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Foreword 

We included the initiative and commitment to organise a workshop on load and re-
sponse modelling to our related task plan in the Demand Response related working 
package in the second funding period of the project Smart Grids and Energy Markets 
(SGEM). When developing the plan for the task we realised that different partners had 
excellent expertise that when put together nicely covers the key areas of the field and a 
common expert workshop is an excellent way to improve our collaboration mutually 
and internationally. Already then we had received a positive answer regarding participa-
tion from our foreign friends who are the experts who developed load and response 
modelling in the three large EU projects EU-DEEP, FENIX, and ADDRESS. In the 
project SGEM we also had experts from Distribution Network Operators working with 
these and closely related questions and we invited them to the workshop. The partici-
pants comprised of experts from research institutes in Finland and Spain, and from 
Finnish Distribution Network Operators. The SGEM team in the University of Eastern 
Finland took care of the practical arrangements excellently. 

Organising the workshop was relatively easy and smooth. We knew whom to ask for 
the presentations and those asked were eager to come and give a presentation, because 
they also saw the value of this workshop to all the participants. All the presentations and 
summaries are of adequate quality and content, and they were prepared in time. The 
presentations are valuable, but even more valuable was the lively discussion initiated by 
the presentations. It was comfortable, efficient and fruitful to work together with these 
competent professionals. The feedback was positive and we look forward to continuing 
and further strengthening the collaboration with our Spanish friends. The experience 
was so good that we initially plan to have a new workshop focused on some other, but 
closely related aspects of demand response. 

The organising committee of the workshop comprised: 

Jukka Saarenpää and Harri Niska, UEF (University of Eastern Finland) 

Pekka Koponen and Göran Koreneff, VTT (Technical Research Centre of Finland) 
Antti Mutanen, TUT (Tampere University of Technology). 

16th December 2011, on behalf of the organising committee, 
 
Pekka Koponen and Jukka Saarenpää 
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Introduction 

The electricity infrastructure is facing new challenges. The necessity of drastically re-
ducing CO2 emissions has been understood, and shortage and increasing prices are ex-
pected for some important fuels, such as natural gas. In order to cope with the situation 
electricity generation from renewable and distributed energy resources is planned to 
increase. Power generation from wind and sun is intermittent. In addition new very big 
nuclear power plants increase the challenges for maintaining and managing the power 
balance in the electricity network. Competitive electricity markets with unbundled ac-
tors further complicate the picture but provide also an essential part of the solution. In 
this context new technologies such as improvement in automation and distributed intel-
ligence, and horizontal connections between systems are needed to avoid excessive ex-
pensive investments in the electricity networks and in reserve and peak power genera-
tion, and to enable reducing operational margins to save costs. This can be made possi-
ble by intelligence and automation enabled by modern information and communication 
technologies also called smart grids. 

Accurate management of the power flows and balances is a necessary key functionali-
ty for smart grids and energy markets. Management comprises state estimation, moni-
toring, predicting, and controlling. All these functionalities are strongly based on load 
and response models. This workshop focused on a necessary corner stone of smart grids 
and smart energy markets. Important smart grid applications such as balance manage-
ment in electricity market and network management and control rely on these models. 
The value of demand response is much bigger if the load and its responses can be pre-
dicted and optimised. The operational margins of the electricity networks and genera-
tion assets can be smaller, if also the loads and responses can be controlled accurately. 

The main purpose of this workshop was to bring together and review the electricity 
load modelling expertise within the SGEM project and thus help planning and coordina-
tion of the work and collaboration. This included also strengthening and sharing the 
international contacts with those Spanish experts in this field that were responsible for 
developing load and response modelling in the big European Smart Grid projects EU-
DEEP, FENIX, and ADDRESS, and have worked in this field in many other projects as 
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well and written many good scientific papers on the subject. The workshop comprised 
presentations on utilizing and analysing smart metering data and environmental data for 
load modelling and long term scenarios, physically based load response models, and 
approaches for developing and structuring load models and load profiles. This provided 
adequate coverage of the field for meeting the objectives of the workshop. 
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Opening words 

Dear Reader, 
 

On behalf of the University of Eastern Finland, hosting the “Load and response model-
ing workshop” in Kuopio on November 10th, 2011, I would like to express my gratitude 
to  the  organizing  committee  for  excellent  work,  as  well  as  to  the  presenters  for  their  
contribution to this successful workshop. It was a real pleasure to have you all here; the 
Finnish Cleen/SGEM partners as well as the Spanish collaborators. I hope this occasion 
will guide and focus the work on this important area to contribute to the creation of a 
new level of smart electricity distribution networks which are reliable and cost effective 
to both customers and energy corporations. 
 
Mikko Kolehmainen, professor 

Environmental Informatics 
University of Eastern Finland 
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Utilizing AMR in network business  

Markku Kauppinen 
Vattenfall Verkko Oy 

 
 

Background 

This is summary of a presentation how AMR can be utilized in a distribution company. 
Following are examples about applications based on AMR system implemented in a 
Finnish Distribution Company Vattenfall Verkko Oy. 

What AMR enables 

A view of the intended functionalities is needed for the specification of a smart metering 
system or an AMR (Automated Meter Reading) system.  AMR enables opportunities to 
versatile development of the business of the distribution network operator. Figure 1 
shows which business processes can utilise smart metering. Thus almost all business 
processes of the DNO can benefit from smart metering.  But developing and replacing 
only the meters is not enough to achieve this. Even bigger investments are needed in the 
various Information Technology (IT) systems of the DNO so that the information pro-
vided by the meters can be utilised in them. 
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Figure 1. What AMR enables. 

MDMS Main Functionality 

In this context Meter Data Management System is a central IT system. Its most important 
functionalities include 

 Supervision of received data 
 Control of validation and estimation 
 Control of progress of billing and settlement readiness 
 Control of fuse size and connection demands 
 Network loss calculation and reporting 
 Control of distribution business periodization 
 Power quality reports 
 Service requests 
 Self control 
 Data quality monitoring. 

Of these receiving, validating, and distributing metered data to the other systems can be 
especially mentioned. Monitoring and managing the quality of data is an important 
functionality of the MDMS. It is not limited to metered data but covers all information 
and data that is exchanged through the interfaces of the MDMS. 
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AMR and low voltage network monitoring 

Traditionally only substations and MV (medium voltage) network could be monitored 
in real time so that alarms and measurements were received automatically. Similar au-
tomation can be extended to cover also the LV (low voltage) network by using the 
AMR-meters and a smart metering system. This will multiply the amount of distribution 
network that is automatically monitored. The most important functionalities include in 
addition to automatic alarms also queries to individual meters or meter groups initiated 
from the control room. Such queries are mainly used for getting fast real time situational 
awareness regarding those parts of distribution network that seem to be most critical at 
that time.  As a result the following benefits are achieved:    

 Number of customer trouble calls reduced 
 Faster fault repairing and shorter interruptions 
 Reduced amount of trouble shooting and unnecessary customer visits 
 Security: real-time information of zero conductor faults and voltage level 
 Accurate and extended reporting and statistics. 

