWHP,
AAHP, EAHP, etc)

= Heat storage: 1-3 bb (zero, 3 load curves, or a model dependent of storage
size and heat demand)

= Heating saving (negative) building blocks: 4 bb; AAHP, AWHP, stove, solar
» Electricity saving building blocks: 1-2 bb; PV, ...
= Extra consumption blocks: 5 bb; EVs, directly heated sauna

1+1+(1+4) *(1...3)+4+2+5 = 26 building blocks takes you a long way

sgem SGEM load workshop in Kuopio 10.-11.11.2011
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Appendix E: A new approach to load profiles: the use of building blocks

VTT TECHNICAL RESEARCH CENTRE OF FINLAND Ll _JLm-
Using load profile building blocks- example

Customer load =
+ household electricity
+ DHW
- solar heat panel (=savings)
+ direct electric heating
- AAHP in electric heated house (=savings)
+ AAHP during the summer
+ EV without smart charging
+ sauna 3 times/week

- sge m SGEM load workshop in Kuopio 10.-11.11.2011

VTT TECHNICAL RESEARCH CENTRE OF FINLAND 12 'J‘W‘

Research being done in SGEM WT4.2.2

= Build up the logical structure

= Gather building block materials and test the idea especially as a
planning tool

= (WT 4.2.3) Will this approach be of help in the use of demand
response models and estimations?

Future research in FP4&5 might include:
= Testing of online-usability, for example as tool for comparison to
customer load.

= Knowledge of a customer’s building blocks may be a problem for
the CIS, but customer classification is a tremendous problem for
normal load curve approach also! Customer load behaviour is not
updated regularily.

=> we have some nice ideas in the back pocket for this niche!

- sge m SGEM load workshop in Kuopio 10.-11.11.2011
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VTT TECHNICAL RESEARCH CENTRE OF FINLAND 13 _fm

Conclusionas

Let's see where the building block approach takes us!

Thank you for your attention & That'’s all, folks!

- sgem SGEM load workshop in Kuopio 10.-11.11.2011

VTT creates business from
technology

- sgem SGEM load workshop in Kuopio 10.-11.11.2011
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Appendix F: Physically based load modeling for
distributed energy resources applications: EU-
DEEP project

Physically Based Load Modeling for
Distributed Energy resources
Applications: EU-DEEP project

Carlos Alvarez
Institute for Energy Engineering
Universidad Politécnica de Valencia

calvarez@dje.upv.es
November 10, 2011

p.l

Introduction

 SmartGrids is user centric: Customer issues relevant.

* Customer Demand response is basic for a “homeostatic”
electricity supply consumption systems

* Massive implementation of customer participation is required

* Up to now research efforts focused on:
— Technical issues

— Translating traditional DSM structures into new market based

Research in EU-DEEP:
DER issues

p.2
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Appendix F: Physically based load modeling for distributed energy resources applications: EU-
DEEP project

Actual Approach to DR

» Market structures allowing demand
participation in different markets (energy,
ancillary services, etc.)

& BETTA
& Nordic counties

» Structured programs triggered by operators
and utilities

& USA
©® Europe

p.3

Innovative research in EU-DEEP

EUDEEP: The birth of a European Distributed EnErgy
Partnership that will help the large-scale implementation of
distributed energy resources in Europe

— A European Project supported within the Sixth Framework Program for
Research and Technological Development
+ 2004-2008
+ 39 partners and 15 countries
— Objectives:
+ Large-scale implementation of distributed energy resources in Europe

+ Design, develop and validate an innovative approach to identify promising
business models(*) based on market requirements, which will amplify, from
2010, the large scale penetration of DER in Europe.

(*) Business model = market + technology + financing
— THREE CASES SELECTED TO IMPLEMENT THE BUSINESS
MODELS o~

€,
eu-deep
pd
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Appendix F: Physically based load modeling for distributed energy resources applications: EU-
DEEP project

Innovative research in EU-DEEP
EUDEEP and the Customer

* Segmentation in three levels (sector, activity and energy uses)
— Residential: 93 segments
— Commercial 154 segments
— Industrial 378 segments

* Data base with detailed information about 40% of the segments (load curves,
energy uses, flexibility, etc.)