On-line web presentation 

Benefits from AMR to end customers such as consumers are often mentioned. One such 
benefit is provision of metered data to the use of end customers. Hourly metered data 
can be shown over the Internet as soon as it is in the data base of the MDMS. In Finland 
the new electricity market legislation requires that the customers have access to hourly 
metered data in the beginning of 2014 at the very latest. The customers benefit from this 
data in monitoring their energy consumption and identifying targets for energy saving 
measures. Reporting the hourly metered data has big impact in increasing the awareness 
of their own energy usage. Figure 2 shows the on-line web report. The customers have 
quickly and widely adopted this service. 
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Figure 2. On-line web presentation for a family house equipped with accumulated electric heating 
(electric heating with a heat storage tank). 
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Analyzing AMR measurements to be applied for 
long term scenarios 
Ville Rimali, Pirjo Heine & Markku Hyvärinen 
Helen Electricity Network Ltd., Finland 
 
Matti Koivisto & Matti Lehtonen 
Aalto University, School of Electrical Engineering, Finland 
 

Foreword 

The presentation “Analysing AMR measurements to be applied for long term scenarios” 
reports a work that has been carried out in the Smart Grids and Energy Markets 
(SGEM) research program coordinated by CLEEN Ltd. The project is a part of the 
CLEEN SGEM project representing during the first funding period the work package 
WP 1.4 as Task 1.4.1: First Generation Smart Metering and Spatial Load Analysis. The 
work continued in the second funding period as WP 6 and Task 6.11: Spatial load analysis. 
The partners of the work have been Helen Electricity Network Ltd., Aalto University 
School of Electrical Engineering, TEKLA, and Vantaa Energia Sähköverkot. Vattenfall 
joined the task during the second funding period. 

This presentation mainly focuses on the research work done by Ville Rimali from 
Helen Electricity Network Ltd. and Matti Koivisto from Aalto University. 

The spatial forecasting of the electrical energy and power is a vital task for distribu-
tion system operators (DSO). Spatial load scenarios provide information how much 
power must be delivered (magnitude), where (space) and when (time) it will be needed. 
The time scales for forecasting are long. While realization of investments in high volt-
age transmission routes and primary substations in city urban areas may take from sev-
eral years to over a decade the scenarios should cover e.g. 30–50 years. The total time 
scale is several decades. However, some intermediate views should be taken e.g. by 
having time steps of 10 years. The more remote future the forecasting covers, the more 
alternative scenarios should be considered. 
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The starting point of the future spatial forecasting is the present loading. The devel-
opment of the whole society is the general guide line for the future. The socio-economic 
factors of the area in question, like the growth of population and workplaces, the pur-
pose of use of the land (residential, industry, municipal, etc.), the costs of energy, politi-
cal incentives and penalties especially in the energy field, affect the future energy use. 
In addition, the present load profiles are developing. In spatial forecasts, some basic 
factors are taken into account. The future will bring changes for this present situation 
and the main developments arise from 

 changes in present consumptions 
 future growth and redevelopment of areas. 

At the moment, AMR meter deployment is going on in Finland. By the end of 2013 
practically all the customers will have new meters. In the future, a considerable amount 
of hourly metered load data will be available and new applications based on this data is 
being developed. 

In this SGEM project utilizing AMR data to be installed for long term spatial load 
forecasts, the measured load data acts as a starting point of the scenarios. In addition, by 
analyzing the measurements understanding and knowledge of the characteristics of the 
present use of electricity can be achieved. Only by understanding the characteristics of 
the present electricity use, changes and modifications modeling the future can be in-
cluded in the forecasts. 

In this SGEM project, the main performed analyses are: 

1. Background data from various sources, like the network information system, 
the customer data base, municipality registers, interviews, the temperature da-
ta, was linked to the measured AMR data. One major question is the common 
data between various data bases. Between the data bases within DSO, the 
common data was straightforward to determine. However, the combining of 
AMR data to the data of city registers may be challenging. In this project, this 
linking was made with coordinates and succeeded well. When having done 
this, a major amount of background data was available. In this part, e.g. spe-
cific consumptions were determined for the demo areas for various customer 
groups. This data was further applied in the scenarios when modeling the ef-
fect of future construction of the city on spatial electricity use. 

2. Present spatial load curves can be modeled utilizing linear regression where 
outside temperature, day length, and day type are used as explanatory varia-
bles. Based on hourly measurements of an individual customer, different cus-
tomer types can be recognized mathematically exploiting key figure method. 
Customer groups can then be obtained using clustering or limiting value 
method. 
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3. Based on hourly measurements of an individual customer, different customer 
types can be recognized mathematically exploiting principal component anal-
ysis (PCA) and clustering. 

A spatial simulation method is applied to create the load forecasts. In this part, the spa-
tial future construction of the area is critical input data. In addition, the future changes 
of the use of electricity and totally new loads can be added to the present, temperature 
normalized load curve. Thus, it is possible to model the changes arising in the coming 
decades. 

In the project, spatial load forecasts were created for two different districts of Helsinki. 
Only future construction plans of the city were modeled. The other city district has 
mainly apartment houses with households and offices, the other mainly small and row 
houses. The expectations of the coming construction activity are considerably different 
and are clearly seen in the results. The scenarios covered the years 2010–2030. For the 
time being, the first scenarios and demos have been created manually. During the com-
ing months, the analyses are deepened, new demo areas are handled and the actual demo 
tool is further developed. Main efforts are addressed also to the modeling of the future 
development of electricity use. 

Reference 

SGEM report: Development of spatial load forecasting utilizing AMR measurements, 
2/2011Master thesis: Ville Rimali, Etäluettavan energiamittaustiedon hyödyntäminen 
alueellisissa kuormitusennusteissa, Aalto yliopisto, 11/2011. 
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Using AMR measurements in load profiling and 
network calculation 

Antti Mutanen 
Tampere University of Technology (TUT), Finland 
 

 
Background and motivation 

Finland has a long history in load profiling and network calculation with load profiles. 
Finnish electric utilities started to co-operate in load research in the 1980’s. As a result 
of this co-operation, load profiles were born. In 1992, Finnish Electricity Association 
(Sener) published customer class load profiles for 46 different customer classes. Since 
then, these load profiles have been used extensively in distribution network calculation. 
Load profiles are used for example in load flow calculation, planning calculation, state 
estimation, pricing and tariff planning. Pretty much any function in a distribution man-
agement system that contains either load flow calculation or load estimation relies on 
load profiles. 

However, there are several defects in the current load profiles. The biggest problem is 
that the load profiles are old. The original Sener load profiles, which are still used in 
many utilities, are based on measurements that were done over 20 years ago. This is not 
acceptable, since electricity consumption habits change over years. For example, during 
the past 20 years the amount of heat pumps and air-conditioners has multiplied, the use 
of entertainment electronics has increased and electricity consumption in recreational 
dwellings has changed. Furthermore, in the future, the changes will be even bigger if 
plug-in hybrids and customer-specific distributed generation become popular. The load 
profiles have also several other error sources. Such as, sampling errors, errors caused by 
geographical generalization and errors related to customer classification. 

While load profiles have grown old, the requirements for network calculation accura-
cy have become tighter than before. Modern smart grid functions, such as co-ordinated 
voltage control, require accurate information on the network state. When automation 
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and intelligent control are used to increase the network utilization rate, the requirements 
for planning calculation and state monitoring become tighter. Therefore, smart grids 
need also better load models. 

TUT goals in load profiling 

In Tampere University of Technology (TUT), our goal is to improve load profiling ac-
curacy by utilizing the measurement data provided by AMR systems. AMR data can be 
used for creating new load profiles and updating customer classifications. Since AMR 
data is collected continuously, adding dynamic and adaptive properties to the load pro-
files is also possible. In our vision, dynamism and adaptivity are achieved through con-
stant load profile updating. More accurate load profiles will ultimately lead to more ac-
curate network calculation. 

For easy and fast practical implementation, the new load profiles should be compati-
ble with existing network calculation software. That is why the load profile format is 
kept unchanged. The full potential of existing load profile format is harnessed by updat-
ing the load profile content. Currently, load profiles are expressed either as topogra-
phies or as index series. Topographies can contain more information and that is the for-
mat we are going to work with. Topographies contain expectation values and standard 
deviations for each hour of the year. They can also include monthly temperature de-
pendencies [%/°C] and power factors. 

Temperature dependency parameters 

Outdoor temperature has a clear effect on electricity consumption. This should be taken 
into account when making load forecasts and planning calculations. AMR measure-
ments and regional temperature measurements make the calculation of temperature de-
pendency parameters possible. The temperature dependency parameters can be calculat-
ed with simple linear regression. In our calculation method, the effects of daily and 
monthly fluctuations in electricity demand are eliminated by choosing the dependent 
and determining variables as follows: 

 Dependent variable (regressand): the percent error between the daily energy 
consumption and the average daily energy consumption on a similar day (same 
day of the week and month). 

 Determining variable (regressor): difference between the daily average temper-
ature and the average temperature on a similar day. 

Linear regression from this data set gives results directly in the form %/°C. 



Using AMR measurements in load profiling and network calculation 

19 

Clustering 

There are several ways to use AMR data to improve load profiling accuracy. AMR 
measurements can be used to reclassify customers to the nearest existing customer class 
load profile or they can be used to update existing customer class load profiles. Natural-
ly, the best result is achieved if these two methods are combined. Combining customer 
reclassification and load profile updating requires an iterative process where reclassifi-
cation and profile updating are repeated until the customer classification does not 
change anymore. Basically, this is a clustering problem and can be solved with clustering 
algorithms such us K-means or ISODATA. Figure 1 shows how the above-mentioned 
methods affect load profiling accuracy. 

 

Figure 1. Comparison on the impact of different load profiling methods. 

The clustering method we have developed utilizes weighted K-means clustering with 
pattern vectors. Each AMR measurement series is converted into a pattern vector witch 
consist of 864 hourly values. The hourly values are calculated as monthly averages for 
three day types (workday, Saturday and Sunday). Pattern vectors help us to reduce the 
dimension of the clustering problem and since they are formed from temperature nor-
malized measurements, they can contain information from several different years. 

The flow chart in Figure 2 describes the clustering method developed. After the for-
mation of pattern vectors, the initial cluster centres are calculated using the original cus-
tomer classification. After first K-means clustering, outliers which do not fit any cluster 
are filtered and customer-specific load profiles are calculated for them. Then the K-
means clustering is repeated and finally customer class load profiles are calculated for 
each cluster. 



Using AMR measurements in load profiling and network calculation 

20 

 

Figure 2. Flow chart of the clustering method developed. 

Customer-specific load profiles 

Since all customers cannot be modelled accurately with customer class load profiles, 
customer-specific load profiles are also needed. Load profiling accuracy can be en-
hanced by increasing the number of customer-specific load profiles but the amount of 
load profiles that can be handled in current network calculation software is limited. 
Therefore, we must select the customer-specific profiles with care. In the previous clus-
tering method, outlier filtering was done so that only those customers who would have 
the largest absolute profiling errors when using customer class load profiles are selected 
for individual profiling. 

When forming customer-specific load profiles, we should remember that last year’s 
measurement does not directly forecast next year’s electricity consumption. The cus-
tomer-specific load profiles, as the other load profiles, should be normalized to long 
term monthly average temperature. When used, the load profiles are corrected to the 
forecasted or expected temperature by using the temperature dependency parameters. 

A single customer usually has high stochasticity. The stochasticity can be filtered by 
using type days (workday, Saturday, Sunday) and calculating hourly mean values for 
each month. Type days also enable the calculation of standard deviations which would 
otherwise be impossible from one year’s measurement data. The final customer-specific 
load profiles are formed from the type days. Special days, such as Easter, Christmas and 
New Year’s Day, should of course be taken into account when forming the final load 
profiles. 
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Ongoing and future work 

During the SGEM project, we will use the aforementioned load profiling methods in a 
demonstrative Matlab program that uses AMR data to reclassify customers and updates 
load profiles. As Figure 3 shows, the Matlab program will read AMR measurements 
from a database, performs clustering and exports updated customer classifications and 
load profiles in to the network information system (NIS). 

 

Figure 3. Load profiling demonstration. 

Once the load profiling is done, we will use NIS to make calculations and comparisons 
on how the new load profiles affect network calculation and state estimation accuracy. 
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DDM/CI methods and experiments in load 
modelling using AMR and other environmental 
data 

Harri Niska & Jukka Saarenpää 
University of Eastern Finland (UEF) 

 

Introduction 

Load modelling is an important part of planning and management of smart grids. The 
AMR meters, which are soon to be found from every home, provide a large amount of 
electricity measurement data. In addition, huge amount of external environmental data, 
which has been collected over the years to the various registers of the society, are con-
stantly more open and available to public use. 

Some of the registers currently available and possibly opened for free use in the future 
include: 

 Building information (VTJ/RHR/KTJ) 
 Socio-ecomonomic data (Statistics Finland) 
 Weather (FMI) 
 Land use (MML/CORINE/SLICES). 

The better availability of large amounts of data provides interesting opportunities in 
load modelling and possibly enables creation of a new type of models that are more 
accurate. For privacy and technical reasons the data is often restricted to regional/spatial 
level, which suggests developing regional modelling (or spatial analysis) approaches. 

DDM/CI techniques 

When dealing with large amount of environmental data, it is often difficult for human to 
notice the patterns and interrelationships within. However, in “data-rich” conditions 
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data-driven modelling (DDM) methods provide new possibilities for the analysis and 
modelling. More sophisticated DDM methods rely often on novel data mining / computa-
tional techniques contributed by the field of Computational Intelligence (CI), including: 

 Neurocomputing 
 Evolutionary and genetic algorithms 
 Fuzzy logic 
 Clustering methods (k-means/fuzzy c-means/Isodata). 

The DDM methods combined with conventional statistical methods and geocomputing 
techniques could result in substantial enhancements in solving modelling problems re-
lated to planning and management of smart grids. 

Advantages of DDM/CI methods are that they are capable of (i) searching complex 
spatiotemporal patterns, load curves, in different data presentation levels, (ii) modelling 
non-linearity and temporal dynamics of loads, including time-delays and interaction 
with external variables, (iii) forecasting future behaviour of load series and (iv) handling 
measurement errors, noise and missing data. 

Main load modelling experiments using DDM/CI methods so far 

Redefinition of load curves 

Methods for redefinition of load curves (Figure 1) using AMR data were developed 
using the data from 4454 small scale customers (Savon Voima). The basic principles of 
the method are described in Räsänen and Kolehmainen (2009) and Räsänen et al. 
(2010). At general level, i.e. not paying attention to the details of implementation, the 
main stages of the load curve redefinition were as follows: 

 Temperature corrections 
 Feature extraction from AMR data 
 Clustering AMR data using the features extracted (SOM+k-means) 
 Extracting new load curves basis of cluster centers 
 Evaluating the new load curves. 
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Figure 1. Load curves redefined from the AMR data. 

Regional modelling 

Spatial load forecasting is required in long-term distribution network planning. As there 
is high uncertainty involved in the long-term planning, it is recommendable to prepare 
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for several possible scenarios. To facilitate this process regional modelling experiments 
were done. The research so far has been mainly focused on: 

 Assessing regional loads in scenarios involving changes in residential heating sys-
tems using data from Population Register Centre’s Building and Dwelling Register 

 Modelling the regional potential for PHEV adoption based on socio-economic 
characteristics using data from Statistics Finland’s Grid Database and Finnish 
Transport Safety Agency’s Vehicular and driver data register. 