* Ranking of segments according to DR possibilities

* Models of most promising segments
— Segment characterization: Typical customer + Diversity
— Aggregation
— Simulation and verification of DER
— Simulation and verification of DR

p.3

IHHE-UPV INVOLVEMENT

DEVELOPMENT OF INNOVATIVE
CONCEPTS AND TOOLS APPLIED

TO EU-DEEP

Demand Description and Modeling
Simulation and analysis tools
Evaluation of scenarios of DER
Validation

p.(l
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Appendix F: Physically based load modeling for distributed energy resources applications: EU-
DEEP project

EU-DEEP BUSINESS CASES

* Priority on Distributed Energy Resources
providing Balancing Mechanisms

— Case 1: Aggregating Demand response and DER
contracts to compensate imbalances caused by
Renewable Energy Generation

— Case 2: ESCO/Aggregator using customer flexibility
and micro-CHP for selling Balancing Services

— Case 3: ESCO internal balancing to cope with long
term contracts

p.7

BASED ON CUSTOMER
PROCESS MODELING

Segments \
\‘ ergy consum ption
(electricity, gas, other)
2
LTS Operacional
i e I I —> 3 < \rap:;bles
LA z
Technology & /
equipment data

p9

F/4



Appendix F: Physically based load modeling for distributed energy resources applications: EU-
DEEP project

IIE APPROACH TO CUSTOMER
RESEARCH FOR EACH BUSINESS

CASE

 Flexibility evaluation in the customer
belonging to the target portfolio:
Commercial, Industrial and Residential

» Development of Offers to trade with the
flexibility.

« Examples: Commercial and Industrial

p.8

Evaluation of the impact of
Distributed Energy Resources
Implementation

Demo 1: Hotels
Demo 2: Apartments
Demo 3: Industrial

p.10
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Appendix G: Models for customer flexibility eval-
uation for price demand response

Models for Customer Flexibility
Evaluation for Price Demand

Response
Carlos Alvarez
Institute for Energy Engineering
Universidad Politécnica de Valencia

calvarez@dlie.upv. es
November 10, 2011

Basis for Demand Response driven by
prices

The customer knows the benefits he is supposed
to obtain from consuming every “piece” of
energy and the short time costs he incurs by

not consuming some of the energy he has
scheduled to consume.

This knowledge allows him to react in the long
and short time to the prices of the electricity

Powerful knowhow to trade the required energy

either by participating in energy markets or by
contracting with Energy Suppliers.

p.2
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Appendix G: Models for customer flexibility evaluation for price demand response

Demand Organization (I)

 The demand has to be organized according to the
specific uses (processes) the electricity is used for.
Therefore, the identification of the flexibility in the
energy consumption requires a detailed analysis of the
processes in each customer facility, based on physical
and economical concepts.

 The demand can be split into different “pieces™ of
energy each of them having associated specific
properties

» The energy pieces (Demand Packages) can be different
for energy buying purposes (Bids) or for demand
reduction (offers)

p.3

Demand Organization (I1)

* The organization of the demand requires detailed physical
description of the processes that absorb the energy including the
relation between the energy consumed and the “service”
provided.

« Simulations relating the quality of the service/product provided
and the energy used are necessary to identify the actual
flexibility.

* The price assigned to each energy package depends on the
impact in this quality/product.

* Commercial: a few processes repeated in the different customers
(HVAC, lighting, water heating, etc.).

* Industrial: a few common processes and particular usually energy
coNnsuming processes.

p4
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Appendix G: Models for customer flexibility evaluation for price demand response

DEMAND PACKAGES: BIDS

» Energy related to the different customer
activities (production, commercial services,
ete.).

— Price: Benefit of the activity
* Substitution costs
* Stand by generation
* Contracted insurances
* Long term planning costs
* Etc.

— Size and shape of the DP.

p.3

DEMAND PACKAGES: OFFERS

* Energy related to customer process where some
short term flexibility in the energy consumption
can be found:

— Trigger price: costs incurred by the reduction of the energy
consumption
« Direct costs
« Costs of the control equipment
+ Cost of Storage
— Size and shape of the DP block: (customer, load)
— The notice time required for the change in the demand
— Limitations

« Reliability of the package (possible penalties once committed)
« Number of occasions/season, year
s Etc.

p.7
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Appendix G: Models for customer flexibility evaluation for price demand response

Price cis€kWh

OFFERS - segment "Offices"
120

Electronics
Others l

100

80

60 Ventilation

40

Lighting HVAC
20 | —

0 5 10 15 20 25 30 35 40 45 50
Reductible power kW

p.8

COSTS CONSIDERED FOR OFFERS

— Labour cost: depending on the impact of the reduction in the
manpower. Difficult to assess in some cases
— Primary energy
+ Substitution of fuel
« Back-up generation
— Storage cost:
« Electricity
« Thermal (heat, cold)
— Equipment to implement the reduction:
« Control
* Measurement and monitoring
+ Communication

 1IE has developed a tool for that: Commercial and

Industrial
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Appendix G: Models for customer flexibility evaluation for price demand response

Heat Storage
x GDI b GUI
Heat Cool Storage
> GDI > GDI
ntilati —Heat Recoverj—
i GUI rr EDI

Bectrical Water Heater.