In both cases the common approach has been to first simulate the phenomena leading to 
changes in loads (i.e. changing heating type or obtaining electric vehicle). The question 
is then: How to predict which consumers change their electricity consumption behav-
iour by obtaining new technology? Consequently, new or updated load models must be 
adapted to the scenario, the problem being: How to select or modify the load model 
when consumers change their behaviour? 

The basic hypothesis is that similar customers have similar behaviour, which leads to 
the question of how to measure the similarity. 

A methodology for predicting regional electricity loads in scenarios where consumers 
change their residential heating system has been proposed by Saarenpää (2011) and 
Niska et al. (2011). The modelling has been demonstrated using rich internet application 
based on Silverlight, Matlab and ArcGIS Server (Figure 2). 

 

Figure 2. Regional modelling tool for assessing loads in heating system scenarios. 
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The idea is to reduce the uncertainty involved by enabling easy creation and inspection 
of multiple scenarios. In each scenario, the consumers who are most probable to change 
their heating system according to given scenario are first identified. This could be mod-
elled using historical data of heating system changes, but since such data is not easily 
available, utilizing expert knowledge is necessary. In the second phase, new load mod-
els are allocated using non-linear regression based on the Self-organizing map. In the 
regression model, building characteristics are used as independent variables while load 
curve type or yearly electricity consumption are used as the dependent variable. 

Conclusions 

AMR data combined with external data will open new possibilities in the field of load 
modelling, both from the perspective of network management (load-response) and net-
work strategic planning. Data-driven and computationally intelligent methods excel in 
finding patterns and previously unknown interrelationships in new data. 

Further work is required in developing and applying DDM/CI approaches for con-
structing physical-based load/response models using AMR and external environmental 
data (such as temperature measurements, building information, socio-economic data). 

Additionally, in respect to the strategic planning of the electric grid, new type of spa-
tial load modelling methods are needed for assessing loads in future scenarios. In this 
context, particular issues include the encapsulation of DG/DER scenarios into load 
models (e.g. EV, solar panels) and the prediction of behaviour on different regions. 

In parallel with developing new load modelling methods and approaches, technical is-
sues related to data interfaces and model integration should be investigated. Moreover, 
modelling approaches developed should be demonstrated to the potential end-users. 
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Introduction 

There are 46 load profiles in use in Finland (SLY 1992, Seppälä 1996) and they stem 
from sparse and infrequent measurements in the 1980’s and early 90’s. The number of 
customer end recordings behind each profile varies. For single family house profiles, the 
number of recordings behind them is between 4 and 56, but it is good to remember that 
each recording might be just a few months long. They are also from different seasons 
and years. The profiles have nevertheless proven their usefulness for the network utili-
ties. VTT updated these models partially in 2002, but access to the updated models is 
restricted to the project partners of that time. 

With AMR being on the march into every household, the availability of measure-
ments will be on a very different scale. Thus, updating the national profiles or even cre-
ating new local network dependent profiles will be possible, even updating or automat-
ing the profile classifications (see e.g. Mutanen 2010, 2011a, and 2011b). However, 
especially for network long-term planning purposes, national easy-to-use and clearly 
defined profiles will be advantageous. 

The main obstacles to continuing touse the existing classification of 46 load profiles 
are the overwhelming changes that take place at the end-users’ consumptions. A lot of 
new significant part loads have been or are to be introduced in households. The new 
additional part loads in the households do not only change the annual energy consump-
tion, but they also change the profile and in very decisive ways. In addition, parts of the 
loads are temperature dependent, other parts not. Scalability of load curves is another 
problem, as even if the right class is used, the internal share of the part loads might be 
wrong for a single customer. The question is, shall we nevertheless try to introduce new 
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profile classes for all the main combinations, use the old classification, or is there an-
other solution? 

The building block research here is based on the research recommendations (Koreneff 
2010) from the Inca-project. 

The problem 

There are 12 load profiles for single family houses: 

110 direct electric heat, water boiler < 300 liter 
120 direct electric heat, water boiler = 300 liter 
130 direct electric heat, floor heating > 2 kW 
210 partial storage electric heat, short disconnect periods 
220 partial storage electric heat, long disconnect periods (7–22) 
300 full storage electric heat, (7–22) 
400 heat pump 
510 dual heat, flat tariff 
520 dual heat, night tariff 
530 dual heat, seasonal tariff 
601 no electric heat, no electric sauna 
602 no electric heat, electric sauna. 

In the future, we would need a tremendous amount of profiles (NB! the calculations 
have been updated from the workshop presentation): 

 4 types of basic one family houses heating modes (no electric heating, direct 
heating, partial storage heating, full storage heating) 

 4 types of basic electric heating sources with different behaviour (direct elec-
tric, ground source heat pump (GSHP), air-water heat pump (AWHP), and ex-
haust air heat pump (EAHP)) 

 6 additional heat source possibilities with different behaviours (no additional, 
air-air  heat  pump  (AAHP),  AWHP,  solar  heat,  micro-CHP,  and  a  manual  
source such as a stove/fire place) 

 11 different electric vehicle (EV) constellations (0…2 pieces, full EV(FEV) or 
plug-in hybrid EV (PHEV), smart or dumb charging) 

 4 types of micro generation possibilities (none, photovoltaics (PV), wind power, 
micro-CHP) 

 electric sauna or not. 
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This would result in (1 + 3*4)*6*11*4*2 = 6864 new distinctive load curves for one 
family houses, which is not manageable. Even with AMR, it would be very difficult to 
get enough measurements for all the classes, as some combinations are rarer than other. 

Approach 

One solution to the exploding amount of profiles needed is to divide the load into feasi-
ble and more easily managed part loads (building blocks), see Figure 1. A similar ap-
proach has been studied and tested in different connections for household electricity, 
that is, household appliances and lighting, but we are not convinced that is the right way 
for load profiles. Here we plan to do the opposite: model the household electricity (ap-
pliances and lighting) as a whole. Instead, model large distinctive parts of the load (e.g. 
heating, EV) separately. There is, for example, no benefit in modelling a coffee maker, 
as it is such a small part of the whole, there is no CIS information on it, and the usage is 
in short and quite irregular spells. As there are several small, independent and stochastic 
loads in a single household, it is easier and more useful to manage their sum load. On 
the other hand, modelling of the direct electric heating separately is very useful: it is 
large, it has a distinctive temperature dependent profile which can be influenced by other 
likewise distinctive profiles (additional heat sources such as AAHP or solar heat). 

 

Figure 1. The end-user load can consist of several very distinctive part loads, even negative ones 
(i.e. savings). The sum of the part loads form the total end-user load. 
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The building block approach suggests that we construct a user’s load using part load 
profiles, which can be added or subtracted. For example, the customer’s load can be 
calculated as: 

+ household electricity 
+ DHW 
- solar heat panel for DHW (= savings) 
+ direct electric heating 
- AAHP in electric heated house (= savings) 
+ AAHP during the summer 
+ one PHEV without smart charging 
+ sauna. 

The number of building block (bb) load profiles can now be restricted to (NB! calcula-
tions have been updated from the workshop presentation): 

 Household: 1 bb; electricity used for appliances, lighting etc., 

 Domestic hot water: DHW: 1 bb 

 Basic heating need: 1 bb; basic heating need is also the same as direct el heating 

 Additional main electric heating curves or models: 3 bb; GSHP, AWHP or 
AAHP, EAHP, etc.) 

 Heat storage: 1–3 bb (zero, 3 load curves, or a model dependent of storage size 
and heat demand) 

 Heating saving (negative) building blocks: 5 bb; AAHP, AWHP, stove, solar, 
micro-CHP 

 Electricity saving building blocks: 1–3 bb; PV, wind, micro-CHP 

 Extra consumption blocks: 5 bb; EVs, directly heated sauna. 