=

—Photovoltaics.

v

>>_Ga|
/

-

Bids and Offers
52 GO
\.

iy,

TOOL FOR COMMERCIAL

m—

MODELLING:

Fhysical characterization and
load flexibility (for residential and
commercial customers)

-Space cooling and heating

-Heat and cool storage

-Ventilation

-Heat Recovery

-EVWH

-Photovoltaic

Bids and offers calculus

(Based in previous modelling)

p.10
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Appendix G: Models for customer flexibility evaluation for price demand response
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Appendix G: Models for customer flexibility evaluation for price demand response

Conclusions

« Evaluation of the Demand response capacity of
customers based on customer interaction to
perform the evaluation of the impact (economic)
of the energy in the customer processes.

* This allows to the ESCO to evaluate the
aggregated response of its customer portfolio.

e Importance of Simulations and Modeling

p.20

Research needed in SmartGrids

Customer evaluation and training to implement DR with

economical parameters

— Knowledge of the energy consumption and implications
- Abi(my togevaluate benefits and ct%sts l

ESCO Role definition

— Full utilization of Customer Flexibility. How much DR is available in
the Short term?

Full integration of DR into the system:
— How much DR is available in the long term? (Planning)

Market mechanisms

— How much DR is available in the Medium term? (Operation
Planning)
— Need to use a statistical approach

p-21
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Appendix H: Load response models based on sim-
ple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Load response models
based on simple physical models
of the response dynamics

Pekka Koponen
VTT

SGEM expert workshop on load modelling
Kuopio, 10 November 2011

: =
| —

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Outline

» Overview: measurements + building data => model =>
prediction and optimization

+ Why load response models based on simple physical models
of the response dynamics?

« Simple physically based model of the heat dynamics
- generic
- an example model
- a response with the example model

- measurements used in identifying the example model
parameters

« Where simple physically based models have so far been
applied in Finland?

H/1



Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

measurements + building data => model =>
prediction and optimization

measurements from smart —e

meters and/or substations simple Iphysu:a!ly based
dynamic models

'

modelled response to load control

Power MW

- o ow o

LT L T L T - T I e e )
tirne h

power MW

requirements on buildings

b o A

building type
g yp 18 19 20 | 22 23 4
other information on building time h
properties
A

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Why load response models based on simple
physical models of the response dynamics?

They can be made more accurate than the load models applied
today. (such as models described by Seppéala Anssi, 1996. Load
research and load estimation in electricity distribution. VTT
Publications, vol. 289. VTT: Espoo)

« traditional load models are poor in predicting the responses to
outdoor temperature variations

= updating traditional load models to changes in loads is too slow
« traditional load models do not predict responses to control actions

Large scale demand response and smart grids makes predicting
control responses necessary.

Predictability of loads is needed by in electricity markets, grid
operation and system balancing.

H/2



Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

From time based TOU to dynamic market and grid based DR
What will happen, if we can not predict the responses?

Load profile and outdoor temperature in Finland in two cold winter days 2002,
source: www.tem fi/files/18777/Sahkon_kysyntajouston_edistaminen.pdf

o7.02 a0z a0
1

+ outdoor
=1s temperature

MW
°C

A 8 12 L] o B 12 18 =3
TOU-loads TOU-loads
switch on switch on

Now TOU levels peak but requires control resources to balance switching
steps. If the responses become unpredictable, more balancing reserves are
I}

needed.
d Z/8

L]

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Simple physically based dynamic response models are suitable for
modelling the heat dynamics related responses of houses

« direct electrical heating

« partially storing electrical heating

« full storage heating (rather trivial case)
» heat pumps for cooling and heating

« cool and cold storage

They do not help with predicting the load responses for

« appliances that do not have heat storage effects
» storage effects that are controlled in a way unknown to the model
» heating control systems that are not operating correctly

» multiple heating and cooling systems interacting in an
uncoordinated way

H/3



Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Simple physically based model of the heat dynamics

dx(t)/dt =f(C.K, x(t), p(t), Tou(t)
P(t) = f(X(1). Xser(t), u(t)

for example

C dx(t)/dt = Kx + p(t)
P(t) = f(x(t),xse(t), U(t))

x(t)  the state variable vector comprises lumped temperatures
C heat storage capacities