All in all, approximately 1 + 1 + (4 *(1…3) + (0…3)) + 5 + 3 + 5  20…27 building 
blocks are enough to construct any single family house constellation. 

Discussion 

One of the benefits of building blocks is that part of the loads can be calculated instead 
of relying on measurement. Traditional load profiles have also been partly modelled 
through their temperature dependency, so it is not a new idea, but here the benefits of 
modelling are becoming clearer, as we can use separate models tailored for each sub-
load. When one uses one profile for the whole load, it is not easy to adjust it to take into 
account condition changes that affect only part of the load, but using tailored sub-load 
models makes it easier to take into account that, for example: 
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 temperature dependency concerns only the heating and the regression coefficient 
can itself be temperature dependent, 

 demand response is not easily measured, per se, 

 sub-loads may depend on variable inputs such as the spot price or varying tariffs, 

 heating electricity may depend on the usage of auxiliary electric or non-electric 
heaters, and 

 usage of heat storage is not only a amplitude issue, it is also a time duration issue. 

Some parts of the loads, especially the household electricity, are best based on meas-
urements. Household electricity is too complicated to be modelled using sub-loads; a 
better and a more usable load profile can probably be achieved using measurements of 
household electricity. 

The building block approach is modular and as such also easy to expand. Amending 
single building block doesn’t affect other building blocks. Overall, maintenance of the 
system shows promises of being very straight-forward. 

Results 

The aim of this project is to test the feasibility of this approach by designing the setup 
and constructing logical rules for the usage of building blocks. As a part of the feasibil-
ity study, a number of part load profiles and models will be constructed based on, for 
example, SGEM funding period 1, 2, and 3 results (among others Laitinen 2011), Inca-
project results (Koreneff 2010, Mutanen 2010), SEKKI-project results (Koreneff 2009). 
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This presentation is devoted to reinforce the need to detailed physical modeling of customer 
processes to allow credible customer response to energy prices in electricity markets. 

The first part of the presentation is oriented to connect Customer Demand response 
and SmartGrids initiatives. Customer issues are centric in SmartGrids, and a massive 
response of the customers is a basic objective of this initiative as rational and intelligent 
energy consumption is basic in the framework of Distributed Energy resources imple-
mentations and solutions. 

Most of Demand Side Management initiatives have been Supply oriented, and now is 
the time for fully integrated Supply and Demand solutions. 

A large 5 years European Project (EU-DEEP, The birth of a EUropean Distributed 
EnErgy Partnership that will help the large-scale implementation of distributed energy 
resources in Europe) was completed in 2009, whose objective was to investigate oppor-
tunities to enhance the integration of Distributed Generation, Storage and Demand in 
Europe. 

The Institute for Energy Engineering of the Universidad Politecnica de Valencia was 
in charge of the Demand Research and Modeling tasks in this project, and some relevant 
results are shown in this presentation. 

The energy consumers were first segmented all over Europe according energy con-
sumption issues, resulting in: 93 segments for residential consumers, 154 in the com-
mercial and 378 in the industrial segment. 

All these segments where documented (mainly with utility data) and ranked according 
to their suitability to implement Distributed Generation, Distributed Storage and De-
mand Response. 

 



Physically based load modeling for distributed energy resources applications: EU-DEEP project 

34 

The highest ranked segments were analyzed and modeled in detail, in order to pro-
duce real figures and information that allowed the selection of real customers for three 
pilot experiences that were implemented in EU-DEEP. 

The main objective of these experiences was to show the ability of Distributed Energy 
Resources (DER) in providing Balancing Mechanisms. More specifically: 

– Case 1: Aggregating Demand response and DER contracts to compensate im-
balances caused by Renewable Energy Generation. 

– Case 2: ESCO/Aggregator using customer flexibility and micro-CHP for sell-
ing Balancing Services. 

– Case 3: ESCO internal balancing to cope with long term contracts. 

The developed modeling tools were Physically Based process oriented, according to 
Figure 1. 

 
Figure 1. Main steps of the modeling process. 

Where three modeling steps can be identified: 

 Demand Module, where the use of each single process is identified. 

 Physically Based Module, where each process is modeled according to physi-
cal mathematical description laws. 

 Aggregation module, where all customer consumption processes are aggregat-
ed to find the customer total energy consumption. 
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The presentation is completed with a demonstration about the use of some models: Ho-
tels, Apartments and one industrial example. 

 
Editor’s explanations of abbreviations:  
ESCO Energy Service Company 
LTS Local Trading Strategies that connect DER with the electricity market. (See Figure 1.) 
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This presentation is devoted to show a methodology for customer energy demand analy-
sis and organization for participation in electricity markets. 

The organization of the customer energy needs into Demand Bids is first discussed, 
where each “piece” of demand required by the customer is assigned a price that corre-
sponds to the benefit the customer will obtain by consuming this energy. 

The result of this demand organization is the hourly energy need for this customer, as 
shown in the next figure (Results from EU-DEEP project): 

BIDS - Segment "Hotels"

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180

Traded Power    kW

P
ric

e 
  c

ts
€/

kW
h

Others no 
controlable

Others 
controlable

Lighting no controlable
HVAC no 

controlable

Ventilation no 
controlable

HVAC 
controlable

Ventilation 
controlable

Lighting 
controlable

 

Figure 1.  Demand Bids, an example. 
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One of the most relevant issues in building this “demand Curve” is the price determination, 
that is usually determined by means of some other indirect costs/benefits (Substitution 
costs, Stand by generation, Contracted insurances, Long term planning costs, etc.). 

More important for customer demand participation in ancillary services markets is the 
short term ability to modify its consumption. This can be found in the processes  where 
some short term flexibility in the energy consumption can be found. This flexibility can 
be organized also in Demand Packages (DP) characterized by: 

 Trigger price:  to account costs incurred by the reduction/increase of the energy 
consumption 

o direct costs 
o costs of the control equipment 
o cost of Storage. 

 Size and shape of the package. 

 The notice time required for the change in the demand 

o other limitations such as reliability of the package (possible penalties once 
committed), number of occasions/season, year, etc. 

Once identified this process flexibility and associated price, it can be organized as 
shown in the Figure 2: 
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Figure 2. Offers to reduce power in operational markets, an example. 
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Figure 2 represents the power that can be traded in operation markets, for one specific 
hour and customer facility (Results from EU-DEEP project). 

Extensive physically based models have been used for different customers to evaluate 
their flexibility. 

As conclusion, a methodology for the evaluation of the Demand response capacity of 
customers based on customer interaction to perform the evaluation of the impact (eco-
nomic) of the energy in the customer processes. 

This methodology could also be used by ESCO companies to evaluate the aggregated 
response of its customer portfolio. 
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Introduction 

In the smart grids demand response will be extensively applied. Predictability of loads 
will be increasingly important as operational margins are reduced with the help of au-
tomation. Thus it becomes necessary to predict the responses of load control actions. 
The traditional load control models described and developed by Seppälä (1996) have 
been so far successfully applied in Finland, but those models cannot predict control re-
sponses. A solution is to use simple physically based models of the building heat dy-
namics with parameters identified from measured data and building properties. In addi-
tion the physically based dynamic models can predict the responses to outdoor tempera-
ture variations better than the models by Seppälä (1996) and do not require quite as 
much and as complete measurement data time series for updating. 

Already Haase (1971) and Martikainen et al. (1987) applied simple physical models 
of building heat dynamics in simulations of load control responses of electrical heating.  
Koponen (1997) applied them for predicting the responses of direct control of electrical 
heating and Koponen et al. (2006 and 2007) in optimisation of load control responses. 

Approach 

The suggested modelling approach is the following. The controllable houses are classi-
fied to some segments based on the type of the heating system and the building proper-
ties. Measurement data and a priori information are used for this. For each segment 
some simple dynamic model structures are defined based on the heat dynamics of a typ-
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ical house. Also feasible range of the model parameters is defined. Then the model 
parameters are fitted so that the response agrees with measured control responses, the 
load of a non-controlled reference group, and long term measurement data. 

The models are made to predict the load of groups of houses using as inputs 

 measured and predicted environmental conditions such as outdoor temperature 
in the region 

 load control actions 

 available information on usage of the houses. 

Figure 1 illustrates the modelling approach. In addition to measurement from smart 
meters also other available measurements can be used such as power measurements 
from distribution substations. Especially when modelling individual houses also 
measurements of indoor temperatures in the houses have been used taking into account 
that the state variables of the model represent lumped temperatures of the house. 

 

Figure 1. Response models are built combining measurements with information on building heat 
dynamics. 
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Model 

Typically  the  simple  physical  model  comprises  3  to  8  state  variables.  As  an  example  
such a model taken from Koponen (1997) is shown next followed by results with it. 

 

The variables and parameters in the example model are described next. The state 
variables were the following lumped temperatures: 

x1(t)  temperature of the heating element e.g. in case of floor heating 
x2(t) temperature of the indoor air 
x3(t) temperature of the outside walls 
x4(t) temperature of the other heat storing masses of the building. 

The constant parameters were 

C1, C2, C3 and C4  the heat storage capacities related to each state variable 

k12, k23, k24, k2o, k3o the thermal conductivities between the state variables 
(temperatures in the model). 

The time variable input variables were 

Tout(t) outdoor temperature 
P(t) the electrical power heating the house. 

After adding the control loop, P(t) becomes the main output variable. 

Results 

Figure 2 shows a comparison of the model response (simulation) with response estimat-
ed from measurements at substation for load control of 463 vacation house metering 
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points in a resort. Outdoor temperature was -19 oC. The control actions were applied 
separately to four groups of houses and each group was controlled at a different time to 
shut down their controlled loads for half an hour. 

Regularly repeating load variations and impact of temperature variations are filtered 
out. The responses were identified from measurements at substations. The normal load 
profile was eliminated using both simultaneous measurements at non controlled refer-
ence substations and identified temperature dependency model. Normally the 4 groups 
were operated in a way that roughly cancelled the payback peaks, but in the test the tim-
ing is different to make the payback peaks visible and better identifiable. For more in-
formation, see Koponen (1997). 

 

Figure 2. An example of a response identified in the direct load control field tests of electrically 
heated houses in winter 1996–1997 (Koponen 1997). 

Discussion 

It can be expected that the simple dynamic response models can be identified from 
smart metering measurements that have time resolution of some minutes during the load 
control tests and time resolution of one hour otherwise. The above example shows that 
simple dynamic models can sometimes be identified even from data measured from the 
substations. They have also been applied for predicting and optimising responses of 
individual houses. 

Data from well-designed load control field tests is needed for updating and improving 
the models based on the old tests. A new field test is reported by Jäppinen et al. 2006, 
but the usefulness of its results is limited by the fact that neither long term measure-
ments nor reference group measurements are available from it. 

Increasing availability of smart metering data and improved simulation models enable 
the development of the simple dynamic load response models. Research collaboration 
within SGEM and internationally is needed for making it possible to utilise these mod-
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els as one important building block in a comprehensive load modelling framework. To 
enable that also a methodology and tools for developing and maintaining the models 
need to be developed. 

Conclusions 

A promising solution is suggested to the increasing need of load response models. 
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This work has been carried out within the ADDRESS project (Active Distribution 
network with full integration of Demand and distributed energy RESourceS) which is a 
4-year large scale R&D project launched in June 2008 and is funded by the European 
Commission within the 7th Framework Program, FP7. The project coordinator is ENEL 
Distribuzione and the Technical Manager is EDF. The consortium consists of 25 
partners from 11 European countries including research centres and universities, utilities 
and manufacturers. Major participants in the ADDRESS consortium are ENEL, EdF, 
Iberdrola and ABB together with e.g. KEMA, VITO, Ericsson, Landis & Gyr, Philips, 
Alcatel, Electrolux and universities of Manchester, Cassino, Comillas and Siena. 

The ADDRESS project aims to deliver a comprehensive commercial and technical 
framework for the development of “Active Demand” in the smart grids of the future. 
Specifically, ADDRESS investigates how to effectively activate participation of 
domestic and small commercial consumers in the power system markets and in the 
provision of services to the different power system participants.  

In the proposed ADDRESS architecture, the Aggregator is the key mediator between 
the consumers on one side and the markets and the other power system participants on 
the other side. The aggregator: gathers (“aggregates”) the flexibilities of consumers to 
“build”  Active  Demand  (AD)  services,  offers  the  AD  services  to  the  power  system  
participants via the markets, manages the risks associated with uncertainties in the 
markets and responsiveness of the consumer base, maximizes the value of consumers’ 
flexibility and interacts with consumers through price and volume signals and assesses 
their response and behaviour 

At the consumer level, the Energy Box is the interface between the consumer and an 
aggregator. It receives the price and volume signals from the aggregator as well as local 
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information about some individual load consumption and displays them to the 
consumers. In addition, it carries out the optimisation and the control of the loads and 
local distributed energy resources at the consumer’s premises.  

The objective of the developed residential load demand model is to forecast the 
aggregated load demand curve of a group of customers (cluster or prototype) under the 
effect of a specific price/volume signal. The deviation of the obtained curve from the 
one corresponding to the base case, that is, without price/volume signals, represents the 
demand flexibility of the aggregator.  This algorithm is intended to be run by the 
aggregator for different price/volume signals in order to assess how the demand 
flexibility offered by the customers changes according to the different incentive 
patterns.This information is essential for the Aggregator in order to estimate the load 
demand flexibility of the consumers in its portfolio, and therefore to define the 
strategies for market participation and consumers’ portfolio optimization. 

Input data to the model can be classified into two main groups:  

1. Prototype information: it comprises data related to the consumers in the prototype 
that is going to be simulated such as, contractual power and tariff, characteristics 
of the building, controllable equipment ownership, technical characteristics 
and usage of controllable equipment and flexibility characteristics. 

2. Simulation information: it includes specific information for the simulation that 
is  going  to  be  carried  out.  It  includes  the  price/volume  signal  that  the  
Aggregator wants to simulate, the simulation period, the sample size and 
forecasts of outdoor temperature and load demand curve in the base case. 

The tool employs a “bottom-up” approach based on physical end-use load models where first 
a sample of consumers of the prototype is randomly generated according to their statistical 
reference patterns and afterwards the responses of their individual loads to the considered 
price/volume signal are simulated. Finally, the load demand curves of all simulated 
consumers are aggregated in order to build the aggregated response of the prototype.  

Simulation of the response of each individual consumer is performed employing a 
household load model based on an optimization algorithm. The controllable loads 
included in the model are shiftable loads characterised by having a fixed power 
consumption profile (washing machine, dish-washer, dryer) and thermal load (air-
conditioning and space heating system) 

The optimization algorithm optimizes the overall power consumption of the 
household for the next 24 hours. The approach is based on reproducing the rescheduling 
that the EnergyBox would perform over the operation set-points of the controllable 
appliances in the household if it received the considered price/volume signal. This 
calculation is based on the assumption that the algorithms implemented in the 
EnergyBox search the objective of minimizing the electricity bill while user comfort 
preferences are maintained. The possible control actions consist of delays on the 
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starting-times of the shiftable appliances to time-periods with lower electricity prices 
(higher incentives) and changes on the temperature set-points of the thermal loads by 
performing pre-cooling or pre-heating actions during off-peak periods and switching off 
the devices or reducing their consumption during peak price hours. 