K thermal conductivities between the variables

Tou(t) outdoor temperature

p(t)  the power heating the house (Can be a vector)

Xeety S€t points for state variables

u control signals m—

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

An example of the simple physically based heat
dynamic model structure

(!X|

Cy b =~k (5 - x2) + P

L dx,

Cs (‘;; = kia(x; - x2)
+ka3(x3 - x3)

+kag (¥ = x2)
+ k?o("‘lrmf - .t‘g)
dx;

C3 ke koz(xy — x3)
+ A‘.‘n{?lm” = '\‘3}
d_.
Cy u:: = kag(xy - xy)

Model of the temperature control is not shown here but is needed, of course.
The variables and parameters are explained on the next slide.
. viITr
A
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Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

The variables and parameters in the example model

The state variables were the following lumped temperatures:
x1(t) temperature of the heating element e.g. in case of floor
heating
x2(t) temperature of the indoor air
x3(t) temperature of the outside walls
x4(t) temperature of the other heat storing masses of the building
The constant parameters were

C1,C2,C3and C4 the heat storage capacities related to each
state variable

k12, k23, k24, k20, k30 the thermal conductivities between the
state variables (temperatures in the model)

The time variable input variables were
Tout(t) outdoor temperature
P{t) the electrical power heating the house
After adding the control loop P(t) becomes the main output variable.

f_-:"::.l'l qr
e

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

An example of a response identified in the direct load control
field tests of electrically heated houses in winter 1996-1997

5000
— Simulated
——— Measured

4000

E 3000 -

2000 - - /
— 4 groups, a separate
. test control for each

-] 10 11 12 13 14 15 16 17 18 19
time h

Comparison of the model response (simulation) with response estimated from measurements
at substation for load control of 463 vacation house metering points in a resort. Outdoor
temperature -19 C.

1000 -

Regularly repeating load variations and impact of temperature variations are filtered out: The
responses were identified from measurements at substations. The normal load profile was
eliminated using both simultaneous measurements at non controlled reference substations
and identified temperature dependency model. Normally the 4 groups were operated in a way
that roughly cancelled the payback peaks, but in the test the timing is different to make the
payback peaks visible and better identifiable.

Saurce: Koponen, Pekks, Sshkalimmityskuorman sucran chjsuksen madd (= Load response models for drect contral of electric heating) In m

Finnish, VTT report ENEG/S/7. Espeo 1997, 47 p. + app. 4p. 0
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Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

The model was identified from measurements at
substations such as these

Power MW

9 10 11 12 13 14 15 16 17 18 19 20 21 22
time h

Source: Koponen, Pekka. Sahkalammityskuorman sucran chjauksen malit (= Load respanse models for drect contrdl of electric heating) in
Finnish, VTT repat ENESS/ST. Espoo 1587, 47 p. + app. 4p.

"

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Measurements when power from reference
substations is subtracted.

4

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

time h
Soaurce: Koponen, Pekka. Sshkdémmiyskuorman suaran chjsulsen malit (= Load response models for direct contral of electric heating) in A
Finnish, VTT report ENEB/IST. Espoo 1907, 47 p. + spp. dp. St
12
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Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

The dynamic temperature dependency model

+ Modelled the load responses to outdoor temperature
variations.

* The same simple physically based model as the response
model

« Was identified based on the measurements from substations
over one year. (At least one year of data was needed)

The control response model

« The temperature dependency model parameters updated
based on the load control field test measurements.

The same approach works even better, if power
measurements for each house are summed and used.
Notice also the possibility to combine measurements
from different sources.

f_-:"::.l'l qr
e

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Where simple physically based models have so far
been applied in DR in Finland

Only in DR research

1) First for response simulations in1971 by Haase and in 1987 by
Martikainen. (Not as simple models as those applied for prediction and
optimisation.)

2) Direct load control field tests in 1996-7 with over 6000 controlled
houses and total controllable power was over 20 MW. (Koponen)

3) In MAHIS-project on spot price based control (Koponen 2006). Models
were identified based on TOU-control + some tests and used in
simulations of optimisation of the control responses of individual
houses. 5 row house apartments, 5 detached houses, and two cold
storages and comfort floor heating in some block houses.

4) In ENETE-project for optimising the load control responses of a full
storage heating house by Koponen. (As a reference method for
verifying the optimality of the control method to be applied.)

Other?