Comfort preferences are modelled with price-sensitivity factors that define the 
willingness  of  the  consumer  to  lose  living  comfort,  that  is,  to  perform control  actions  
over  his  controllable  appliances,  as  a  function  of  electricity  prices.  This  parameter  
quantifies the demand flexibility offered by the consumer as a function of the electricity 
prices which in case of shiftable loads defines the maximum time that it allows to delay 
the starting time of the appliances according to electricity prices and in case of thermal 
loads the maximum number of degrees that it allows to increase/decrease the 
temperature set-point accordingly.  

The optimization algorithm includes physical models for simulating the power 
consumption of the loads. Shiftable loads are characterised by their power consumption 
profiles. Thermal loads are simulated with a thermal model describing the dynamics of 
the house as a function of the outside temperature and building thermal characteristics. 

The objective function can be written as follows: 
N

i

K

k

N

i
itksii TempTimeIncentiveCostMinimize

1 1 1
)(  

where: 

N Number of time-steps in the scheduling period 
K  Number of shiftable appliances 

time|k  Delay applied to the starting time of the shiftable appliance k (h).   
Temp|i  Deviation between the initial temperature set-point and the final one 

(ºC). s Price-sensitivity of the consumer for shiftable loads (€/h) 
t Price-sensitivity of the consumer for thermal loads (€/ºC) 

The first summation in the previous equation represents the final cost of the electricity 
for the end-user. It is calculated as the difference between the electricity cost paid to the 
retailer and the incentive received from the Aggregator which will depend on the power 
consumption performed by the consumer during the time-step i. 

The second summation introduces a penalty for each shiftable appliance over the 
difference between the initially scheduled starting-time by the end-user and the finally 
scheduled one by the Energy Box. 

Similarly,  the  third  summation  is  a  term  that  models  the  price-sensitivity  of  the  
consumer regarding thermal loads by penalising deviations between the actual 
temperature and the ideal one (temperature set-point) for each time-step of the 
scheduling period.  
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As a result, one obtains the optimal starting time of shiftable appliances and the 
optimal temperature set-point of the air-conditioner/space-heating system for all time-
steps of the scheduling period that minimise the electricity bill while price-sensitivity of 
the consumer is fulfilled. With this information, the load demand curve of the 
considered end-user during the simulation period under the effect of the considered 
price/volume signal is obtained. 

The Residential Load demand model estimates the forecasted demand curve of all the 
consumers within the prototype under the effect of the considered price/volume signal. 
This information will be employed together with the demand curve corresponding to the 
base case, to estimate the flexibility offered by the consumers in the prototype in case 
such an incentive scheme was delivered by the Aggregator.  

The following graph shows a comparison of the results obtained for load reduction 
with three different control signals: 

1. Two price steps and high incentives; from 15:00 to 17:45 consumer receives 5 
cent€ per time-step, if power consumption is lower than 1 kW.  

2. Two price steps and low incentives; from 15:00 to 17:45 consumer receives 1 
cent€ per time-step, if power consumption is lower than 1 kW. 

3. Three price steps; consumer whose power consumption is less than or equal to 1 
kW is rewarded with 2 cent€, and each consumer whose power consumption is 
between 1 and 2.5 kW is rewarded with 1cent€. 
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It can be seen that the higher the incentive, the higher the load reductions that can be 
achieved because the consumers offer more flexibility and therefore they are more 
willing to control their loads. Consequently, they allow higher delays on the starting 
times of shiftable appliances and higher modifications on the temperature set-points of 
the air-conditioning system. Similar comparison was also made for the load increase 
requests. 
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This work was carried out within the FENIX project. The main concept of this project is 
the Virtual Power Plant (VPP) which is based on the idea of aggregating the capacity of 
many distributed energy resources (DER) – generation, storage or demand- in order to 
create a single operating profile. In this way, individual DERs gain visibility and man-
ageability to system operators, optimizing their position and maximizing their revenue 
opportunities. A VPP is comparable to a conventional power plant with its own operat-
ing characteristics such as schedule of generation, generation limits and operating costs. 
It can be used to make contracts in the wholesale market and to offer services to the 
System Operator. 

The objective of the developed model is to manage a VPP composed of a large num-
ber of end-users with controllable appliances. The model, which is based on a direct 
load control (DLC), is valid for the aggregation of domestic and commercial customers 
with appliances that have thermal storage capabilities (Air-conditioning or Space-
heating systems). The possible control actions are established by contract between the 
end-users and the aggregator and can consist of a modification of the thermostat refer-
ence temperature setting or a disconnection of the devices for a predetermined period. 
As a result, the load reduction capability of the VPP is obtained so as to define the cor-
responding load reduction bid to be presented in the electricity market. 

The first step in the DLC algorithm is to calculate the load consumption curves of the 
controllable loads in the base case as well as under the effect of all control actions. In 
this way, the reduction in demand that can be achieved through the application of each 
control strategy can be determined. It has to be taken into consideration that the con-
sumption of these devices is influenced by many variables: building characteristics (di-
mensions, construction materials, etc.), local climate conditions (temperature, humidity, 
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etc.), comfort settings, equipment characteristics,... In order to model it more accurately, 
a building energy simulation tool was employed (EnergyPlus software). The methodol-
ogy consists of defining a model building that represents the average behaviour of each 
customer type and simulating their thermal behaviour with the mentioned software. 
Taking the model building for the base case as a reference and modifying the schedule 
of the controllable load according the control strategy considered, a new consumption 
curve that represents the influence of such a control action is obtained. This process is 
repeated for all control possibilities. 

Figure 1 shows an example of the application of this methodology to a domestic air-
conditioner. The model building is considered to be a 90 m2 flat  sited  in  a  block  of  
apartments. It is west oriented and the construction materials fulfil the current Spanish 
regulation in relation to edification. Regarding the mode of operation of the air-
conditioning system it is assumed to be connected during the whole day being the tem-
perature setting of the thermostat 23ºC. 
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Figure 1.Simulated impact of a 60 min long interruption of air-conditioning. 

The solid line represents the consumption curve for the base case and the dashed line 
the consumption when it is switched off during 60 minutes starting at 14:00. It can be 
observed the impact of such control action on the temperature inside the building that 
reaches almost 27ºC and the demand peak occurred just after the control period (which 
represents the payback). 

Input parameters to the model include the forecast load demand of the aggregator 
portfolio, existing customer types that have controllable devices and the number of con-
trollable devices within each customer type, the available control actions for each cus-
tomer type and finally the load consumption curves in the base case and under the effect of 
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the different control actions. These curves are simulated in advance with the EnergyPlus 
software as it was explained previously. 

The decision variables are: 

– number of devices of the type K customer which are controlled after the optimi-
zation with the strategy s starting at time-step t 

– number of devices of the type k customer no controlled after the optimization. 

The  objective  of  the  optimization  problem,  which  is  based  on  Integer  Load  Program-
ming, is to maximize load reduction over the control interval or, which is the same, to 
minimize final demand over that period. The values of the final demand for each time-
step can be obtained as the addition of the forecasted demand at that time-step plus the 
variation in load that occurs in that time-step when the control actions are applied. This 
variation can be divided into two parts: 1) load variation at time-step z due to the control 
actions starting at z and 2) load variation at time-step z due to control actions starting 
before z: 
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The optimization algorithm includes a constraint that limits the final demand after the 
control period in order to ensure that the generated payback is within acceptable limits. 

The solution to the algorithm provides the optimal combination of control strategies 
and the number of devices that should be controlled with each of them in order to max-
imize system load reduction during the control period. The resulting daily load demand 
curve can be also calculated. 

The following case study aims to demonstrate the applicability of the proposed model 
for managing the participation of the VPP in the Spanish Deviation Management Mar-
ket. This market is called by the TSO when deviations between generation and demand 
over 300 MW are expected between two intraday markets. When this occurs, market 
agents have 30 min. to send their offers. Currently, only generators and pumped storage 
power stations can participate in this it. 

Simulations have been carried out with information from an actual power system in 
northern Spain. The analysis considers a particular power system area characterized as 
having a significant number of domestic and commercial buildings connected. It is as-
sumed that an aggregator operates in the region, offering DLC contracts to end-users 
with controllable devices in order to obtain a significant load reduction capacity that can 
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be offered in the market. It is considered that the TSO calls the deviation management 
market for a period running from 14:00 to 16:00. Consequently, the aggregator runs the 
algorithm to generate the load reduction bid corresponding to that control interval. The 
study is performed in a summer scenario where air-conditioning system control is con-
sidered. The same methodology could be employed for the control of space-heaters in a 
winter scenario. 

Table 1 shows the results provided by the optimization algorithm. It includes the op-
timal control actions and their durations, the initial time and the number of devices that 
must be controlled with each action so as to obtain the maximum load reductions over 
the control interval, which runs from 14:00 to 16:00. 

Table 1. Results provided by the optimisation algorithm. 
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By applying the above control actions, the aggregator can attain the load reductions pre-
sented in Table 2. 

Table 2. Load reductions attained with the control actions provided by the optimisation algorithm. 
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Table 2 also includes the percentage of forecast demand represented by those variations. 
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The load reductions achieved are practically constant for all time-steps in the control 
period, and average 2 MW. This represents a drop of 2.2% in relation to the expected 
demand and a potential energy reduction of 4 MWh for the whole control period. 

The following figure shows a graphic representation of the load reduction achieved: 
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Figure 2. Forecasted load reduction achieved with the control actions provided by the optimization 
algorithm. 

It can be observed that consumption drops for the two hours of the control period, but 
rises in the subsequent time-steps. This is the payback effect that represents the extra 
amount of energy that the air-conditioning systems demand in order to restore their 
temperature settings. 

Finally, Table 3 shows the load reduction bid that the aggregator would send to the 
TSO (constrained scenario). The planning periods considered are 1 hour long, coincid-
ing with the current characteristics of the Spanish market. The bid formulated is upward 
because consumption reduction is similar to generation increase. The bid includes the 
energy offered for each planning period and the corresponding price. These prices 
should be set by the aggregator taking into consideration financial compensation for 
customers and its own costs and profit. In addition, the complex condition that estab-
lishes the indivisibility of the bid is defined. 
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Table 3. Load reduction bid based on the load reduction forecasted. 

P2P1Price (€/MWh)

2.0321.996Energy (MWh)

15:00-16:0014:00-15:00

P2P1Price (€/MWh)

2.0321.996Energy (MWh)

15:00-16:0014:00-15:00
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Feedback from workshop participants 

Questionnaire 

After the workshop, a short questionnaire was produced for the participants to answer. 
The participating experts were enquired for their opinions on the future needs of load 
modeling and similar workshops. Even though the response rate was only 25 percent, 
many good ideas were laid out for the future research and organization of events of sim-
ilar type. The answers of the questionnaire are summed up below. 

Question 1. What do you see as the most important things to 
develop in load modeling on short (less than 5 years) and long 
(over 5 years) term? 

Short term 

One quite popular opinion among all the respondents is to make good use of the availa-
ble AMR-data. Especially the old load curves utilized in the DSOs could be made more 
accurate by using AMR-measurements. Ideally the updating would be an ongoing pro-
cess, handled as automatically as possible, and enabled by easy-to-use software and 
adequate interfaces. Moreover, to get more benefits out of the AMR-data, it could be 
used for better energy efficiency information and analysis. 

As for the other short-term developments, the use of AMR-data is also suggested in 
making models for accurately forecasting the load at MV/LV substation level. Such 
models are needed for state estimation applications and for the active management of 
distribution networks. 

On  short  term,  also  more  dynamic  load  models  compared  to  the  current  static  ones  
would generally be more desirable. However it should be done by taking care of their 
usability in the current information systems and processes. 

 



Feedback from workshop participants 

57 

Long term 

Many of the respondents think that, on the long term, modeling of new load types 
should be sought after. More specifically, many new types of load behavior and func-
tionality related to smart grids should be somehow considered in the load modeling. 
Such things include for instance demand response, electric vehicles, dynamic pricing 
scenarios, and the distributed energy resources in general. 

Additionally, it was proposed that several aspects of electricity consumer behavior 
should be further analyzed. Suggested were the analysis of the specific consumption and 
trends, better inclusion of spatial and temporal information in the load analysis and in 
the analysis of the behavioral changes in the consumption (e.g. residential heating type 
changes, electric vehicles, and consumption habits). 

Question 2. What kind of a new perspective or ideas would you 
like to see in load modeling? 

Three  clear  themes  can  be  seen  in  the  issues  the  respondents  would  want  to  see  ad-
dressed in load modeling. New methods are wanted for modeling non-existing load 
types. Additionally, geographical area and grid component level load curves are of in-
terest. 

Another perspective the respondents would like to see is a more practical one. For in-
stance different load modeling approaches could be compared in real test cases. 

The third theme mentioned by the respondents, is the refining and better utilization of 
customer data. This can be seen in different ways, i.e. how to get more relevant infor-
mation about the customer and his electricity consumption as well as how to utilize the 
data (e.g. in providing the customers with information about their consumption). 

Question 3. What would you like to see changed or done better 
in a similar type of seminar/workshop in the future? 

The respondents were mostly satisfied with how the workshop was arranged. However, 
there is clear demand for more time and opportunities for open discussion. More con-
crete results are also wanted, which could be in the form of a new idea or a new method. 
One interesting idea brought up for producing such results would be to have more regu-
lar “virtual workshops” among load modeling experts by using the Internet as means of 
communication (i.e. Skype, wikis, Moodle). Overall, more tight cooperation and ex-
change of ideas among the participants are things that should be kept in mind for a simi-
lar event in the future. 
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Question 4. Do you think there is a need for a topic specific 
seminar/workshop of a similar type also in the future? 
Fromwhat topic? 

The respondents expressed that there is a need for similar load modeling workshops also 
in the future. Moreover, it was suggested that a workshop could be arranged on the ap-
plication of load and demand response modeling in some specific target area such as 
electricity supply & trading or distribution planning/management. 

Other topics suggested to be covered in a specific workshop were distribution net-
work management with smart metering, distributed generation, demand response, end 
user tariffs, distributed energy resources, and activation of the smart customer. 

Question 5. Additional comments 

Not many additional comments were given. However, a pressing issue in load and re-
sponse modeling seems to be the availability and sharing of raw data for research. Due 
to privacy, competitive and technical reasons, the availability of AMR-metering and 
other data from the DSOs for research purposes is often extremely restricted. Better 
possibilities to share the data would go a long way toward supporting the load and re-
sponse modeling research. 
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Conclusions 

The workshop is considered a success by the participants. It strengthened contacts and 
collaboration between load and response modelling experts. This progress covered both 
internal and external international networking of project SGEM. The participants got an 
overview of research being conducted in SGEM as well as the results of earlier Finnish 
and European smart grids projects. Much useful exchange of information and ideas took 
place during the lively discussions following each presentation.  Research collaboration 
continues and initial planning of a new workshop is starting. 
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