A
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Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Also indoor temperature measurements were used in the
MAHIS project for developing the dynamic response models,
an example of such measurements in a detached house

45

T3 T1 Aur temperature upsiairs
™ T2 Electricaly heated floor downstairs
| T3 temperature in sauna about 0.5 m above the floor

%0 T4 temperature of the heat storing fireplace

35
4] T3
é ) |
£

T2 1

25 /\‘\I‘.I

T | _2-

T~

o ol

= I

L el 12-hiowr power imtemuption, o Al
fireplace and sauna are heated by baming wood s
(this sanna can be beated alternatively by
v electnicaty of wood buring
o 24 48 72 o6 120 144 188 192 216 240 264 288 32 226 B0 384 408
time h
I
viITr
15

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

New field tests by E.ON Kainuu on 9 and 17 February 2010

Results in line with the 1996-7 field tests, but a little smaller response
per house. Data needed for response modelling was not stored (such
as long term hourly consumption and reference group consumption).

140 30
—=Fower MW

| % Temperature out C

*
128 - 2 T =30
7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00
Time h
Source: Jonne Jappinen, Risto Lindroos, Paula Ala-Noj 1, Muistio: Pilot-hanke: Pienkulutus
osana tehotasapainon hallintaa, "Kainuun pilotti*, Muistio, Fingrid ja E.ON, 17.5.2010, 9p. ler
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Appendix H: Load response models based on simple physical models of the response dynamics

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

New enablers

« Smart metering data

« Improved simulation models
» Research collaboration within SGEM, within VTT and internationally

Critical enablers

« Smart metering data

« Data from well designed field tests. Models based on the old tests are
not up to date.

+ Information on the present and future properties of buildings and their
heating and cooling systems

= Controllability of the relevant loads

« Good simulation models

+ Experience on DR and related modelling, simulation, prediction and

optimisation.
» Such load models that enable integration of response models in them.
)
A

Discussion and concluding remarks

« The need is increasing nationally and globally and we have potential to
meet it. How can grids be smart, if they can not predict the responses of
DR?

Although the approach has demonstrated its potential in research projects,
a systematic model development and maintenance methodology is
needed to automate modelling and to reduce the burden and expertise
needed.

It is necessary to utilise synergies with modelling for other purposes.
Loads are changing: energy efficiency improvements in heating and
cooling, heat pumps, increase in other than heating loads, etc.

This is a challenge for model development and maintenance but even
more with the traditional load models.

Finland is among the forerunners thanks to smart metering of all
consumption, the long tradition in DR with electrical heating loads and
collaboration of relevant stakeholders in R&D.

. N
18

.

.
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Appendix H: Load response models based on simple physical models of the response dynamics

Conclusions
* The need for load response models is increasing and we have a

solution to it.

» The response test data and models based on them need to be
updated.

* Methodology and tools for developing and maintaining the models
are needed.

* Integration in a comprehensive load modelling framework is
needed (SGEM T4.2).

» Training regarding field test planning is needed to maximise the
value of test results.

» There is no easy nor fast way to wide commercial application.
(Good for us in R&D.)

+ In Finland the situation is suitable for developing the models and
the methodology.

o

vir
A

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Questions and comments?

*.2

B -
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Appendix |: A bottom-up approach to forecast
residential load demand response to incentive
signals

A Bottom-up Approach to
Forecast Residential Load
Demand Response to
Incentive Signals

SGEM — Workshop on load and
response modelling

Nerea Ruiz
10 November 2011
Kuopio, Finland.

Index

1. Introduction

2. Residential load demand model
3. Case studies

4. Future Work and Conclusions

tecnalia J
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

1.Introduction

lm
EZ775L,
Infﬁ':n“

777 AL LS
T
G

I

tecnalia J sz

1- INTRODUCTION - Overview of the ADDRESS project

ADDRESS

Active Distribution network with full integration of Demand
and distributed energy RESourceS

= Large scale project in FP7

. Started on 1/6/2008 (4 years)

= Enel Distribuzione is the Coordinator

= EDF SAis the Technical Manager

= Total budget: 16 M€. EC financing 9 M€

= Consortium of 25 partners from 11
European Countries.

=  Objective: Active participation of domestic and small commercial consumers in
power system markets and provision of services to the power system participants

ACTIVE DEMAND address

interactive
energy

tecnalia J sz
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

1- INTRODUCTION — ADDRESS conceptual architecture

_Aggregator Markets and ||
contracts I MLV
Diferent levels

m':nn;sss of optimization |
ks adapag ggreq Energy supply || Il adaptation
by address and |

provision of
services

Traders

DG and RES |

tecnalio J sz address

interactive
Energy

1 - INTRODUCTION — The ADDRESS main concepts

= Aggregator: key player for the activation and use of consumers flexibility
= Energy Box: - interface between consumers and the Aggregator.
- linked to the appliances (optimises their power consumption)

= The Aggregator sends requests based on Price & Volume signals:
- Short/long notice: 15 min,..., day-ahead.
- Duration: up to several hours.
- Consumers are rewarded as a function of their final power consumption (volume limits):
= Indirect load control
- Load demand reduction/increase requests.

Average power consumed Price

over time period
Less than 0,6 KW Incentive of X (€)

0,6 KW < Power < 0,95 KW Incentive of Y (€)

Power consumption

0,95 kW < Power < 1,05 kW | Incentive of Z (€)
More than 1,05 kW Incentive of W (€)

tecnalia J sz address

interactive
Energy
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

2. Residential load
demand model

tecnalia ) e

2 — RESIDENTIAL LOAD DEMAND MODEL — Introduction

Objective:
» Forecast the load demand curve of a group of consumers receiving a
price/volume signal.

Flexibility = Forecasted Demand e case — FOrecasted Demand ,icesoume signal

Approach:
=  Consumers are classified into clusters or prototypes
= Monte-Carlo simulations (sample of random consumers of each
prototype).
=  Household load model based on an optimization algorithm.
= Aggregation of the response of all individual consumers —— Aggregated
response.

=  Controllable loads: - shiftable loads (washing machine, dish-washer, dryer,...)
tecnalia J sz - thermal loads (air-conditioner, space-heater) address

interactive
energy
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

2 — RESIDENTIAL LOAD DEMAND MODEL — Input data (I/Il)

Input data:

= Prototype information:
* Prototype ID
» Electricity tariff (contractual power and tariff)
» Building thermal characteristics
* Penetration percentage of shiftable and thermal loads
» Controllable equipment technical characteristics:
- Shiftable loads: power consumption cycle
- Thermal loads: nominal power, efficiency
» Controllable equipment usage:
- Shiftable loads: start-time likelihood profile
- Thermal loads: temperature schedule

* Flexibility characteristics: price-sensitivity factors

tecnalio J sz address

interactive
Energy

2 — RESIDENTIAL LOAD DEMAND MODEL — Input data (l1/11)

Input data:
= Simulation information:

* Prototype ID
+ Simulation time period
« Sample size
* Price/volume signal
* Forecasts:
- Outdoor temperature
- Consumption curve in the base case

tecnalia J sz address

interactive
Energy
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

2 — RESIDENTIAL LOAD DEMAND MODEL - Algorithm formulation (1/11)

Optimization algorithm

= EBox emulator: Optimizes the power consumption of the household for the next 24 h.

= Goal: Minimize the cost of electricity while user comfort preferences are maintained.

= Comfort preferences: price-sensitivity factors:
- Shiftable loads: A (€/h)
- Thermal loads: A, (€/°C)
= The optimization algorithm includes physical models:

- Thermal loads: thermal model describing the dynamics of the house.
- Shiftable loads: power consumption profiles

= Control actions:
-Thermal loads: changes on the temperature set-points
-Shiftable loads: delays on their starting-times

tecnalio J sz address

interactive
Energy

2 — RESIDENTIAL LOAD DEMAND MODEL - Algorithm formulation (l1/11)

Optimization algorithm
Inputs:

- Controllable appliances owned and usage characteristics

- Building thermal parameters (a, B)

- Contractual power and energy price

- Forecasted non-controllable load profile

- Forecasted outdoor temperature profile

- Price-sensitivities of the consumer (A, A)

- Price-volume signal

Objective function (MILP):

N F N
Minimize Y (Cost, - Incentive)+ Y A, -|ATime], + " 4, -|ATemp|,
k=l =]

=1

N Number of time-steps in the scheduling period |Atimel, Delay applied to the starting time of the shiftable

K Mumber of shiftable appliances appliance k (h).

|ATemp|, Deviation between the initial temperature set-point
and the final one (°C).

tecnalia J sz address

interactive
Energy
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

2 — RESIDENTIAL LOAD DEMAND MODEL — Output data

Outputs: - Optimal control actions to be applied to controllable loads:

* Thermal loads: temperature set-points
- Shiftable loads: starting times

- Forecasted load demand curve of the house for the next 24 hours.

Residential Load Demand Model:

OQutputs: - Forecasted consumption curve of the all consumers in the prototype
under the effect of the considered price/volume signal

tecnalio J sz address

interactive
energy

3. Case studies

tecnalia ) e
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

3 — CASE STUDIES - Tests description

Overview

= Two case studies:
- Load demand reduction request during a peak period
- Load demand increase request during a period of low consumption

= Three price/volume signals:
- Two price-steps and high incentives
- Two price-steps and low incentives
- Three price-steps

= Sources of information:
- Spanish segmentation analysis (ADDRESS IR1.2)
- European studies on residential energy consumption (Smart-A project,...)

tecnalio J sz address

interactive
Energy

3 — CASE STUDIES - Load demand reduction request

" Case study 1
Load demand reduction request from 15:00-17:45

1 a“ i

Pricedvolume signal with two
price-steps and high incentives

i e

T

Price/volume signal with two

'
5. |
;

price-steps and low incentives
= 5
0
=1 SEFEFLLPELPELLPLEPP PSP L ESELLLE ISP
time.step
= = e [—FEnal (signal 1) —Fral (signd 2) — Final ion [sgnal 3) =——Intal b can) |
Pricefvolume signal with three
price-steps
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

3 — CASE STUDIES - Load demand increase request

Case study 2
Load demand increase request from 20:45-22:00

a . Wi

Pricefvolume signal with two
price-steps and high incentives

&

=

i as v

Power consumption (NW)

Pricefvolume signal with two
price-steps and low incentives

n

23

2o

o
SEEELFELESEELELLEL S EEEF L L LSS

time-stap
o |=—Final ($ignal 3) =——Final (signal 1) ==Final (signal 2) ==Initial (base cate)
1 3 v
Price/volume signal with three
price-steps
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3. Future Work
and Conclusions
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
signals

4 — FUTURE WORK AND CONCLUSIONS

Conclusions

=  Atool based on end-use models has been developed for forecasting the
flexibility of the aggregator.

=  The tool includes an optimization algorithm based on MILP for simulating the
consumption of an individual household according to electricity prices and
incentives.

=  Simulation tests show that the developed model can provide an effective
approach for forecasting the response of a group of consumers.

Future work

=  Validation of the model in the field tests of the ADDRESS project:
- Spain: Castellén, 300 domestic consumers, IBERDROLA.
- France: Brittany Region, 50-100 domestic consumers, EDF.
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Appendix I: A bottom-up approach to forecast residential load demand response to incentive
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Appendix J: A direct load control model for virtu-
al power plant management

A Direct Load Control
Model for Virtual Power
Plant Management

SGEM - Workshop on load and
response modelling
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10 November 2011
Kuopio, Finland.
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Appendix J: A direct load control model for virtual power plant management

1.Introduction

tecnalia J ke

1- INTRODUCTION (I/11)

Flexible Electricity Network to Integrate the eXpected ‘energy evolution’ fe n ix

Virtual Power Plant (VPP)
=  Aggregation of the capacity of many diverse DER (generation, storage, demand)
= It creates a single operating profile

- Individual DER gain visibility and manageability to SO, optimizing their position and
maximizing their revenue opportunities.

= It can be used to:

- Make contracts in the DER represented by VPP
wholesale market
_ 400 kv
- Offer services to SO
“ B
(6/L)
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Appendix J: A direct load control model for virtual power plant management

1 — INTRODUCTION (lI/11)

Overview of the model

= Tool for managing a demand based VPP
= Aggregation of domestic & small commercial customers

= Direct Load Control of electrical loads with thermal inertia:
- Space-heating system
- Air-conditioning system

= Control actions:

- Change on thermostat reference temperature setting
- Short-term disconnections (30, 60, 90, 120 min.)

= Output: load reduction capability of the VPP

—— load reduction bid (market)

tecnalia J wz=

2. Controllable load
modelling
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Appendix J: A direct load control model for virtual power plant management

2 — CONTROLLABLE LOAD MODELING

Objective
= Simulate the load consumption curves of the loads: - Base case
- Control actions

Approach
= Employment of a Building Energy Simulation tool (EnergyPlus)
« Definition of typical model buildings (e.g. flat, office building,...)

14 2
Example :
- flat 139 42
-90 m2 o
- west oriented %u- 1*%
- construction materials fulfil g L i
Spanish legislation 91 : .!
- Temp. setting AC: 23°C all day 041 L 2
024 : : n
] T T ....‘.: ..... T —+ 21
R R L N
tecnalio ) z== e mwte o — st

7
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Appendix J: A direct load control model for virtual power plant management

3 —ALGORITHM FORMULATION (I/1)

Objective
« Maximize load reduction of the VPP through the selection of the optimal control

strategies

Input parameters
« Forecast load demand of the VPP
= Types of customers
«  Number of controllable devices (AC or SH) within each customer type
= Available control actions for each customer type
» Load consumption curves of controllable devices: - base case
- control actions

Decision variables

“Yiet number of devices of the type K customer which are controlled after the optimization with the
strategy s starting at time-step t
Yo number of devices of the type k customer no controlled after the optimization
tecnalia J ez

2 —ALGORITHM FORMULATION (lI/11)

Objective function (ILP)

Min ifﬂadz = i (foreclLoad. + AlLoad.)

z=1 =l
m ==l

Min i[forecLaad, + i pi: Ve (D+>. > pi: Y, .. (2]

=1 z=1 k=] =] g=]

Constrains:
Payback limitation load < loadLimit N

Outputs:

- Optimal combination of control actions and number of devices that should be
controlled with each of them.

- Resulting daily load demand curve,
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Appendix J: A direct load control model for virtual power plant management

3. Case study

tecnalia J ke

3 — CASE STUDY (I1V)

Overview
= Actual power system in the north of Spain (residential & commercial loads)

* Participation in the Spanish Deviation Management Market (DMM) participation

Input Data
» TSO calls the DMM from 14:00-16:00
* Summer scenario: AC

» Daily load curve of the aggregator: w Riimbard custsrors
EH
140 Customer
" type Number
=3 domestic 6295
00 ﬁ customers
2 } supermarkets 12
% E offices 197
i 20 «» Payback limit: 96 MW

FELFLPL LS LI I P LS SIS

| ——Symem's demand === Aggregaser's demmnd|
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Appendix J: A direct load control model for virtual power plant management

3 — CASE STUDY (lI/1V)

- Load consumption curves (base case):

12 » 15
i » 14
i 12
8 g 5
qos | } e i 1]
1 Lo { & o8
. o4
02 5 0z
L] ¥ o

FRLPP PP IEL PP EP SPFPRRPFIEPELFFRES SRR SRR EPEFEGEEF

Time 03 Time (b1 Time (b1
Residential AC Offica AC Supermarket AC

- Control strategies: - disconnecting the AC for a maximum of 1 h
- increasing the t* setting by a maximum of 2°C for a maximum of 2 h
- increasing the t* setting by a maximum of 3°C for a maximum of 1.5 h

- increasing the t* setting by a maximum of 4°C for a maximum of 1 h

Action Duration Start time
OFF 30 min. 14:00 Breakdown of Control
OFF 30 min. 1430 actions (44 possibilities)
OFF 30 min. 15:00
OFF 30 min. 15:30
OFF 60 min. 14:00
OFF 60 min. 14:30
tecnalia)' P OFF B0 min. 15.00

3 — CASE STUDY (IlINV)

Results
Optimal control acti Load reduction capacity of the VPP
- . Number of
Type Action Duration Start time. customers Load recuction Reduction
Thme-p (k) %)
Demestic OFF 60 min. 14:00 1544
e pre— s proes 14:00 - 14:30 2128 245
+FC S0 min. 1430 2817 14:30 - 15:00 1864 200
4 30 min. 15:30 3 15:00 - 15:30 1040 206
P e prer o = 16:30 - 16:00 2123 224
Offices +3C 80 min. 14:00 197
100
%0
20
£
&
50 4
40 4
kL
. FELFLLL LSS PSS EASS 1?-;?‘\@ ,959 ,cﬁ’
tecnalia J ez b
| —— Forecnsted demand =+--- Final Demand |
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Appendix J: A direct load control model for virtual power plant management

3 — CASE STUDY (IV/IV)

Results

Detail of the load variation obtained

a0 1430 500

tecnalia ¥ ez

2] 18]
T (hj

Forecasted demand - |

Finl dreand |

1700 (e 1800

Detail of the load variation obtained
- No payback limitation-

Load reduction bid

(18]

1500 1530

1830 1990 1700
Thme (&)

Focecasted demand - Find demand |

14:00-15:00 15:00-16:00
Energy (MWh) 1.986 2032
Price (€/MWh} P1 P2

(137

3.Conclusions
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Appendix J: A direct load control model for virtual power plant management

4 — CONCLUSIONS

Conclusions

=  ADLC algorithm based on LP is developed for operating a VPP with load reduction
capabilities.

. Itis intended to enable aggregators
- managing portfolios of residential and small commercial controllable customers
- participating in electricity markets (provide bids to the TSO/DSO)

= The thermal behaviour of AC or SH is accurately obtained with a building energy
simulation tool.

=  Simulation tests show that the developed model can provide an effective approach for
generating load reduction bids
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